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Abstract— In Cognitive Radio Networks (CRNs), unlicensed
users are allowed to access the licensed spectrum when it is
not currently being used by primary users (PUs). To guarantee
a high system throughput in CRNs, the channel state of PUs
needs to be accurately detected to reduce conflict. To this end,
cooperative spectrum sensing has been proposed to improve
sensing accuracy by exploiting the spatial diversity of secondary
users (SUs). However, existing works either focus on a single-
channel setting, or make certain restrictive assumptions for
multi-channel scenarios. In particular, most works on multi-
channel CRNs place no limit on the number of channels that an
SU can sense, which is impractical due to hardware and sensing
duration constraints. In this paper, we study the throughput
maximization problem for a multi-channel CRN where each SU
can only sense a limited number of channels. We show that this
problem is strongly NP-hard, and propose an approximation
algorithm with a factor of 1

2 (1 + 1

2
√∑N

i=1 li
), where li is

the number of channels that SU i can sense and N is the
total number of SUs. This performance guarantee is achieved
by exploiting a nice structural property, the subadditivity, of
the objective function. Our numerical results demonstrate the
advantage of our algorithm compared with both a random and
a greedy sensing assignment algorithms.

I. INTRODUCTION

In the past decade, cognitive radio networks (CRNs)
have emerged as a promising solution for achieving better
utilization of the frequency spectrum to satisfy the increasing
demand of wireless communication resources. In CRNs,
secondary users (SUs) are offered the opportunity of access-
ing the licensed channel when their activities do not cause
disruptions for primary user (PU) transmissions. To this end,
the Federal Communications Commission (FCC) [4] has
opened the broadcast TV frequency bands for unlicensed
users such as WLAN and WiFi. Most recently, congressional
negotiators have reached the compromise to allow the auction
of TV broadcast spectrum to wireless Internet providers [13].
IEEE has announced the IEEE 802.22 wireless network stan-
dard [12] that specifies how to utilize the unused resources
between channels in the TV frequency spectrum.

To guarantee a high system throughput in a CRN, the main
challenge is for the SUs to accurately detect the channel state
of PUs while exploiting transmission opportunities over the
white space. Sensing inaccuracies may lead to either a false
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alarm, where a channel is detected to be occupied when it is
actually idle, or a misdetection, where a channel is detected
to be idle when it is actually occupied. While the former hurts
SU throughput, the latter hurts both PU and SU throughput.
To improve sensing accuracy, cooperative spectrum sensing
schemes [6], [9], [10] have been recently developed, where a
joint decision is derived from individual observations made
by multiple SUs, which effectively alleviates the impact of
incorrect individual decisions on throughput by exploiting
the spatial diversity of the SUs.

While cooperative sensing improves sensing accuracy, it
also incurs sensing and reporting overhead at the SU side,
especially when an SU senses multiple channels in a multi-
channel CRN. In particular, requiring each SU to sense all
the channels in a CRN may lead to long sensing durations,
especially when the number of channels is large, which in
turn reduces the average throughput of SUs. It is therefore
reasonable to put a limit on the maximum sensing duration
that an SU can afford, which translates to a budget on the
number of channels that an SU can sense. Due to the hard-
ware constraints, this budget could be different for different
SUs. In this paper, we study the throughput optimization
problem for a multi-channel CRN subject to this sensing
constraint.

Various cooperative sensing protocols have been proposed
for maximizing system-wide performance metrics such as
sensing accuracy [9] and system throughput [8], [16]. How-
ever, these works either focus on a single-channel setting [9],
[8] or allow each SU to sense all the channels [7], [3], [16].
In particular, an optimal Bayesian decision rule that maps a
vector of local binary decisions made at SUs to a global
decision on PU activity has been found for maximizing
system throughput in a single channel setting [8], which
achieves significantly better performance than linear rules
such as AND, OR, and majority rules. However, a direct
extension of the result in [8] to the multi-channel setting
would require each SU to sense all the channels and incur
high sensing duration. On the other hand, most works on
multi-channel cooperative sensing put no explicit constraint
on sensing duration of SUs. Furthermore, these works ei-
ther use a simple linear decision rule [16] or require the
transmission of the entire local sensing samples or sensing
statistics at each SU. In our work, we choose to use a binary
decision rule to avoid the high overhead involved in reporting
complete local sensing results. However, instead of using a
suboptimal linear rule as in [16], we use the optimal decision
rule proposed in [8] for each channel.

In this paper, we study the problem of maximizing the
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Fig. 1. System model of an SU network overlayed with three
licensed channels. SUs in each circle are capable of sensing the
corresponding channel(s). SUs outside the sensing range, if selected
for sensing, report random sensing results.

system throughput in a multi-channel CRN, by deciding
for each channel, a subset of SUs to sense the channel,
subject to the sensing budget constraint at each SU. Our
main contributions can be summarized as follows:

• We show that the throughput maximization problem is
NP-hard in the strong sense and hence does not have a
pseudo-polynomial time algorithm unless P = NP.

• We prove that the system throughput function satisfies
subadditivity, and based on this property, we propose a
matching-based algorithm, which achieves an approx-
imation factor of 1

2 (1 + 1

2
√∑N

i=1 li
), where li is the

maximum number of channels that SU i can sense and
N is the total number of SUs.

This paper is organized as follows. The system model and
the problem formulation are introduced in Section II. In Sec-
tion III, we prove that the optimization problem is NP-hard
in the strong sense. We then prove the subadditivity of the
system throughput function, and propose an approximation
algorithm in Section IV. In Section V, numerical results
illustrate the performance of our algorithms. The paper is
concluded in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model in two parts:
communication model and cooperative sensing model. Based
on the models, we formulate our overall objective, which is
to decide the channel sensing assignment to maximize the
overall system throughput.

A. Communication Model
We consider a time-slotted cognitive radio network com-

posed of M orthogonal channels (each corresponding to
a PU)1 and N SUs (see Figure 1). In the figure, SUs in
each circle are capable of sensing the corresponding PU
(or channel). An SU may sense multiple PUs depending on
its location. For example, SU 3 can sense both channels 1
and 3. When the channel is idle, SUs that do not interfere
with each other can transmit over it. Since scheduling and
channel assignment for SU transmission are not the focus of
this paper, we employ a simple policy: an SU is randomly
selected for transmission over each available channel. Our

1Our model can be generalized to the scenario where multiple PUs access
the same channel.

model can readily be extended to practical models where
conflict sets for a given interference model are known. We
denote the set of SUs by S = {s1, ..., sN} with |S| = N ,
and the set of channels by C = {c1, ..., cM} with |C| = M .

B. Cooperative Sensing Model
We assume that a binary decision is made at an SU for

each channel it senses. Let P i
f (k) represent the probability

of false alarm, i.e., the probability that a SU si senses
channel k to be occupied when in fact it is idle. Similarly,
P i
m(k) represents the probability of mis-detection, i.e., the

probability that si senses channel k to be idle when it is
actually occupied. When mis-detection happens, both PU and
SU are transmitting which causes a collision. No packet will
be successfully received. Note that SUs outside the sensing
range, if selected for sensing, report random sensing results.
For instance, in Figure 1, P 1

m(3) = 1
2 and P 1

f (3) =
1
2 since

SU 1 is outside the sensing range of PU 3. We assume that
these probabilities can be learned using historical data [3],
[6], [7]. For instance, given the location information of SUs
and hardware parameters such as energy detection threshold
and time bandwidth product, etc., P i

m(k) and P i
f (k) can be

calculated accordingly (see Section V-A for an example).
Multi-Channel Cooperative Sensing: SUs may sense the

licensed channels cooperatively to reduce sensing errors. The
sensing results of individual SUs are assumed to be indepen-
dent. As mentioned earlier, due to practical constraints, SUs
can sense a limited number of channels. We denote li as
the maximum number of channels that SU si can sense in
a time slot, 0 ≤ li ≤ M , for all i = 1, · · · , N and let
lmax = maxNi=1 li. Note that li = 0 means that the SU is
in not in the sensing range of any channel, thus it cannot
do any sensing and only guess the PU state randomly. To
encourage cooperative sensing, we assume that

∑
i li ≥ M ,

which is common in cooperative sensing models [16], thus
the expected number of SUs that sense a certain channel is
at least 1. In cooperative sensing under the multi-channel
setting, multiple SUs choose to sense different channels and
predict channel availability subject to the budget constraint,
and different sensing set assignments lead to different system
throughput across channels. We consider a centralized system
model, where a central controller is responsible for (1)
maintaining system parameters for PUs and SUs (2) in each
time slot, deciding for each channel, a subset of SUs to sense
the channel, and (3) making a global decision on channel
availability based on the local binary decisions of SUs. Let
Sk denote the set of SUs that cooperatively sense channel k.
The set of all feasible channel sensing assignment policies
are denoted by P , and defined as follows.

Definition 2.1: Feasible assignment policy P: A set of
sensing sets {S1, · · · , SM} is a feasible assignment policy

if
M∑
k=1

1{si∈Sk} ≤ li for all i, i.e., all SUs must be assigned

to at most li channels to sense.
Let xi(k) denote the observation of channel k by SU

si ∈ Sk. Further, xi(k) = 1 represents that si observes
channel k to be active, while xi(k) = 0 represents that
si observes channel k to be idle. We let x(Sk) denote the
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vector of observations for channel k. Let Ω = {0, 1}, and
let fA : Ω|A| → Ω denote a general decision rule that maps
the local observations made by a set of SUs, A ⊆ S, to
global decision on channel activity. As the domain of fA
will be clear from the context, we drop the subscript and
use f instead. This decision rule applies per channel. Let
B(k) denote the activity of channel k such that B(k) = 1 if
channel k is occupied, and B(k) = 0 otherwise. According
to the definitions of false alarm and mis-detection, we define
the conditional probability of sensing channel k to be idle
when it is indeed idle as follows, where vector y denotes a
particular instance of an observation vector:

P (f(x(Sk)) = 0|B(k) = 0)

=
∑

y:f(y)=0

P (x(Sk) = y|B(k) = 0), (1)

where

P (x(Sk) = y|B(k) = 0)

=
∏

yi=1,si∈Sk

P i
f (k)

∏

yj=0,sj∈Sk

(1− P j
f (k)),

Similarly, we define the conditional probability of sensing
channel k to be occupied when it is indeed occupied:

P (f(x(Sk)) = 1|B(k) = 1)

=
∑

y:f(y)=1

P (x(Sk) = y|B(k) = 1), (2)

where

P (x(Sk) = y|B(k) = 1)

=
∏

yi=1,si∈Sk

(1− P i
m(k))

∏

yj=0,sj∈Sk

P j
m(k).

We assume that in each time slot, a control slot Tc is
assigned for cooperative sensing, during which time a central
controller collects P i

m(k) and P i
f (k) from SUs, determines

the channel sensing assignment, collects sensing results from
SUs, and notifies an SU per channel to transmit if that
channel is cooperatively sensed to be “idle.” Note that each
SU i only needs to send updates to the central controller
of P i

m(k), P i
f (k) when their values change, e.g, when

the location of the SU changes. Furthermore, the central
controller only needs to compute a new assignment only
when P i

m(k), P i
f (k) change. We assume Tc to be a constant

in the paper. We further assume that SUs can transmit at
the same bit rate over each channel, and normalize this
rate to 1. SUs are assumed to be always backlogged and
only one of them is scheduled over channel k if sensed
available in each time slot. Let π0(k) denote the probability
that channel k is idle, which is assumed to be acquired
accurately over time. The capacity of channel k is denoted
by γ(k) (after normalization), k = 1, · · · ,M . We define
θ1(k) = (1 − Tc)π0(k) and θ2(k) = γ(k)(1 − π0(k)).
Following the logic in [8] and extending to the multi-channel
case, we define the expected SU throughput over channel k
sensed by Sk.

U1
k (Sk) := (1− Tc)P (B(k) = 0, f(x(Sk)) = 0)

= θ1(k)P (f(x(Sk)) = 0|B(k) = 0) (3)
if Sk #= ∅;

U1
k (Sk) := 0 if Sk = ∅.

where we assume that if Sk = ∅, no sensing is conducted
for channel k and the channel is never accessed. Likewise,

the expected PU throughput of channel k can be represented
by

U2
k (Sk) := θ2(k)P (f(x(Sk)) = 1|B(k) = 1) (4)

if Sk #= ∅;
U2

k (Sk) := θ2(k) if Sk = ∅.

Definition 2.2: System throughput: For a channel assign-
ment {S1, · · · , SM}, we define the throughput over channel
k to be the sum of SU and PU throughput over channel
k, denoted as Uk(Sk) = U1

k (Sk) + U2
k (Sk). The system

throughput is defined as
M∑
k=1

Uk(Sk).

Note that for a given channel sensing assignment, the
achievable system throughput is determined by the decision
rule f . In this paper, we apply the optimal Bayesian deci-
sion rule proposed in [8] to each channel respectively, to
obtain the optimal expected system throughput. Formally,
for each channel k and an observation vector y by Sk,
if θ2(k)P (x(Sk) = y|B(k) = 1) ≥ θ1(k)P (x(Sk) =
y|B(k) = 0), the decision on channel k is “occupied”, and
the contribution to throughput is θ2(k)P (x(Sk) = y|B(k) =
1) ; otherwise, the decision on channel k is “idle” and the
contribution is θ1(k)P (x(Sk) = y|B(k) = 0).

C. Problem Formulation

We formulate the optimization problem to maximize the
system throughput, including PUs and SUs on all channels,
as follows:

Problem (A): max
{S1,··· ,SM}∈P

M∑
k=1

Uk(Sk),

where the Bayesian decision rule is implicit in the definition
of Uk(·).

Our goal is to decide the optimal channel sensing assign-
ment to maximize system throughput. We adopt a common
assumption that PUs can tolerate interference to a certain
extent, which may appear in the form of a constraint as in [3],
[9] and our earlier paper [8] for the single channel setting.
In the future, we plan to extend our solution presented in
this paper to Problem (A) with explicit constraints on PU
throughput.

We assume that the system is static and the optimization is
done in a single time slot. Note that the solution of the static
assignment would apply to multiple time slots if P i

m(k) and
P i
f (k) do not change over time, or if changes occur over a

much slower time scale.

III. HARDNESS OF THE PROBLEM

In this section, we will show that Problem (A) is strongly
NP-hard [14], by a reduction from Product Partition, which
is NP-complete in the strong sense [1]. The Production
Partition problem is defined as follows: Given N positive
integers a1, a2, · · · , aN , is there a subset X ⊆ N :=
{1, 2, · · · , N} such that

∏
i∈X

ai =
∏

i∈N\X
ai?

We reduce Product Partition to the following subproblem
of Problem (A), with M = 2, P i

f (1) = P i
f (2) = 0 for all

i, P i
m(1) = P i

m(2) := P i
m for all i, and li = 1 for all i,
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γ(1) = γ(2) := γ, π0(1) = π0(2) := π0, (1− Tc)π0 := θ1,
γ(1− π0) := θ2, and θ1 = θ2.

Let (S1, S2) denote a solution to this subproblem. Without
loss of optimality, we can assume S1 and S2 form a partition
of the set of SUs, i.e., S1∪S2 = S and S1∩S2 = ∅. The ex-
pected system throughput can then be easily determined us-
ing the Bayesian rule as U1(S1) = θ1+θ2(1−

∏
si∈S1

P i
m) and

U2(S2) = θ1+θ2(1−
∏

si∈S2

P i
m). Problem (A) then becomes:

max
S1⊆S

[
2θ1 + θ2(2− (

∏
si∈S1

P i
m +

∏
si∈S\S1

P i
m))

]
, which is

further equivalent to min
S1⊆S

(
∏

si∈S1

P i
m +

∏
si∈S\S1

P i
m) since

2θ1 + 2θ2 is a constant. We then establish the strong NP-
hardness of Problem (A) by showing that this new problem
is strongly NP-hard.

Proposition 3.1: Problem (A) is strongly NP-hard.
Proof: By the above argument, it suffices to prove that

the subproblem, min
S1⊆S

(
∏

si∈S1

P i
m +

∏
si∈S\S1

P i
m), is strongly

NP-hard. Given an instance of Product Partition with pa-
rameters a1, · · · , aN , we reduce it to an instance of this
subproblem as follows: let P i

m = ai/10r, i = 1, · · · , N ,
where r is the smallest integer such that P i

m ≤ 1 for all i =
1, ..., N . This reduction can clearly be done in polynomial
time. Furthermore, if there is a subset X ⊆ N , such that∏
i∈X

ai =
∏

i∈N\X
ai =

√ ∏
i∈N

ai, then the optimal solution

to the subproblem is 2
√ ∏

si∈S
P i
m, and vice-versa. Hence if

there is polynomial time algorithm to the subproblem, the
Product Partition problem can be determined in polynomial
time as well, which contradicts the fact that Product Partition
is strongly NP-complete.

Since Problem (A) is strongly NP-hard, no pseudo-
polynomial time algorithms exist unless P = NP [14]. We
will propose a matching-based approximation algorithm that
has theoretical lower bound in Section IV.

IV. APPROXIMATE SOLUTIONS

In this section, we propose an efficient approximation
algorithm for Problem (A). We first note that Problem (A)
can be reviewed as a welfare maximization problem studied
in the context of combinatorial auctions, where the set of SUs
correspond to the set of items for sale, and the set of PUs are
the bidders, and the throughput function Uk(Sk) models the
valuation for the k-th bidder when it obtains a subset of items
Sk. Although the general welfare maximization problem is
hard to approximate [2], it allows efficient approximations
when the utility function (system throughput function in our
scenario) satisfies some structural properties [2], [5].

In the following, we first prove that the system throughput
function satisfies the subadditivity in Section IV-A. By
exploiting this property, we then design a matching-based
approximation algorithm with an approximation factor of
1
2 (1+

1

2
√∑

i li
) in Section IV-B, which adapts the algorithm

in [2] with two extensions. First, the algorithm in [2] allows
each item to be purchased by at most one bidder, while

we allow each SU to sense multiple channels. Second, a
direct application of the algorithm in [2] leads to a factor
O(1/

√∑
i li) approximation, while we improve it to a > 1

2
factor approximation in our setting by subtracting a lower
bound from the throughput function.

A. Subadditivity of the System Throughput
We first show that for any k = 1, ...,M , the utility function

Uk(·) as a set function satisfies subadditivity. A set function
U : 2S → R+ is subadditive if for any V,W ⊆ S, U(V ∪
W ) ≤ U(V ) + U(W ), which models a complement-free
property commonly seen in reality. A detailed proof of the
following proposition can be found in our online technical
report [17].

Proposition 4.1: Uk(·) is subadditive for all k.
Proof: (Proof sketch) For two sets V , W , we consider

all observations made by V which may lead to the decision
of 0 or 1, and all observations made by W which may lead
to the decision of 0 or 1. The challenge in establishing the
proposition lies in that even if the observations of a set of
SUs V and the observations of another set of SUs W lead
to the same decision on the status of channel k, the joint
decision when combining the two sets of SUs could flip.
The details are in [17].

B. A Matching-Based Approximation Algorithm
In this section, we propose a maximum weighted matching

(MWM) [15] based algorithm to Problem (A) by extending
the algorithm in [2]. We first provide a detailed description
of our algorithm (see Algorithm 1), and then establish its
approximation factor.

The algorithm starts with constructing a complete and
weighted bipartite graph (lines 2-4), where for each channel
k, a vertex ck is constructed, and for each SU si, li vertices
are constructed corresponding to the li copies of the SU,
denoted as sji , j = 1, ..., li, and for any pair of vertices
sji and ck, there is an edge connecting them. For any
channel k, let ∆k denote the minimum achievable throughput
respecting to the channel k when sensed by a single SU, i.e.,
∆k = min

i=1,...,N
Uk({si}), which can be determined using the

Bayesian decision rule. The weight of an edge (sji , ck) is
then defined as w(sji , ck) = Uk({si})−∆k (line 6).

A maximum weight matching in the bipartite graph is then
found (line 7). A matching in a graph is a set of pairwise
non-adjacent edges and a maximum weight matching is then
a matching of maximum weight [15]. For each edge (sji , ck)
in the matching, SU si is assigned to sense channel ck. A
greedy heuristic is applied for determining the assignment
of the remaining copies of SUs to channels (lines 9-13).
Basically, the remaining copies are first sorted in an arbi-
trary order, and a copy of si is assigned to the channel
that provides the maximum marginal improvement of the
system throughput among all the channels not assigned to
si yet. This scheme is then compared with another scheme
for which all SUs are assigned to a single channel that
gives maximum throughput (line 14). The algorithm outputs
whichever scheme provides a larger system throughput.
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Algorithm 1 A maximum weighted matching based algorithm for
maximizing the system throughput across channels

Input: N , M , Tc, π0(k), γ(k) for all k; li for all i; P i
m(k), P i

f (k) for all
i and k

Output: U and Sk for all k
1: Sk ← ∅ for all k
2: V ← {s11, · · · , s

l1
1 , · · · , s1N , · · · , slNN } ∪ {c1, · · · , cM}

3: E ←
⋃

i=1,··· ,N ; k=1,··· ,M
{⋃li

j=1 (s
j
i , ck)

}

4: G ← (V,E)
5: ∆k ← min

i=1,··· ,N
Uk({si})

6: w(sji , ck) ← Uk({si}) − ∆k , ∀i = 1, · · · , N , j = 1, · · · , li, k =
1, · · · ,M

7: M ← a maximum weight matching in G
8: Sk ← {si : (sji , ck) ∈ M}, ∀k
9: R ← {sji : sji is not matched in M}

10: for all sji ∈ R do
11: k∗ ← arg max

k∈{1,··· ,M},si #∈Sk

[
Uk(Sk ∪ {si})− Uk(Sk)

]

12: Sk∗ ← Sk∗ ∪ {si}

13: U ←
M∑
k=1

Uk(Sk)

14: U1 ← M
max
k=1

Uk(S)

15: if U1 > U then
16: U ← U1

17: k∗ ← arg
M

max
k=1

Uk(S)

18: Sk∗ ← S, Sk ← ∅ ∀k '= k∗

We then analyze the complexity of Algorithm 1, which is
dominated by computing the maximum weighted matching
and evaluating the throughput function Uk(·). It is shown
in [8] that for a given sensing set Sk, Uk(Sk) can be eval-
uated using a dynamic programming algorithm in pseudo-
polynomial time. Let Q denote the time complexity for one
evaluation of Uk(·). Note that the total number of such eval-
uations is bounded by NlmaxM . Therefore, the time com-
plexity of Algorithm 1 is O(NlmaxMQ+(Nlmax +M)3).

We then show that our algorithm closely approximates the
optimal solution to Problem (A). To this end, we first present
a lower bound for ∆k.

Lemma 4.2: ∆k ≥ 1
2 (θ1(k) + θ2(k)) for all k.

Proof: For any SU si and channel ck, we have

Uk({si}) = max
{
θ1(k)(1− P j

f (k)), θ2(k)P
j
m(k)

}

+ max
{
θ1(k)P

j
f (k), θ2(k)(1− P j

m(k))
}

≥ max
{
θ1(k), θ2(k)

}

≥ 1
2
(θ1(k) + θ2(k)).

Hence

∆k = min
i=1,··· ,N

Uk({si}) ≥
1
2
(θ1(k) + θ2(k)) for all k.

We then establish the approximation factor of Algorithm 1
for Problem (A) in the following proposition.

Proposition 4.3: Algorithm 1 achieves at least a fraction
of 1

2 (1 + 1

2

√
N∑

i=1
li

) of the optimal system throughput for

Problem (A).

Proof: We shift all the edge weights by ∆k so that they
are still non-negative by Lemma 4.2. Since Uk is subadditive
as proved in Proposition 4.1, we can apply the proof of
Theorem 2.2 in [2] and further show the fraction. The details
of the proof is in our online technical report [17].

The above approximation factor can be further improved
by introducing an input-dependent factor defined as follows:

β := min{β′ : ∆k ≥ 1

β′ (θ1(k) + θ2(k)) for all k}. (5)

We then have the following improved performance guaran-
tee, the proof of which is in our online technical report [17].

Corollary 4.4: For β defined in (5), Algorithm 1 achieves
at least a fraction 1

β + 1

2
√∑

i li
(1− 1

β ) of the optimal system
throughput for Problem (A).

Remark 1: In the proof of Proposition 4.3, we have ignored
the greedy heuristic applied to the copies of SUs not included
in the matching. Hence the result established above only
provides a lower bound on the performance of our algorithm.
Proving a tighter bound for the algorithm that incorporates
the greedy heuristic is part of our future work.

Remark 2: We note that a system throughput of
M∑
k=1

1
2 (θ1(k) + θ2(k)) can be easily achieved even when a

single worst SU with P i
m(k) = P i

f (k) =
1
2 is sensing each

channel. Thus it is the lower bound of the system throughput
when each PU is assigned at least one SUs for sensing.

V. SIMULATIONS

In this section, we study the performance of our algorithm
through simulations by comparing Algorithm 1 (MWM)
with a random sensing assignment algorithm, and a greedy
algorithm (defined next). In the random algorithm, the copies
of SUs are randomly assigned to PUs. The greedy algorithm
works as follows: for each PU k, the set of SUs are first
sorted by P i

m(k) + P i
f (k) in a non-decreasing order as its

preference list. In each round, a random permutation of the
set of PUs is applied. The algorithm then goes through the
PU list, and for each PU k, a copy of the SU, say si, with
the lowest P i

m(k)+P i
f (k) among the remaining SUs, which

has not been assigned to k before and has remaining copies,
is assigned to k. Repeat this procedure till all copies of SUs
have been assigned.

A. Simulation Setting
The following parameters are fixed throughout the simu-

lations. We consider a 100×100 area, where the locations of
M PUs are randomly generated. For each PU k, its maximum
power level is randomly chosen between 1 and 10, and π0(k)
are randomly generated in [0, 1]. We also set Tc = 0.2 fixed.

In each of the 100 runs of the simulation, the following
parameters are varied independently. First, the channel status
of PU k, either transmitting with the maximum power or
idle, is randomly chosen according to π0(k). The locations
of N SUs (each SU is capable of sensing any of the
M channels) are then randomly generated. The details in
generating P i

m(k) and P i
f (k) are in [17]. In each of the
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(b) M = 20, N = 8, lmax = 3.

Fig. 2. System throughput achieved by our algorithm, greedy algorithm,
random algorithm and the upper bound.

100 runs, we repeat these steps to generate new P i
m(k) and

P i
f (k).

B. Simulation Results

The simulation results are shown in Figure 2. Note that
we do not restrict

∑
i li ≥ M in our simulations. If PU k

is not assigned any SU for sensing (Sk = ∅), the system
throughput on channel k is θ2(k) (Definition 2.2). In all the
figures, we plot

∑
k

[
θ1(k) + θ2(k)

]
as the upper bound for

the optimal solution.
In Figure 2(a), we fix M = 20, lmax = 3, and vary N

from 4 to 20. For each PU k, γ(k) in generated randomly in
[1, 3] and then fixed over all 100 runs. We choose this range
since the average PU throughput is usually larger than the
SU throughput, which is normalized to 1. For each SU i, li
is randomly generated between 1 and lmax and fixed over
all the runs. The simulations results are averaged over all
100 runs. We observe that Algorithm 1 achieves significant
improvement over the random and the greedy algorithms for
all N , although the gap shrinks as N increases. For instance,
the system throughput of Algorithm 1 is 24% larger than that
of the greedy algorithm when N = 4 and it decreases to 16%
when N = 20. Note that the performance of Algorithm 1
reaches 95% of the upper bound of the optimal solution when
N = 20. When more SUs join the network, the random and
the greedy algorithms have more chance to choose “good”
SUs. The greedy algorithm is comparable to the random
algorithm when N is small. However, it wins over the latter
when N ≥ 12. This indicates that the sorting step in the
greedy algorithm helps PUs pick the “right” SUs, which is
more useful when N is large.

In Figure 2(b), we fix M = 20, N = 8, lmax = 3, and
vary the range of the channel capacity γ(k). For instance,
[1, 2] means all channel capacities are randomly generated
between 1 and 2. Algorithm 1 is constantly better than the
other two algorithms. The gap first increases as the channel
capacity increases (from 18% to 34%) till γ(k) ∈ [1, 2],
and decreases thereafter (7% at γ(k) ∈ [1, 5]). This can be
explained by: When the channel capacity is comparable to
unit SU capacity, the choice of SUs for sensing does not
affect the system throughput significantly; When the channel
capacity dominates the system throughput, the choice of SUs
again loses its leading role. Thus the largest gap appears in
the middle.

VI. CONCLUSION

In this paper, we investigate the problem of throughput
maximization using cooperative sensing in multi-channel
CRNs, where each SU can only sense a limited number of
channels with various sensing capabilities, due to time or
energy constraints. We show that under the optimal Bayesian
decision rule, the channel sensing assignment problem is
strongly NP-hard. A matching based algorithm is then pro-
posed with an approximation ratio of 1

2 (1 + 1

2
√∑N

i=1 li
),

where li is the maximum number of channels SU i can sense
and N is the total number of SUs. Our numerical results
demonstrate that our algorithm performs significantly better
than the random channel sensing assignment algorithm and
a greedy algorithm. As part of our future work, we plan
to establish a tighter performance bound for our algorithm
enhanced with a greedy heuristic, and consider the system
throughput maximization problem with extra constraints on
the PU throughput.
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