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Cross-Layer Scheduling for Cooperative Multi-Hop
Cognitive Radio Networks

Dongyue Xue and Eylem Ekici

Abstract�—In this paper, a cross-layer optimal scheduling
algorithm for cooperative multi-hop Cognitive Radio Networks
(CRNs) is presented, where secondary users (SUs) assist pri-
mary users�’ (PUs�’) multi-hop transmissions and in return gain
an immediate time-share of the channel proportional to their
assistance. While providing deterministic upper-bounds for PU
queue backlogs, the proposed algorithm approaches the optimal
PU throughput arbitrarily close, with a tradeoff in the average
delay upper-bounds of ows. The analysis is further extended to
a model with a more general �“long-term reward mechanism�”,
where a time-averaged share of the channel is guaranteed for
SUs. The proposed algorithm provides order-optimal delay for
the primary trafc. Distributed implementation issues have also
been investigated. The properties of the proposed algorithm have
also been illustrated through simulation studies.

Index Terms�—Cognitive radio, optimal scheduling, congestion
control, multi-hop wireless networks, nite buffers

I. INTRODUCTION

TRADITIONAL xed spectrum assignment gives rise
to spectrum under-utilization as reported by Federal

Communication Commission (FCC) in [1]. Cognitive Radio
Networks (CRNs) [2] have recently emerged as a technology
for secondary users (SUs) to opportunistically utilize the
spectrum assigned to incumbent users, referred to as primary
users (PUs). The traditional view on CRNs emphasizes point-
to-point connections for both PU and SU subsystems, and
multi-hop CRNs have only been considered in recent past.
In addition to the majority of CRN solutions in the literature
that do not provide provable performance levels, throughput
and utility optimization for single-hop CRNs have also been
investigated [3]-[6]. However, these works are not readily
extendable to multi-hop CRNs.

Back-pressure-based scheduling algorithms have been ex-
tensively investigated for generic wireless networks [15][16].
In addition to the seminal work [15], distributed and low-
complexity algorithms have been proposed in the literature,
including [18][19]. This technique has been applied to CRNs
in [11]-[14]. Specically, in [11], an optimal cross-layer
scheduling algorithm has been proposed in a single-hop setting
to maximize SU throughput subject to PU collision constraints.
This single-hop setting is extended in [12], where aggregated
utility is maximized subject to PU power constraints. In [13],
a cooperative CRN is considered to optimize PU and SU
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utility, where SUs assist PU transmission in a two-hop relay
scenario, which is not readily extendable to generic multi-
hop CRNs and does not involve delay analysis. A multi-hop
CRN scheduling algorithm is proposed in [14] with estimated
end-to-end delay, but there is no cooperation between PUs
and SUs. In addition, the algorithms proposed in [11]-[14]
are centralized in general. To the best of our knowledge,
no throughput/utility-optimal scheduling algorithms have been
proposed in the literature for cooperative multi-hop CRNs
with investigations on distributed implementation. Further-
more, characterizing delay upper-bounds for PUs in a CRN is
challenging, especially with the opportunistic access of SUs
to the same channel.

The general cognitive radio networks perform well when
the PU trafc activity is low and SUs nd ample opportuni-
ties to access the licensed spectrum. In such cases, existing
algorithms such as [11][12][14] designed for CRNs can be
applied with high SU throughput and low PU-SU collision
probability. A challenging situation emerges when PU trafc
intensity increases to higher levels. In such cases, SUs not only
have fewer transmission opportunities, but also run greater
risk of collision with PU transmissions. Here, we propose the
application of cooperative communication principles to CRNs
that relate the SU channel access rights with the services they
render for PUs. As such, unintentional infringements of PU
rights of channel access (i.e., collisions of SU transmissions
with PU transmissions) are eliminated, which arise in non-
cooperative CRNs with possibly small but non-zero probabil-
ities. Moreover, SUs access the crowded licensed spectrum
with little or no �‘spectral opportunities�’.

In this paper, we propose a throughput-optimal cross-layer
scheduling algorithm for a multi-hop cooperative CRN under a
property-rights model [13], where SUs relay data between PU
pairs to gain access to the licensed spectrum. An illustrative
example is shown in Figure 1, where the cooperative CRN is
composed of an SU subnetwork and a PU subnetwork. The SU
subnetwork consists of SUs communicating with a secondary
base station over a single hop as assumed for IEEE 802.22.
In the PU subnetwork, we consider a case where the channel
condition is not desirable for the the direct transmission
between the PU and the primary base station due to physical
separation. Thus, the PU is willing to �“lease�” a portion of the
spectrum access to SUs in return for some form of service.
Specically, PU data is relayed by SUs from the source PU to
PU base station, and SUs in return gain an time-share of the
channel proportional to their assistance to the PU. The model
illustrated in Figure 1 can be considered as a generalization of
the overlay CRNs with two-hop relay [8]-[10]. The proposed
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algorithm solves the throughput maximization problem using
pre-determined routes with a reward mechanism: the SUs are
guaranteed a throughput proportional to the PU data they relay.

An optimal opportunistic scheduling scheme has been pro-
posed in [7] to guarantee each user a proportional share
of the network resource for a non-cognitive setting, which
is extended to a scenario of two-hop relay CRNs in [13].
Different from the approach employed in [7] which is not
readily applicable to a general multi-hop setting, we em-
ploy Lyapunov optimization tools to develop the throughput-
optimal scheduling algorithm in a multi-hop cooperative CRN.
Salient contributions of our work with respect to the literature
can be listed as follows: (1) The algorithm can achieve a
PU throughput arbitrarily close to the optimal values, with a
tradeoff between throughput and PU/SU packet queue length.
Specically, the PU achieves a throughput �“(ε + 1

V2
)-close�”

to the optimal value at a tradeoff of O(V2
ε ) in average SU

queue length and O(V2) in the deterministic PU buffer size.
(2) The algorithm guarantees deterministically upper-bounded
nite buffer sizes for PU queues in the CRN. Derived from
the previous two features, we show that the algorithm achieves
order optimal delay [25] for PU trafc, i.e., the delay is upper-
bounded by the rst order of the number of hops in a route. (3)
Distributed implementation and an extended algorithm with a
general long-term reward mechanism are discussed. (4) The
immediate and long-term reward mechanisms introduced in
the paper, along with the proposed algorithms, provide a novel
approach to guarantee SUs�’ access to the opportunistic channel
while avoiding unintentional collisions between PUs and SUs.

The rest of the paper is organized as follows: Section II
introduces the network model for the cooperative multi-hop
CRN. In Section III, we propose and analyze the throughput-
optimal algorithm and its performance. In Section IV, we
consider a long-term reward mechanism and discuss the corre-
sponding distributed implementation issues. Numerical results
are illustrated in Section V. Finally, we conclude our work in
Section VI.

II. NETWORK MODEL

In this section, we rst present the overall multi-hop coop-
erative CRN model, followed by the analysis of the routing
and queuing structure in the CRN.

A. Overall Network Elements and Constraints
In this paper, we consider a time-slotted multi-hop cooper-

ative CRN, as illustrated in Figure 1, where SUs relay PU
data in return for the right to use the wireless spectrum.
The multi-hop cooperative CRN in question can be divided
into two subnetworks: a �“PU relay subnetwork�” and an �“SU
subnetwork�”. The PU relay subnetwork is composed of one
primary source node (sP ), a corresponding primary destination
node (dP ) which is represented as a primary base station in
Figure 1, and a set of SUs S that relay the PU trafc between
sP and dP over possibly multiple hops, where | S |= N .
This model can be considered as a generalization of the
overlay CRNs with two-hop relay [8]-[10]. We assume that
sP and dP cannot communicate directly. Thus, PU data is

Fig. 1. Cooperative CRN model

relayed solely by SUs. The PU relay subnetwork is repre-
sented as (N , L) where N = {sP , dP } ∪ S denotes the
node set of the PU relay subnetwork and L denotes the
link set for PU data relay, i.e., L = {(m,n) : m,n ∈
N , and there exists a link between nodes m and n}.

We consider an SU subnetwork similar to the architecture
presented in IEEE 802.22: The SU subnetwork is composed
of a set of SUs S and a secondary base station dS as their one-
hop destination. Then, the SU subnetwork can be represented
by (S ∪ {dS},L′), where L′ = {(l, dS): l ∈ S} is the
set of uplinks in the SU subnetwork. Note that our analysis
can readily be extended to cases where downlinks are also
considered. 1

Let V = L ∪ L′. We represent the CRN interference
model by an interference graph G = (V , E) (a.k.a. conict
graph). A pair of links in V is in E if the links interfere
with each other when scheduled simultaneously. Furthermore,
let µmn be the scheduled link rate for PU data over link
(m,n) ∈ L, and the scheduled SU link rate denoted as sl
over link (l, dS) ∈ L′. For analytical simplicity, we assume
a scheduled link rate takes a value from {0, 1} in units
of packets per time slot. A link schedule represented by
a vector ((µmn)(m,n)∈L, (sl)l∈S) ∈ {0, 1}|L|+N is said to
be feasible iff any pair of scheduled links does not belong
to the interference edge set E . With a time slot system,
a feasible link scheduler chooses a feasible link schedule
((µmn(t))(m,n)∈L, (sl(t))l∈S) ∈ I for each time slot t,
where I is the set of all feasible link schedules. We also
assume that a node is equipped with one transceiver capable
of communicating with only one neighbor in a time slot.
Specically, ∀n ∈ N\{sP }, the following inequality holds:

∑

j:(j,n)∈L

µjn(t)+
∑

i:(n,i)∈L

µni(t)+1{n∈S}sn(t) ≤ 1, ∀t, (1)

where 1{x} is the indicator function for event x. In addi-
tion, since sP is the sender of the PU pair, we must have∑

n∈S µnsP (t) = 0, ∀t.
In the following subsection, we build a routing and queuing

model for the CRN for a xed-routing scenario.
1If downlinks are also available for the SU network, the SU base station dS

can participate in the PU data relay. Specically, we can update the PU relay
network as (N̄ , L̄), where N̄ denotes the node set of PU relay subnetwork
including the SU base station, i.e., N̄ = N ∪ {dS}, and L̄ denotes the
link set for PU data relay including SU uplinks and downlinks, i.e., L̄ =
L ∪ L′ ∪ {(dS , l): l ∈ S}. Then the following discussion still holds for the
updated PU relay network (N̄ , L̄).
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B. Routing and Queueing Structure for the CRN Model

In the cooperative CRN, SUs are rewarded with a through-
put proportional to PU data they relay. Thus, we consider a
xed multi-path routing scenario, where the PU data trans-
mission has K loop-free pre-determined routes. We denote
the path for the k-th route as Pk = (v0k, v

1
k, · · · , v

Hk
k , vHk+1

k ),
where (Hk+1) is the total number of hops in the PU relay sub-
network for route k, and vmk ∈ N , ∀m ∈ {0, 1, · · · , Hk +1},
∀k ∈ {1, · · · ,K}. Without loss of generality, we assume that
each SU l ∈ S is in at least one of the K routes, that is:
∀l ∈ S, ∃k,m s.t. vmk = l. Note that we always have v0k = sP
and vHk+1

k = dP , ∀k ∈ {1, · · · ,K}. According to this routing
structure, we construct PU packet queues Uk

m(t) in the nodes
along the k-th route, where 0 ≤ m ≤ Hk+1 and 1 ≤ k ≤ K .
Note that, since vHk+1

k = dP , we have Uk
Hk+1(t) = 0, ∀t,

∀k ∈ {1, · · · ,K}.
In the cross-layer CRN model, PU and SU packets are

generated (by specic applications) at the transport layer and
admitted to the network (link) layer. For analytical simplicity,
we assume that PU and SU trafcs are constantly backlogged
at the transport layer. Let µk

−1,0(t) be the admitted arrival
rate from the PU transport layer to the source PU (sP ) that
is scheduled to pass through the k-th route, where we also
assume the sum of admitted PU arrival rates over K routes
is upper-bounded by µM , i.e,

∑K
k=1 µ

k
−1,0(t) ≤ µM , ∀t, and

λk, k = {1, · · · ,K}, is the time-average of µk
−1,0(t).

To characterize the route-based queue evolution, let
µk
m,m+1(t), 0 ≤ m ≤ Hk, be the scheduled rate for the hop

(vmk , vm+1
k ) along the k-th path. Note that a hop schedule

(µk
m,m+1(t))m,k corresponds to a PU link schedule:
∑

m,k

µk
m,m+1(t)1{(vm

k ,vm+1
k )=(l,n)} = µln(t), ∀(l, n) ∈ L. (2)

Then, the queue Uk
m(t) evolves as follows, 0 ≤ m ≤ Hk,

Uk
m(t+ 1) ≤ [Uk

m(t)− µk
m,m+1(t)]

+ + µk
m−1,m(t), (3)

where the inequality holds if µk
m−1,m(t) = 1 and Uk

m−1(t) =
0, 1 ≤ m ≤ Hk, i.e, when the transmission over the m-th hop
is scheduled but not performed due to lack of PU packets at
queue Uk

m−1(t). Note that a link (m,n) ∈ L can be a hop in
multiple routes, and hence we can only schedule the hop with
rate 1 on at most one such route in any time slot.

We consider an immediate reward mechanism for SUs
in the CRN model, i.e., when a PU packet is admitted to
the network, an appropriate number of SU packets are also
admitted in all SUs along the path relaying the admitted PU
packet. Specically, let ρk be the rate of reward for SUs when
a PU packet is admitted to route k, i.e., ρkµk

−1,0(t) packets
from the SU transport layer will be admitted simultaneously to
the SU queues corresponding to the nodes vmk , 1 ≤ m ≤ Hk.
Here, we assume that ρkµk

−1,0(t) takes integer values. We
extend our analysis to fractional-valued ρkµk

−1,0(t) in Section
IV, where we provide the discussion of a long-term reward
mechanism.

Let Ql(t) be the SU packet queue backlog at node l ∈ S.
With an abuse of notation, we denote l ∈ Pk if the SU l is on
the route Pk, i.e., ∃m: vmk = l. Then, the SU queue dynamics

for Ql(t) can be expressed as follows:

Ql(t+ 1) =[Ql(t)− sl(t)]
+ +

K∑

k=1

Hk∑

m=1

ρkµ
k
−1,0(t)1{vm

k =l}

=[Ql(t)− sl(t)]
+ +

K∑

k=1

ρkµ
k
−1,0(t)1{l∈Pk},

(4)

where the second equality holds since each route is loop-free.
With the above introduced routing and queuing struc-

tures, we say the network is stable if queues Uk
m(t)

and Ql(t) are stable ∀m, k ∀l simultaneously. A generic
queue with backlog X(t) is said to be stable if
lim supT→∞

1
T

∑T−1
t=0 E{X(t)} < ∞. Furthermore, we can

dene the capacity region ΛE of the CRN as the closure
of all feasible arrival rate vectors each stabilizable by some
scheduler. Note that a feasible arrival rate vector is in
the form of ((λk)k∈{1,··· ,K}, (

∑K
k=1 ρkλk1{l∈Pk})l∈S), where

(λk)k∈{1,··· ,K} represents the PU arrival rates per route and
(
∑K

k=1 ρkλk1{l∈Pk})l∈S represents the SU arrival rates ac-
cording to the reward mechanism. To assist the analysis, we
let (λ∗

k,ε)k∈{1,··· ,K} be a solution to the following optimization
problem:

max
(λk)k∈{1,··· ,K}

K∑

k=1

λk

s.t. (λk) : ((λk + ε), (
K∑

k=1

ρk(λk + ε)1{l∈Pk})) ∈ ΛE

(5)

where ε > 0 can be chosen arbitrarily small. According
to [17], we have: limε→0+

∑K
k=1 λ

∗
k,ε =

∑K
k=1 λ

∗
k, where

(λ∗
k)k∈{1,··· ,K} is a solution to the following optimization:

max
(λk)k∈{1,··· ,K}

K∑

k=1

λk

s.t. (λk) : ((λk), (
K∑

k=1

ρkλk1{l∈Pk})) ∈ ΛE

(6)

Note that
∑K

k=1 λ
∗
k,ε can be regarded as the PU throughput

ε-close to the optimality
∑K

k=1 λ
∗
k .

In Section III, we will propose a cross-layer scheduling
algorithm that ensures nite PU buffer size and achieves a
PU throughput arbitrarily close to the optimal value

∑K
k=1 λ

∗
k,

with a tradeoff between the PU throughput and average PU/SU
delay upper-bound. We note that delay period of a packet
starts when the packet is admitted to the source node from
the transport layer and ends when it reaches its destination.

III. PROPOSED ALGORITHM FOR THE CRN
In this section, we design the throughput-optimal scheduling

algorithm with the immediate reward mechanism. The algo-
rithm is composed of two parts, namely, a congestion con-
troller and a hop/link scheduler. The congestion controller gen-
erates and admits PU packets into the PU relay subnetwork,
and a corresponding fraction of SU packets are admitted to
their sources according to the immediate reward mechanism.
The hop/link scheduler regulates the link transmission rates of
the cooperative CRN. The formalized algorithm description
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Step 1. Congestion Controller:
k∗ = argmink

(
ρk

∑
l∈Pk

Ql(t) + Uk
0 (t)

)
;

for k = 1, ..., K
if k = k∗ do:
if ρk∗

∑
l∈Pk∗ Ql(t) + Uk∗

0 (t) ≤ V2 do:
µk
−1,0(t) = µM ;
for m ∈ {1, ..., Hk}

do: admit ρkµM packets to SU vmk ;
end for

else do: µk
−1,0(t) = 0;

end if
else do: µk

−1,0(t) = 0;
end if

end for
Step 2. Hop/Link Scheduler:

Find {(µmn(t))(m,n)∈L, (sl(t))l∈S} ∈ I that maximizes:∑K
k=1

∑Hk
m=0 µ

k
m,m+1(t)(U

k
m(t)− Uk

m+1(t))
+
∑

l∈S Ql(t)sl(t);
Update (Uk

m(t+ 1)) and (Ql(t+ 1)) according to (3)(4).
Fig. 2. Optimal algorithm with immediate reward mechanism in time slot t

is provided in Figure 2. Note that, according to the xed-
routing structure in PU relay subnetwork introduced in Section
II-B, when developing the scheduler, we focus on the hop/link
schedule ((µk

m,m+1(t))m,k, (sl(t))l∈S ) which is composed of
a PU hop schedule and an SU link schedule.
1) Congestion Controller:

min
K∑

k=1

µk
−1,0(t)(ρk

∑

l∈Pk

Ql(t) + Uk
0 (t)− V2)

s.t.
K∑

k=1

µk
−1,0(t) ≤ µM .

(7)

The congestion controller (7) is a threshold-based optimization
problem, with the control parameter V2 as the threshold. The
congestion controller (7) is developed to deterministically
upper-bound the PU buffer size. Specically, we will show
later that V2 determines the nite PU buffer size (in Proposi-
tion 1) and tradeoffs between the throughput optimality and
delay performance (in Theorem 1). For time slot t, we dene
k∗ ! argmink(ρk

∑
l∈Pk

Ql(t) + Uk
0 (t)). Then, to solve (7),

we set

µk∗

−1,0(t) =






µM , if ρk∗

∑

l∈Pk∗

Ql(t) + Uk∗

0 (t) ≤ V2,

0, otherwise.
(8)

For k (= k∗, we set µk
−1,0(t) = 0. With a centralized control,

ρkµk
−1,0(t) packets are admitted to SUs vmk , m = 1, · · · , Hk.
2) Hop/Link Scheduler:

max{
K∑

k=1

Hk∑

m=0

µk
m,m+1(t)(U

k
m(t)− Uk

m+1(t))

+
∑

l∈S
Ql(t)sl(t)},

s.t. {(µmn(t))(m,n)∈L, (sl(t))l∈S} ∈ I,

(9)

where the optimization is taken over all feasible
((µk

m,m+1(t))m,k ,(sl(t))l∈S) and we recall from (2)

that each hop schedule (µk
m,m+1(t))m,k corresponds to a PU

link schedule (µmn(t))(m,n)∈L. In the hop/link scheduler
(9), each SU link rate is weighted by the SU queue backlog
and each PU hop rate is weighted by a �“hop back-pressure�”,
i.e., the difference between the PU queue backlogs across a
hop. The structure of the hop/link scheduler favors hops/links
with higher weights for resource allocation, where we note
that a higher weight implies a higher congestion level for a
hop/link. When the hop back-pressure Uk

m(t)−Uk
m+1(t) ≤ 0,

m ∈ {0, · · · , Hk}, we set µk
m,m+1(t) = 0, without loss of

optimality.
The above proposed algorithm has the following nite

buffer property:
Proposition 1: ∀m ∈ {0, · · · , Hk + 1}, ∀k ∈ {1, · · · ,K},

the following inequality holds:

Uk
m(t) ≤ UM ! µM + V2, (10)

where UM can be regarded to as the nite PU buffer size for
PU queue backlogs Uk

m(t).
Proof: We prove Proposition 1 by induction on time slot.

Initially when t = 0, Uk
m(0) = 0 ∀m, ∀k. Now assume in time

slot t we have Uk
m(t) ≤ UM , ∀m, ∀k. In the induction step, for

any given k ∈ {1, · · · ,K} and any given m ∈ {0, · · · , Hk},
we consider two cases:
Case 1: m = 0 for a route k. If Uk

0 (t) ≤ V2, then Uk
0 (t +

1) ≤ Uk
0 (t) + µM ≤ UM according to queue dynamics (3),

where we recall that µk
−1,0(t) ≤ µM from the constraint in

congestion controller (7). Otherwise, V2 < Uk
0 (t) ≤ UM , and

hence
ρk

∑

l∈S
Ql(t)1{l∈Pk} + Uk

0 (t) > V2,

which yields µk
−1,0(t) = 0 according to the congestion

controller (7), and it follows that Uk
0 (t + 1) ≤ Uk

0 (t) ≤ UM

by the queue dynamics (3).
Case 2: m ∈ {1, · · · , Hk} for a route k. If Uk

m(t) ≤ UM − 1,
then we have Uk

m(t + 1) ≤ Uk
m(t) + 1 ≤ UM according to

queue dynamics (3). Otherwise, Uk
m(t) = UM ≥ Uk

m−1(t),
and according to the hop/link scheduler we have µk

m−1,m(t) =
0, from which we obtain Uk

m(t + 1) ≤ Uk
m(t) = UM by the

queue dynamics (3).
Since the above analysis holds for any given m and k,

Uk
m(t + 1) ≤ UM ∀m ∈ {0, · · · , Hk}, ∀k ∈ {1, · · · ,K},

i.e., the induction step holds.
Completing Proposition 1, we recall that Uk

Hk+1(t) = 0,
∀t, holds for any route k. Thus, all PU packet queues are
deterministically upper-bounded by UM .

Now we present the main results of the above proposed
algorithm in Theorem 1, with further explanations and dis-
cussions followed in Remark 1 and Remark 2.
Theorem 1: Let ε > 0 be chosen arbitrarily small. The algo-

rithm ensures the following inequality on SU queue backlogs:

lim sup
T→∞

1

T

T−1∑

t=0

E{
∑

l∈S
Ql(t)} ≤ B2 + V2BR

δ2
, (11)

where B2 ! 1
2K(N + 2) + 1

2N + 1
2Nµ2

M maxk ρ2k, δ2 !
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εmink ρk, and BR is dened as:

BR ! lim sup
T→∞

1

T

T−1∑

t=0

E{
K∑

k=1

µk
−1,0(t)} −

K∑

k=1

λ∗
k,ε.

Furthermore, the algorithm achieves:

lim inf
T→∞

1

T

T−1∑

t=0

K∑

k=1

E{µk
−1,0(t)} ≥

K∑

k=1

λ∗
k,ε −

B2

V2
. (12)

Proof: The proof is provided in Appendix A.
Remark 1 (Stability): The inequalities (10) from Proposi-

tion 1 and (11) from Theorem 1 indicate that PU and SU
queues are all stable, and hence is the CRN. In addition,
Proposition 1 ensures that PU queues maintained along each
route are deterministically bounded by the nite buffer size
UM .
Remark 2 (Optimal Throughput and Tradeoff with De-

lay): The inequality (12) gives the lower-bound of the PU
throughput the algorithm can achieve. Since the constant B2

is independent of the control parameter V2, the algorithm can
achieve a PU throughput arbitrarily close to the optimal value∑K

k=1 λ
∗
k as ε can be chosen arbitrarily small and V2 arbitrarily

large, with the following tradeoffs in PU and SU delay:
• The PU buffer size UM is of order O(V2) as shown in

(10). By Little�’s Theorem, the PU�’s average end-to-end
delay over any given route k is of order O((Hk + 1)V2)
which is bounded by the rst order of the number of hops
(Hk+1), i.e., the algorithm achieves order-optimal delay
per route [25], which is also conrmed by the numerical
results provided in Section V-C. As a comparison, the
traditional back-pressure algorithm [15] experiences a
delay with an order characterized by the second-order
term (Hk + 1)2 [24].

• From (11), the average SU buffer occupancy is of order
O(N+V2

ε ). And so is the average SU delay by Little�’s
Theorem. Note that the average SU delay upper-bound
has an extra term 1

ε in order compared with the average
PU delay.

The complexity of the proposed algorithm is dominated by
that of the hop/link scheduler (9), essentially a centralized
MWM problem [15], which maybe NP hard depending on the
underlying interference model [20]. To reduce complexity of
the hop/link scheduler, suboptimal algorithms can be devel-
oped to at least achieve a fraction γ of the optimal utility.
These suboptimal algorithms include the well-studied Greedy
Maximal Matching (GMM) [19] algorithm with γ = 1

2 and the
maximum weighted independent set (MWIS) problem such as
GWMAX and GWMIN proposed in [23] with γ = 1

∆ , where
∆ is the maximum degree of the CRN topology. The above
suboptimal algorithms can be implemented with polynomial
complexity in the number of nodes. Still, these algorithms
are generally centralized and may have to enumerate all
the feasible link schedules in the set I. In Section IV, we
propose an algorithm with a long-term reward mechanism
that lends itself to a distributed implementation without losing
optimality.

Before we conclude this section, we recall that the im-
mediate rewards ρkµk

−1,0(t) for any route k are assumed
to take integer values. This restriction can be eliminated

by admitting *ρkµk
−1,0(t)+ packets and adding the excess

ρkµk
−1,0(t)−*ρkµk

−1,0(t)+ packets to future arrivals. Also note
that the analysis can be extended to delayed rewards, i.e., a
reward rate ρkµk

−1,0(t) is admitted to SU queues in time slot
(t+ τ ′), where τ ′ is the delay in time slots.

IV. FURTHER DISCUSSIONS

With the immediate reward mechanism, the optimal back-
pressure-based algorithm proposed in Section III requires
simultaneous admission of both PU and SU packets. This
requirement of simultaneous admission can be relaxed when
we propose an optimal algorithm with a long-term reward
mechanism in Section IV-A. In addition, the long-term reward
based algorithm can lead to a distributed solution under the
cooperative CRN model, with the distributed implementation
issues discussed in Section IV-B.

A. Proposed Algorithm with A Long-Term Reward Mechanism
In the original algorithm proposed in Section III with the

immediate reward mechanism, SUs are assigned a channel
share proportional to the relayed PU data, i.e., there may
exist additional unutilized channel opportunities left by the
PU. In addition, the congestion controller (7) is centralized to
simultaneously admit both PU and SU packets. In this section,
we extend our analysis to a CRN model with a more general
long-term reward mechanism. The objective of this extension
is to allow SUs to better exploit the channel opportunities and
to assist a fully distributed implementation. More specically,
the time-average rate of admitted SU packets is guaranteed
to be at least ρk times the time-average rate of PU packets
the SU relays. Let Al(t) denote the admitted SU arrival rates
with SU uplink (l, dS) ∈ L′ in time slot t and upper-bound
Al(t) ≤ AM , ∀l ∈ S. The long-term reward mechanism
guarantees

lim inf
T→∞

(
1

T

T−1∑

t=0

E{Al(t)}

− 1

T

T−1∑

t=0

E{
K∑

k=1

µk
−1,0(t)1{l∈Pk}ρk}) ≥ 0, ∀l ∈ S,

(13)

where the routing scenario and PU data admission follow the
analysis in Section II-B and reward parameter ρk for k-th route
takes fractional values. The aim of the following modied
algorithm is to achieve a PU throughput arbitrarily close to the
optimal value

∑K
k=1 λ

∗
k with the long-term reward guarantees

(13), where we recall that (λ∗
k) is a solution to the optimization

(6). With an SU admitted arrival rate, the SU packet queue
backlogs will be updated as follows:

Ql(t+ 1) = [Ql(t)− sl(t)]
+ +Al(t), ∀l ∈ S. (14)

To guarantee the long-term rewards (13), we construct a
virtual queue Dl(t) at each SU l ∈ S, with virtual queue
dynamics:

Dl(t+1) = [Dl(t)−Al(t)]
++

K∑

k=1

ρkµ
k
−1,0(t)1{l∈Pk}. (15)

From the above queue evolution, the stability of the virtual
queues Dl(t) implies the reward guarantees. Employing the
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Step 1. PU Congestion Controller:
k∗ = argmink

(
ρk

∑
l∈Pk

Dl(t) + Uk
0 (t)

)
;

for k = 1, ..., K
if k = k∗ do:
if ρk∗

∑
l∈Pk∗ Dl(t) + Uk∗

0 (t) ≤ V2

do: µk
−1,0(t) = µM ;

else do: µk
−1,0(t) = 0;

end if
else do: µk

−1,0(t) = 0;
end if

end for
Step 2. SU Congestion Controller:
for SU l ∈ S do:

if Ql(t) ≤ Dl(t)
do: Al(t) = AM ;

else do: Al(t) = 0;
end if

end for
Step 3. Hop/Link Scheduler:

Find {(µmn(t))(m,n)∈L, (sl(t))l∈S} ∈ I that maximizes:∑K
k=1

∑Hk
m=0 µ

k
m,m+1(t)(U

k
m(t)− Uk

m+1(t))
+
∑

l∈S Ql(t)sl(t);
Update (Uk

m(t+ 1)) and (Ql(t+ 1)) according to (3)(14).
Fig. 3. Optimal algorithm with long-term reward mechanism in time slot t

virtual queues Dl(t), we develop the following modied
algorithm composed of a PU congestion controller, an SU
congestion controller, and a hop/link scheduler. The formal-
ized algorithm description is provided in Figure 3.
1) PU Congestion Controller: Redening k∗ !

argmink(ρk
∑

l∈Pk
Dl(t)+Uk

0 (t)), we admit the PU packets
on the k∗-th route as follows

µk∗

−1,0(t) =






µM , if ρk∗

∑

l∈Pk∗

Dl(t) + Uk∗

0 (t) ≤ V2,

0, otherwise,
(16)

where V2 is the same control parameter as in Section III. For
route k (= k∗, we set µk

−1,0(t) = 0. Compared to the original
congestion controller (7), we utilize the virtual queue Dl(t)
instead of the actual SU queue backlog Ql(t).
2) SU Congestion Controller: For each SU l ∈ S,

Al(t) =

{
AM , if Ql(t) ≤ Dl(t),

0, otherwise.
(17)

The threshold-based SU congestion controller has a time-
varying threshold, i.e, the virtual queue Dl(t).
3) Hop/Link Scheduler: The hop/link scheduler remains

the same as (9).
It is not difcult to check that Proposition 1 holds (i.e.,

the PU packet queues are deterministically upper-bounded)
and we present the main results of the modied algorithm in
Theorem 2, followed by further explanations in Remark 3.
Theorem 2: For some arbitrarily small ε > 0, the SU packet

queues and virtual queues are stable:

lim sup
T→∞

1

T

T−1∑

t=0

∑

l∈S
E{Ql(t) +Dl(t)} ≤ 2B5 + 2V2BR

δ2
,

where B5 = B2 + NA2
M and B2, BR, δ2 are dened in

Theorem 1. In addition, the PU throughput is lower-bounded:

lim inf
T→∞

1

T

T−1∑

t=0

K∑

k=0

E{µk
−1,0(t)} ≥

K∑

k=1

λ∗
k,ε −

B5

V2
,

where we recall that (λ∗
k,ε) is dened in (5) whose sum is

ε-close to the optimal PU throughput
∑K

k=1 λ
∗
k .

Proof: The proof sketch for Theorem 2 is provided in
Appendix B.
Remark 3 (Algorithm Performance): Finite buffer property

still holds for PU packet queue backlogs since Proposition 1
holds. Remark 1-2 also hold which guarantee network stability
and optimality with a delay tradeoff. In addition, since the
virtual queues Dl(t) are stable, the long-term reward (13)
for SUs is satised, i.e., the SU channel exploitation is at
least ρk times the relayed PU data on k-th route, which
guarantees that the long-term SU throughput is no less than the
SU throughput achieved by the algorithm for the immediate
reward mechanism proposed in Section III.

B. Distributed Implementation Issues
In this section, we discuss the distributed implementation

issues concerning the algorithm proposed in Section IV-A.
Specically, we discuss approaches to the distributed imple-
mentation of the PU/SU congestion controller and the hop/link
scheduler, respectively.

When relaying PU data, we append the information of
(µk

−1,0(t)) to PU data packets for SU relay, and a delayed
information of (µk

−1,0(t− τ)) will be available at SUs, where
τ is an integer larger than the maximum propagation delay
between any SU and the source PU. To implement the SU
congestion controller (17) in a distributed manner at each SU
node l ∈ S, we can replace (Dl(t)) in (17) by (Dl(t−τ+1))
which is updated with (µk

−1,0(t− τ)) according to the virtual
queue dynamics (15). Similarly, when relaying PU data, the
information of admitted SU arrival rates (Al(t)) can be piggy-
backed on each ACK SUs transmit, and a delayed information
of (Al(t− τ)) will be available at the PU source node sP . To
implement the PU congestion controller (16) in a distributed
manner at the PU source node sP , we can replace (Dl(t)) in
(16) by (Dl(t − τ + 1)) which is updated with (Al(t − τ)).
With the employment of delayed queue backlog information,
the PU throughput optimality should be maintained with a
slower convergence of the system, which can be proved with
similar proof techniques in [21][22].

The distributed implementation of hop/link scheduler can be
developed similar to [18] to achieve a fraction of the optimal
throughput. A throughput arbitrarily close to the optimum
can be achieved in a distributed manner through extensions
of the scheduler by employing random access techniques
[27][28]. To be more specic, we can replace the scheduler
(9) in Section III by the distributed scheduler in [27][28]
with fugacities [29]2 chosen as α[Uk

m(t)−Uk
m+1(t)]

+ for hop
(vmk , vm+1

k ) ∈ Pk
3 and αQl(t) for an SU link l ∈ S, where

2Fugacities [29] are employed to determine the transmission probabilities
of a communication link in a CSMA framework.

3If the current PU queue backlog information is not available at an SU, we
can instead use the most recent available queue backlog information without
loss of optimality.
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Fig. 4. Cooperative CRN topology for simulation

α is a positive weight. It can be shown that the distributed
hop/link scheduler can achieve a performance arbitrarily close
to that of the centralized scheduler (9) with high probability
when the PU queue backlog differences [Uk

m(t)−Uk
m+1(t)]

+

and SU queue backlogs Ql(t) are large enough (see Theorem
1 in [27] for a similar proof under a time-scale separation
assumption [26]), which leads to the throughput optimality of
the modied algorithm.

Although the proposed algorithm can be implemented with-
out loss of throughput optimality in a distributed fashion
by directly employing the above introduced random access
techniques [27][28], as shown in the simulation results in [27],
the distributed version of the algorithm can suffer from a much
larger delay compared to the centralized counterpart.

V. NUMERICAL RESULTS

In this section, we present a simulation-based performance
evaluation for the algorithm proposed in Section III. Simula-
tion results are obtained using the topology shown in Figure 4,
which consists of a PU source (sP ) and a PU destination (dP ).
The maximum admitted arrival rate for the PU is µM = 2.
The primary trafc is relayed by SUs A, B, C and D with
their own one-hop secondary trafc destined to the secondary
destination (dS). We employ the node-exclusive model as the
underlying interference model for the cooperative CRN and
consider two predetermined routes P1 = (sP , A,B, dP ) and
P2 = (sP , C,D, dP ) for PU data relay. Both PU and SU
trafcs are assumed to be constantly backlogged at the sources.
The results reect averages obtained over 50000 time slots for
each run.

A. Effects of V2 on the Algorithm Performance

By xing the route-specic reward parameters ρ1 = ρ2 =
0.4, we present the algorithm performance in Figure 5 by
varying the control parameter V2 in the congestion controller
which determines the buffer size according to (10). The
throughput is measured in packets per time slot with SU
throughput represented by the sum throughput of all SU ows.
The congestion level is illustrated as the average number of
sum of PU/SU packets in the CRN in a time slot. The optimal
algorithm is compared with a GMM algorithm which employs
the same congestion controller (7) but solves the hop/link
scheduler (9) in a suboptimal approach of greedy maximal
matching.
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Fig. 5. Algorithm performance with varying V2, ρ1 = ρ2 = 0.4

In Figure 5, which conforms with the statement in Remark
2, the control parameter V2 trades off between the through-
put and the PU/SU congestion level. Specically, under the
proposed optimal algorithm, the PU throughput converges to
its optimal value 0.7895 packet/slot when V2 increases, and
V2 = 10 is sufciently large such that there is hardly any gain
in the PU/SU throughput by further increasing V2 while the
PU and SU congestion levels increase almost linearly with
V2. The sum SU throughput corresponding to the optimal
PU throughput is 0.6316 packet/slot. We note that the PU
congestion level is higher than that of SUs since the PU trafc
is multi-hop and the PU throughput is much larger than that
of SU when ρ1 = ρ2 = 0.4. We also note that the PU trafc
is split even in the two xed routes, P1 and P2, due to the
symmetry of the topology.

As illustrated in Figure 5, given a same V2, the suboptimal
GMM algorithm experiences similar PU congestion levels as
the optimal algorithm. However, the PU/SU throughput under
GMM is much worse than that under the optimal algorithm.
Taking the case V2 = 3 for instance, compared to the optimal
algorithm, the PU congestion level is 23.98% higher while
the PU throughput is 12.41% less under GMM. Thus, given a
same V2, suboptimal algorithms such as GMM achieve worse
throughput performance than the optimal algorithm, while
the PU delay performance is not improved. With a same V2

value, we observe that the SU congestion level under GMM
is lower than that of the optimal algorithm due to a lower SU
throughput.

We note that for comparable throughput levels, the optimal
algorithm far outperforms the suboptimal GMM algorithm in
terms of congestion level. For instance, consider the perfor-
mance of the optimal algorithm with V2 = 2 and the GMM
algorithm with V2 = 10 in Figure 5. The optimal algo-
rithm achieves much lower PU/SU congestion levels than the
GMM algorithm, while still achieving a slightly larger PU/SU
throughput. However, the superior performance of the optimal
algorithm comes at the price of high complexity: As discussed
in Section III, the complexity of the optimal algorithm can
grow exponentially in the number of nodes whereas the GMM
algorithm can be implemented with polynomial complexity in
the number of nodes.

B. Algorithm Performance with Different Values of ρk
In Figure 6, by xing V2 = 10, we illustrate the throughput

and congestion level performance of the algorithm against the
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Fig. 6. Algorithm performance with varying ρ, V2 = 10

route-specic reward parameters ρ1 = ρ2 = ρ, where we recall
that the number of admitted secondary packets for each SU is
ρ times the admitted PU packets and note that SU throughput
is the sum for all SUs. According to the topology and the
immediate reward mechanism, we must have the following
relation between PU and SU throughput:

SU throughput = 2ρ× (PU throughput), (18)

noting that there are 2 SUs along each pre-determined route.
We observe initially that the PU throughput decreases and

SU throughput increases linearly when ρ increases, satisfying
(18). When ρ further increases to around 0.75, SU throughput
reaches and stays at its allowed maximum (1 packet/slot with
the node-exclusive interference model), hence the LHS of (18)
becomes constant, which leads to a faster decrease in PU
throughput linearly with respect to ρ to guarantee (18).

With an increasing ρ, the allocated share of SU increases,
which results in a corresponding small linear increase in SU
congestion levels. When ρ further increases to a level that
allows SUs to reach their capacity (which is 1 packet/slot), the
SU congestion level increases signicantly, which is necessary
for the SUs to approach their allowed maximum throughput.

An increasing ρ reduces the throughput of the PU as more
capacity is allocated to SUs. A decreased PU throughput level
requires smaller queue sizes, which is reected in the initial
linear decrease observed in the PU congestion level. When
ρ further increases to around 0.75 (where SU throughput
reaches its allowed maximum), PU congestion level drops
signicantly. This observed drop in PU congestion level can
be interpreted as follows. SU trafc becomes congested when
SU throughput reaches the capacity, which results in a large
increase in the term ρk

∑
l∈Pk

Ql(t), k = 1, 2, in the conges-
tion controller (7). With a xed threshold, i.e., a xed control
parameter V2, the threshold-based congestion controller (7)
keeps the PU queue backlogs (Uk

0 (t))k=1,2 at the source PU
at a low level. The succeeding PU queue backlogs along the
routes will be shaped accordingly by the hop-back-pressure-
based hop/link scheduler (9), which leads to a signicant
decrease in the PU congestion level.

C. Initial Results on Order-Optimal Delay of PU
To verify the order-optimal delay property of the algorithm

stated in Remark 2, we consider the node-exclusive interfer-

Fig. 7. Cooperative CRN topology for with varying number of SUs
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Fig. 8. PU delay performance for topology in Figure 7

ence model with a different CRN topology shown in Figure
7 where there is only one pre-determined route with N SUs.

With xed µM = 2 and V2 = 5, Figure 8 illustrates that the
PU average end-to-end delay, measured in time slots, grows
almost linearly with the number of SUs N (note that the
number of hops for PU data relay is N +1). In Figure 8, the
linear delay upper-bounds are derived from the nite buffer
property (10) and the Little�’s Theorem, where we note that,
for N = 1, 2, 3, 4, the PU throughput is 0.4762 packet/slot
for ρ = 0.1 and 0.4167 packet/slot for ρ = 0.4. Thus, Figure
8 conrms that the PU trafc experiences an order-optimal
delay, i.e., the average end-to-end delay is of rst order of the
number of hops.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduced a cross-layer scheduling al-
gorithm for multi-hop cooperative cognitive radio networks.
The algorithm can achieve a PU throughput arbitrarily close
to the optimum, with a tradeoff in the deterministically upper-
bounded PU buffer sizes. The algorithm is then scrutinized
with respect to its feasibility for distributed implementation.
We have proposed extensions to facilitate distributed imple-
mentations. The theoretically proved properties of the algo-
rithms are then illustrated via a simulation study. In our future
work, we will investigate methods of relaxing the xed route
assumption and the interference graph model. We will also
develop a proof-of-concept implementation of the proposed
distributed algorithm with the long-term reward mechanism
introduced in Section IV.

APPENDIX A
PROOF OF THEOREM 1

Before we proceed, we present Lemma 1 as follows to assist
us in proving Theorem 1.
Lemma 1: For any feasible rate vector

((λk)k∈{1,··· ,K}, (
∑K

k=1 ρkλk1{l∈Pk})l∈S) ∈ ΛE, there
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exists a stationary randomized algorithm SE that stabilizes
the network with PU admitted arrival rates µk,SE

−1,0 (t) such
that E{µk,SE

−1,0 (t)} = λk, ∀t ∀k ∈ {1, · · · ,K}, and a hop/link
schedule ((µk,SE

m,m+1(t))m,k,(sSE
l (t))l∈S) independent of

queue backlogs satisfying:

E{µk,SE
m−1,m(t)− µk,SE

m,m+1(t)} = 0, ∀t, ∀m, k; (19)

E{sSE
l (t)} =

K∑

k=1

ρkλk1{l∈Pk}, ∀t, ∀l ∈ S. (20)

Similar formulations of stationary randomized algorithms
and existence proofs have been presented in [12][15]-[17],
so we omit the proof of Lemma 1 for brevity. Note that
(λk)k∈{1,··· ,K} can take values as (λ∗

k,ε)k and (λ∗
k,ε + ε)k.

We denote the queue vector QE(t) =
((Uk

m(t))m,k, (Ql(t))l∈S) and dene the Lyapunov function
LE(QE(t)) as

LE(QE(t)) !
1

2
{

K∑

k=1

Hk∑

m=0

(Uk
m(t))2 +

∑

l∈S
Ql(t)

2},

with the corresponding Lyapunov drift dened as ∆E(t) !
E{LE(QE(t+ 1))− LE(QE(t))|QE(t)}.

By squaring both sides of the queue dynamics (3)(4) and
through algebra, we have:

∆E(t)− V2E{
K∑

k=1

µk
−1,0(t)|QE(t)}

≤B2 − V2E{
K∑

k=1

µk
−1,0(t)|QE(t)}

−
K∑

k=1

Hk∑

m=0

E{Uk
m(t)(µk

m,m+1(t)− µk
m−1,m(t))|QE(t)}

−
∑

l∈L
E{Ql(t)(sl(t)−

K∑

k=1

ρkµ
k
−1,0(t)1{l∈Pk})|QE(t)}.

(21)

Employing the following fact that, ∀k ∈ {1, · · · ,K},
Hk∑

m=0

Uk
m(t)(µk

m,m+1(t)− µk
m−1,m(t))

=
Hk∑

m=0

µk
m,m+1(t)(U

k
m(t)− Uk

m+1(t))− µk
−1,0(t)U

k
0 (t),

we nd the equivalence of (21):

∆E(t)− V2E{
K∑

k=1

µk
−1,0(t)|QE(t)}

≤
K∑

k=1

E{µk
−1,0(t)× (ρk

∑

l∈Pk

Ql(t) + Uk
0 (t)− V2)|QE(t)}

+B2 − E{
K∑

k=1

Hk∑

m=0

µk
m,m+1(t)(U

k
m(t)− Uk

m+1(t))

+
∑

l∈S
Ql(t)sl(t)|QE(t)}.

(22)

Note that the rst and third terms of the RHS of (22) are
minimized by the congestion controller (7) and the hop/link

scheduler (9), respectively, over a set of feasible algorithms
including the stationary randomized algorithm SE introduced
in Lemma 1. Then, we substitute into the rst term of the
RHS of (22) a stationary randomized SE with admitted PU
arrival rate vector (λ∗

k,ε)k∈{1,··· ,K} and into the third term the
SE with admitted PU arrival rate vector (λ∗

k,ε+ ε)k∈{1,··· ,K}.
After the above substitutions, we obtain:

∆E(t)− V2E{
K∑

k=1

µk
−1,0(t)|QE(t)}

≤B2 − V2

K∑

k=1

λ∗
k,ε − ε

∑

l∈S
Ql(t)

K∑

k=1

ρk1{l∈Pk}

≤B2 − V2

K∑

k=1

λ∗
k,ε − δ2

∑

l∈S
Ql(t).

(23)

We take the expectation of both sides of (23) over QE(t)
and take the time average on t = 0, 1, · · · , T−1, which yields

δ2
T

T−1∑

t=0

E{
∑

l∈S
Ql(t)}

≤B2 +
V2

T

T−1∑

t=0

E{
K∑

k=1

µk
−1,0(t)}− V2

K∑

k=1

λ∗
k,ε.

(24)

By taking limsup of T on both sides of (24), we can prove
(11). By taking the liminf of T on both sides of (24), we can
prove (12). Therefore, Theorem 1 is proved.

APPENDIX B
PROOF SKETCH FOR THEOREM 2

Similar to the proof for Theorem 1 in Appendix A, we
redene the Lyapunov function LE(QE(t)) as follows:

LE(QE(t)) !
1

2
{

K∑

k=1

Hk∑

m=0

(Uk
m(t))2 +

∑

l∈S
(Ql(t)

2 +Dl(t)
2)}

with QE(t) = ((Uk
m(t))m,k, (Ql(t))l∈S , (Dl(t))l∈S). Then,

similar to the analysis in deriving (22) in Appendix A,
we arrive at the following inequality on the corresponding
Lyapunov drift ∆E(t):

∆E(t)− V2E{
K∑

k=1

µk
−1,0(t)|QE(t)}

≤
K∑

k=1

E{µk
−1,0(t)× (ρk

∑

l∈Pk

Dl(t) + Uk
0 (t)− V2)|QE(t)}

+B5 +
∑

l∈S
E{Al(t)(Ql(t)−Dl(t))|QE(t)}

− E{
K∑

k=1

Hk∑

m=0

µk
m,m+1(t)(U

k
m(t)− Uk

m+1(t))

+
∑

l∈S
Ql(t)sl(t)|QE(t)},

(25)

Note that the rst, third, and fourth terms of the RHS of
(25) are minimized by the PU congestion controller (16),
the SU congestion controller (17) and the hop/link scheduler
(9), respectively, over a set of feasible algorithms includ-
ing the stationary randomized algorithm SE introduced in
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Lemma 1 with the additional properties: E{ASTAT
l (t)} =∑K

k=1 ρkλk1{l∈Pk}, ∀l ∈ L ∀t. Then, we substitute into the
rst term of the RHS of (25) a stationary randomized SE with
admitted PU arrival rate vector (λ∗

k,ε)k∈{1,··· ,K}, into the third
term the SE with (λ∗

k,ε +
1
2ε)k∈{1,··· ,K} and last term the SE

with (λ∗
k,ε + ε)k∈{1,··· ,K}. Following the proof in Appendix

A, we can prove Theorem 2.
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