
Efficient Distributed Scheduling in Cognitive Radio
Networks in the Many-Channel Regime

Dongyue Xue and Eylem Ekici

Department of Electrical and Computer Engineering

Ohio State University, USA

Email: {xued, ekici}@ece.osu.edu

Abstract—The design of efficient and distributed scheduling
algorithms is essential to garner the full potential of cognitive
radio networks. In this paper, we propose a distributed OFDM-
based scheduling algorithm, named collision-queue-regulated al-
gorithm, which aims to limit the collision rate to a level imposed
by primary users of a cognitive radio network. Via a novel
equivalent-queue-system analysis, we prove that the proposed
algorithm can achieve at least a constant fraction of the asymp-
totic capacity region in the many-channel regime. Our numerical
studies indicate that the proposed distributed collision-queue-
regulated algorithm achieves a throughput very close to that
achievable by a centralized throughput-optimal back-pressure-
based scheduling algorithm.

I. INTRODUCTION

Cognitive radio networks (CRNs) [1] allow unlicensed
users, referred to as secondary users (SUs), to opportunisti-
cally exploit the unused spectrum allocated to licensed users,
referred to as primary users (PUs). Different from traditional
wireless networks, a typical design requirement for CRNs is
that the collisions/interference between PUs and SUs trans-
mission should be avoided or kept under a certain acceptable
threshold.

Developing efficient scheduling algorithms for CRNs is
essential to garner the full potential of cognitive radio net-
works. In recent years, centralized opportunistic scheduling
algorithms have been developed for cognitive radio networks.
Throughput-optimal cooperative scheduling has been studied
in [2], [3], [4], where PUs are aware of SU activities and SUs
cooperatively relay PU data. Non-cooperative scheduling has
been studied in [5], [6], [7] to achieve optimal SU through-
put/utility. However, the above algorithms, though throughput-
optimal, are centralized with high time complexity and hence
not suitable for practical implementations. In addition to
computational complexity, these algorithms do not work when
a global centralized component is not available (e.g., a scenario
where SUs transmit peer-to-peer without centralized control
and only local information is available). Therefore, low-
complexity and distributed algorithms are needed to deploy
efficient and high performance CRNs. While heuristic dis-
tributed solutions have been proposed in the literature (e.g.,
[8]), the design of distributed algorithms for CRNs with prov-
able properties (i.e., provable throughput/utility performance)
remains an open research problem.

Distributed scheduling algorithms for traditional wireless
networks have been proposed in the literature over the last
decade. Earlier examples [13], [14] achieve at least certain
fractions of the optimal throughput in single-channel wire-
less networks. More recently, throughput optimality has been
achieved with distributed queue-length-based scheduling algo-
rithms [9]-[12] for the same setting. Among the few attempts
to design distributed scheduling algorithms for multi-channel
networks, [15] guarantees at least a certain fraction (dependent
on the network interference model) of the optimal throughput.
However, these algorithms have been designed for wireless
networks with a non-fading channel capacity, and thus are
not suitable for CRNs where channel states are modulated by
PU activities.

In this paper, we propose a distributed scheduling algo-
rithm, called collision-queue-regulated algorithm, for a CRN
in the many-channel regime with a degree-d interference graph
model. We consider an OFDM setting (which is the basis for
IEEE 802.22 standard for cognitive radio networks), where
spectrum is partitioned into tens or hundreds of orthogonal
sub-channels. With collision rate constraints imposed by PUs,

the algorithm achieves at least ddL
(1+d)1+dΓ fraction of the

capacity region as the number of channels grows, where L
is the number of communication links in the network and Γ
is the size of the maximum independent set of the network’s
underlying interference graph. We also show via simulation
results that the throughput performance is actually close to
the optimal.

Salient contributions of our work are summarized in the
following:
1) Under the collision-queue-regulated algorithm, the collision
rates observed by the PUs are upper bounded by an arbitrary
threshold;
2) We design a novel equivalent queue system such that the
queues in the original CRN converge asymptotically (with
respect to the number of channels) to this system;
3) The collision-queue-regulated algorithm achieves at least

ddL
(1+d)1+dΓ fraction of the asymptotic (with respect to the

number of channels) capacity region.

The rest of the paper is organized as follows: The network
model and the distributed collision-queue-regulated algorithm
are described in Section II. This is followed by an asymptotic



analysis on the queuing behavior and the throughput perfor-
mance in Section III. Numerical results are provided in Section
IV, and the paper is concluded in Section V.

II. NETWORK MODEL AND ALGORITHM

A. Network Elements

Consider a time-slotted cognitive radio network (CRN)
composed of a PU system and an SU system. The SU system
consists of a set L of single-hop directional SU communication
links, with |L| = L. We consider a degree-d interference graph
model for the SU system, where we define an interference set
Ni ⊂ L for each SU link i ∈ L, such that (i) |Ni| = d, and
(ii) when the PU system is idle, the transmission of SU link i
over a channel fails if and only if there is a simultaneous
transmission of some link l ∈ Ni over the same channel.
An independent set is a set of SU links in L, no two of
which interfere with each other when transmitting over a
same channel. The maximum independent set is the largest
independent set with its size denoted by Γ.1 Under a node-
exclusive setting, typical network topologies of the degree-d
interference graph model include complete graph, cycle (or
infinite tandem), torus (or infinite grid), etc. Some sample
network topologies have been illustrated in Figure 1 under
a node-exclusive setting, where an SU i ∈ L is represented by
a link (a node pair) in the graph. Note that in a node-exclusive
setting, adjacent links (links sharing a common node) cannot
transmit simultaneously. Let Ai(t) be the amount of data (in
unit of bits) arriving at SU link i at the beginning of time slot
t, which is assumed to be i.i.d. over time with average Āi,
∀i ∈ L.

OFDM has proven to be one of the prime candidates for
CRNs (e.g., IEEE 802.22 standard). The reason is two-fold:
(i) We have irregular openings in the PU spectrum, and
OFDM helps with collectively utilizing non-contiguous PU
channels in one SU transmission; (ii) Inter-symbol interference
(ISI) can be significantly reduced in an OFDM system by
transmitting data in parallel over a large number of low-rate
subchannels [16]. Thus, we consider an OFDM mechanism
for SUs’ channel access: an SU link can transmit its data
opportunistically over multiple PU channels in a time slot.

In this section, we consider a single-PU scenario. Note that
the following analysis can be easily extended to the model
of multiple PUs at the expense of notational complexity, and
we provide a brief discussion on the multi-PU scenario in
Section III-C. The CRN is synchronized with a time-slotted
PU system comprised of N orthogonal PU subchannels, which
we refer to as channels for short in the following. Each channel
has a capacity (i.e., maximum data rate in bit per time slot)
equal to K

N
, where we can consider K (bit per time slot) as

the total capacity of the considered PU system. Note that the
growing number of channels leads to diminishing bandwidth
per channel where the sum of all bands is constant K , which

1In graph theory [20], the underlying degree-d interference graph of the
considered interference model is a d-regular graph, and the size of its
maximum independent set Γ is referred to as the independence number.

conforms to the setting of OFDM systems with a large number
of low-rate channels [16]. We assume that the channels are
occupied by a single PU. Specifically, we assume that the PU
system evolves according to an ON-OFF Markovian process
C(t): At time slot t, we let C(t) = 1 if the PU system is
busy (PU system is in ON state and occupies the entire set of
channels) and C(t) = 0 if the PU system is idle (PU system
is in OFF state and the entire set of channels are available to
SUs). For analytical simplicity, we assume the process C(t)
starts with a steady state distribution at t = 0. We denote by
H(t) = C(t − 1) the channel availability information of SUs
at time slot t. Note that the exact knowledge of C(t) may
not be available to SUs due to time-varying PU activities or
sensing overheads. Thus, S(t) ! E{1 − C(t)|H(t)} defines
the probability that the PU system is OFF given H(t), which
is known to the SUs at time slot t. We note that S(t) is simply
the transition probability of C(t) and can be obtained by SUs
via the observation of PU data traffic statistics.

Let µij(t) ∈ {0, 1} denote the schedule of SU link i ∈ L
over channel j at time slot t, with j = 1, ..., N . Specifically,
µij(t) = 1 if SU link i is scheduled over channel j; µij(t) =
0, otherwise. For analytical simplicity, we let µij(0) = 0,
∀i, j. Note that when µij(t) = 1, SU link i is scheduled to
transmit up to K

N bits over channel j in one time slot. We
say a collision with the PU system occurs if µij(t)C(t) = 1,
i.e., there is a scheduled SU data transmission when the PU
system is busy. Thus, for each SU data queue qi(t), i ∈ L, we
have the following queue dynamics:

qi(t) = [qi(t − 1)

−
K

N

N
∑

j=1

µij(t − 1)(1 − C(t − 1)) + Ai(t − 1)]+,
(1)

with qi(0) = 0, ∀i ∈ L. To constrain the potential interference
caused by the SUs to the PU system, we require that the
collision rate (caused by any SU link i) observed by the
PU system be upper-bounded by a maximum collision rate
ρ (normalized by the number of channels):

lim sup
T→∞

1

T

T−1
∑

t=0

1

N

N
∑

j=1

µij(t)C(t) ≤ ρ, ∀i ∈ L. (2)

Note that under the degree-d interference model, the accu-
mulated collision rate in the neighborhood of any SU link is
upper-bounded by (d + 1)ρ.

As suggested in [17], for the considered OFDM-based CRN,
we assume the existence of an out-of-band common control
channel (CCC) which is not interrupted by PU activities. In
the collision-queue-regulated algorithm proposed in Section
II-B, the exchange of local control information is performed
over the CCC at the beginning of each time slot. Since CCC
is dedicated only to the transmission and reception of control
messages, CCC can utilize the small portions of the guard
bands between the licensed channels [17].



(a) Complete graph with d = 6 (b) Cycle with d = 2 (c) (Infinite) grid topology with
d = 6

Fig. 1. Sample network topologies of degree-d interference graph model with a node-exclusive setting

B. Collision-Queue-Regulated Algorithm

In this section, we propose a distributed collision-queue-
regulated algorithm. We will show in Section III that the

proposed algorithm can achieve at least ddL
(d+1)d+1Γ fraction of

the capacity region asymptotically with respect to N under the
degree-d interference graph model.

We maintain a virtual collision queue Xi(t) at each SU link
i ∈ L, to assist the development of the proposed algorithm.
Specifically, the queue dynamics of Xi(t) is defined as, ∀i ∈
L,

Xi(t)

=



Xi(t − 1) − ρ+
1

N

N
∑

j=1

µij(t − 1)C(t − 1)





+

,
(3)

with Xi(0) = 0. We note that the collision rate constraint (2)
is satisfied if collision queues Xi(t) are stable.

At the beginning of each time slot t, the collision-queue-
regulated algorithm consists of two phases: Exchange Phase

and Scheduling Phase, the duration of which we assume is
negligible compared to that of a unit time slot. The exchange
phase is detailed as follows:

Exchange Phase:

The exchange phase takes place over the CCC. Specifically,
the transmitter of each SU link i ∈ L broadcasts the
following three binary vectors to all its neighbors (its
intended receiver and all nodes in Ni) over the CCC:
its schedules at the previous time slot (µij(t − 1))N

j=1, a

vector of contention variables (aij(t))N
j=1, and a vector of

transmission variables (pij(t))N
j=1.

The contention variables (aij(t)) are i.i.d. over SUs i and
channels j with

aij(t) =











1, w.p.
1

d + 1
,

0, w.p.
d

d + 1
.

The transmission variables (pij(t)) are i.i.d. over channels j

and independent over SUs i with

pij(t) =











1, w.p.
eyi(t) − 1

eyi(t)
,

0, w.p.
1

eyi(t)
,

where the collision-queue-regulated weight yi(t) is defined as

yi(t) ! [qi(t − 1)S(t) − γXi(t − 1)(1 − S(t))]+ , (4)

and γ > 0 is a constant parameter that serves as a weight to
the collision queue Xi(t − 1).

After the exchange phase, the transmitter and receiver of
each SU link i have the following information:
(

(µlj(t − 1))l∈Ni∪{i}
j=1,...,N , (alj(t))

l∈Ni∪{i}
j=1,...,N , (pij(t))N

j=1

)

, which

will be used to determine the transmission schedules for SU
link i.

To assist the development of scheduling phase, we define
the following three conditions, for any given SU link i and
channel j.
Condition (i): The “contention” of SU link i for channel j is
successful, i.e., aij(t)Πl∈Ni

(1 − alj(t)) = 1.
Condition (ii):

∑

l∈Ni
µlj(t − 1) = 0, i.e., none of the

neighbors were scheduled at the previous time slot.
Condition (iii): The transmission variable pij(t) = 1.

The scheduling phase is introduced as follows:

Scheduling Phase:

The transmitter and the receiver of each SU link i deter-
mine the schedules µij(t), j = 1, ..., N , according to the
following:
Case 1: µij(t) = 1 if Conditions (i)(ii)(iii) hold.
Case 2: If Condition (i) does not hold and Condition (iii)
holds, then µij(t) = µij(t − 1).
Case 3: Otherwise, µij(t) = 0.

According to the scheduling phase, we conclude that, ∀i ∈
L, ∀j ∈ {1, 2, ..., N},

µij(t) = pij(t)

× {aij(t)Πl∈Ni
(1 − alj(t))(1 −

∑

l∈Ni

µlj(t − 1))

+ [1 − aij(t)Πl∈Ni
(1 − alj(t))]µij(t − 1)},

(5)



where the first and second terms in the {·} in (5) correspond
to Case 1 and Case 2 in the scheduling phase, respectively.

Since both the transmitter and the receiver of SU link i ∈
L have a copy of the schedule vector (µij(t))N

j=1 when the
scheduling phase ends, they will tune to the set of channels
{j : µij(t) = 1} for SU data transmission in the remaining
time slot t.

We show in Proposition 1 that the collision-queue-regulated
algorithm is feasible in that interfering links are never sched-
uled over a same channel in any time slot.

Proposition 1: The collision-queue-regulated algorithm
provides a feasible schedule for each time slot t, i.e., ∀i, j, t:
∑

l∈Ni
µlj(t) = 0, if µij(t) = 1.

Proposition 1 can be proved easily by mathematical induction
over time slot t and we omit the proof for brevity.

III. PERFORMANCE ANALYSIS IN THE DEGREE-d
INTERFERENCE GRAPH MODEL IN A MANY-CHANNEL

REGIME

In Section III-A, we show that under the collision-queue-
regulated algorithm, the original system of the queue lengths
qi(t) and the collision queues Xi(t) converge to an equivalent
queue system as the number of channels N grows. Based
on the analysis of the equivalent queue system, we show in

Section III-B that the algorithm achieves at least ddL
(d+1)d+1Γ

fraction of the capacity region asymptotically with respect to
N . We provide a brief discussion on a multiple PU extension
in Section III-C.

A. Asymptotic Queuing Behavior of the Collision-Queue-
Regulated Algorithm

In the following analysis, we assume the arrival processes
follow:

Ai(t)
P
−→N λ, ∀i ∈ L, (6)

where
P
−→N denotes the convergence in probability [18] as

N → ∞ and λ can be considered as the arrival rate normalized
with respect to the number of channels. We present the
asymptotic queuing behavior of the collision-queue-regulated
algorithm in Theorem 1.

Theorem 1: Given H′(t) ! (H(t),H(t − 1), ...,H(1)),
there exists an equivalent queuing system (q(t), x(t)) with
an equivalent schedule variable u(t), such that the following
four arguments (I(t), II(t), III(t), and IV(t)) hold under the
collision-queue-regulated algorithm for each time slot t:
I(t): The queue lengths qi(t) and the collision queue lengths
Xi(t) converge to q(t) and x(t), respectively:

qi(t)
P
−→N q(t), and Xi(t)

P
−→N x(t), ∀i ∈ L. (7)

II(t): The schedules µij(t) converge to the equivalent schedule
variable u(t):

µij(t)
L
−→N u(t), ∀i, j, (8)

where
L
−→N denotes the convergence in distribution [18] as

N → ∞.

III(t): The schedules µij(t) follow a Law of Large Numbers
(LLN):

1

N

N
∑

j=1

µij(t)
P
−→N E{u(t)|H′(t)}, ∀i ∈ L. (9)

IV(t): The schedules µij(t) are asymptotically mutually in-
dependent. Specifically, for any given SU links i1, i2 ∈ L,
and any two distinct channels j1 )= j2 ∈ {1, 2, ..., N}, the
scheduling decisions are independent, i.e., ∀k1, k2 ∈ {0, 1},

lim
N→∞

Pr{µi1j1(t) = k1, µi2j2(t) = k2|H
′(t)}

=Pr{u(t) = k1|H
′(t)}Pr{u(t) = k2|H

′(t)}.
(10)

The equivalent queuing system (q(t), x(t)) and the equiva-
lent schedule variable u(t) evolve as follows,

q(t) = [q(t − 1)

− K(1 − C(t − 1))E{u(t − 1)|H′(t − 1)} + λ]+,
(11)

x(t) = [x(t − 1)

− ρ+ C(t − 1)E{u(t − 1)|H′(t − 1)}]+
(12)

u(t) = U1(t)u(t − 1) + U2(t)(1 − u(t − 1)), (13)

where U1(t) and U2(t) are independent over time and defined
as follows:

U1(t) =







1, w.p. (1 − dβ)
ey(t) − 1

ey(t)
,

0, otherwise,

U2(t) =







1, w.p. β
ey(t) − 1

ey(t)
,

0, otherwise,

with

β !
dd

(d + 1)d+1
,

y(t) ! [q(t − 1)S(t) − γx(t − 1)(1 − S(t))]+.

The initial conditions of the equivalent queue system are set
as:

q(0) = 0, x(0) = 0, and u(0) = 0. (14)

Proof: The proof for Theorem 1 is provided in Appendix
A.

Remark 1: According to (7) in Theorem 1, given H′(t),
the data queues qi(t) and the collision queues Xi(t) converge
(in probability) asymptotically to two deterministic equivalent
queues q(t) and x(t), respectively. By the dynamics of u(t)
in (13), we find the dynamics of E{u(t)|H′(t)} as follows:

E{u(t)|H′(t)} = β
ey(t) − 1

ey(t)

+ (1 − β − dβ)
ey(t) − 1

ey(t)
E{u(t − 1)|H′(t − 1)},

(15)

where we note that u(t − 1) is independent of H(t) given
H′(t − 1).



In Section III-B, we will study the stability of the equivalent
queuing system (q(t), x(t)), which becomes the asymptotic
network stability (i.e., the stability for the data queues qi(t)
and the collision queues Xi(t)) under the collision-queue-
regulated algorithm.

B. Performance Analysis

We have shown through Theorem 1 that the equivalent sys-
tem (q(t), x(t)) can represent the asymptotic queuing behavior
of the data queues qi(t) and the collision queues Xi(t). In this
section, we will show that under the collision-queue-regulated

algorithm, (q(t), x(t)) are stable for at least ddL
(d+1)d+1Γ fraction

of the asymptotic capacity region.

Specifically, we define the asymptotic capacity region Λ
(normalized with respect to the number of channels N ) as

Λ = {λ ≥ 0 : ∃(Āi)i∈L s.t. lim
N→∞

Āi = λ, ∀i ∈ L,

and (Āi)i∈L is stabilizable by some scheduling algorithm},

where we recall (Āi)i∈L denotes the arrival rate vector. For
any given 0 < α < 1, we let αΛ denote an α fraction of the
capacity region such that

αΛ ! {λ ≥ 0 : ∃λ′ ∈ Λ s.t.
λ

α
< λ′}.

Before we present the asymptotic stability in Theorem 2,
we introduce the following two lemmas to assist the proof of
Theorem 2.

Lemma 1: For any given 0 < δ < βL
Γ , there exists B2(δ) >

0 such that for any time slot t, whenever y(t) ≥ B2, we have:
Pr{u(t) = 1} ≥ β − Γδ

L
.

Proof: Let B2 ! log(Lβ
Γδ

). By taking the expectation of
both sides of (15) over H′(t) conditioned on y(t) ≥ B2, we
have

E{u(t)|y(t) ≥ B2}

=βE{
ey(t) − 1

ey(t)
|y(t) ≥ B2}

+ (1 − β(d + 1))E{
ey(t) − 1

ey(t)
u(t − 1)|y(t) ≥ B2}

≥β
eB2 − 1

eB2
= β −

Γδ

L
.

We show that for any λ′ ∈ Λ, there exists an (auxiliary)
random variable µSTAT (t) for each time slot t satisfying the
properties described in Lemma 2.

Lemma 2: For any λ′ ∈ Λ, there exists a random variable
µSTAT (t) ∈ {0, 1} that is dependent only on S(t) for each
time slot t, such that the following holds:

KE{µSTAT (t)S(t)} = λ′, (16)

E{µSTAT (t)(1 − S(t))} ≤ ρ, (17)

E{µSTAT (t)|S(t)} ≤
Γ

L
, ∀S(t). (18)

Proof: Proof of Lemma 2 is provided in [21].

Utilizing Lemma 1 and Lemma 2, we show in Theorem 2

that the equivalent system is stable for at least ddL
(d+1)d+1Γ frac-

tion of the asymptotic capacity region Λ under the collision-
queue-regulated algorithm.

Theorem 2: ∀λ ∈ αΛ, with α = ddL
(d+1)d+1Γ , q(t) and x(t)

are stable under the collision-queue-regulated algorithm, i.e.,

lim sup
T→∞

1

T

T−1
∑

t=0

E{q(t) + x(t)} ≤
B3

ε2
, (19)

where positive constants B3 and ε2 will be defined in the
proof.

Proof: The proof of Theorem 2 is provided in Appendix
B, where we have employed Lemma 1 and Lemma 2.

Since the queue lengths qi(t) and the collision queues Xi(t)
converge to (q(t), x(t)) asymptotically with respect to N , by
Theorem 2, the collision-queue-regulated algorithm achieves

at least α = ddL
(d+1)d+1Γ fraction of the asymptotic capacity

region in the many-channel regime.2

This fraction α, referred to as the efficiency factor of the
asymptotic capacity region, is illustrated in Table I given some
typical network topologies under a node-exclusive setting.
For comparison, we also illustrate in Table I the efficiency
factor of the distributed PLDS algorithm [15] proposed for a
general multi-radio multi-nonfading-channel wireless network.
Note that although both algorithms are proposed for a multi-
channel scenario, the setting for the collision-queue-regulated
algorithm is more stringent than that for PLDS, in that non-
fading channels are assumed in [15] while we consider chan-
nels modulated by PU activities in this work. Yet, the provable
efficiency factor of the collision-queue-regulated algorithm is
larger than that of PLDS given the network topologies in Table
I.

C. Further Discussion in a multiple PU setting

In the CRN model introduced in Section II-A, we have
assumed that there is only one PU, the spectrum of which is
partitioned into N subchannels and modulated by the activities
of this PU. This model can be readily extended to the scenario
where PU spectrum is modulated by a finite number of M
PUs. Specifically, when there are M PUs in the PU system,
the licensed spectrum of each PU k is partitioned into a set Ik

of subchannels, with Ik mutually disjoint and limN→∞
|Ik|
N

=
nk, ∀k, where constants nk satisfy

∑M
k=1 nk = 1. We assume

that a collision rate constraint ρk is imposed by each PU
k = 1, ..., M . Similar to the virtual queue analysis in Section
II-B, we can construct M virtual collision queues (Xik(t))M

k=1
for each SU link i ∈ L as follows:

Xik(t)

=



Xik(t − 1) − ρk +
1

|Ik|

∑

j∈Ik

µij(t − 1)Ck(t − 1)





+

,

2In graph theory [20], the ratio Γ
L

is referred to as the independence ratio
of the underlying interference graph of the network.



TABLE I
EFFICIENCY FACTOR UNDER NODE-EXCLUSIVE SETTING, WHERE e DENOTES EULER’S NUMBER

Efficiency factor collision-queue-regulated PLDS

Fully-connected network (e.g., WLANs, cellular networks)
(

d

d+1

)d

≥ 1
e

1
3e

Cycle (e.g., Figure 1(b)) 4L

27! L

2
"
≥ 8

27
1
4e

(Infinite) grid topology (e.g., Figure 1(c)) 0.2267 1
4e

where Ck(t) = 1 if PU k is busy at time slot t, and Ck(t) =
0 otherwise. Therefore, the stability of the collision queues
(Xik(t)) implies the collision rate constraints being satisfied.
The collision-queue-regulated algorithm can be modified such
that the weight yi(t) in (4) is replaced by yij(t), for each
channel j ∈ Ik:

yij(t) ! [qi(t − 1)Sk(t) − γXik(t − 1)(1 − Sk(t))]+ ,

where Sk(t) ! E{1 − Ck(t)|Ck(t − 1)}.
With the above modifications in model and algorithm,

similar to the analysis of the equivalent queue system in
Section III-A, we can construct an equivalent (M + 1)-
queue system (q(t), (xk(t))M

k=1), such that qi(t) converges to
q(t) and Xik(t) converges to xk(t) in probability, ∀i, k. The
throughput analysis follows that of Section III-B.

IV. NUMERICAL RESULTS

In this section, via simulation, we compare the through-
put performance of the proposed algorithm with a back-
pressure-based centralized throughput-optimal algorithm, de-
noted as the BP algorithm. The BP algorithm is based on
the throughput-optimal back-pressure algorithm [19] where we
substitute the (generic) weight in [19] with the collision-queue-
regulated weight yi(t) defined in (4) for each i ∈ L. It can be
shown, similar to the analysis [3][4] that the BP algorithm is
optimal given the collision rate constraints. We consider the
SU network topology of 10 SUs (represented by 10 SU links)
in Figure 1(a) with a node-exclusive setting. Specifically, in
Figure 1(a), each SU link interferes with its 6 adjacent links,
i.e., d = 6. We set the parameter in (4) as γ = 1 and use
N = 50. The channel state evolves according to the transition
diagram in Figure 2, where the “busy” and the “idle” states are
represented as C(t) = 1 and C(t) = 0, respectively. Note that
in Figure 2, p01 and p10 represent the transition probability
from the idle state to the busy state and that from the busy
state to the idle state, respectively. In the numerical evaluation,
we let p01 = 0.3, p10 = 0.7.

We illustrate the stability of queues through Figure 3 under
the collision rate constraint ρ = 0.05. We let the arrival
processes be: Ai(t) = λ + 0.2λ√

N
rand(1), ∀i ∈ L, ∀t, where

rand(1) outputs a random value uniformly distributed over
the interval (0, 1) independently across time slots and SUs. In
our numerical studies, we have observed that both algorithms
stabilize data and collisions queues for λ = 0.110. Again, both
algorithms fail to stabilize the system for λ = 0.118, where
the data and collision queues both keep growing, indicating
both network instability and collision rate violation. Since

BUSY IDLE
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1 p
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1 p

01
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Fig. 2. Transition diagram of PU activity

the BP algorithm is throughput-optimal, we can expect that
the maximum stabilizable λ is in between 0.110 and 0.118.
Hence, the collision-queue-regulated algorithm achieves at
least 0.110/0.118 = 93% of the throughput optimality under
this simulation setting. Note that 0.93 is significantly higher

than the efficiency factor α = ddL
(d+1)d+1Γ = 0.2833 in Theorem

2.
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Fig. 3. Queue dynamics, ρ = 0.05.
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Fig. 4. Queue dynamics, ρ = 0.1.



We relax the collision rate constraint as ρ = 0.1 in
Figure IV. Under both algorithms, at λ = 0.133, the data
queues and collision queues are stable; at λ = 0.140, while
the collision queues are stable, the data queue lengths are
increasing over the time slots t, indicating network instability.
That is, both algorithms can stabilize λ = 0.133 but cannot
stabilize λ = 0.140. We can expect that the collision-queue-
regulated algorithm achieves at least 0.133/0.140 = 95% of
the throughput optimality under this simulation setting.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a distributed collision-queue-
regulated scheduling algorithm for cognitive radio networks.
We proved theoretically that the proposed algorithm can

achieve at least ddL
(d+1)d+1Γ of the capacity region asymptot-

ically in the many-channel regime via a novel equivalent
queue system analysis. We also illustrated through numerical
evaluation that the throughput performance of the proposed
algorithm is close to optimal.

We have assumed the degree-d interference graph model in
this work. The proposed algorithm can be readily extended
to general interference-graph-based network topologies (e.g.,
see [9]-[12]). Thus, our future work involves performance
analysis for a more general scenario: a general interference
graph model with heterogenous arrival processes, where we
can expect that the wireless system will converge (in the
number of channels) to an equivalent queue system composed
of 2L queues (L equivalent queues for data queues and L
equivalent queues for collision queues).
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APPENDIX A
PROOF OF THEOREM 1

We prove Theorem 1 by mathematical induction over time
slot t. Given the initial conditions (14), the base case holds
for time slot t = 0. Suppose the induction hypothesis (I(t−1),
II(t−1), III(t−1), and IV(t−1)) holds, we prove I(t) holds in
the following, and prove II(t), III(t), and IV(t) hold in [21].

Given any SU link i ∈ L, according to (6), I(t − 1) and
III(t− 1), we have

qi(t − 1) −
K

N
(1 − C(t − 1))

N
∑

j=1

µij(t − 1) + Ai(t − 1)

P
−→N q(t − 1)

− K(1 − C(t − 1))E{u(t − 1)|H′(t − 1)} + λ.

By queue dynamics (1)(11) and the continuity of [·]+, we

conclude that qi(t)
P
−→N q(t), ∀i ∈ L.

Similarly, we have

Xi(t − 1) − ρ+
1

N

N
∑

j=1

µij(t − 1)C(t − 1)

P
−→Nx(t − 1) − ρ+ C(t − 1)E{u(t − 1)|H′(t − 1)}.

By queue dynamics (3)(12) and the continuity of [·]+, we

conclude that Xi(t)
P
−→N x(t), which completes the proof

of I(t).
We have also provided proof for II(t), III(t), and IV(t) in

[21], i.e., the induction step holds, which completes the proof
of Theorem 1.



APPENDIX B
PROOF OF THEOREM 2

For notational simplicity, we define ∆(t) !

E
{

1
2K [q(t)2 − q(t − 1)2] + γ

2 [x(t)2 − x(t − 1)2]
}

. By
squaring both sides of the queue dynamics (11)(12), we have

∆(t)

≤B1 +
λ

K
E{q(t − 1)}− γρE{x(t − 1)}

− E{u(t − 1)[(1 − C(t − 1))q(t − 1)

− γC(t − 1)x(t − 1)]}

≤B1 + max{K, γ}

+
λ

K
E{q(t − 1)}− γρE{x(t − 1)}

− E{u(t − 1)[(1 − C(t − 1))q(t − 2)

− γC(t − 1)x(t − 2)]}
(c)
≤B1 + max{K, γ}+

λ

K
E{q(t − 1)}

− γρE{x(t − 1)}− E{u(t − 1)y(t − 1)},

(20)

where B1 ! 1
2K

λ2+ γρ2

2 +max{K
2 , 1

2γ}. Note that (c) follows
from the following equality

E{u(t − 1)[(1 − C(t − 1))q(t − 2)

− γC(t − 1)x(t − 2)]|H′(t − 1)}

=E{u(t − 1)|H′(t − 1)}y(t − 1),

where we utilized the fact that q(t−2), x(t−2), and u(t−1)
are independent of C(t−1) given H′(t−1) by their dynamics
(11)(12)(13).

Since λ ∈ ddL
(d+1)d+1ΓΛ, there exists ε1 > 0 such that λ′ !

λΓ
βL

+ε1 ∈ Λ by definition. We define δ in Lemma 1 as follows:

0 < δ !
βLε1

2(ε1 + λΓ
βL

)Γ
< 1.

By Lemma 1, we have

E{u(t − 1)y(t − 1)|y(t − 1) ≥ B2}

≥(β −
δΓ

L
)E{y(t − 1)|y(t − 1) ≥ B2}.

Employing the above inequality to (20), we obtain

∆(t)

≤B1 + max{K, γ} +
λ

K
E{q(t − 1)}− γρE{x(t − 1)}

− Pr{y(t− 1) ≥ B2}

× E{u(t − 1)y(t − 1)|y(t − 1) ≥ B2}

− Pr{y(t− 1) < B2}

× E{u(t − 1)y(t − 1)|y(t − 1) < B2}

≤B1 + max{K, γ} +
λ

K
E{q(t − 1)}− γρE{x(t − 1)}

+ B2(β −
δΓ

L
) − (β −

δΓ

L
)E{y(t − 1)}.

(21)

Since λ′ = λΓ
βL + ε1 ∈ Λ, by Lemma 2, there exists

µSTAT (t) such that (16)(17)(18) hold for each time slot t
for this λ′. According to (18), we have

−
Γ

L
E{y(t − 1)} ≤ −E{µSTAT (t − 1)y(t − 1)}. (22)

By applying (22) to (21) and employing (16)(17), we obtain

∆(t)

≤B3 +
λ

K
E{q(t − 1)}− γρE{x(t − 1)}

− (
βL

Γ
− δ)E{µSTAT (t − 1)

× [S(t − 1)q(t − 1) − γ(1 − S(t − 1))x(t − 1)]}

=B3 − E{q(t − 1)

×

[

(
βL

Γ
− δ)µSTAT (t − 1)S(t − 1) −

λ

K

]

}

−E{x(t − 1)

× γ[ρ− (
βL

Γ
− δ)(1 − S(t − 1))µSTAT (t − 1)]}

≤B3 − ε2E{q(t − 1) + x(t − 1)},

(23)

where B3 ! B1 + B2(β − δΓ
L ) + max{K, γ} +

max{λ, γρ}(βL
Γ − δ), and

ε2 ! min

{

ε1βL

2KΓ
, γρ(1 −

βL

Γ
+ δ)

}

> 0.

From (23), by taking the time-average over t = 0, 1, ..., T −
1 and taking limsup of T , we can prove (19), completing the
proof of Theorem 2.


