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Abstract—Due to rapid growth of wireless traffic demands
in vehicular networks, spectrum scarcity is becoming urgent in
the Dedicated Short Range Communication (DSRC) band. One
solution is reusing automotive radar bands without degrading
radar performance. Despite having massive bandwidths, imaging
accuracy of automotive radars is still low due to correlations
between sequential target observations of single radar. A solution
is that vehicles exchange imaging information through vehicle-to-
vehicle communications. Since observations of different vehicles
are less correlated, Joint Automotive Radar and Communication
(JARC) network is able to improve imaging accuracy. More
importantly, some spectrum resources can be left to alleviate the
DSRC spectrum scarcity problem. In this paper, we derive the
Cramer-Rao bound for parameter estimation in JARC networks.
Then, we formulate the spectrum utilization problem as an NP-
complete integer quadratic program, to which we propose an
optimal (in expectation) algorithm with low complexity. Finally,
efficacy of the algorithm is illustrated through numerical results.

I. INTRODUCTION

Due to rapid increase of wireless traffic demands in vehic-
ular networks, many studies have suggested that the spectrum
scarcity problem in the 5.9 GHz Dedicated Short Range
Communications (DSRC) band is becoming more urgent [1].
Meanwhile, massive frequency bands have been allocated to
automotive radars in the 24/26 GHz UWB and 77 GHz band
in many countries. However, imaging accuracy of automotive
radars is still low due to correlations between sequential target
observations of single radar, and thus the radar bands can be
considered underutilized. Hence, joint automotive radar and
communication (JARC) networks were proposed to incorpo-
rate vehicle-to-vehicle (V2V) communications in automotive
radars to improve efficiency of the radar bands [2] [3].

Since some of the radar imaging time is allocated to
vehicular communications, one concern is that RI accuracy can
be degraded. In fact, the interaction between RI and V2V com-
munications is not a zero-sum game: RI can benefit from V2V
communications because neighboring vehicles can improve RI
accuracy by sharing RI results. Specifically, instead of using
its own temporally correlated radar observations, each vehicle
can utilize observations with low spatial correlation from its
neighbors to improve its RI accuracy. V2V communications
can also benefit from RI because RI helps a vehicle identify
and locate its receivers. Furthermore, RI can help V2V com-
munications establish directional V2V links and beamforming
(e.g., 5G community is looking into tracking of mobile devices

in millimeter wave bands). Moreover, radar signals can be used
to carry control information for V2V communications, and
communication signals can also be used as radar pulses [3].
More importantly, since V2V communications can improve
RI accuracy, some radar spectrum resources can be left for
other vehicular communications after baseline RI accuracy re-
quirements are satisfied, which alleviates the spectrum scarcity
problem in the DSRC band.

Although JARC networks have been implemented in several
existing works [2] [3], to the best of our knowledge, no
works have provided a theoretical analysis on performance
of the JARC network. In this paper, we try to fill this gap
by presenting a theoretical study of the JARC networks.
Contributions of our work are threefold:

1) We study the tradeoff between radar imaging and V2V
communications, and derive Cramer-Rao lower bound
(CRLB) for cooperative parameter estimation in the
JARC network.

2) We formulate the spectrum utilization problem as an
integer quadratic program (IQP) with the objective of
maximizing remaining spectrum resources for other ve-
hicular communications subject to radar imaging accu-
racy requirements.

3) To solve the formulated NP-complete problem, we de-
vise a quadratic programming-based method associated
with an integer rounding algorithm. The method is
optimal in expectation, which means that our solution
achieves the optimal value of the relaxed IQP in expec-
tation at the cost of relaxing some constraints.

The remainder of this paper is organized as follows. We
present the study of tradeoff between RI and V2V communi-
cations and CRLB derivation in Section II. Then, the system
model and problem formulation are described in Section III.
In Section IV, we discuss the proposed method. Numerical
results are presented in Section V, followed by the conclusion
in Section VI.

II. TRADEOFF OF RADAR IMAGING AND V2V
COMMUNICATIONS

In this section, we characterize RI accuracy in the JARC
network using estimation theory. As shown in Figure 1, in a
pure automotive radar network, each vehicle tracks a target
by transmitting radar signals every Tr milliseconds within a
period T . In the JARC network, each vehicle spends part of the
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Figure 1. Time allocation in the pure radar and JARC networks

time on tracking the target by itself, and exchanges tracking
information with its neighbors in the remaining time. In both
networks, each vehicle estimates parameters (e.g., location and
velocity) of the target at the end of every tracking period.

As shown in Figure 1, let Tradar and Tcomm be the RI and
communication time, respectively, and T = Tradar + Tcomm
be the tracking period. Let X be the target parameter to be
estimated by all vehicles. In this paper, X is assumed to be an
unknown constant parameter. Let Yj be the estimated value of
X based on the j-th reflected radar signal. Since the RI rate
is very high (e.g., 1000 signals per second), two sequential
estimations Yj and Yj−1 are assumed to be linearly correlated.
Therefore, we can obtain the following correlation equations
at vehicle i:

Y1 = X +Ni1,

Y2 = αY1 + (1− α)X +Ni2,

· · ·
Yj = αYj−1 + (1− α)X +Nij ,

(1)

where α is a constant factor characterizing the linear cor-
relation between two sequential observations, and Nij ∼
N (0, σ2

i ),∀j are i.i.d estimation errors at vehicle i. The
assumption that estimation errors follow Gaussian distribution
has been justified in both [4] (Page 301, Chapter 10) and [5]
(Page 322). In addition, X and Nij ,∀j are assumed to be
independent. From Equation (1), we can see that {Y1, Y2 · · · }
forms a Markov chain.

Suppose every vehicle communicates with K neighbors. As
shown in Figure 1, let −→y1 and −→y2 be the observed parameter
sequences by a vehicle in the pure radar network. In contrast,
let −→z be the observed parameter sequences from neighbors of
the vehicle. Specifically, the three vectors are defined as
−→y1 = (Y1, Y2, · · ·Ym),−→y2 = (Ym+1, Ym+2, · · ·Ym+n),

−→z = (
−→
Z1,
−→
Z2, · · ·

−→
ZK),

(2)

where m and n denote the number of transmitted signals in
−→y1 and −→y2 , respectively, and

−→
Zi = (Y i1 , Y

i
2 , · · ·Y imi

) denotes
observed parameter sequences from the i-th neighbor. In
addition, observed parameter sequences from different vehicles
(i.e., −→y1,

−→
Z1,
−→
Z2 · · ·

−→
ZK) are assumed to be independent.

The assumption of temporal correlation between sequential
radar observations has been widely used in the literature
(e.g., [6], [7]). Specifically, two sequential measurements are
correlated because round trip time of signals is usually so small
such that time difference between two observations is rather
small. Since wireless environment cannot change significantly
and the vehicle cannot move far during such short time,
the two observations are very likely to be correlated. The
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Figure 2. An example of CRLB values in a JARC network

assumption of independent observations at different vehicles
is due to different imaging environment at these vehicles,
e.g., line-of-sight path to the target, local interference, radar
hardware, thermal noise, and nearby obstacles etc.

Next, we analyze radar performance in the JARC network
using estimation theory. Since X is an unknown constant
parameter, Maximum Likelihood (ML) estimators can be used
to estimate X . Since usually no closed form equations exist for
Mean Squared Error (MSE) of the ML estimators, performance
of the estimators is often evaluated by calculating lower bound
of the MSE (i.e., CRLB). However, we show that there exists a
valid “efficient” ML estimator whose MSE reaches the CRLB.

In the JARC network, each vehicle estimates target pa-
rameters using its own observations −→y1 and observations of
its neighbors −→z . We first derive the likelihood function of
the observations in Equation (3), where yij is a realiza-
tion of Y ij , the second equation is due to independence of
−→y1,−→z1 ,−→z2 , · · · −→zK , and the third equation is due to Markovian
property of the {Y1, Y2 · · · } sequences. Next, we compute the
Fisher Information of X as

I(X) = −E
[
∂2

∂X2
log p(−→y1,−→z |X)

]
=

K∑
i=0

1 + (mi − 1)(1− α)
σ2
i

.

(4)

Assume the efficient estimator exists, which is calculated as

X̂eff (
−→y1,−→z ) = X +

1

I(X)

∂

∂X
log p(−→y1,−→z |X)

= X +
1

I(X)

y1 −X +
∑m0

j=2(yj − αyj−1 − (1− α)X)

σ2
0

+
1

I(X)

K∑
i=1

(yi1 −X +
∑mi

j=2(y
i
j − αyij−1 − (1− α)X))

σ2
i

= X −X +
1

I(X)

K∑
i=0

yi1 +
∑mi

j=2(y
i
j − αyij−1)

σ2
i

=

∑K
i=0

[
yi1 +

∑mi

j=2(y
i
j − αyij−1)

]
/σ2

i∑K
i=0 [1 + (mi − 1)(1− α)] /σ2

i

.

(5)

Since X̂eff (
−→y1,−→z ) is not a function of X , it is a valid and

efficient estimator. Therefore, its CRLB is also its MSE:

CRLB =
1

I(X)
= 1/

K∑
i=0

1 + (mi − 1)(1− α)
σ2
i

. (6)



p(−→y1,−→z |X) = p(−→y1,−→z1 , · · · −→zK |X) = p(−→y1|X)
K∏
i=1

p(−→zi |X) = p(Y1|X)

mi∏
j=2

p(Yj |Yj−1, X)
K∏
i=1

p(Y i1 |X)

mi∏
j=2

p(Y ij |Y ij−1, X)


=

(
1√
2πσ2

0

)m0

exp

(
− (y1 −X)2

2σ2
0

) m0∏
j=2

exp

(
− (yj − αyj−1 − (1− α)X)2

2σ2
0

)

·
K∏
i=1

( 1√
2πσ2

i

)mi

exp

(
− (yi1 −X)2

2σ2
i

) mi∏
j=2

exp

(
−
(yij − αyij−1 − (1− α)X)2

2σ2
i

) .
(3)

(a) Scheduling in a pure automotive radar network (b) Scheduling in a JARC network

Figure 3. Spectrum usage in pure automotive radar network and JARC network

Next, we show that the JARC network is able to improve
the RI accuracy. Specifically, we consider a JARC network
in which all vehicles allocate the same ratio of time to RI.
In Figure 1, let R = Tradar/T be the time ratio allocated to
RI, and Tr, Tc be the time needed for a single radar signal
transmission and a single V2V communication session. We
set Tr = 7.33 microseconds, and T = 128Tr. In addition, it is
assumed that each V2V session takes Tc = 15Tr. Moreover,
we set the variance of noise σ2

i = 5 dB, ∀i. We consider three
different scenarios with small (α = 0.2), medium (α = 0.5)
and large (α = 0.7) temporal correlation levels. Given this
setup, the corresponding MSE (CRLB) is shown in Figure 2.

Figure 2 shows that, compared with the pure automotive
radar network (i.e., RI time ratio R = 1), the JARC network is
able to achieve higher RI accuracy (i.e., lower CRLB values).
Therefore, if we use the CRLB value in the pure automotive
radar network as a baseline requirement in the JARC network,
certain amount of time ratio can be left for other vehicular
communications after the baseline CRLB is achieved.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we study the spectrum utilization problem
in the JARC network, where a master vehicle makes spectrum
allocation decisions at the beginning of every scheduling
period. As shown in Figure 3, let Ti be the round-trip time
between vehicle i (denoted by Vi) and the target, and Mi be
the number of radar signals Vi transmits in order to achieve
its RI accuracy in the pure automotive radar network.

Parameters used in the following problem formulation can
be obtained as follows. First, we assume that the schedul-
ing/tracking period T is a known constant that is determined

by safety requirements of automotive radars, and Ti at each
period can be calculated using distance, angle, and relative
velocity information in its previous period. Given T and Ti,∀i,
we assume that Mi values in the pure automotive radar net-
work can be obtained by considering CRLB requirements of
cooperating vehicles. In other words, our spectrum utilization
optimization is performed based on a known radar imaging
scheduling (i.e., Mi values) in the pure automotive radar
network. Moreover, since variance of estimation errors (i.e.,
σ2
i values) are determined by factors like local noise, thermal

noise and nearby obstacles etc, they change slowly and thus
are assumed known and periodically updated by each vehicle.

In this paper, scheduling decisions are: (1) mi ≥ 1,∀i: the
number of radar pulses each vehicle i should transmit; (2)
xij ∈ {0, 1},∀i, j: whether Vi and Vj should exchange imag-
ing results. In particular, we can see that xij = xji,∀(i, j),
and xii = 0,∀i, because vehicles do not communicate with
themselves. After the decision parameters are determined by
the master vehicle, they are broadcast to all cooperating vehi-
cles on a reliable JARC control channel using omnidirectional
radios. Ideally, we would like to have a distributed system, but
as an initial step we assume centralized allocation. Moreover,
mi is required to be at least 1 in case some V2V links fail
due to unexpected obstacles.

Let N be the number of vehicles in the JARC network, and
we continue to study communication overhead for exchanging
RI information between two vehicles Vi and Vj . Since direc-
tional antennas are used in automotive radars, a vehicle may
not be able to broadcast its RI information to all its neigh-
bors through radars. Hence, it has to communicate with its



neighbors one-by-one. Moreover, the amount of information Vi
needs to transmit to Vj is proportional to the number of radar
signals it has transmitted (i.e., mi in Equation (5)). Therefore,
the time needed for Vi and Vj to exchange RI information is
(mi+mj)×T0, where T0 is the time needed to transmit one
unit of information. Furthermore, as shown in Figure 3, the
remaining time for other vehicular communications is
TL = T − TR − TC

= T −
N∑
i=1

miTi −
∑

∀(i,j):i<j

xij(mi +mj)T0

= T −
N∑
i=1

miTi −
1

2

∑
∀(i,j)

xij(mi +mj)T0

= T −
N∑
i=1

miTi −
1

2

∑
∀(i,j)

xijmiT0 +
∑
∀(i,j)

xijmjT0


= T −

N∑
i=1

miTi −
∑
∀(i,j)

xijmiT0

= T −
N∑
i=1

mi

Ti + N∑
j=1

xijT0

 ,

(7)
where T =

∑N
i=1MiTi is the scheduling period, TR is the

total RI time, TC is the total V2V communication time for
exchanging radar imaging results, and the fifth equality is due
to xij = xji,∀(i, j). Let mT = [m1,m2 · · ·mN ] and X =
{xij ∈ {0, 1},∀i, j} be the decision variables, and the JARC
spectrum utilization problem can be formulated as

max
X,m∈Z+

TL

s.t. C1 : CRLBi(m, X) ≤ βi,∀i ∈ {1, 2 · · ·N},
C2 : TL ≥ 0,

C3 : xij ≤ Cij ,∀i 6= j,

C4 : xij = xji,∀i < j,

(P.1)

where CRLBi(m, X) = 1
Ii(m,X) , Ii(m, X) =

1+(mi−1)(1−α)
σ2
i

+
∑
j(j 6=i) xij

1+(mj−1)(1−α)
σ2
j

according
to Equation (6), C1 means the CRLB of vehicle i must not
be greater than a threshold βi, C2 means that the maximum
remaining time must be non-negative, C3 is communication
feasibility constraint, and C4 is assignment constraint. In
particular, Cij ∈ {0, 1} denotes whether vehicle i and j can
communicate with each other due to factors like distance,
antenna direction and obstacles between them.

We continue to show that C2 can be removed by setting βi
values to be CRLB values in the pure radar network. Specif-
ically, as shown in Figure 3, let M = {M1,M2, · · ·MN}
be a known RI scheduling in the pure radar network, and
CRLBi(Mi) = σi

1+(Mi+1)(1−α) be the corresponding CRLB
of Vi. Then, we show that (P.1) can be converted to the
following (P.2) by proving Lemma III.1.

min
X,m∈Z+

N∑
i=1

mi

Ti + N∑
j=1

xijT0


s.t. C1 :

1 + (mi − 1)(1− α)
σ2
i

+
N∑
j=1

xij
1 + (mj − 1)(1− α)

σ2
j

≥ 1 + (Mi − 1)(1− α)
σ2
i

,∀i ∈ {1, 2 · · ·N},

C2 : xij ≤ Cij ,∀i 6= j,

C3 : xij = xji,∀i < j,
(P.2)

Lemma III.1. Problem (P.1) is equivalent to problem (P.2)
when βi = CRLBi(Mi).

Proof. Firstly, instead of maximizing the remaining time (i.e.,
TL in Figure 3) as in (P.1), (P.2) minimizes the total RI and
imaging results sharing time (i.e., TR+TC). Then, we need to
prove optimal solution of (P.2) is guaranteed to satisfy C2 of
(P.1). The fundamental proof idea is that all CRLB constraints
can be easily satisfied if no V2V communication is used.

Specifically, by setting βi = CRLBi(Mi), C1 in (P.1) can
be transformed to C1 in (P.2). In addition, to show that the
optimal solution of (P.2) satisfies C2 in (P.1), we only need
to find a feasible solution of (P.2) that satisfies C2 in (P.1). In
fact, m = M, xij = 0, ∀(i, j) is a feasible solution to (P.2),
and its corresponding total RI and V2V communication time
is exactly T (i.e., TL = T−TR−TC = 0). Hence, the optimal
solution of (P.2) must be able to achieve a total RI and imaging
results sharing time less than or equal to T . Therefore, C2 of
(P.1) still holds, and thus (P.2) is equivalent to (P.1). �

IV. QUADRATIC PROGRAMMING BASED METHOD

We can see that (P.2) belongs to integer quadratic programs,
which are generally NP-complete [8]. In this section, we
propose a probabilistic algorithm to (P.2) based on quadratic
programming (QP), which is guaranteed to obtain an integer
solution whose expectation achieves the optimum of the (P.2)
and satisfies all constraints. Although the final integer solution
can violate some CRLB constraints, we prove that the worst
case violation is bounded. The QP-based algorithm works as
follows. Firstly, we remove all integer constraints of (P.2),
and thus it reduces to a QP problem with real number
variables. After obtaining a fractional solution to the new
QP problem, we round it into an integer solution with the
aforementioned guarantees. Since numerical algorithms have
been widely utilized to solve QP problems (e.g., interior-point,
sequential quadratic programming and trust-region-reflective),
discussions of these algorithms are omitted here. Instead, let
(m∗, X∗) be the optimal fractional solution to the new QP
problem, we convert it into an integer solution (m, X).

Integer rounding algorithms can be generally classified into
two categories: dependent and independent ones. Dependent
rounding algorithms consider interactions between rounding
correlated variables, while independent rounding algorithms



round every fractional variable without considering its impact
on other variables. Since the dependent rounding usually has
theoretical performance guarantees in both achieved utility
and constraint violations while the independent rounding only
has guarantee in the achieved utility, the dependent rounding
is always preferred. However, the dependent rounding idea
only applies to assignment variables [9]. Therefore, in this
section, we first design a dependent rounding algorithm for
assignment variables X∗ to achieve guaranteed performance
in both utility and constraint violations, and then design an
independent rounding algorithm for RI scheduling variables
m∗ to achieve only guaranteed utility performance.

A. Rounding Algorithm for X∗

The dependent rounding algorithm discussed in [9] itera-
tively rounds all fractional variables into binary values without
violating constraints Ax ≤ b. The rounding idea in a single
iteration is as follows. Suppose at iteration t, after removing
binary values, we are given an n-dimensional fractional solu-
tion x(t) that satisfies the following constraints:

1) regular tight (i.e., equality) constraints: A1x(t) = b1,
where A1 ∈ Rm1×n,b1 ∈ Rm1 ,

2) regular untight (i.e., inequality) constraints: A2x(t) <
b2, where A2 ∈ Rm2×n,b2 ∈ Rm2 ,

3) domain constraints: x(t) ∈ (0, 1)n.
Then, a new solution x(t+ 1) is found such that

1) E[x(t+ 1)] = E[x(t)],
2) tight constraints are still satisfied, i.e., A1x(t+1) = b1,
3) at least one entry of x(t) is rounded into a binary value

or at least one regular untight constraint becomes tight.
The three guarantees are accomplished as follows. Firstly,

assume that null space of A1 is nontrivial, and thus S = {s ∈
Rn|A1s = 0} contains at least one nonzero element. Then,
randomly choose one nonzero vector from S, e.g., s ∈ S, s 6=
0. Afterwards, find positive scalar θ1 such that
• all entries of x(t) + θ1s lie in [0, 1],
• at least one entry of x(t) + θ1s becomes integer or at

least one entry of A2(x(t) + θ1s)− b2 becomes zero.
Similarly, we can find another positive scalar θ2 such that
• all entries of x(t)− θ2s lie in [0, 1],
• at least one entry of x(t) − θ2s becomes integer or at

least one entry of A2(x(t)− θ2s)− b2 becomes zero.
Finally, the new solution is obtained as follows:

x(t+ 1) =

{
x(t) + θ1s, with probability θ2

θ1+θ2
,

x(t)− θ2s, with probability θ1
θ1+θ2

.
(8)

The three aforementioned guarantees can be verified as
follows. Firstly, E[x(t + 1)] = E[x(t)] will be proved in
Lemma IV.3. Secondly, since s is taken from null space of
A1, we have A1s = 0, and thus all tight constraints are still
tight (e.g., A1(x(t) + θ1s) = A1x(t) = b1). Finally, the third
guarantee is accomplished through the criteria of choosing
θ1, θ2 as described above. We can see that the dependent
rounding algorithm is able to round at least one fractional
variable into a binary value or make at least one untight

constraint become tight. Therefore, it rounds all fractional
variables into integers with at most NT iterations, where NT
is the total number of variables and untight constraints.

However, the necessary condition for the success of the
rounding algorithm is that the null space of the matrix for tight
constraints (i.e., A1) is nontrivial. If not, some constraints must
be dropped or combined, which can result in the violation of
these constraints. More importantly, no common procedure ex-
ists for dropping or combining constraints to guarantee success
of the algorithm. Instead, the criteria of constraint dropping
and combining depend on specific problem structures. Next,
we propose a dependent rounding algorithm with an efficient
constraint dropping procedure for X∗.

Before we present the rounding algorithm, we first prove
the following lemma.

Lemma IV.1. C2 of (P.2) will not be violated in the dependent
rounding of x∗ij ,∀(i, j), and thus can be removed in the design
of the dependent rounding algorithms.

Proof. Since X∗ satisfy all C1 − C3 constraints of (P.2),
according to C2, Cij = 0 implies x∗ij = 0, ∀(i, j), and
Cij = 1 implies xij ∈ [0, 1],∀(i, j). Hence, C2 constraints
(and corresponding variables) can be divided into two parts:
C21 = {(i, j)|Cij = 0}, and C22 = {(i, j)|Cij = 1}.
Moreover, since the dependent rounding algorithm aims to
only round fractional variables x∗ij ∈ (0, 1) into binary values,
variables in C21 will not be changed and variables in C22 are
rounded to at most 1. Therefore, no C2 constraints will be
violated. �

Lemma IV.1 shows that we only need to consider constraints
in C1 and C3. For a given set of fractional variables, let Fk
denote the subset of vehicles i for which there are exactly k
fractional variables x∗ij ∈ (0, 1), i.e., Vi communicates with k
neighbors “fractionally”. Hence, there can be at most N − 1
subsets F1, F2, · · ·FN−1. In addition, let |Fk| be the number of
vehicles in Fk. Given these notations, details on the proposed
dependent rounding algorithm are shown in Algorithm 1.

Algorithm 1 Dependent Rounding Algorithm for X∗

Input: Fractional communication assignment to (P.2): X∗

Output: Integer V2V communication assignment to (P.2): X
Initialization : x(0) = X∗

1: while there exist fractional variables in x(t) do
2: treat all integer variables in x(t) as constants
3: Constraint Dropping:

(1) for vehicles in F1, drop all their CRLB constraints;
(2) if |F2| > 0, |Fk| = 0, ∀k 6= 2 and tight CRLB
constraints of vehicles in F2 are linearly independent,
drop one of the tight CRLB constraints randomly

4: find the null-space S of new set of tight constraints
5: choose a nonzero vector s ∈ S
6: find scalars θ1, θ2 as described right above Equation (8).
7: compute x(t+ 1) using Equation (8)
8: end while
9: return x(t+ 1)



Remainder of this section is focused on the feasibility
and optimality analysis of Algorithm 1. Firstly, feasibility of
Algorithm 1 is proved in Lemma IV.2.

Lemma IV.2. In Step 4 of Algorithm 1, the null-space S is
always nontrivial.

Proof. Existence of the nontrivial null space means that cur-
rent linear system “A1(t)x(t) = b1(t)” defined by all tight
constraints of (P.2) is undetermined, i.e., the number of linearly
independent equations is less than the number of variables.
Hence, we only need to prove that after the constraint dropping
in Step 3, the number of linearly independent tight constraints
(denoted by Nc) is less than the number of pure fractional
variables (denoted by Nv) in every iteration. We prove this
lemma using contradiction, i.e., we first suppose Nv ≤ Nc.
Given the definition of subsets F1, F2, · · ·FN−1, we have

Nv =
N−1∑
k=1

k × |Fk|. (9)

Next, we compute the value of Nc. Since C2 constraints have
been removed due to Lemma IV.1, the set of tight constraints
consists of CRLB constraints (i.e., C1 in (P.2)) and assignment
constraints (i.e., C3 in (P.2)). Let NC1 be the number of tight
CRLB constraints, and NC3 be the number of tight assignment
constraints. Since each “fractionally” scheduled vehicle i (i.e.,
there exists a j such that xij ∈ (0, 1)) has to satisfy its CRLB
constraint (not necessarily with equality), we have NC1 ≤∑N−1
k=1 |Fk|. However, according to Step 3, all constraints in

F1 are dropped, and thus NC1 ≤
∑N−1
k=2 |Fk|. In addition,

since all fractional variables appear in pair in C3 constraints,
we have NC3 = Nv

2 . Hence, Nc is bounded as follows,

Nc ≤ NC1 +NC3 ≤
N−1∑
k=2

|Fk|+
Nv
2
, (10)

where the first inequality is due to that the tight constraints
may not be linearly independent. Then, the assumption Nv ≤
Nc implies that Nv ≤

∑N
k=2 |Fk|+

Nv

2 , i.e.,

1

2
|F1|+ |F2|+

N−1∑
k=3

k

2
|Fk| ≤ |F2|+

N−1∑
k=3

|Fk|. (11)

which is satisfied if and only if |F2| > 0, |Fk| = 0,∀k 6= 2,
and Nc = NC1 + NC3, i.e., all tight constraints are linearly
independent. However, according to Step 3, whenever this
happens, one of the tight CRLB constraints is dropped, which
means that Equation (11) can not be satisfied. Therefore the
assumption Nv ≤ Nc does not hold, and thus the nontrivial
null-space S always exists. �

Next, optimality analysis of Algorithm 1 is as follows.

Lemma IV.3. Let x(t+1) be the integer solution returned by
Algorithm 1, then E[x(t+ 1)] = X∗.

Proof. According to Step 7, we have

E[x(t+ 1)|x(t)] = θ2
θ1 + θ2

(x(t) + θ1s)

+
θ1

θ1 + θ2
(x(t)− θ2s) = x(t).

(12)

Hence, we have
E[x(t+ 1)] = E[E[x(t+ 1)|x(t)]] = E[x(t)]. (13)

Since x(0) = X∗ according to “Initialization” of Algorithm
1, we have
E[x(t+1)] = E[x(t)] = · · · = E[x(1)] = x(0) = X∗, (14)

which finishes the proof. �

This lemma shows that the optimum of (P.2) is achieved and
all constraints are satisfied in expectation. Then, we study how
the constraint dropping in Step 3 affects the worst case CRLB
constraint violation. Let CRLBi, CRLB∗i be the achieved
CRLB and required CRLB of Vi respectively, and we show
that the violation ratio can be upper bounded as follows.

Lemma IV.4. Let ai =
1+(m∗i−1)(1−α)

σ2
i

, and δi =
CRLBi−CRLB∗i

CRLB∗i
be the CRLB violation ratio of vehicle i.

Then, we have (1) δi ≤ maxj
aj
ai

for vehicles in F1, and
δi ≤ maxj,k

aj+ak
ai

for vehicles in F2, and (2) at most one
vehicle’s CRLB constraint can be dropped in F2.

Proof. First, let CRLB∗i = 1
γi

and consider the following
tight CRLB constraint of vehicle i dropped from F1,

Vi : ai + ajxij + Ci = γi, (15)
where Ci is a constant consisting of rounded variables. Since
xij is rounded into 0 or 1 eventually, we have
CRLBi
CRLB∗i

≤ γi
ai + Ci

=
ai + aj + Ci
ai + Ci

≤ 1 + max
j

aj
ai
, (16)

and thus δi =
CRLBi−CRLB∗i

CRLB∗i
≤ maxj

aj
ai

.
Similarly, consider the following CRLB constraint of vehi-

cle i dropped from F2,
Vi : ai + ajxij + akxik + Ci = γi. (17)

Then, we have
CRLBi
CRLB∗i

≤ 1 + max
j,k

aj + ak
ai

, (18)

and thus δi =
CRLBi−CRLB∗i

CRLB∗i
≤ maxj,k

aj+ak
ai

.
Next, we prove the second part of this lemma. According

to the proof of Lemma IV.2, both the number of variables
and constraints are |F2| + Nv/2 = 2|F2| in this scenario.
Furthermore, in (P.2), we can merge C3 constraints into C1
constraints by replacing xji,∀j > i with xij , and end up
with a linear system with |F2| linearly independent constraints
and |F2| fractional variables. In this case, the linear system
defined by constraints in F2 is determined. However, after one
constraint

Vi∗ : ai∗ + ai∗xi∗j∗1 + ai∗xi∗j∗2 + Ci∗ = γi∗ (19)
is dropped, the system becomes undetermined. To show that
at most one CRLB constraint is dropped in F2, we show that
this scenario will no longer happen in the remaining iterations.

In general, each fractional xij appears in two CRLB con-
straints in F2: Vi and Vj . Hence, whenever one fractional
variable is rounded into an integer, its two corresponding con-
straints reduce to F1, and thus are dropped. Hence, the number
of remaining constraints will always be less than the number
of remaining fractional variables. However, the relationship



between rounded variables and the dropped constraint must
be explicitly studied to determine the number of constraints
to be dropped. Specifically, we prove the second part of this
lemma by considering the following two cases:

Case 1: Only one variable is rounded into an integer.
Let xij be the rounded variable, and we consider the number
of constraints to be dropped in the following three sub-cases:

1) xij ∈ {xi∗j∗1 , xi∗j∗2 }. For example, xij = xi∗j∗1 . Since
constraint Vi∗ in Equation (19) has been dropped, only
one more constraint Vj∗1 will be dropped.

2) xij ∈ {xj∗1 i1 , xi2j∗2 }, where xj∗1 i1 denotes the other
fractional variable apart from xj∗1 i∗ in constraint Vj1 , and
xi2j∗2 is defined similarly. For example, let xij = xj∗1 i1 .
In this case, two constraints Vj∗1 and Vi1 are dropped.

3) xij /∈ {xi∗j∗1 , xi∗j∗2 , xj∗1 i1 , xi2j∗2 }. In this case, two
constraints Vi, Vj are dropped after xij is rounded.

Therefore, in Case 1, at least one CRLB constraint is dropped
after one variable is rounded.

Case 2: More than one variables are rounded into
integers. Let l be the number of fractional variables and q
be the number of dropped constraints. Therefore, we need
to prove that q ≥ l. In addition, let W = W1 ∪ W2 =
{Vi|xij |xji ∈ (0, 1),∃j} be the set of all fractionally assigned
vehicles, in which W1 = {Vi∗ , Vj∗1 , Vj∗2 } is the set of vehicles
appearing in the dropped constraint in Equation (19) and W2

denotes the other vehicles. Next, let Wl denote the set of
vehicles appearing in the rounded fractional variables, and we
determine the number of additional constraints to be dropped
by considering the following two sub-cases:

1) Wl ∩ W1 = ∅. In this case, the number of involved
vehicles is 2l. Since each involved vehicle in W2 can
appear in at most two constraints, we have

q ≥ 2l

2
= l. (20)

2) Wl ∩ W1 6= ∅. Let p = |Wl ∩ W1|, and p ≥ 1 .
Since vehicles in W1 can appear in at most one CRLB
constraint while vehicles in W2 can appear in at most
two CRLB constraints, we have

q ≥ p+ 2l − p
2

= l +
p

2
> l. (21)

Therefore, the number of dropped CRLB constraints is
always larger than or equal to the number of rounded variables
in remaining iterations. Therefore, after this iteration, the linear
system is always undetermined, which finishes the proof. �

B. Rounding Algorithm for m∗

Since we want to find an integer solution close to the
optimal fractional solution, we only consider rounding up
(i.e., mi = dm∗i e) or down (i.e., mi = bm∗i c) of m∗i .
In particular, we simply take advantage of the independent
rounding method, i.e., each mi value is rounded up or down
independently from the rounding of other mj values. Specif-
ically, let δi = m∗i − bm∗i c be the fractional part of m∗i ,
and m∗i is rounded up with probability δi and rounded down
with probability 1 − δi. The performance of the independent
rounding is shown in the following lemma.

Lemma IV.5. Let mi be the integer value rounded indepen-
dently from m∗i , then E[mi] = m∗i .

Proof. Since mi = dm∗i e with probability δi and mi = bm∗i c
with probability 1− δi, we have
E[mi] = (m∗i − δi)× (1− δi) + (m∗i + 1− δi)× δi

= m∗i ,
(22)

which finishes the proof. �

C. Optimality and Complexity Analysis

The fractional solutions X∗ and m∗ obtained from the QP
problem have been rounded using dependent and independent
rounding, respectively. Moreover, expectations of the final
integer solutions X and m are both guaranteed to be equal
to their original fractional values (see Lemma IV.3 and IV.5).
Moreover, since the rounding of m∗ is independent of X , all
quadratic items in (P.2) satisfy E[m∗i x

∗
ij ] = E[m∗i ] × E[x∗ij ].

Therefore, the QP-based method is optimal in expectation.
Recall that the number of iterations of Algorithm 1 is pro-

portional to the total number of variables and constraints, that
is O(Nv +Nc) = O

(
N(N − 1) +N + N(N−1)

2

)
= O(N2).

Moreover, finding null-space of a matrix takes at most O(N3)
time. Thus, the complexity of rounding X∗ is at most O(N5).
The complexity of rounding m∗ is simply O(N). Hence, the
total complexity of the algorithm is at most O(N5).

V. NUMERICAL RESULTS

In this section, we study performance of the proposed
method through simulations in MATLAB. Specifically, we
consider a mobile vehicular network with N vehicles, where
N ∈ {5, 7, 10, 12, 15, 17, 20, 22, 25}.

A. Simulation Setup

In the following simulations, we set T0 = 1, Ti ∈
[1, 10], σ2

i ∈ [1, 6],∀i, and consider the three temporal cor-
relation levels: low (α = 0.2), medium (α = 0.5) and high
(α = 0.7). Links in the radar band require line-of-sight paths
between transmitter and receiver. In our numerical evaluations,
we assume that only half of the vehicle pairs can establish
line-of-sight links and the remaining links are assigned zero
capacity, i.e., Cij = 0 in (P.1). Performance of the proposed
algorithm is evaluated from three perspectives: remaining time
ratio, expected and the worst case CRLB violation.

B. Simulation Results

Let “QP” and “RD” be the fractional solution to quadratic
program of (P.2) and the integer solution returned by our
algorithm, respectively. Recall that “QP” is an upper bound
of the optimal integer solution to (P.2) because it is obtained
by relaxing all integer constraints of (P.2). Moreover, we can
see from Figure (4a) that the expected value of “RD” is almost
identical to “QP”, which verifies our algorithm is optimal in
expectation.

Figure (4a) also shows that the remaining time ratio first
increases with increasing N , and converges eventually. The
reason is that several vehicles with less estimation errors
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Figure 4. Performance of the proposed spectrum resource allocation algorithm

can achieve high accuracy imaging results and most other
vehicles can achieve CRLB requirements by communicating
with these vehicles. Thus the remaining time ratio increases
with increasing N . Moreover, the scheduling period T also
increases (with a maximum limit) with increasing N in the
pure automotive radar network. Hence, total radar imaging
time, time for exchanging imaging results, and T all become
proportional to N eventually. Therefore, the remaining time
ratio for other communications converges.

For example, suppose two vehicles have very low estimation
errors, and they can achieve CRLB requirements by trans-
mitting multiple radar pulses. Since transmitting Mi pulses
already guarantees they achieve CRLB requirements, and they
will further improve imaging accuracy through communica-
tions, they only need to transmit Mi pulses. In this case,
other vehicles only transmit one radar pulse and achieve CRLB
requirements through exchanging imaging results with the two
vehicles. Let Tb be the time allocated to each new vehicle in
the pure automotive radar network, and T1 be the round-trip-
time between all other vehicles and the target. As shown in
Figure 3, we have TR = 2 × Tb + (N − 2) × T1. Next, we
compute the total time for exchanging imaging results (i.e., TC
in Figure 3). Firstly, the two vehicles transmit their imaging
results to other vehicles, which takes (N−2)×(M1+M2)×T0
time. Then, other vehicles transmit their imaging results to the
two vehicles, which takes (N−2)×2×1×T0 time. Hence, we
have TC = (N−2)(M1+M2+2)T0, and the total time ratio for
radar imaging and exchanging results (i.e., TR+TC

T ) converges
to T1+(M1+M2+2)T0

Tb
for sufficiently large N . Therefore, the

left time ratio also converges.
Figures (4b) and (4c) show that both the expected and

worst case CRLB violations increase with increasing N , which
can be explained using Lemma IV.4. Specifically, Lemma
IV.4 implies that violation ratio in the whole JARC network
is bounded by maxj,k∈S aj+ak

mini∈S ai
, where S denotes the set of

all fractionally assigned vehicles. Hence, CRLB violation
increases with growing S, i.e., increasing N . Moreover, CRLB
violation ratio converges because ai values are bounded.
Specifically, Lemma IV.4 shows that ai is determined by mi

and σi. In the simulation setup, σi is bounded between [1, 6],
mi values are bounded as explained in the previous paragraph.

Figure 4 shows that both left time ratio and CRLB violations

increase with increasing α. The reason is that increasing
correlation level means it’s less efficient to achieve CRLB
requirements via radar detection. Thus more vehicles achieve
CRLB requirements through communications, which leaves
more time for other communications. Moreover, S also grows
with N , and thus CRLB violation increases as explained in
the previous paragraph. Finally, we can see that Figure 4
verifies that our proposed algorithm is optimal in expectation
and satisfies the constraint violation bounds in Lemma IV.4.

VI. CONCLUSION

In this paper, we present a theoretical study of the JARC
network. Firstly, we study the tradeoff between RI operations
and V2V communications using estimation theory. Then, we
formulate the resource allocation problem to be an integer
quadratic program. Finally, we propose a QP-based method,
which achieves optimal (in expectation) remaining time ratio
at the cost of bounded CRLB violations. One of our future
works is to develop distributed algorithms with more favorable
implementation characteristics.
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