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Abstract—Cognitive Radio Networks allow unlicensed
users to access licensed spectrum opportunistically without
disrupting primary user (PU) communication. Developing
a distributed implementation that can fully utilize the
spectrum opportunities for secondary users (SUs) has
so far remained elusive. Although throughput optimal
algorithms based on the well-known Maximal Weight
Scheduling (MWS) algorithm exist for cognitive radio net-
works, they require central processing of network-wide SU
information. In this paper, a new distributed algorithm is
introduced that asymptotically achieves the capacity region
of the cognitive radio systems. The proposed algorithm
achieves the full SU capacity region while adapting to
the channel availability dynamics caused by unknown
Primary User (PU) activity. Extensive simulation results
are provided to illustrate the efficacy of the algorithm.

Index Terms—Cognitive Radio Networks, CSMA,
throughput optimal, distributed.

I. INTRODUCTION

Cognitive radio networks (CRNs) allow unli-
censed or secondary users to opportunistically ac-
cess licensed spectra to improve the overall utiliza-
tion of wireless resources and address the problem
of spectrum shortage. The design of CRNs poses
new challenges that are not present in traditional
wireless networks [6]. SUs are allowed spectrum
access only when they do not cause unacceptable
levels of interference to licensed or primary users
(PUs). DARPA’s ‘Next Generation’ (XG) program
[15] mandates that cognitive radios sense signals to
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prevent interference to existing military and civilian
radio systems. On the other hand, IEEE regulates
unlicensed access to the TV spectrum without inter-
ference, as described in the IEEE 802.22 standard
[7]. These and other interference avoidance mech-
anisms profoundly impact the design of algorithms
and protocols for cognitive radio networks.

The complete utilization of the so-called spectrum
opportunities while avoiding interference on PUs
is the goal of algorithm and protocol design for
cognitive radio networks. In traditional wireless
networks, Maximum Weight Scheduling (MWS)
algorithm [16] and its variants achieve the full
capacity region of the network, where a scheduling
policy is said to achieve the full capacity region
(or be throughput optimal) [9] if it stabilizes the
system for any arrival rate vector the system can be
stabilized for by some scheduling policy. However,
these algorithms require the knowledge of the entire
network state and centralized processing to compute
conflict free schedules. Similar algorithms have also
been proposed for cognitive radio networks: In [17],
opportunistic scheduling policies are developed for
multichannel single-hop CRNs subject to maximum
collision rate constraints with PUs. In [18], schedul-
ing algorithms are investigated in multi-channel
multi-hop CRN overlayed with a PU network. The
optimal throughput can be provably and asymptot-
ically achieved in adaptive-routing scenarios. Both
works require solving an NP-hard problem centrally.

These centralized throughput optimal algorithms
suffer from two main shortcomings. The first is
the high computational complexity, and the second
one is the cost associated with the collection of
network state information at a central location. The
first problem has been countered in the literature
through lower complexity suboptimal algorithms.
Maximal Scheduling is such an algorithm that re-
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duces the time complexity of MWS at the expense
of achieving a small fraction of the capacity region
[1]. Another algorithm, Greedy Maximal Schedul-
ing (GMS), always selects a link with the longest
queue that does not cause interference to links
already chosen. GMS is shown to be throughput
optimal if the network topology satisfies the local-
pooling condition [2]. Nevertheless, only a fraction
of the capacity region can be achieved for general
topologies [9]. Furthermore, the distributed imple-
mentation of GMS entails signaling overhead which
is not scalable [11].

Recently, a new class of distributed algorithms
has been proposed to achieve throughput optimality
while circumventing these problems. These new
algorithms are random access algorithms based on
the notion of channel sensing. These algorithms use
queue lengths to determine channel access proba-
bilities, achieving the full capacity region in ad hoc
wireless networks in a distributed manner. In [8], an
adaptive throughput optimal CSMA scheduling al-
gorithm is proposed for a general interference model
in continuous time. It uses transmission aggres-
siveness, which is a function of the queue length.
Implementation considerations in 802.11 networks
are discussed considering packet collisions. In [13],
Q-CSMA, a discrete-time distributed randomized
algorithm based on Glauber dynamics is proposed.
In both [8] and [13], the queue length based CSMA
algorithms achieve the full capacity region in a
single-channel ad hoc wireless network.

The queue length-based CSMA algorithms of [8]
[13] assume that the channel is always available, a
condition not satisfied in cognitive radio networks.
With the randomness of the channel availability,
state transitions are forced by the channel state
going from ON to OFF. In this paper, we develop
CA-CSMA (Channel-aware CSMA/CA), a new dis-
tributed throughput optimal scheduling algorithm
for CRNs. To this end, we introduce a new sys-
tem state representation that includes channel state
information, and design our algorithms to achieve
throughput optimality without causing interference
with PUs. In this work, we focus on the algorithm
design for single-channel cognitive radio networks.
Our analysis can be immediately extended to a
system with orthogonal channels, where scheduling
is performed per channel. However, extensions to
non-orthogonal channels are beyond the scope of
this paper.

Fig. 1. A SU network composed of 7 SUs overlayed with a PU
network.

The paper is organized as follows: In Section II,
the system model is introduced. In Section III, we
discuss some technical challenges that require a
new state space representation and then describe the
appropriate representation on which CA-CSMA is
built. Numerical performance evaluations are pre-
sented in Section IV. The paper is concluded in
Section V.

II. SYSTEM MODEL

We consider a cognitive radio network consisting
of N SUs coexisting with a PU network (Figure 1),
where the PU network is represented as a single
source of emission and the SUs communicate with
their neighbors directly. The PU network has a sin-
gle designated channel to transmit on. We adopt the
exclusive communication approach to interference
avoidance, i.e., an SU can transmit only when the
PU network does not use the channel. The set S
denotes all SUs that are outside the interference
range of the PU network while S̄ is the set of all
other SUs. i.e., SUs 1-3 are in S̄ and SUs 4-7 are
in S. SUs in S have access to the channel at any
time since its transmission does not interfere with
the PU network. SUs in S̄ can sense the channel
and keep silent when the PU network is active.

The neighboring SUs of a given SU i (i =
1, · · · , N ) is denoted by C(i) such that i and any
of its neighbors j ∈ C(i) cannot transmit at the
same time. Note that both the k-hop (k ≥ 1)
[9] and distance-based [5] interference models are
included as special cases. Symmetry is assumed in
the conflict set, i.e., if i ∈ C(j), then j ∈ C(i).

We consider a time-slotted system with unit ca-
pacity links. A feasible schedule includes SUs that
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can be active at the same time subject to the conflict
set constraints. Let M be the set of all feasible
schedules. A schedule is represented by a set x
(x ∈ M ) and we denote the vector of schedule
by �x′ ∈ {0, 1}N such that x′

i = 1 if SU i is in
the schedule x. So i ∈ x indicates that x′

i = 1.
The capacity region of the SUs, in the absence

of PU activity is defined as Λ = {�λ|�λ � �0 and

∃�μ ∈ Co(M), �λ ≺ �μ}, where Co(·) is the convex
hull and �, ≺ are component-wise “greater than or
equal to” and “smaller than” operators, respectively.
The actual capacity region of SUs is the interior of
Λ subject to the PU activity.

In this work, single-hop flows for both the pri-
mary and the secondary systems are considered. We
assume that the PU has i.i.d. Bernoulli traffic in each
time slot, where the PU is idle (channel is available)
with probability p. B(t) is defined as the channel
state at time t, where B(t) = 0 if the channel is
available (PU is idle) and B(t) = 1 if the channel
is unavailable (PU is active).

III. THE DISTRIBUTED SCHEDULING

ALGORITHM FOR CRNS

A. Q-CSMA Overview

As mentioned in the introduction, throughput
optimal CSMA-based distributed scheduling algo-
rithms such as Q-CSMA [13] have been proposed
in the recent past. It is tempting to apply such
algorithms to achieve throughput optimality in a
distributed manner although it does not consider
cognitive radio environments. In the following, we
first present an overview of the Q-CSMA algorithm.
We then demonstrate why Q-CSMA cannot be di-
rectly applied to CRNs, which motivates our main
contributions in this work.

1) Introduction to Q-CSMA: In [13], a discrete-
time distributed randomized algorithm is proposed
to achieve the full capacity region in a single-
channel network. The algorithm of [13] is based on
a generalization of Glauber dynamics in statistical
physics. In Glauber dynamics, only one link has
a state update within a time slot. In scheduling,
a state update can be interpreted as a transition
of a link from “transmitting” to “idle” or from
“idle” to “transmitting”. The incremental state up-
date in every time slot leads to a scheduling policy
sufficiently close to MWS, which guarantees the
throughput optimality. In [13], multiple links are

allowed to update their states in a single time slot.
This minor change, which results in improved delay
performance, does not affect throughput optimality.

A more detailed description of the Q-CSMA
algorithm is as follows: Each time slot t is divided
into a control slot and a data slot, where the control
slot is much smaller than the data slot. In the
control slot, a collision-free transmission schedule is
generated and used for data transmission in the data
slot. Let m(t) be a set of SUs that do not conflict
with each other and selected randomly in the control
slot (the scheme will be presented in Section III-B).
M0 denotes the set of all m(t) which is all possible
schedules. So M0 includes all feasible schedules that
could be generated by the randomized algorithm.
Note that M0 ⊆ M , the set of all feasible schedules.
The network randomly selects a feasible schedule
m(t), which is called the decision schedule in [13].
m(t) can be regarded as a candidate schedule. Note
that m(t) and m(t − 1) are independent for all
t > 0 because m(t) is chosen independently in
the subsequent control slot [13]. Each link within
m(t) will be checked to decide whether it will be
included in the transmission schedule x(t). Link
i ∈ m(t) may be included in x(t) if ∀j ∈ C(i),
j /∈ x(t − 1); otherwise, Link i is not included
in x(t). Furthermore, link k /∈ m(t) is included in
x(t) if k ∈ x(t − 1). The detailed algorithm is as
follows: links in m(t) that had no neighbors active
in the previous data slot are allowed to update their
states with a certain probability which is a function
of their queue lengths; those outside the decision
schedule m(t) maintain their states. By explicitly
taking into account collisions in the control slot,
the algorithm generates collision-free transmission
schedules x(t) for the data slot. More importantly,
the Discrete Time Markov Chain (DTMC) with
the transmission schedule chosen as the state is
shown to be time-reversible and has product-form
stationary distribution, which are used to prove
throughput optimality of this algorithm.

The operation of the Q-CSMA algorithm is il-
lustrated in Figure 2 for a simple two-link topol-
ogy, where the two links interfere with each other.
State (0, 0) represents that neither link transmits
and state (0, 1) indicates that only link 2 transmits.
αi is the probability that link i (i = 1, 2) is
chosen in the decision schedule m(t) and pi is the
probability that link i is activated given it is in
m(t) and no neighbors were active in the previous
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Fig. 2. DTMC with the vector of transmission schedule �x′(t) of
two links as the state. Two links interfere with each other.
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Fig. 3. DTMC with the vector of transmission schedule �x′(t) of
three SU links as the state in CRNs. 1 and 2 interfere with each other.
2 and 3 interfere with each other. 1 and 3 can transmit simultaneously.

data slot. The DTMC is time reversible and has
the following product-form stationary distribution:
π(0, 0) = 1

Z
, π(0, 1) = 1

Z
p2

1−p2
, π(1, 0) = 1

Z
p1

1−p1
where Z = 1 + p1

1−p1
+ p2

1−p2
and π(a, b) is the

stationary distribution for state (a, b) (a, b = 0, 1),
which are in accordance with Proposition 1 of [13].

2) Drawback of Q-CSMA in CRNs: We next
illustrate why x(t) is a poor choice for representing
the state in CRNs, and leads to a non-reversible
DTMC. For clarity, we use �x′(t), the vector of
transmission schedule as defined in Section II, as
the state. Consider a simple example in Figure 3 for
three interfering SU links, where 1 interferes with 2,
2 interferes with 3 and 1 does not interfere with 3.
All SU links are within the interference range of the
PU. Similar to the earlier example, 1 (0) indicates
that an SU link is (not) transmitting. For instance,
state (1, 0, 1) means that SU links 1 and 3 are
transmitting and SU link 2 is not transmitting. Note
that (0, 0, 0) includes two cases: 1) The channel is
available and no SU link is transmitting; 2) The
channel is unavailable. Let αi be the probability that
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2 )+α
0 )
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Fig. 4. DTMC with both the vector of transmission schedule �x′(t)
of two SUs and channel state as the state. Two SUs are in the conflict
set of each other.

SU link i is chosen in the decision schedule m(t)
(i = 1, 2, 3), α4 the probability that both 1 and 3 are
chosen in m(t), and pi the probability that SU link
i is activated (i = 1, 2, 3) given it is in m(t) and no
neighbors were active in the previous data slot. Now
we examine the transitions from (0, 0, 0), (1, 0, 0)
to (1, 0, 1) clockwise and counter-clockwise. These
two probabilities are not equal so the DTMC is not
time reversible by Kolmogorov’s criterion [10].

To treat the “available” and “unavailable” channel
separately, we incorporate the channel state into the
state space design. The new DTMC is illustrated
in Figure 4 where we consider two SUs interfering
with each other and both are in the interference
range of the PU. The new system state is defined as
X ′ = (�x′;B) where �x′ is the vector of transmission
schedule and B is the channel state defined in
Section II (0 represents that the channel is idle; 1
represents that the channel is busy). For instance,
(0, 0; 1) indicates that the channel is unavailable and
neither SU is transmitting; (0, 1; 0) means the chan-
nel is available and SU 2 is transmitting. Note that
α1 and α2 have the same definitions as before; α0

is the probability that neither SU is selected in the
decision schedule (α0+α1+α2 = 1). We now check
to see whether the DTMC is time reversible by
examining the transitions from (0, 0; 1), (0, 0; 0) to
(0, 1; 0) clockwise and counter-clockwise. The prod-
uct of clockwise transition probabilities is p2(1 −
p)p2α2(α1(1 − p1) + α2(1 − p2) + α0) and the
product of counter-clockwise transition probabilities
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is p2(1−p)α2
2p2(1−p2). These two are not equal so

the DTMC is not time reversible by Kolmogorov’s
criterion [10].

3) The Necessity of New Channel States in
DTMC: To solve this problem, we want the states to
evolve in different dimensions when channel state
is different. For example, when the channel state
changes, one chain stops evolving while the other
starts evolving. More specifically, to generate a time
reversible DTMC with a product form stationary
distribution for a general topology where there are
SUs in S (outside the interference range of the PU
network), we introduce two Markov chains with
new state definitions. We define1

�y′
a
(t) = {�x′(τ) : the largest τ ≤ t with B(τ) = 0}

�y′
b
(t) = {�x′(τ) : the largest τ ≤ t with B(τ) = 1}

Note that �y′
a

is the vector of transmission sched-
ule in the most recent data slot (including time

t) when the channel is ON; �y′
b

is the vector of
transmission schedule in the most recent data slot
(including time t) when the channel is OFF. We also
denote the corresponding transmission schedules by
ya and yb, respectively: i ∈ ya if and only if y′ai = 1
and i ∈ yb if and only if y′bi = 1. We then define

ya = (�y′
a
(t);B(t)), yb = (�y′

b
(t);B(t)) as the states

for the two chains, respectively. For instance, in
Figure 5, two SUs are in the conflict set of each
other with SU 1 in S̄ and SU 2 in S: (0, 1; 0)
indicates that the channel is available and only SU
link 2 is transmitting; (1, 0; 1) means that the chan-
nel is unavailable and in the most recent available
channel state, only SU link 1 is transmitting. The
transitions in Figure 5 follows exactly from CA-
CSMA described later in Section III-B. It is obvious
that the transition to the next state depends only on
the current state and the current input including the
channel state B and the decision schedule. Hence
both chains are Markovian. It is easy to verify, as
in Figure 4, that Markov chains with ya, yb as the

1We assume t starts from −∞ to make �y′a, �y′b well-defined,

especially for �y′a(t) when B(0) = · · · = B(t) = 1 and �y′b(t)
when B(0) = · · · = B(t) = 0, respectively.

Fig. 5. Two DTMC evolutions for SUs inside and outside the
interference range of the PU. Two SUs are in the conflict set of
each other. Both DTMCs are time reversible and have product-
form stationary distribution (by Propositions 3.2 and 3.4). αa

2 is
the probability SU 2 is chosen the decision schedule ma when the
channel is available. αb

2 is the probability SU 2 is chosen in the
decision schedule mb when the channel is unavailable. Note that
|ma| = 2 and |mb| = 1 in this example. The first DTMC transitions
to another state only when the channel is ON while the second DTMC
transitions to another state only when the channel is OFF.

states are not time reversible.2

We further define an aggregate state for each
DTMC, which includes only �y(t).

DTMC Ȳ a : ȳa = (�y′
a
(t))

DTMC Ȳ b : ȳb = (�y′
b
(t))

Note that in Figure 5, the rectangles in the first
chain correspond to ȳa and those in the second chain
correspond to ȳb. In DTMC Ȳ a, the transition to
the next state ¯̂ya depends only on the current state
ȳa and the current input including the channel state
B and the decision schedule. Thus DTMC Ȳ a is
Markovian. Similar arguments can be applied to
DTMC Ȳ b. In Section III-B, both DTMCs will be

2Note that we also use Figure 5 to illustrate the Markov chains with
the aggregate states ȳa and ȳb later. The transitioning probabilities
for each single state are not labeled in Figure 5. By CA-CSMA, it is
easy to find that the outgoing probabilities from (�y′a; 0) and (�y′a; 1)

to (
�̂
y′

a

; 0) are the same. The incoming probabilities from (
�̂
y′

a

;B(t))

to (�y′a; 1) do not exist if
�̂
y′

a

�= �y′a.
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shown to be time reversible with a product form
stationary distribution.

B. CA-CSMA: Scheduling Algorithm for Single
Channel CRNs

Our new algorithm is based on the redefinition
of the system state of Section III-A along with the
differentiated treatment of SUs inside and outside
the PU interference range. Each SU i keeps a queue
denoted by qi. The transmission schedule for qi is
denoted by x′

i. We define Ai(t) as the arrivals to SU
i at time slot t, i = 1, · · · , N and we assume it to
be bounded. We assume arrivals are i.i.d. over time
and independent between users. λn is defined to be
E(An(t)). The evolution of the queue length is then
written as:

qi(t+1) = (qi(t) + Ai(t)− zi(t))
+

, for i = 1, · · · , N ,

where zi(t) = (1 − B(t))y′ai + B(t)y′bi(t). Note

that �z(t) only depends on B(t), �y′
a

and �y′
b
. Since

we have shown that �y′
a

and �y′
b

are Markovian
in Section III-A, the queue lengths at SUs evolve
as a Markov Chain with the transitions caused by
arrivals, departures and channel state in the current
time slot. In Proposition 3.6, we will show that this
Markov Chain is positive recurrent for any arrival
rate vector within the actual capacity region (also
called throughput optimal) under CA-CSMA.

1) Description of CA-CSMA: The decision
schedule for all SUs is denoted by ma(t). The
decision schedule for SUs in S, denoted by mb(t),
does not consider the interference to or from SUs
in S̄. The set of all ma(t) and mb(t) are denoted by
Ma

0 and M b
0 , respectively. We define αa(ma(t)) and

αb(mb(t)) as the probability that ma(t) is chosen in
the control slot when the channel is available, and
the probability that mb(t) is chosen in the control
slot when the channel is unavailable, respectively.
For clarification, “available” means the PU is idle
and “unavailable” means the PU is active although
SUs in S cannot sense it. Recall that S is the set
of all SUs that are outside the interference range of
the PU network.

We first develop CA-CSMA that characterizes
the different behaviors of SUs in S and S̄ under
different channel states. Algorithm 1 summarizes
the proposed CA-CSMA. SUs in S̄ acquire chan-
nel state information in every time slot by locally

Algorithm 1 CA-CSMA
1: if channel is available /*B(t) = 0*/ then
2: 1. In the control slot, randomly select a deci-

sion schedule ma(t) ∈ Ma
0 with probability

αa(ma(t))
3: if i ∈ ma(t) and y′aj (t − 1) = 0 for all j ∈

C(i) then
4: (a) x′

i(t) = 1 with probability pi
5: (b) x′

i(t) = 0 with probability p̄i
6: else if i ∈ ma(t) and y′aj (t−1) = 1 for some

j ∈ C(i) then
7: x′

i(t) = 0
8: else
9: x′

i(t) = y′ai (t− 1) /*i /∈ ma(t)*/
10: end if
11: 2. In the data slot, use �x′(t) as the transmis-

sion schedule
12: else
13: Execute Lines 2-11 by replacing all a with b
14: end if

sensing the channel while SUs in S are notified
by SUs in S̄ for the new channel state. Next we
elaborate on the behaviors of the SUs on the channel
state transitions. When the channel state is available,
all SUs treat the most recently available slot as
their previous slot ignoring the unavailable period,
and schedule packets in a way similar to Q-CSMA
(Lines 2-11) where p̄i = 1 − pi [13]. When the
channel state is unavailable, SU i in S̄ remains silent
and SUs in S treat the most recently unavailable slot
as their previous slot ignoring the available period,
and schedule packets in a way similar to Q-CSMA
(Lines 13-22) [13]. In other words, SUs in S̄ either
retrieve or record information on the activities of
SUs in C(i) when channel state changes while SUs
in S have to record and retrieve on the channel state
change.

To understand CA-CSMA better, we consider the
illustrative example (Figure 5) with SU 1 inside
the interference range of the PU (1 ∈ S̄) and
SU 2 (2 ∈ S) outside. (0, 1; 0) indicates that the
channel is available and only SU 2 is transmitting;
(1, 0; 1) means the channel is unavailable and in
the most recent available channel state, only SU
1 is transmitting. (0; 1) indicates that the channel
is unavailable and SU 2 is not transmitting; (1; 0)
means the channel is available and in the most
recent unavailable channel state, SU 2 is transmit-
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ting. When the channel is available, the first chain
in Figure 5 transitions to the next state though
the second chain only stays in the previous state
(Lines 2-11 in CA-CSMA); when the channel is
unavailable, the second chain transitions to the next
state while first chain only stays in the previous state
(Lines 13-22).

Lines 2 and 13 in CA-CSMA can be implemented
in a distributed manner through contention similar
to [13] - the information exchange is kept locally.
At time slot t: 1) SU i selects a random number
Ti uniformly in [0,W − 1] and waits for Ti control
mini-slots; 2) If SU i hears an INTENT message
from a SU in C(i) before the (Ti + 1)-th control
mini-slot, i will not be included in ma(t) or mb(t)
and will give up the transmission of the INTENT
message in this control slot; 3) If SU i does not
hear an INTENT message from any SU in C(i)
before the (Ti + 1)-th control mini-slot, it will
broadcast an INTENT message at the beginning
of the (Ti + 1)-th control mini-slot. If there is no
collision, SU i will be included in ma(t) or mb(t);
or else, no SU is included. Note that we only need
to send SU ID in the INTENT message. So even
if the message is encoded with low transmission
data rate at the physical layer, this overhead is
insignificant. The other overhead of the algorithm
includes notifications of channel state changes for
SUs in S that could be done by SUs in S̄. In this
scheme, a control channel with limited bandwidth
is used. On channel state change, each SU in S̄
sends the notification to all its neighbors. SUs in
S̄ will silenty drop the message since they have
already sensed the channel state change. Each SU
in S forwards it to all its neighbors if a notification
has not been received in this time slot. This scheme
guarantees all SUs in S̄ notified without infinite
loops.

2) Proof of Optimality: In the following, we will
formally show that CA-CSMA achieves throughput
optimality. The transition probabilities are presented
in Lemmas 3.1 and 3.3. Propositions 3.2 and 3.4
give the product-form of the stationary distribution.
Proposition 3.6 claims the throughput optimality of
CA-CSMA. We define π(v) := prob(state is v).

Lemma 3.1: (a) A state ȳa = (�y′
a
(t)) can make

a transition to a state ¯̂ya = (
�̂
y′

a

(t)) (�y′
a 
= �̂

y′
a

) iff

ya ∪ ŷa ∈ Ma
0

and there exists a decision schedule ma ∈ Ma
0 s.t.

ya�ŷa := (ya \ ŷa) ∪ (ŷa \ ya) ⊆ ma.

(b) The transition probability P (ȳa, ¯̂ya) from ȳa

to ¯̂ya (
= ȳa).

P (ȳa, ¯̂ya)

=
∑

ma∈Ma
0 :y

a�ŷa⊆ma

pαa(ma)

( ∏
l∈ya\ŷa

p̄l

)
( ∏

k∈ya\ŷa
pk

)( ∏
i∈ma∩(ya∩ŷa)

pi

)
( ∏

j∈ma\(ya∪ŷa)\C(ya∪ŷa)
p̄j

)
, (1)

where C(ya∪ ŷa) denotes the neighbors of nodes in
ya ∪ ŷa.

Proof: Part (a) can be proven as Lemma 2 in

[13]. To prove Part (b), we denote P sch(�y′
a
,
�̂
y′

a

) as

P (�y′, �̂y′) in Lemma 2 of [13] which is the transition

probability from state �y′ to state
�̂
y′ with the always-

available channel. We only need to show

P ((�y′
a
; 0),

�̂
y′

a

) = P ((�y′
a
; 1),

�̂
y′

a

) = pP sch(�y′
a
,
�̂
y′

a

).

The first equality is obvious by CA-CSMA.

P ((�y′
a
; 0),

�̂
y′

a

)

= P ((�y′
a
; 0), (

�̂
y′

a

; 0)) + P ((�y′
a
; 0), (

�̂
y′

a

; 1))

= pP sch(�y′
a
,
�̂
y′

a

) + 0;

P ((�y′
a
; 1),

�̂
y′

a

)

= P ((�y′
a
; 1), (

�̂
y′

a

; 0)) + P ((�y′
a
; 1), (

�̂
y′

a

; 1))

= pP sch(�y′
a
,
�̂
y′

a

) + 0.

By Lemma 2 in [13] which states the transition
probability with the always-available channel, we
can prove Part (b).

Based on the state transition probabilities, we
show that DTMCa has product-form stationary
distributions and give the specific forms in Proposi-
tion 3.2. Since we have divided the state transitions
in different channel states into two chains, either one
of them can be treated as channel state unchanged,
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which simplifies our proof and leads to a clean
result.

Proposition 3.2: A necessary and sufficient con-
dition for the DTMCa to be irreducible and ape-
riodic is ∪ma∈Ma

0
ma = {1, · · · , N} and in this

case the DTMC is reversible and has the follow-
ing product-form stationary distribution: π(Ȳ a) =
1
Za

∏
i∈ya

pi
p̄i

, Za =
∑

ya∈Ma
0

∏
i∈ya

pi
p̄i

.

Proof: The necessary and sufficient condition
can be proven as in the proof of Proposition 1 in [13]
which states the product-form stationary distribution
of the DTMC with the transmission schedule as
the network state in an alway-available channel
network. We only need to check π(ȳa)P (ȳa, ¯̂ya) =
π(¯̂ya)P (¯̂ya, ȳa). It follows that the DTMC is re-
versible and has such stationary distribution.

In a similar way, we show that DTMCb has
product-form stationary distributions in Proposi-
tion 3.4 based on Lemma 3.3.

Lemma 3.3: (a) A state ȳb = (�y′
b
(t)) can make a

transition to a state ¯̂yb = (
�̂
y′

b

(t)) (�y′
b 
= �̂

y′
b

) iff

yb ∪ ŷb ∈ M b
0

and there exists a decision schedule mb ∈ M b
0 s.t.

yb�ŷb := (yb \ ŷb) ∪ (ŷb \ yb) ⊆ mb.

(b) The transition probability P (ȳb, ¯̂yb) from ȳb

to ¯̂yb (
= ȳb).

P (ȳb, ¯̂yb)

=
∑

mb∈Mb
0 :y

b�ŷb⊆mb

(1− p)αb(mb)

( ∏
l∈yb\ŷb

p̄l

)
( ∏

k∈yb\ŷb
pk

)( ∏
i∈mb∩(yb∩ŷb)

pi

)
( ∏

j∈mb\(yb∪ŷb)\C(yb∪ŷb)
p̄j

)
,

where C(yb∪ ŷb) denotes the neighbors of nodes in
yb ∪ ŷb.

Proof: Part (a) can be proven as Lemma 2 in

[13]. To prove Part (b), we denote P sch(�y′
b
,
�̂
y′

b

) as

P (�y′, �̂y′
b

) in Lemma 2 of [13] which is the transition

probability from state �y′ to state
�̂
y′ with the always-

available channel. We only need to show

P ((�y′
b
; 0),

�̂
y′

b

) = P ((�y′
b
; 1),

�̂
y′

b

)

= (1− p)P sch(�y′
b
,
�̂
y′

b

).

The rest of the proof is similar to that of Lemma 3.1.

Proposition 3.4: A necessary and sufficient con-
dition for the DTMCb to be irreducible and ape-
riodic is ∪mb∈Mb

0
mb = S and in this case the

DTMC is reversible and has the following product-
form stationary distribution: π(ȳb) = 1

Zb

∏
i∈yb

pi
p̄i

,

Zb =
∑

yb∈Mb
0

∏
i∈yb

pi
p̄i

.

Proof: It is similar to the proof of
Proposition 3.2 except that we need to check
π(ȳb)P (ȳb, ¯̂yb) = π(¯̂yb)P (¯̂yb, ȳb).

Based on the product-form distribution, we use
the following results established in [12] to prove
throughput-optimality of Algorithm 1.

Theorem 3.5: [12]3 We define w∗(t) :=
max

x∈M(t)

∑
i∈x

wi(t) where M(t) is the set of all

feasible schedules at time t. For a scheduling
algorithm, if given any ε and δ, 0 < ε, δ < 1,
there exists a β > 0 such that: if w∗(t) > β,
the scheduling algorithm chooses a schedule
x(t) ∈ M(t) that satisfies

P{
∑
i∈x(t)

wi(t) ≥ (1− ε)w∗(t)} ≥ 1− δ, (2)

where wi(t) = fi(qi(t)) is a function of queue
lengths satisfying the following conditions:

1) fi(qi(t)) is a nondecreasing, continuous func-
tion with lim

qi→∞
fi(qi) = ∞;

2) Given any a ∈ R, limqi→∞
fi(qi+a)
fi(qi)

= 1.

Then the scheduling algorithm is throughput opti-
mal.

Remark: The throughput optimality result in The-
orem 3.5 holds for any scheduler as long as the
conditions are satisfied. It does not depend on how
the scheduling algorithm is designed.

3The proof of the theorem in [12] can be easily extended to
general conflict graph, and is applicable to our cognitive radio model.
However, the authors in [12] can only find a scheduling algorithm that
satisfies (2) in the fully-connected conflict graph while we propose
a scheduling algorithm satisfying (2) for the general conflict graph
under the cognitive radio framework.
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Then the scheduling algorithm is throughput-
optimal.

We choose pi = ewi(t)

ewi(t)+1
as long as wi satisfies

the conditions in [3]. By choosing fi wisely, wi(t)
evolves slowly over t. For instance, we choose
fi(qi) = log (log (qi + e)) in Section IV. We assume
that the DTMC is in steady-state in every time
slot throughout this paper (time-scale separation)
[8][13]. In the following, we want to show that
CA-CSMA is throughput-optimal by showing that
it is “close” enough to another throughput-optimal
scheduling algorithm - MWS. According to our de-
sign of two DTMCs, we analyze this “closeness” in
different channel states separately, which is different
from [13].

Proposition 3.6: Suppose ∪ma∈Ma
0
m =

{1, · · · , N} and ∪mb∈Mb
0
mb = S. Let pi =

ewi(t)

ewi(t)+1
,

∀i ∈ {1, · · · , N} when B(t) = 0 and pi =
ewi(t)

ewi(t)+1
,

∀i ∈ S when B(t) = 1, where wi(t) = fi(qi(t)) is
a function of queue length satisfying the conditions
established in Theorem 3.5. Then CA-CSMA is
throughput-optimal.

Proof: By Propositions 3.2 and 3.4, we know
that both DTMCs have product-form stationary dis-
tributions. Given any ε and δ s.t. 0 < ε, δ < 1. For
DTMCa, we define wa(t) = max

x∈Ma
0

∑
i∈x

wi(t). Based

on this, four sets of states are defined as follows:

χa
0 := {(�y′a; 0)| ya ∈ Ma

0 ,
∑
i∈ya

wi(t) < (1−ε)wa(t)}

χa
1 := {(�y′a; 1)| ya ∈ Ma

0 ,
∑
i∈ya

wi(t) < (1−ε)wa(t)}

ϕa := χa
0 ∪ χa

1

ψa := {Ȳ a = (�y′
a
)| ya ∈ Ma

0 ,∑
i∈ya

wi(t) < (1− ε)wa(t), }

where χa
0 includes all states with the channel avail-

able and the sum of wi(t) from SUs chosen in the
schedule is at least a fraction of ε away from wa(t),
χa
1 includes all states with the channel unavailable

and the sum of wi(t) from SUs chosen in the
schedule of the most recently available slot is at
least a fraction of ε away from wa(t). Note that

if (�y′
a
;B) ∈ ϕa, then ȳa = (�y′

a
) ∈ ψa. We then

calculate the probability of a state in set χa
0. We

define π(A) := prob (state v ∈ A).

π(χa
0) < π(ϕa) = π(ψa)

=
∑

�y′
a∈ψa

π(Ȳ a) =
∑

�y′
a∈ψa

e

∑

i∈ya
wi(t)

Za

≤ |ψa|e(1−ε)wa(t)

Za
<

2N

eεwa(t)

where

Za =
∑

ya∈Ma
0

e

∑

i∈ya
wi(t)

> e
max

ya∈Ma
0

∑

i∈ya
wi(t)

= ew
a(t).

The first equality holds because 1{(�y′a;0)}∪{(�y′a;1)} =
1{(�y′a)}; The last inequality is true because |ψa| ≤
|Ma

0 | ≤ 2N . Thus, ∃βa > 0, such that: wa(t) > βa

implies π(χa
0) < δmin (p, 1− p).

For DTMCb, we define wb(t) = max
x∈Mb

0

∑
i∈x

wi(t).

Similar to DTMCa, four sets of states are defined.

χb
0 := {(�y′b; 0)| yb ∈ M b

0 ,
∑
i∈yb

wi(t) < (1− ε)wb(t)}

χb
1 := {(�y′b; 1)| yb ∈ M b

0 ,
∑
i∈yb

wi(t) < (1− ε)wb(t)}

ϕb := χb
0 ∪ χb

1

ψb := {Ȳ b = (�y′
b
)| yb ∈ M b

0 ,∑
i∈yb

wi(t) < (1− ε)wb(t)}

We then calculate the probability of a state in set
χb
1.

π(χb
1) < π(ϕb) = π(ψb)

=
∑
�y′

b∈ψb

π(ȳb) =
∑
�y′

b∈ψb

e

∑

i∈yb
wi(t)

Zb

≤ |ψb|e(1−ε)wb(t)

Zb
<

2|S|

eεwb(t)
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where

Zb =
∑

yb∈Mb
0

e

∑

i∈yb

wi(t)

> e
max

yb∈Mb
0

∑

i∈yb
wi(t)

= ew
b(t).

The first equality holds because 1{(�y′b;0)}∪{(�y′b;1)} =

1{(�y′b)}; The last inequality is true because |ψb| ≤
|M b

0 | ≤ 2|S|. Thus, ∃βb > 0, such that: wb(t) > βb,
which implies that π(χb

1) < δmin (p, 1− p).

Since w∗(t) = wa(t) when B(t) = 0, w∗(t) =
wb(t) when B(t) = 1, we have the following results:

P{
∑

i∈ya(t)
wi(t) ≥ (1− ε)w∗(t)|B(t) = 0}

= P{
∑

i∈ya(t)
wi(t) ≥ (1− ε)wa(t)|B(t) = 0}

= 1− P{
∑

i∈ya(t)
wi(t) < (1− ε)wa(t)|B(t) = 0}

= 1− π(χa
0)

p
> 1− δmin (p, 1− p)/p

≥ 1− δ (3)

when wa(t) > βa. Equation (3) implies that: If
B(t) = 0, P{ ∑

i∈ya(t)
wi(t) ≥ (1 − ε)w∗(t)} > 1 − δ

if wa(t) > β. Similarly,

P{
∑

i∈yb(t)
wi(t) ≥ (1− ε)w∗(t)|B(t) = 1}

= P{
∑

i∈yb(t)
wi(t) ≥ (1− ε)wb(t)|B(t) = 1}

= 1− P{
∑

i∈ya(t)
wi(t) < (1− ε)wa(t)|B(t) = 1}

= 1− π(χb
1)

1− p
> 1− δmin (p, 1− p)/(1− p)

≥ 1− δ (4)

when wb(t) > βb. Equation (4) implies that: If
B(t) = 1, P{ ∑

i∈yb(t)
wi(t) ≥ (1 − ε)w∗(t)} > 1 − δ

when wb(t) > β.

We use the total probability formula to calculate
the unconditional probability:

P{
∑
i∈x(t)

wi(t) ≥ (1− ε)w∗(t)}

(a)
= P{

∑
i∈ya(t)

wi(t) ≥ (1− ε)w∗(t)|B(t) = 0}

P (B(t) = 0)

+ P{
∑

i∈yb(t)
wi(t) ≥ (1− ε)w∗(t)|B(t) = 1}

P (B(t) = 1)
(b)

≥ (1− δ)p+ (1− δ)(1− p) = 1− δ

if w∗(t) > β where β = max (βa, βb). Note that
(a) holds because ya(t) = x(t) when B(t) = 0 and
yb(t) = x(t) when B(t) = 1 by definition, and (b)
holds due to Equations (3) and (4). Hence Algo-
rithm 1 satisfies the condition of Theorem 3.5 and
is throughput optimal. Although the scheduler in
CA-CSMA involves the evolutions of two Markov
chains where a combination of the transmission
schedule and the channel state is the system state,
it is throughput optimal as long as it is Markovian
and the conditions in Theorem 3.5 are satisfied.

Proposition 3.6 shows that the full capacity region
can be achieved by CA-CSMA in CRNs with SUs
inside and outside the interference range of the PU.
Similar to Lemma 3 in [13], we can prove that both
ma(t) and mb(t) produced by this distributed im-
plementation are feasible schedules and they satisfy
the conditions in Proposition 3.6.

IV. SIMULATIONS

In this section, we conduct simulations to com-
pare the performance of 802.11 (we use a similar
algorithm as in [13]), MWS, Q-CSMA and CA-
CSMA. Since the 802.11 algorithm we compare
does not follow the exact designs of contention
window sizes, sensing slots, transmission slots, etc,
we call it “simple 802.11” in all the figures. In Q-
CSMA, if a link is activated but the channel is
off for it, it will keep silent. In CA-CSMA, W ,
the contention window size in the control slot, is
chosen to be the number of SUs in the network. SU
weights are chosen to be of the form log(log(q+e)),
where q is the queue length [13] [14] [4]. We set
p = 0.6, that is, 60% of the time, the PU is not
using the channel. Note that in all the performance
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Fig. 6. Conflict graph with 6 SUs.
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Fig. 7. Queue lengths of four algorithms with different loads in the
6-SU network.

evaluations, we do not take into account the control
slot overhead since it is a fixed and small portion of
the whole time slot. Discounted by this fixed factor,
the performance of CA-CSMA is still promising as
we will observe in the following evaluations.
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Fig. 8. Queue lengths of simple 802.11 and Q-CSMA with low
loads in the 6-SU network.
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Fig. 9. Queue lengths of CA-CSMA and MWS with a wide load
range in the 6-SU network.

A. Performance Evaluation in the 6-SU Network

In “Network 1”, there are 6 SUs whose conflict
graph is shown in Figure 6. A conflict graph is
one where two SUs are neighbors if they cannot
transmit simultaneously. SUs 3 and 6 are outside the
interference range of the PU and others are inside.
Let λ = 0.2×(1, 0, 1, 0, 0, 0)+0.3×(1, 0, 0, 1, 0, 1)+
0.2 × (0, 1, 0, 0, 1, 0) + 0.3 × (0, 0, 1, 0, 1, 0) =
(0.5, 0.2, 0.5, 0.3, 0.5, 0.3), which is a convex com-
bination of some maximal independent sets. We
vary ρ from 0 to 0.9 × p so that ρ × λ lies inside
the capacity region. For each algorithm, for a fixed
ρ, we run 10 independent experiments and take
the average. We show the average queue length of
the network over ρ in Figure 7 where the running
time is 105 time slots. As we can see, CA-CSMA
outperforms simple 802.11, which does not take
into account the queue length information, and Q-
CSMA, which ignores channel state information.
We plot Figure 8 to further show the rate regions
of simple 802.11 and Q-CSMA. The blow up point
is observed to be at around ρ = 0.3. Accordingly,
we believe the improvement of CA-CSMA comes
from Markov chain separation instead of pure queue
length based algorithm. In addition, CA-CSMA
performs almost as well as MWS. Figure 9 extends
ρ to 0.58, which pushes the load almost to the
capacity region given that p = 0.6, to show the
full performances of CA-CSMA and MWS. MWS
is slightly slower than CA-CSMA in terms of queue
length growth over a wide range of traffic load. The
rapid increase of queue lengths of both algorithms
occurs at around ρ = 0.52. In [13], a hybrid
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Fig. 10. Time for each SU to saturate in the 6-SU network.
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Fig. 11. Network throughput over the probability of false notification
of channel state in the 6-SU network.

algorithm is developed to reduce the delay while
maintaining the property of throughput optimality.
A hybrid algorithm based on CA-CSMA can be
similarly designed to further improve the delay
performance, which is not the focus of this paper.

To see how long it takes the algorithms to saturate
the network, we define a queue length threshold,
above which the SU is saturated. This threshold
is set to be 500/6

.
= 83 in the 6-SU network.

Note that 500 is the average number of packets
in the network reached by CA-CSMA as shown
in Figure 7. We plot the time for queue length of
each SU to reach this threshold using both simple
802.11 and CA-CSMA in Figure 10. The simulation
time is 105 times slot. If the queue length does not
reach 83 packets within the simulation time, we set
the saturation time to be 105. The saturation times
at SUs under CA-CSMA are much more balanced
than in simple 802.11, which may also explain why
CA-CSMA stabilizes the system with arrivals that
simple 802.11 cannot.
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Fig. 12. Queue lengths of CA-CSMA and Q-CSMA with slowly
varying channel state.

In CA-CSMA, channel state changes need to be
notified to the SUs outside the interference range
of the PU, which is an extra overhead and may
cause errors as well. In Figure 11, we show the
robustness of the network throughput to notification
errors. We assume that the wrong notification in the
previous slot will be corrected in the current slot,
which means, SUs outside the interference range of
the PU would know they got the wrong notification
in the previous slot. This assumption allows the
design of an efficient correction algorithm on the
notification errors, which is also our future work.
The network throughput degrades gracefully when
the error increases in Figure 11.

We also evaluate the performances of CA-CSMA
and Q-CSMA in a more practical setting - lower
channel variation, i.e., a common scenario of cog-
nitive radio on TV band. In the first time slot,
the channel state is available with probability of p.
We then force the channel state to be unchanged
for the next 9 time slots. This process is repeated
with a period of 10 time slots. We observe that
CA-CSMA still outperforms Q-CSMA although the
queue length of the latter grows more slowly than in
Figure 7. The performance gain is believed to come
from the slower channel state change. The positive
results of CA-CSMA leads us to our future work
on proving its throughput-optimality without i.i.d.
assumption in PU activity.

B. Performance Evaluation in the 16-SU Network
There are 16 SUs in “Network 2”, where the

conflict graph is a 4 by 4 grid (Figure 13). Note that
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Fig. 13. Conflict graph with 16 SUs.
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Fig. 14. Channel usage percentage over load factor in the 4 by 4
grid network.

the sizes we choose in the simulations are compa-
rable to those in [13] and [8]. SUs 1 through 11 are
within the interference range of the PU, while SUs
12 to 16 are not. We compare metrics specific in
cognitive radio networks for simple 802.11, MWS,
Q-CSMA and CA-CSMA in “Network 2”. First,
we define channel usage as the percentage that any
of the SUs in the interference range of the PU is
using the channel. In Figure 14, we vary the load
factors from 0 to close to capacity region boundary
and compare the channel usage percentages. All
algorithms fluctuate but there are no significant
drops or jumps. Both MWS and CA-CSMA utilize
the available channel bandwidth efficiently while
Q-CSMA and simple 802.11 show worse channel
usage.

We compare channel usage over different PU
traffic loads in Figure 15 where the SU traffic load
is 90% of the capacity region (in the comparisons
of all the following metrics, we use the same load
factor if not specifically mentioned). Similarly, CA-
CSMA and MWS utilize the channel bandwidth
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Fig. 15. Channel usage percentage over PU traffic in the 4 by 4
grid network.

better than Q-CSMA and simple 802.11 in all PU
traffic loads.

V. CONCLUSION

In this paper, we develop CA-CSMA: a
throughput optimal distributed queue length based
CSMA/CA scheduling algorithm for cognitive radio
networks. The algorithm needs to signal a group
of SUs during channel state change, different from
existing distributed queue-length based CSMA/CA
algorithms. Our algorithm is designed to adapt to the
channel availability dynamics caused by unknown
PU activity. The performance of CA-CSMA, MWS,
Q-CSMA and a simplified 802.11 are compared in
simulations to show the efficacy of CA-CSMA.

In the future, we plan to relax the time-scale
separation assumption, as in [8], [14], and extend
our work to multi-hop and multi-PU cognitive radio
networks. Another topic of future interest is to char-
acterize the impact of sensing errors on algorithm
design.
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