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Abstract—In this paper, we study beam alignment in a millime-
ter wave (mmWave) network with multiple users, and consider an
optimal transmission scheduling algorithm. The problem is posed
as an infinite horizon average cost constrained Markov decision
process (CMDP) with the goal of minimizing the average beam
alignment overhead subject to the average rate constraint on each
user. By using a structural result derived from the Lagrangian
formulation of the CMDP, we show that the optimal policy should
keep scheduling the users that are scheduled in the previous time
slot unless an abrupt change in the beam direction happens.
Using this result, the complexity of the problem decreases to
polynomial in the number of users. We also provide a heuristic
deterministic algorithm that achieves (1+ε ) approximation of the
optimal solution, with smaller ε at the cost of longer transmission
interval of each user.

I. INTRODUCTION

To overcome the high signal attenuation inherent at 30-300

GHz electromagnetic spectrum (which corresponds to10mm to

1mm wavelength), millimeter wave (mmWave) networks must

employ highly directional beamforming antennas. However,

the use of narrow beams makes link establishment and mainte-

nance much more challenging than traditional omnidirectional

antennas as a mmWave link is established only when the

transmit and receive antenna beams are steered in the correct

directions. Moreover, even a slight misalignment of the beam

directions or signal interruption can easily lead to complete

link breakage and requires frequent beam re-alignments to

maintain seamless connectivity especially under mobility.

To enable beamforming, a BS (base station) and a UE

(user equipment) have to go through beam searching proce-

dure, which typically incurs tens to hundreds of milliseconds

overhead for the initial link establishment if exhaustive search

over all possible combinations of transmission and reception

directions is performed through a sequential pilot transmission

[1]. To reduce the overhead, current standard activities [2], [3]

suggest a two-stage beam search technique, in which a coarse

grained sector level sweep is performed, followed by beam-

level alignment phase. However, since the mmWave channel

frequently varies over time in mobile network, it may lead to

unaffordable overhead to perform an exhaustive search from

scratch every time. Hence, more efficient schemes exploiting

the temporal correlation on the channel are preferred under

mobility.

Fast beam search methods in mmWave networks under UE

mobility have been extensively studied in the literature. In [7],

a smart beam steering algorithm is proposed for fast directional
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link re-establishment under node mobility, which uses knowl-

edge of the previous feasible antenna sector pair to narrow

the sector search space. In [5] a priori aided (PA) channel

tracking scheme is proposed to predict the support of beam

space in the following time slots without a channel estimation

under the assumption that there is no blockage. In [6], Kalman

filter based tracking algorithm and an abrupt change detection

method based on a threshold test are proposed and evaluated

through simulation. In [8], based on linear dynamic model,

the authors proposed probing protocols to identify the beam

errors caused by link blockage and user movement. Despite of

the large volume, however, they either only consider a single

UE case or assume no blockage.
Beam alignment (BA) and transmission scheduling in multi-

user mmWave networks has also drawn extensive attention

lately. In [5], the authors consider point to multipoint channel

estimation, but it is assumed that the number of RF chains

are equivalent to the number of UEs to guarantee the spatial

multiplexing of all UEs, and thus the UE scheduling problem

is not considered. In [9], transmission scheduling of multiple

links is studied with an objective of optimizing network

throughput, but the problem is defined for the multiple point-

to-point links. In [17], energy efficient joint beam alignment

protocols is addressed, with the goal to minimize the power

consumption subject to rate constraints. However, the problem

is defined for two users.
It is worth noting that none of the above considers multiple

UE scenarios under mobility and the impact of transmission

scheduling on BA overhead over time. In this paper, we

consider a mmWave network consisting of a fixed BS and

multiple mobile UEs communicating with directional antenna

patterns. Our objective is to find a UE schedule that minimizes

the beam alignment overhead while satisfying minimum data

transmission rate constraints for each UE. The main contribu-

tions of the paper are as follows:

• Unlike most of the works on mmWave beamforming (or

beam tracking) algorithms which focus on the link level

performance improvement, we consider the problem of

UE scheduling in a mmWave networks (possibly involv-

ing a large number of UEs). In our system model, both the

abrupt changes and slow variations in beam direction of

each link due to UE mobility and environmental changes

are taken into account. We formulate the scheduling

problem with minimum data rate constraint as CMDP

(constrained markov decision process) and its equivalent

linear programming formulation is presented.

• To avoid exponential complexity in the number of UEs,
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we use Lagrangian multiplier method to convert the con-

strained problem to an unconstrained MDP and show that

with the optimal policy, in each transmission schedule, the

BS should continue to include the UE that is scheduled

in the previous time unless an abrupt change happens to

the UE. The optimal solution is a randomized mixture

of the solutions of unconstrained MDP and the problem

reduces to finding the optimal mixture ratio. Using this

structural result, the complexity of the problem decreases

to polynomial in the number of UEs.

• For a practical use, a deterministic scheduling algorithm

is proposed. With this algorithm, the BS schedules the

UEs in a circular order but with different consecutive

transmission times allocated to each UE. The length of

the transmission time at each UE’s turn is determined by

the rate requirement of the UE. This algorithm ensures

that every UE is given a transmission opportunity in a

finite time. It is shown that the algorithm achieves (1+ ε )
approximation of the optimal solution for cases where

the minimum data rate requirement of individual user is

sufficiently small compared to the channel capacity.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a network consisting of a BS and N UEs

labeled n ∈ {1,2, · · · ,N }. At the BS, K RF chains are deployed

so that it can serve K UEs at a time. As shown in Fig. 1,

a time slot consists of two segments: beam alignment and

data transmission. We assume that the BS decides which UEs

to serve at the beginning of each time slot, based on the

information it has on each link. When a UE is selected for data

transmission for the time slot, the BS and the UE first decide

which beam to use before its data transmission by searching

over the possible combinations of beams and finding a best

beam with highest SNR.

A. Beam alignment

Beam alignment introduces overhead because it requires

time and energy which can otherwise be used for data

transmission. The overhead is proportional to the number

of directions to be tested and thus depends on the prior

information on the correct direction of the beam. For example,

if a UE is static, the beam found in the previous time slot

can be reused unless some abrupt changes in the environment

happen. Let τ and τn denote the length of a time slot and the

time consumed for beam alignment with UE n respectively. We

assume that τ is set to a fixed value such that it can support a

seamless connectivity during the time slot under UE mobility

(unless an abrupt change such as blockage happens in the

environment). To maintain the connectivity, at the beginning

of each time slot, beam search algorithm first finds which beam

to use for the data transmission by sequentially checking the

directions from the one with the highest probability of UE

presence to minimize the searching overhead. After the beam

alignment, for the remaining time of the time slot, the data is

transmitted. We assume that at each time slot t, the channel

gain (or path gain) of n-th UE is independent and identically

BS

UE 1 at time t

UE 1 at time t+1

UE 3Beam searching 
for UE 1

UE 2

Beam Alignment Data Transmission

Fig. 1: An example of a multiuser mmWave network and its frame structure.

distributed with the expectation of θn . The data rate of UE n
at time t is then determined by the channel gain if the beam

is aligned and no blockage happens during the time slot. If

blockage happens, the best beam direction in the next time

slot can become completely independent to the previous one

due to the loss of LOS path or change in the path of dominant

reflection. In this case, a UE can disappear and re-appear

in the following time slot uniform randomly on the entire

angular search domain and we assume the search algorithm

should scan the entire space. Note that as the time elapsed

from the previous beam alignment increases, the information

on the correct beam direction becomes more uncertain (i.e.,

less correlated to the previous direction) and the number of

directions to be checked tends to increase and so does τn . We

assume that the search algorithm should scan the entire space

if the latest beam alignment becomes too outdated (e.g., if the

time elapsed from the latest BA is larger than L).

B. Problem formulation: weakly coupled CMDP

When the beam alignment procedure in Section II-A is

employed, at time t, the system state space is defined by

a N-tuple X = {(x1, x2, · · · , xN ) : xn ∈ {1,2, · · · ,L}} and

xt ∈ X denote the state of time t, where xtn represents the

amount of time that has been passed from the last beam

alignment of UE n at the time of t. State L includes all time

intervals which is greater than or equal to L. Similarly, the
action space is defined by a N-tuple A = {(a1,a2, · · · ,aN ) :

an ∈ {0,1},∑N
n=1 �(an = 1) ≤ K }, where 0 stands for no

transmission and 1 for transmission. at ∈ A is the action at

time t. If UE n is scheduled for transmission at time t (at
n = 1),

the BS first performs beam alignment with the UE and then

transmits data for the remaining period of the time slot. The

constraint on the action space is due to the limited number of

RF chains in mmWave. At each time t, at most K (≤ N ) UEs

can be selected for transmission.

Transition probability: The transition probability defines

the evolution of the system and reflects the natural indepen-

dence of UE transitions, i.e. state and action taken for an UE

don’t influence the transition of the other UEs. Thus, the state
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Fig. 2: transition probability graph for each of the two possible actions
(transmit or not transmit) for a single user.

of each user transit according to independent homogenous

transition law, i.e. the probability that xt+1 = j given xt = i
and at = a is: P(xt+1 = j |xt = i,at = a) =

∏N
i=1 Pan

in, jn
,

where

Pan

in, jn
= P(xt+1

n = jn |xtn = in ,at
n = an )

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

1 if an = 0, jn = min(L, in + 1)

q if an = 1, jn = 1

p if an = 1, jn = L
0 otherwise

(1)

q = 1 − p and p ∈ (0,1) is the probability of abrupt change

(blocking) which is independent across time. When a UE is

scheduled for transmission, the state of the UE in the next

time slot becomes 1 regardless of the state the UE is in at

the current time slot. However, if blockage happens, the UE

appears at a completely random direction in the next time

slot independent of the current state, which means no prior

information on the beam direction (i.e. no correlation with

previous beam) and transition to state L. Transition probability

graph of (1) is shown in Fig. 2. Since the transition probability

is stationary, we can drop the time notation and use Pa
i, j =∏N

n=1 P(xt+1
n = jn |xtn = in ,at

n = an ).

Costs: We define data transmission and BA overhead with

following assumptions.

(A1) Data transmission of UE n at state xn and action an ,

rn (xn ,an ) is non-increasing in xn . BA overhead of UE n of

state xn and action an , cn (xn ,an ) is non-decreasing in xn .

(A2) The costs (or rewards) are dependent only on individ-

ual state and action and additive across UEs. More specifically,

• Data transmission of m-th UE: rm (x,a) = rm (xm ,am ).

• Total power expenditure (BA overhead): c(x,a) =∑N
m=1 cm (x,a) =

∑N
m=1 cm (xm ,am ).

It is assumed that fixed per-antenna power and a fixed

symmetric antenna configuration for each RF chains are used.

(A1) is a reasonable assumption since as more time passes

from the last beam alignment, the uncertainty on the correct

beam direction increases.

Under the assumption, if K < N the problem is in the

form of weakly coupled CMDP [10] with a linkage constraint

∑N
n=1 �(an = 1) ≤ K . If K = N , the problem can be

decomposed to K independent subproblems of a single UE

case [11]. The expected average data transmission rate and

power cost associated to policy u are given by [13]:

C(u) = lim
T→∞

1

T
E
u

T∑
t=1

c(xt ,at ), (2)

Rm (u) = lim
T→∞

1

T
E
u

T∑
t=1

rm (xt ,at ), m = 1,2, · · · ,N. (3)

The problem of optimizing a transmission policy is formally

given by

C∗ = inf
u

C(u) s.t.Rm (u) ≥ γm , m = 1,2, · · · ,N, (4)

where γm is a constant minimum average data rate required

by UE m.

C. Equivalent LP formulation

We note that the MDP of our problem is unichain, i.e.

under any deterministic policy, the corresponding Markov

chain contains a single ergodic class. Thus, the problem of

(4) is equivalent to the following linear programming (LP)

[13]:

min
v

∑
x∈X

∑
a∈A

c(x,a)v(x,a) (5)

s.t.
∑
x∈X

∑
a∈A

rm (x,a)v(x,a) ≥ γm , m = 1,2, · · · ,N (6)

v ∈ V , (7)

where

V =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

v(x,a), x ∈ X,a ∈ A :

(C1)
∑
x∈X

∑
a∈A

v(x,a)(δy (x) − Pa
x,y ) = 0, y ∈ X

(C2)
∑
x∈X

∑
a∈A

v(x,a) = 1

(C3)v(x,a) ≥ 0,∀x,a

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪
⎭

v(x,a) = limT→∞ 1
T Pu (xt = x,at = a), at ∈ A(xt ), which

can be interpreted as the expected average number of times

action a is executed in state x. δy is the Dirac probability

measure concentrated on y and Pu (E) is the probability of

event E under policy u. The constraint setV can be interpreted

as the conservation of flow through each of the states. An

optimal policy can be computed from a solution to the LP as:

ux (a) =
v(x,a)∑

a∈A v(x,a)
, (8)

where ux (a) is the probability that the controller executes

action a when it encounters state x. This defines the stationary

randomized policy u, which maps states to probability distri-

butions over actions, i.e. u : X × A → [0,1].

Curse of dimensionality In principle, the optimal policy can

be found by solving the LP or dynamic programming (DP).

However, the complexity of the CMDP is exacerbated for large

number of UEs since the state and action spaces for the process

typically consists of cross-product of those from individual UE

processes, thus exponential in the number of UEs, i.e. O(LN )
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states. For heuristic techniques dealing with this problem, see

[11] and [10]. In the following section, it will be shown that

the complexity of our problem can be reduced to O(NK ) by

exploiting its structural property.

III. OPTIMAL SCHEDULING POLICY

In this section, an optimal UE scheduling algorithm with a

polynomial complexity is presented.

A. Optimal scheduling of multiple UEs

We define a set V̄ ⊂ V by adding an additional constraint

(C4) on the set V as follows.

V̄ =
⎧⎪⎪⎨
⎪⎪
⎩

v(x,a), x ∈ X,a ∈ A :

(C1), (C2), (C3) and

(C4)v(x,a) = 0,∀(x,a) � G,

⎫⎪⎪⎬
⎪⎪
⎭

(9)

where

G =
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

(x,a), x ∈ X,a ∈ A :
N∑
i=1

�(xi = 1) = m,
N∑
i=1

�(xi = L) = N − m,0 ≤ m ≤ K,
∑N

i=1 �(xi = 1,ai = 0) = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪
⎭

In words, G is a set of state and action pairs (x,a) ∈ X × A
where less than or equal to K UEs are in state 1, the others are

in state L and action 1 is assigned to at least one of the UEs

in state 1. Note also that V̄ ⊂ V with most of the elements

in V set to 0 and the number of unknowns in V̄ is O(NK ).

Theorem 1: If the assumptions (A1)-(A2) are satisfied for

the CMDP problem (4), Algorithm 1 achieves an optimal

solution.

Proof: See Appendix A.

Algorithm 1 uses the solution of (5)-(7) with the constraint (7)

replaced by v ∈ V̄ . Therefore, the complexity of the algorithm

is polynomial in N . In the proof of the theorem 1, we use

a Lagrangian approach which converts a constrained control

problem into an equivalent minmax non-constrained control

problem. This approach solves the problem (4) by adding a

Lagrangian multiplier per additional constraint while every

Lagrangian multiplier results in a separate policy. Then the

optimal randomized policy of a CMDP is computed as a mix

policy of multiple optimal pure policies for all the Lagrangian

multipliers. (See [13], [14] for comprehensive discussions

about this topic). The theorem is proved by the structural

property (18) showing that (C4) holds for the pure policies

of all the Lagrangian multipliers.

B. Application of Algorithm 1 to a single UE network

By Theorem 1, the optimal solution of (5)-(7) can be found

by solving (5), (6) and v ∈ V̄ . For a single UE network,

N = 1, K = 1 and G = {(1,1), (L,0), (L,1)}. Therefore, there

are only three unknowns in V̄ and v∗ ∈ V̄ that minimizes the

cost function can be found by a simple calculation. From (8),

the optimal policy u is as follows :

ux (1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

1 if x = 1
pγ

pr (L,1)+qr (1,1)−qγ if x = L

arbitrary else

(10)

1 2 L-1 L

1 2 L-1 L

...

...

q

p

q

P

Policy

Policy

1

a(L)=1

a(1)=1

a(L)=0

Fig. 3: Optimal solution of a single user case as a mixture of two
deterministic policy. Note that the states 2, 3, · · · , L − 1 are transient and
the randomized decision occurs at state L.

and ux (0) = 1 − ux (1). The optimal scheduling of the UE is

to keep transmitting as long as it succeeds and once a failure

(blockage) happens, the BS flips a coin and transmits the data

with probability
pγ

pr (L,1)+qr (1,1)−qγ and stays idle with proba-

bility 1 − pγ
pr (L,1)+qr (1,1)−qγ . Note that in the case of failure,

it needs to search the beam from scratch while consecutive

successes utilize the information of previous alignments. We

note that the optimal solution (10) is a mix policy of u∗
1

and

u∗
2

in Fig. 3.

Algorithm 1 Optimal Transmission Schedule

Data: X, A, r (x,a) c(x,a), pai, j for all x ∈ X and a ∈ A,

channel capacity θi , minimum rate requirement γi for

each UE i
Result: transmission scheduling {at }t=1,2, · · ·
Initialization: find v∗(x,a) for all x ∈ X and a ∈ A by solving

(5) s.t. (6) and v ∈ V̄ . t = 1.

while true do
if t = 1 then

xti = L for all i ∈ N
end
choose at = a with probability v∗ (x t ,a)∑

u∈A v∗ (x t ,u)

for i = 1 to N do
if at

i = 1 then
if an abrupt change occur to user i then

xt+1
i = L

else
xt+1
i = 1

end
else

xt+1
i = xti + 1

end
end
t = t + 1

end

IV. DETERMINISTIC SCHEDULING

Even though we can find an optimal solution of (4) with

polynomial time complexity, the optimal policy is randomized.
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repeats

repeats
...

...RF #1

RF #2

Fig. 4: An example transmission schedule of Algorithm 2, when there are
five users (N = 5) and the number of RF chains are two (K = 2). In this
example, the set of users N = {1, 2, 3, 4, 5} are partitioned into two groups
such that N1 = {1, 2, 4} and N2 = {3, 5}.

In practice, it is more desirable to use a deterministic policy

[10]. In this section, we propose a deterministic policy with

(1 + ε) approximation. In this algorithm, the UEs are first

divided into K groups and the UEs in each group are scheduled

in a circular order, but with different consecutive transmission

time slots assigned to each of them depending on its rate

requirement. An example is shown in Fig. 4.

Algorithm 2 Fixed Transmission Time Schedule

Data: X, A, r (x,a) c(x,a), pai, j for all x ∈ X and a ∈ A,

channel capacity θi , minimum rate requirement γi for

each UE i
Result: transmission scheduling {at }t=1,2, · · ·
initialization: find a parition {Nk }Kk=1

, set n0 and find nki
∀i ∈ Nk , k = 1, · · · ,K according to (13), t = 1

while true do
at
i = 0, ∀i ∈ N

for k = 1 to K do
d(k, t) = t mod (

∑
i∈Nk

ni + n0)

if 1 ≤d(k,t) ≤ nk1
then

at
k1
= 1

end
for j = 2 to Nk do

if
j−1∑
l=1

nkl < d(k, t) ≤
j∑

l=1
nkl then

at
k j
= 1

end
end

end
t = t + 1

end

Theorem 2: If there exists a partition of a set N into K
subsets N1,N2, · · · ,NK such that for all k ∈ {1,2, · · · ,K },
γi ≤ qθi

3( |Nk |−1)
(τ − qτ1 − pτL ) for all i ∈ Nk , then for any

given ε > 0, by setting n0 = maxk
bk

ε − ak , Algorithm 2

achieves an average cost function f that is at most (1+ ε ) f ∗,
where f ∗ is the optimal solution of problem (5)-(7) and ak

and bk are constant values defined in (14).

Proof: The proof proceeds in four steps.

STEP 1 (Performance bound for single RF): Let us denote

the optimal solution of a single RF problem (K=1) with a

multiuser set N by f ∗N /1
. If
∑

i� j n j + n0 ≥ L,∀i ∈ N , the

expected aggregated reward of user i during its ni consecutive

transmission (action 1) from any time ti ≥ L is

ti+ni−1∑
t=ti

ri (xt ,at ) = ri (L,1) +
∑
j=1,L

p(1)
L, jri ( j,1)

+
∑
j=1,L

p(2)
L, jri ( j,1) + · · · +

∑
j=1,L

p(ni−1)
L, j ri ( j,1)

= ri (L,1) + (ni − 1)pri (L,1) + (ni − 1)qri (1,1),

where p(n)
i, j is n-step transition probability from state i to state

j. The last equality follows from that p(n)
L,1
= q and p(n)

L,L = p
for all n ≥ 1. Similarly, the expected aggregate cost of user i
during its ni consecutive transmission is

ti+ni−1∑
t=ti

ci (xt ,at ) = ci (L,1) + (ni − 1)pci (L,1) + (ni − 1)qci (1,1).

Therefore, using this deterministic policy, the problem of

minimizing BA overhead subject to the rate constraint on each

user can be written as follows.

min
n

f̂N /1 =
1T (cL − c) + cT n

n0 + 1T n
(11)

s.t.[diag(r) − γ1T ]n � (r − rL ) + n0γ, (12)

where c, r , cL , rL and γ are N × 1 vectors whose i-
th component is pci (L,1) + qci (1,1), pri (L,1) + qri (1,1),

ci (L,1), ri (L,1) and γi , respectively. Let diag(r) − γ1T ≡ M .

To meet the rate constraints (12), we set:

n = round(M−1[(r − rL ) + γn0]) + 1, (13)

where round(x) rounds x to the nearest integer. Putting this

into (11),

f̂N /1 =
n0(cT M−1γ) + 1T (cL − c) + cT M−1(r − rL ) + cT ε0

n0 + 1T M−1(r − rL ) + 1T M−1γn0

=
cT M−1γ

1 + 1T M−1γ

(
1 +

b
n0 + a

)
= cδT γ

(
1 +

b
n0 + a

)

= f ∗N /1

(
1 +

b
n0 + a

)
,

where

a =
1T (M−1(r − rL )

1 + 1T M−1γ
,

b =
1T (cL − c) + cT M−1(r − rL ) + cT ε0

cT M−1γ
− 1T M−1(r − rL )

1 + 1T M−1γ
,

(14)

ε0 = n−M−1[(r − rL ) + γn0] and δi = r−1
i . Since γ1T is rank

1, we used (A + B)−1 = A−1 − 1
1+tr(BA−1)

A−1BA−1 [15] to get

M−1 = δI − γT δ
1−δγ .

Since b ≥ 0, f̂N /1 is decreasing in n0 and as n0 goes to

∞, f̂N /1 approaches cδT γ = (c1q + cLp)
∑N

i=1
γi

ri
, which is

f ∗N /1
the optimal solution of the original problem (4) (or its

LP formulation (5)-(7)). Therefore,

f̂N /1 − f ∗N /1

f ∗N /1

≤ b
n0 + a
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and for any given ε ≥ 0, we can achieve f̂N /1 ≤ (1 + ε ) f ∗N /1

by setting n0 ≥ b
ε − a.

STEP 2 (Show f ∗N /1
=
∑

i∈N f ∗i ): Let us denote the optimal

solution of a single user-single RF problem by f ∗i . From

Theorem 1, the problem (5)-(7) for multiuser N and a single

RF is equivalent to the following:

f ∗N /1 = min
v

fN /1 =
∑
i∈N

[c(L1N ,1{i })︸									︷︷									︸
=ci (L,1)

v(L1N ,1{i })

+ c(L1N − (L − 1)1{i },1{i })︸																												︷︷																												︸
=ci (1,1)

v(L1N − (L − 1)1{i },1{i })]

s.t. r (L1N ,1{i })︸									︷︷									︸
=ri (L,1)

v(L1N ,1{i })

+ r (L1N − (L − 1)1{i },1{i })︸																												︷︷																												︸
=ri (1,1)

v(L1N − (L − 1)1{i },1{i }) ≥ γi ,

i = 1,2, · · · ,N.
pv(L1N − (L − 1)1{i },1{i }) = qv(L1N ,1{i }), i = 1,2, · · · ,N.∑

i∈N
[v(L1N − (L − 1)1{i },1{i }) + v(L1N ,1{i })] + v(L1N ,0) = 1

It is easy to see that the above problem is decomposable to N
subproblems of the following:

f ∗i = min
v

f i = ci (L,1)vi (L,1) + ci (1,1)vi (1,1)

s.t. ri (L,1)vi (L,1) + ri (1,1)vi (1,1) ≥ γi
pvi (1,1) = qvi (L,1),

if
∑

i[vi (1,1) + vi (L,1)] ≤ 1. Since this is satisfied by the

condition γi ≤ qθi
3(N−1)

(τ − qτ1 − pτL ), f ∗N /1
=
∑

i∈N f ∗i and

v∗(L1N − (L − 1)1{i },1{i }) = v∗i (1,1) and v∗(L1N ,1{i }) =
v∗i (L,1).

STEP 3 (Show f ∗N /K
=
∑K

k=1 f ∗Nk /1
): We denote the

optimal solution of N multiuser-K RF problem and Nk

multiuser-single RF problem by f ∗N /K
and f ∗Nk /1

respectively.

First, f ∗N/K ≥ f ∗N/N , since the action space AN/K ⊂ AN/N .

Also, f ∗N/N does not have any linkage constraints between the

users f ∗N/N =
∑

i∈N f ∗i . Therefore, 1) f ∗N/K ≥
∑

i∈N f ∗i . On

the other hand, 2) f ∗N /K
≤ ∑K

k=1 f ∗Nk /1
=
∑K

k=1

∑
i∈Nk

f ∗i =∑
i∈N f ∗i . The first inequality follows since the

∑K
k=1 f ∗Nk

is op-

timal for a fixed partition and the first equality follows from the

result of STEP 2. Combining 1) and 2), f ∗N /K
=
∑K

k=1 f ∗Nk /1
.

STEP 4 (Performance bound for multiple RF): We

combine the results of STEP 1 through STEP 3.

f̂ − f ∗ = f̂N/K − f ∗N/K =

K∑
k=1

f̂Nk /1 −
K∑
k=1

f ∗Nk /1

≤
K∑
k=1

bk
n0 + ak

f ∗Nk /1 ≤
(

max
k

bk
n0 + ak

) K∑
k=1

f ∗Nk /1

≤ (max
k

bk
n0 + ak

) f ∗N/K = (max
k

bk
n0 + ak

) f ∗.

This completes the proof.

Remark 1 (K-partition): We note that the assumption on

the minimum required data rate for each user in Theorem 3 is

necessary to guarantee the feasibility of k-partition problem.

However, even though the feasibility is guaranteed, finding

the partition is NP-complete since the problem reduces to a

set partition problem [16]. In this section, we assume that γi
are sufficiently small compared to the channel capacity, thus

a partition can be easily found. For example, if γi is given

such that γi ≤ qθi
3( �N/K �−1)

(τ − qτ1 − pτL ), for all i ∈ N , then

any partition that allocate less than or equal to �N/K� users

to each RF chain will be a feasible solution.

V. PERFORMANCE EVALUATION

In this section, the algorithms in Section III and Section IV

are evaluated numerically. We consider a mmWave network

consisting of a BS and multiple UEs. We assume the fol-

lowing probabilistic model for temporal changes in the beam

orientation [18]:

- Slow change of beam orientation of each UE is modeled

as an independent random walk on a polygon with L sides in

angular domain. The change occurs at the beginning of each

time slot. With probability α ∈ (0,1) the beam direction does

not change and with (1 − 2α) it changes to the neighbouring

directions due to UE mobility.

- An abrupt change in the beam direction occurs with

probability p > 0. When the abrupt change occurs, the beam

direction in the following time slot is determined by a uniform

random selection on a polygon with L sides.

- Beam alignment is performed independently for each

user and for a given scheduling, orthogonal beamforming

exists. The data transmission of UE n is rn (xn ,an ) = (1 −
τpNp (xn )

τ )θn if an = 1, and 0 otherwise. θn is a known

constant data rate of UE n when beam-aligned, τp is the

time required for a pilot transmission and Np (xn ) is the

number of pilot transmission needed for a beam alignment

when the UE is at state xn . The BA overhead of UE n is

cn (xn ,an ) = Np (xn )ep if an = 1, and 0 otherwise. ep is the

power consumption of a pilot transmission. Note that Np (xn )

is determined by the realisation of the probabilistic change in

beam orientation of the UE.

Table I shows the average cost of the proposed algorithms

for different number of UEs and rate constraints for a given

α and p. The BS has 2 RF chains and can serve at most 2

UEs at each time slot. We assume the same channel capacity

(bps), i.e., θn = 1 for every UE n when the UE is beam-

aligned and 0 otherwise. The length of a time slot τ=1. For

a pilot transmission, we set the cost ep = 0.1 and τp = 0.05.

The quantities in Table I and Fig. 5 are averaged over 104

time slots and 100 different runs. We consider 5 UEs, i.e.,

N = {1,2,3,4,5} with different rate constraints. (B) is further

divided into two cases in which different UE partition to each

RF chain is used. For (C), we consider 2 UEs, i.e., N = {1,2}.
The minimum rate of UE 1 and UE 2 are set to be the same

as the total rate of N1 and N2 of (B2), respectively.

(A) γ=[0.3, 0.3 0.3, 0.3, 0.3]

(B1) γ=[0.15, 0.15 0.15, 0.15, 0.15],N1 = {1,2,3,4},N2 = {5}
(B2) γ=[0.15, 0.15 0.15, 0.15, 0.15],N1 = {1,2,3},N2 = {4,5}
(C) γ=[0.45, 0.3], N1 = {1}, N2 = {2}
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(A) (B1) (B2) (C)

LP solution 1.0293 0.5147 0.5147 0.5147
Alg. 1 1.0297 0.5137 0.5147 0.5126

(95 % CI) (±0.0017) (±0.0021) (±0.0017) (±0.0057)

Alg. 2
n0=11 - 0.8018 0.9198 0.6987
n0=44 - 0.5948 0.6327 0.5622

TABLE I: Performance comparison with different rate requirements (γ) for
given α and p (α = 0.5, p = 0.1).

20 40 60 80 100 120 140

n
0

0

0.1

0.2

0.3

0.4

0.5

0.6

p=0.05, =0.8 (f*=0.471)

p=0.1, =0.8  (f*=0.648)

p=0.1, =0.4 (f*=0.797)

Fig. 5: Performance comparison with different settings of UE mobility (α),
blocking probability (p) and n0 for a given minimum rate requirement γ.

Since there does not exist any partition of N into two which

can support the rate requirement of (A), the γ of (A) is not

feasible for Algorithm 2, whereas Algorithm 1 has the average

cost very close to the LP solution (The variation from the

optimal is due to finite sampling. As the number of runs and

time slots increases, this will converge to the LP solution).

We note that the action space of Algorithm 2 is a subset of

Algorithm 1 since it uses a fixed assignment of UEs to each

RF chain. However, when the rate requirement is sufficiently

small as in (B), we can readily find a feasible partition N1

and N2. As seen in the proof of Theorem 2, the average

cost of the optimal policy does not depend on the partition

as long as the given γ is feasible for partition. Therefore,

the performance of Algorithm 1 is the same for (B1) and

(B2). However, depending on the partition, the performance

of Algorithm 2 can be different. This is because the constants

ak and bk of (14) change as we use different partitions. It

is shown in Table I. that the cost of (B2) is larger than (B1)

for both n0 =11 and n0 =44. Regardless of which partition

we use, however, the average cost decreases as n0 increases.

The result of (C) shows how the number of users affects the

performance of the network. The BS serves UE 1 and UE

2 separately using different RF chain (and its corresponding

antenna sets). For each RF, the rate constraint is the same as

the total rate of (B2) and thus the optimal cost of (C) is the

same as (B2). This is no surprise because for each k ∈ {1,2},
if we merge the states {(L1Nk

− (L − 1)1i )}i∈Nk
of (B2) to

a single state (state 1), we can obtain the same MDP as (C).

However, the average cost of (C) is lower than (B2) when

Algorithm 2 is used. This is because more users with smaller

rate requirements causes larger rounding errors in (13).

Fig. 5 shows the performance of Algorithm 2 for different

UE mobility (α) and probability of blockage (p) with a given

rate requirement γ. 5 UEs with γn = 0.1 are assigned to

each RF chain. Obviously, the average cost increases as either

the probability of blocking (abrupt change) or UE mobility

increases for both the optimal solution and Algorithm 2. It

is also shown that the normalized error
f − f ∗
f ∗ of Algorithm 2

decreases as n0 increases as expected by Theorem 2.

VI. CONCLUSION

This paper explores transmission scheduling algorithms for

mmWave networks under user mobility, where the beam

alignment is required before each transmission. The problem

of minimizing beam alignment overhead under the minimum

rate constraints is formulated as CMDP. From the structural

result derived from the Lagrangian formulation of the MDP, it

is shown that the complexity of the CMDP can be reduced

from O(LN ) to O(NK ). In addition, a heuristic determin-

istic algorithm is proposed and shown to achieve (1 + ε )
approximation of the optimal solution. In our future work,

a joint optimization of transmission scheduling with power

allocation and/or beam alignment methods (so that it includes

an option of beam tracking for non-scheduled users or reuse

of the previous beam alignment for scheduled users) will

be investigated along with the study on the non-orthogonal

beamforming.
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APPENDIX

A. Proof of Theorem 1

Proof: In this proof, we use 1 × N vector notation to

present states and actions of multiple users. When S is a set

of indices, S ⊆ {1,2, · · · ,N } = N , we let 1S denote a 1 × N
vector whose components on S are 1 and 0 elsewhere, e.g. if

N = 5 and S = {2,3}, then 1S = (0,1,1,0,0). 1S multiplied by

a constant c is c1S , e.g., L1N = {L,L, · · · ,L}. Similarly, for

some x ∈ X, we let xS denote x ◦ 1S , where ◦ is entry-wise

product such that (xS ) j = x j if j ∈ S and 0 if j � S. Let Ia =
{i : ai = 1} . We reformulate the CMDP as a parameterized

unconstrained MDP. For each Lagrangian multiplier λ > 0,

define the instantaneous Lagrangian cost by

c(x,a; λ) = c(x,a) −
N∑
i=1

λiri (x,a). (15)

We note that for any fixed λ > 0, c(x,a; λ) is increasing in

x since it is the sum of increasing functions. The Lagrangian

average cost for a policy u is then defined as follows:

J (u; λ) = lim
T→∞

1

T
E
u

T∑
t=1

c(xt ,at : λ). (16)

The corresponding unconstrained MDP is to minimize the

above Lagrangian average cost:

V = inf
u

J (u; λ) u∗λ = arg inf
u

J (u; λ). (17)

The proof proceeds in two steps.

STEP 1 (Pure policy for a given λ): Bellman Equation

with cost function (15) for a discounted cost MDP is as

follows.

Vα (x) = min
a∈A{c(x,a; λ) + α

∑
y∈X

Pa
x,yVα (y)} = min

a∈AQα (x,a).

where 0 < α < 1 is the discount factor. This can be computed

by the recursion,

V t+1
α = min

a∈AQt+1
α (x,a),

where Qt+1
α (x,a) = c(x,a; λ) + α

∑
x∈X Pa

x,yV t
α (y). We used

the Bellman equation for a discounted cost MDP since an

average cost MDP inherits the properties of a discounted cost

MDP [14]. From now on, we omit subscript α. we first show

that for all a ∈ A the following holds for all I ⊆ Ia , b � a.

Q(L1N ,a) −Q(L1N − k1I ,b)

≤ Q(L1 − k1I ,a) −Q(L1N − k1I ,b),1 ≤ k ≤ L − 1. (18)

(18) implies that if action a is optimal at state L1N , so is it

at states L1N − k1I , for all I ⊆ Ia and k = 1,2, · · · ,L − 1.

Q(L1N ,b) −Q(L1N − k1I ,b) ≤ Q(L1N ,a) −Q(L1N − k1I ,a)

⇔
∑

i∈I∩Ib
[ci (L,1; λ) − ci (L − k,1; λ)] +

∑
J ⊆Ib

p |Ib |− |J |q |J |

[V (L1N − (L − 1)1J ) − V (L1N − (L − 1)1J − (k + 1)1I∩ Īb )]

≤
∑

i∈I∩Ib
[ci (L,1; λi ) − ci (L − k,1; λi )]

+
∑

i∈I∩ Īb
[ci (L,1; λi ) − ci (L − k,1; λi )].

It suffices to show that for any S ⊂ N and x ∈ X,

V (L1S + xS̄ ) − V ((L − k)1S + xS̄ ) ≤∑
i∈S
{ci (L,1; λi ) − ci (L − k − 1,1; λi )},2 ≤ k ≤ L − 2. (19)

Where S̄ is a complement set of S. Since V converges for any

initial condition, we can select V 1(x) = 0, for all x ∈ X. Then

(19) holds at t = 1. Suppose that (19) holds for t = s. That is:

V s (L1S + xS̄ ) − V s ((L − k)1S + xS̄ )

≤
∑
i∈S
{ci (L,1; λi ) − ci (L − k − 1,1; λi )},2 ≤ k ≤ L − 2.

Then, there exist some action a(1) and a(2) such that

V s+1(L1S + xS̄ ) = min
a∈AQs+1(L1S + xS̄ ,a) = Qs+1(L1S + xS̄ ,a

(1) )

V s+1((L − k)1S + xS̄ ) = min
a∈AQs+1((L − k)1S + xS̄ ,a)

= Qs+1((L − k)1S + xS̄ ,a
(2) ).

Then, at t = s + 1,

V s+1(L1S + xS̄ ) − V s+1(L1S + xS̄ )

= Qs+1(L1S + xS̄ ,a
(1) ) −Qs+1(L1S + xS̄ ,a

(2) )︸																																																						︷︷																																																						︸
≤0 by optimality

+Qs+1(L1S + xS̄ ,a
(2) ) −Qs+1((L − k)1S + xS̄ ,a

(2) )

≤
∑

i∈S∩S0

[ci (L,1; λi ) − ci (L − k,1; λi )] +
∑
J ⊆S0

p |S0 |− |J |q |J |

[V s (L1N − (L − 1)1J ) − V s (L1N − (L − 1)1J − (k + 1)1S∩S̄0
)]

≤
∑
i∈S

[ci (L,1; λi ) − ci (L − k,1; λi )] (20)

≤
∑
i∈S

[ci (L,1; λi ) − ci (L − k − 1,1; λi )], (21)

where S0 = Ia (2) = {i : a(2)
i = 1}. (20) follows from the

assumption at t = s, and (21) follows since ci (x,1; λ) is

increasing in x for λ > 0.
STEP 2 (Randomized mixture of multiple policies): Now,

let Λa = {λ : Q(L1N ,a) − Q(L1N ,b) < 0}, for all b � a,

and let Xa = {x : pa
L1N ,x > 0} be the one-step reachable

states from L1N by taking the action a. Then by (18), for any

x ∈ Xa, Q(x,a) < Q(x,b), for all b � a. Also, {y : pa
x,y >

0,∀x ∈ Xa} ⊆ Xa. So, v(x,a) = 0 for all (x,a) � Ga, where

Ga = {(x,a) : x ∈ Xa}. Since ∪a∈AΛa = {λ : λ > 0} and

∪a∈AGa = G, this completes the proof.
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