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a b s t r a c t 

Recently, a group of queue-length-based CSMA algorithms have been proposed to achieve throughput op- 

timality in wireless networks with single-hop transmissions. These algorithms suffer from two problems: 

(1) large delays, and (2) temporal starvation phenomenon, where communication links are inactive for a 

prolonged period of time before getting service. To mitigate these two problems, in this paper, we pro- 

pose a novel v ( t )-regulated CSMA algorithm which can be implemented in a distributed manner using the 

RTS/CTS mechanism. Link scheduling is performed such that links with longer queues are favored so as 

to reduce average delay. The v ( t )-regulated CSMA algorithm also ensures a more frequent switch between 

schedules such that the effect of temporal starvation is reduced. The proposed algorithm is throughput 

optimal and achieves fully local implementation without global message passing. The thresholds to reg- 

ulate the proposed algorithm are studied to optimize the upper-bound of the delay performance. We 

show through both hardware implementation and numerical evaluations that the algorithm indeed mit- 

igates the temporal starvation problem and achieves far better delay performance than one of the other 

throughput-optimal CSMA algorithms. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Efficient scheduling of wireless resources has always been

one of the most challenging tasks for wireless networks. To

achieve throughput-optimality, traditional back-pressure algo-

rithms [1,2] calculate a maximal weight matching at each time slot.

However, these algorithms need centralized scheduling with high

complexity, and thus are not suitable for practical distributed im-

plementations. 

Recently, a class of distributed CSMA algorithms have been pro-

posed in the literature [3–6] that achieve throughput optimality. In

these algorithms, communication links are allowed to update their

transmission based on a weight function of their queue lengths.

We refer to these algorithms as regular throughput-optimal CSMA

algorithms in the following discussion. We will use one of such

algorithms as a benchmark in the implementation and analytical

results later in this paper. Although these CSMA algorithms have

been proved to be throughput-optimal [4,5] , they suffer from the
∗ Corresponding author. 
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ollowing problems: (1) Temporal starvation , defined in [10] as the

henomenon of links “being starved for prolonged periods indef-

nitely often despite having good stationary throughput”. In other

ords, links usually undergo prolonged periods of inactivity fol-

owed by a prolonged period of activity. Temporal starvation leads

o bursty service and undesirable jitter performance. The reason

or this behavior is the operation of regular throughput-optimal

SMA algorithms: These algorithms schedule a link that was al-

eady active with high probability for prolonged periods, even if

here are few (or even no) packets in its queue, during which its

eighboring links suffer from starvation. (2) Undesirable delay per-

ormance [4,12] . This behavior of regular throughput-optimal CSMA

lgorithms also leads to the scheduling of links with short queues

hile there exist unscheduled links with longer queues in the net-

ork, resulting in long average packet delays. 

There are a limited number of works analyzing the delay and

emporal starvation problems in the literature. It has been shown

n [9] that regular throughput-optimal CSMA algorithms achieve

olynomial delay upper-bound for a fraction of capacity region in

etworks with single-hop transmissions. The effect of number of

hannels on temporal starvation is analyzed in [10] . Congestion

ontrol using virtual queues has been proposed in [12] in an at-
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1 We note that the analysis can be readily extended to the case when A l ( t ) are 

Markovian over time. 
empt to reduce delay without addressing the temporal starvation

roblem. 

To address the delay and temporal starvation issues, in this pa-

er, we propose a v (t) -regulated CSMA algorithm that achieves

ully local implementation without global message passing. Under

he proposed algorithm, only links with weights above a certain

hreshold qualify to be scheduled. Since link weights are increas-

ng functions of packet queue lengths, resources are scheduled to

inks with sufficiently large queue lengths only. This approach po-

entially alleviates the “persistent” scheduling problem of regu-

ar throughput-optimal CSMA algorithms. Compared to those algo-

ithms, the v (t) -regulated CSMA algorithm possesses the following

wo salient features: (1) Links with larger queue lengths are sched-

led. By favoring longer queues over shorter ones, delays in longer

ueues are potentially reduced, and this reduction outweighs the

ncrease in the delay of packets in the shorter, unserved queues.

hus, the average delay is potentially reduced. (2) The change in

ink schedules is more frequent. When an active link does not have

ufficient data packets, the v ( t )-regulated CSMA algorithm requires

he link to relinquish the wireless resource (i.e., channel). By hand-

ng over the channel much earlier, i.e., when the packet queue

ength drops below a threshold, the v ( t )-regulated CSMA algorithm

nsures a faster and more frequent switch between schedules, mit-

gating the temporal starvation problem. 

While achieving an improvement on delay and temporal star-

ation, we prove that the v (t) -regulated CSMA algorithm is

hroughput-optimal , as well. The proof is based on the time-scale

eparation assumption (i.e., the Markov chain of the schedules cho-

en by the scheduler is in steady state in each time slot) which has

een employed in [3,4] and verified in [7,8] . Furthermore, our pro-

osed CSMA algorithm is shown via both hardware implementa-

ion and simulations to have a much more favorable delay perfor-

ance than a regular throughput-optimal CSMA algorithm [4] for

he same set of arrival rate vectors. The temporal starvation prob-

em is also shown to be mitigated significantly, where we use the

econd moment of inter-service intervals as the metric to charac-

erize the degree of temporal starvation. 

The rest of the paper is organized as follows: We propose the

 ( t )-regulated CSMA algorithm and present its theoretical perfor-

ance analysis in Section 2 . Further discussions are provided in

ection 3 . Specifically, a method to approach time-scale separation

s presented in Section 3.1 , and we provide a guideline on choosing

hresholds for the proposed algorithm in Section 3.2 . We present

he implementation results and numerical results in Sections 4 and

 , respectively. We conclude our work in Section 6 . 

. v( t )-Regulated CSMA Algorithm 

We introduce the network model in Section 2.1 , with the pro-

osal and theoretical performance analysis of the v ( t )-regulated

SMA algorithm presented in Sections 2.2 and 2.3 , respectively. Be-

ore discussing details of the network model and algorithm design,

e provide a summary of notations in Table 1 . 

.1. Network model 

Consider a wireless network with network topology (N , L ) ,

here N denotes the node set and L denotes the set of single-

op directional communication links with |L| = L . Each l ∈ L can

e represented by l = (m, n ) as a single-hop flow from source m

o destination n , for some m, n ∈ N . We consider a general conflict

raph interference model [3–6] . Specifically, for each link l ∈ L , we

efine an interference set N l ⊆ L , such that link l cannot transmit

imultaneously with any link in N l . Without loss of generality, we

et l ∈ N , ∀ l ∈ L , and assume symmetric interference: j ∈ N if and
l i 
nly if i ∈ N j , ∀ i, j ∈ L . A set of links x ⊆ L is called an indepen-

ent set if none of the links in x interfere with each other, i.e.,

 / ∈ N j , ∀ i, j ∈ x with i � = j . We denote the set of all independent

ets by I associated to the network topology (N , L ) . 

We assume the considered wireless system is time-slotted, as

s typical in many wireless standards (such as WLANs). We also

ssume that the transmission rate of each link is normalized and

akes value in {0, 1}. Let A l ( t ) be the arrival process of the com-

unication link l ∈ L over time slots t . For analytical simplicity,

e assume the arrival process A l ( t ) is independent across l ∈ L and

.i.d. over time slots t with mean λl . 
1 Without loss of generality, we

ssume that A l ( t ) is upper-bounded by some constant A M 

, ∀ l ∈ L .

t each time slot t , we represent a schedule by a vector μ(t) �
(μl (t)) l∈L , with μl ( t ) ∈ {0, 1} denoting the link rate schedule for

ink l ∈ L . A schedule is said to be feasible if 
∑ 

j∈N l \{ l} μ j (t) = 0 , for

ny l ∈ L with μl (t) = 1 . Thus, when we associate each link l ∈ L
ith a packet queue length Q l ( t ), the corresponding queue dynam-

cs can be written as: 

 l (t + 1) = [ Q l (t) − μl (t)] + + A l (t) , ∀ t ≥ 0 (1)

here the operator [ ·] + = max { 0 , ·} and we assume that the arriv-

ng packets A l ( t ) are admitted to the packet queue at the end of

ach time slot t . The queue dynamics (1) can be equivalently rep-

esented as: 

 l (t + 1) = Q l (t) − μl (t) + A l (t) + βl (t) , (2)

here βl (t) � (μl (t) − Q l (t)) 1 { Q l (t) <μl (t) } denotes the unused ser-

ice for link l at time slot t , with 1 { E } being an indicator function

f the event E . 

.2. v ( t )-regulated CSMA algorithm 

Central to our proposed v ( t )-regulated CSMA algorithm is the

stablishment of a vector of thresholds (ηl ) l∈L , such that, if the

acket queue of an active link l has a link weight below thresh-

ld ηl , the active link l relinquishes the wireless resource and be-

omes idle. Since link weights are increasing functions of packet

ueue lengths, only links with sufficiently large queue lengths are

cheduled. In comparison, under regular throughput-optimal CSMA

lgorithms, when a link occupies the channel, even if it has few

ackets (or even no packets) in its queue, it is highly likely that

his link will remain scheduled for a considerably long period

f time. By always scheduling links with sufficiently large queue

engths, the v ( t )-regulated CSMA algorithm potentially results in

 reduction of packet delays in these scheduled queues, which

utweigh the increase in delay of the packets in the other un-

cheduled queues (which have fewer packets). Hence, the v ( t )-

egulated CSMA algorithm potentially reduces the average delay.

n addition, under the proposed algorithm, the switch between

chedules becomes more frequent than under regular throughput-

ptimal CSMA algorithms, mitigating the temporal starvation. Note

hat the distributed implementation of the algorithm is provided

n Section 4.1 . 

In the following, we introduce definitions necessary for our

SMA algorithm. We first define the indicator variable v l (t) =
 { w l (t) >ηl } , l ∈ L , where w l ( t ) is the link weight of l ∈ L and ηl 

s the algorithm designed threshold for link l . We denote v (t) �
 v l (t) } l∈L . Since we require that the v ( t )-regulated CSMA algorithm

nly schedule links l with link weights w l ( t ) larger than threshold

l (i.e., v l (t) = 1 ), we first define a v ( t )-regulated network topology

(N , L (v (t))) generated based on the original topology (N , L ) . The

 ( t )-regulated link set L (v (t)) is defined as: 

 (v (t)) � { l ∈ L : v l (t) = 1 } , 
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Table 1 

Summary of notations for the network model and the algorithm. 

Notations Definitions 

N Node set of the network. 

L Set of single-hop directional communication links with |L| = L . 

l = (m, n ) A single-hop flow from source m to destination n , for some m, n ∈ N . 

ηl Algorithm designed threshold for link l . 

x An independent set of links where none of the links in x interfere with each other. 

I Set of all independent sets associated with the network topology (N , L ) . 
A l ( t ) Arrival process of the communication link l ∈ L over time slots t . 

μl ( t ) Link rate schedule for link l ∈ L . 
Q l ( t ) Packet queue length of link l ∈ L . 
β l ( t ) Unused service for link l at time slot t . 

w l ( t ) Link weight of l ∈ L at time slot t . 

v l ( t ) Indicator variable defined as v l (t) = 1 { w l (t) >ηl } . 
L (v (t)) Set of links whose link weights w l ( t ) are greater than the thresholds ηl . 

Fig. 1. v ( t )-regulated CSMA algorithm - Link weights updated every T time slots. 
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i.e., L (v (t)) is the set of links whose link weights w l ( t ) are greater

than the corresponding thresholds ηl . Under the v ( t )-regulated

topology, we further define the set of all v ( t )-regulated indepen-

dent sets I(v (t)) as: 

I(v (t)) � { x ∈ I : ∀ l ∈ x , v l (t) = 1 } ⊆ I. 

In addition, we define v ( t )-regulated interference sets N l (v (t)) , l ∈
L , as follows: 

N l (v (t)) � { l ∈ N l : v l (t) = 1 } , ∀ l ∈ L . 

In Fig. 1 , we propose the v ( t )-regulated CSMA algorithm. In Step

1, an independent set x ( t ) is selected probabilistically from I(v (t)) .

Links in x ( t ) are scheduled in Step 2.1, and other links are sched-

uled in Step 2.2. Specifically: 

• In Step 2.1, for any link l ∈ x ( t ), if its neighboring links in

the interference set N l are not scheduled in the previous time

slot or do not have a link weight above the threshold, i.e.,∑ 

j∈N l \{ l} μ j (t − 1) v j (t) = 0 , then link l is scheduled service

( μl (t) = 1 ) with link activation probability 

p l (t) � 

e w l (t) 

1 + e w l (t) 
. (4)

Otherwise, μl (t) = 0 . 

• In step 2.2, for any link l not belonging to x ( t ), μl (t) = 0 when

v l (t) = 0 ; otherwise, the schedule for link l is unchanged, i.e.,

μl (t) = μl (t − 1) . 

From the selection of x ( t ) and Step 2.2, we know that μl (t) = 1

only if v l (t) = 1 (i.e., w l ( t ) > ηl ). The link weight w l ( t ) is defined

as w l (t) = f (Q l (t)) , where the link weight function f : R 

+ → R 

+

is chosen as follows: f (x ) = x in [3] ; f (x ) = log log (x + e ) in [5] ;

f (x ) = log (x + 1) in [4,6] . It is easy to check that the above choices

for function f satisfy the following properties: 
• Property (i): f is an increasing function with lim x →∞ 

f (x ) = ∞ . 

• Property (ii): For any given 0 < ε3 < 1, there exists Q M 

> 0 such

that ∀ x > Q M 

, 

(1 − ε3 ) f (x ) < f (x − 1) < f (x + A M 

) < (1 + ε3 ) f (x ) . 

• Property (iii): f ′ ( x ) ≤ 1, ∀ x ≥ 0. 

Since w l ( t ) is an increasing function of queue length Q l ( t ), the

 ( t )-regulated CSMA algorithm ensures that only links with suf-

ciently large queues (such that the corresponding link weights

 l ( t ) are larger than the thresholds ηl ) can be scheduled. Hence,

n active link will switch to an idle state when it does not have

 sufficiently large number of data packets in its queue, handing

he resource over to other links with larger packet queues. On

he other hand, under the regular throughput-optimal CSMA algo-

ithms, even if an active link has few or no packets in its queue,

t will continue to occupy the channel for prolonged periods with

igh probability, during which other links in its interference set

uffers from starvation. Thus, with the v ( t )-regulated CSMA algo-

ithm, the problem of temporal starvation is mitigated. Since ser-

ice is scheduled only to links with sufficiently large queue lengths

i.e., links with packets having potentially large delays), the delay

erformance is also improved. The selection of the thresholds ηl 

s also essential to the algorithm performance, and a guideline on

hoosing the thresholds are provided in Section 3.2 . 

In Section 4.1 , we introduce in detail a distributed implementa-

ion of the v ( t )-regulated CSMA algorithm, based on an RTS/CTS

andshake mechanism. In the next subsection ( Section 2.3 ), we

how the throughput-optimality of the proposed algorithm. Im-

lementation results and numerical analysis on delay performance

nd the temporal starvation issue are provided in Sections 4.2 and

 , respectively. 
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Table 2 

Summary of propositions, lemmas, and theorems. 

Statements Purposes 

Proposition 1 ( Section 2.3 ) Show feasibility of the schedule produced by the v ( t )-regulated CSMA algorithm. 

Proposition 2 ( Section 3.2 ) Introduce a feasible choice of (ηl ) l∈L for the proposed v ( t )-regulated CSMA algorithm to minimize the delay upper bound. 

Lemma 1 ( Section 2.3 ) Show schedules from v ( t )-regulated CSMA algorithm approximate a maximum weight matching scheduler with high probability. 

Lemma 2 ( Section 2.3 ) Introduce an auxiliary stationary randomized algorithm to facilitate the proof of Theorem 1 . 

Lemma 3 ( Section 2.4 ) Show the v ( t )-regulated CSMA algorithm is equivalent to the scheduler in Fig. 2 . 

Lemma 4 ( Appendix A ) Inequality for the proof of Theorem 2 . 

Lemma 5 ( Appendix A ) Inequality for the proof of Theorem 2 . 

Theorem 1 ( Section 2.3 ) Show throughput optimality of the v ( t )-regulated CSMA algorithm. 

Theorem 2 ( Section 3.1 ) Show throughput optimality of the modified v ( t )-regulated CSMA algorithm. 
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.3. Throughput optimality of the v ( t )-regulated CSMA algorithm 

In this subsection, we prove the throughput optimality of the

roposed algorithm in Theorem 1 . Before providing details of the

roof, we enumerate the upcoming propositions, lemmas and the-

rems as well as their purposes in Table 2 . 

We will first show in Proposition 1 that the v ( t )-regulated

SMA algorithm always produces feasible schedules. 

roposition 1. The schedule produced by the v ( t ) -regulated CSMA al-

orithm is feasible, i.e., if y (t − 1) ∈ I, then y (t) ∈ I, where y (t) �
 l ∈ L : μl (t) = 1 } . 
roof. For any l ∈ y ( t ), we consider the following two cases: 

• If l ∈ y ( t ) ∩ x ( t ), where x ( t ) is the independent set chosen ac-

cording to Step 1 in Fig. 1 , then μ j (t − 1) v j (t) = 0 , ∀ j ∈ N l \{ l} ,
according to Step 2.1. Given any j ∈ N l \{ l} , we know that

j �∈ x ( t ), since x ( t ) is an independent set and l ∈ x ( t ). If v j (t) =
0 , then μ j (t) = 0 according to Step 2.2. Otherwise (i.e., when

v j (t) = 1 ), μ j (t − 1) = 0 , and hence μ j (t) = μ j (t − 1) = 0 ac-

cording to Step 2.2. Therefore, j �∈ y ( t ). 

• If l ∈ y ( t ) \ x ( t ), then μl (t − 1) = 1 and v l (t) = 1 according to

Step 2.2. For any given j ∈ N l \{ l} , we have ∑ 

k ∈N j \{ j} 
μk (t − 1) v k (t) ≥ μl (t − 1) v l (t) = 1 . (5)

In addition, μ j (t − 1) = 0 , since μl (t − 1) = 1 , i.e., l ∈ y (t −
1) ∈ I . 

If j ∈ x ( t ), then μ j (t) = 0 by (5) and Step 2.1.2. Otherwise (i.e.,

when j �∈ x ( t )), from Step 2.2, μ j (t) ≤ μ j (t − 1) = 0 . Therefore,

j �∈ y ( t ). 

Since the above analysis holds for any l ∈ y ( t ), we have shown

hat y (t) ∈ I, i.e., y ( t ) is an independent set: for any given l ∈ y ( t ),

e have j �∈ y ( t ), ∀ j ∈ N l \{ l} . �

To support our analysis of the throughput performance, we in-

roduce two related lemmas, Lemmas 1 and 2 , to assist the proof of

hroughput optimality in Theorem 1 . Specifically, in Lemma 1 , we

how that the schedules produced by the v ( t )-regulated CSMA al-

orithm approximate a maximum weight matching scheduler with

igh probability. In Lemma 2 , we introduce an auxiliary stationary

andomized algorithm. 

emma 1. Under the time-scale separation assumption (the Markov

hain of the schedules chosen by the scheduler is in steady state in

ach time slot), for any given ε1 and δ1 satisfying 0 < ε1 , δ1 < 1, we

an find a constant B ( ε1 , δ1 ) > 0 such that for any time slot t and

ith probability greater than (1 − δ1 ) , the link rate scheduler finds a

chedule (μl (t)) l∈L , satisfying: 

 

l∈L 
w l (t) μl (t) ≥ (1 −ε1 ) max 

x ∈I 

∑ 

l∈ x 
w l (t ) , whenever || w (t ) || ∞ 

>B, 

(6) 
here w (t) � (w l (t )) l∈L , || w (t ) || ∞ 

� max l∈L | w l (t ) | , and 

 � max 

{ 

1 

ε1 

(
L log 2 + log 

1 

δ1 

)
, 

2 

ε1 

max 
x ∈I 

∑ 

l∈ x 
ηl 

} 

. 

or notational simplicity, we denote || · || � || · || ∞ 

in the following dis-

ussion. In (6) , max x ∈I 
∑ 

l∈ x w l (t) can be considered as the maximal

eight matching over all feasible schedulers. 

roof. The proof of Lemma 1 is provided in Section 2.4 . �

We define the capacity region � as the set of all arrival rate

ectors (λl ) l∈L supportable by the network, i.e., there exists a fea-

ible scheduling algorithm, centralized or distributed, which is able

o stabilize all the packet queues. Then, for any rate vector in

, there exists an (auxiliary) stationary randomized algorithm as

tated in Lemma 2 . 

emma 2. For any rate vector (λl ) l∈L strictly within the capacity re-

ion �, i.e., we can find some ε2 > 0 such that ((1 + ε2 ) λl ) l∈L ∈
, there exists a stationary randomized algorithm with schedules

μSTAT 
l 

(t) 
)

independent of the queue lengths (Q l (t)) l∈L , such that,

or any time slot t , 

 

{
μSTAT 

l (t) 
}

= (1 + ε2 ) λl , ∀ l ∈ L . 

Similar formulations of randomized algorithm STAT and corre-

ponding proofs have been given in [2,13] , so we omit the proof of

emma 2 for brevity. 

A scheduling algorithm is throughput-optimal if the packet

ueues are stable in the mean [2,13] under the algorithm. The

hroughput optimality of the proposed algorithm is concluded in

heorem 1 . 

heorem 1. The v ( t ) -regulated CSMA algorithm is throughput-

ptimal , for any arrival rate vector strictly within the capacity region

: 

im sup 

T →∞ 

1 

T 

T −1 ∑ 

t=0 

E 

⎧ ⎨ 

⎩ 

[ ∑ 

l∈L 
f 2 (Q l (t)) 

] 

1 
2 

⎫ ⎬ 

⎭ 

≤ B 2 

ε
, (7) 

here B 2 > 0 and 0 < ε < 1 are constants defined as follows: 

 2 � L f (A M 

) + L f (Q M 

) + L f (Q M 

+ A M 

) A M 

+ γ BL, (8)

� min 

l∈L 
[(γ (1 + ε2 ) − 1) λl − ε3 A M 

] > 0 , 

ith γ � (1 − ε1 )(1 − δ1 ) . Note that ε1 , δ1 , B are defined in Lemma

 ; ε2 defined in Lemma 2 ; and ε3 , Q M 

defined in Property (ii) of the

ink weight function f. 

roof. The proof of Theorem 1 is given in Section 2.5 . �

Since ε > 0 is required to ensure a positive upper-bound in (7) ,

e must have from definition of ε that 

> 

1 

1 + ε2 

, (9) 
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Fig. 2. An equivalent scheduler for the proof in Lemma 1 . 
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and 

ε3 < min 

l∈L 
[ γ (1 + ε2 ) − 1] λl 

A M 

. (10)

Since γ < 1 can be chosen arbitrarily close to 1 (due to the fact

that ε1 and δ1 can be arbitrarily small according to their defini-

tions in Lemma 1 ) and ε3 > 0 can be chosen arbitrarily small ac-

cording to Property (ii) of the link weight function, there exist γ
and ε3 such that the inequalities (9) and (10) hold. 

Note that the underlying Markov chain is positive recurrent due

to the queue stability in the mean (7) according to Meyn and

Tweedie [14] , which implies the stability of the network [9] . 

2.4. Proof of Lemma 1 

In this subsection, we prove Lemma 1 introduced in Section 2.3 .

We first show that the v ( t )-regulated CSMA algorithm is equivalent

to the scheduler in Fig. 2 in the following lemma: 

Lemma 3. Given μ(t − 1) , w ( t ), and v ( t ), the v ( t ) -regulated CSMA

algorithm is equivalent to the scheduler in Fig. 2 . 

Proof. Since Step 1 (of selecting an independent set x (t) ∈
L (v (t)) ) is the same for both the v ( t )-regulated CSMA algorithm

and the equivalent scheduler, proving Lemma 3 is equivalently to

proving that the link schedules are equivalent under both algo-

rithms given x ( t ). For any given l ∈ L , we consider the following

two cases: 

• l ∈ x ( t ): 

Since ∑ 

j∈N l \{ l} 
μ j (t − 1) v j (t) = 

∑ 

j∈N l (v (t)) \{ l} 
μ j (t − 1) , 

Step 2.1 under the v ( t )-regulated CSMA algorithm is equivalent

to Step 2.1 under the equivalent scheduler. Thus, the schedule

for μl ( t ), l ∈ x ( t ), is equivalent under both algorithms. 

• l ∈ L\ x (t) : 

In this case, μl (t) = μl (t − 1) v l (t) under the v ( t )-regulated

CSMA algorithm. Since 

L\{ x (t) } = (L (v (t )) \ x (t )) ∪ (L\L (v (t))) , 

we consider the following two subcases under the equivalent

scheduler. If l ∈ L (v (t)) \ x (t) , then according to Step 2.2 un-

der the equivalent scheduler, μl (t) = μl (t − 1) = μl (t − 1) v l (t) .

Otherwise (i.e., when l ∈ L\L (v (t)) ), according to Step 3 under

the equivalent scheduler, μl (t) = 0 = μl (t − 1) v (t) . Therefore,

the scheduler for μl ( t ), l ∈ L\ x (t) , is equivalent under both al-
gorithms. 
Since the above discussion holds for any given l ∈ L , we con-

lude that the two algorithms are equivalent. �

Step 1 and Step 2 of the equivalent scheduler in Fig. 2 form

he regular throughput-optimal CSMA algorithm [9] with respect

o the v ( t )-regulated topology (N , L (v (t))) . The Proposition 2 in

4] proved the throughput optimality of the regular CSMA algo-

ithm under the time-scale separation assumption. The proposition

an be rephrased as follows: For any given 0 < ε1 , δ1 < 1, we

an find B 1 ( ε1 , δ1 ) > 0 such that, with probability greater than

(1 − δ1 ) , the equivalent scheduler (and hence the v ( t )-regulated

SMA algorithm according to Lemma 3) schedules (μl (t)) l∈L satis-

ying the following: 
 

l∈L 
w l (t) μl (t) 

≥ (1 − ε1 

2 

) max 
x ∈I(v (t)) 

∑ 

l∈ x 
w l (t) , whenever || w (t) || > B 1 , 

= (1 − ε1 

2 

) max 
x ∈I 

∑ 

l∈ x 
w l (t) v l (t) , (11)

here B 1 � 

1 
ε1 

(
L log 2 + log 1 

δ1 

)
. 

When || w ( t )|| > B , we have: 

ε1 

2 

max 
x ∈I 

∑ 

l∈ x 
w l (t) ≥ ε1 

2 

|| w (t) || > 

ε1 B 

2 

≥ max 
x ∈I 

∑ 

l∈ x 
ηl 

≥ max 
x ∈I 

∑ 

l∈ x 
w l (t)(1 − v l (t)) , 

here the last inequality follows the definition of v l ( t ). Hence, we

btain the following inequality, when || w ( t )|| > B , (
1 − ε1 

2 

)
max 

x ∈I 

∑ 

l∈ x 
w l (t) 

< max 
x ∈I 

∑ 

l∈ x 
w l (t) ( v l (t) + 1 − v l (t) ) − max 

x ∈I 

∑ 

l∈ x 
w l (t)(1 − v l (t)) 

≤ max 
x ∈I 

∑ 

l∈ x 
w l (t) v l (t) . 

ombining (11) , we know that, w.p. larger than (1 − δ1 ) , whenever

| w ( t )|| > B , ∑ 

l∈L 
μl (t) w l (t) 

≥
(

1 − ε1 

2 

)
max 

x ∈I 

∑ 

l∈ x 
w l (t) v l (t) 
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(
1 − ε1 

2 

)2 

max 
x ∈I 

∑ 

l∈ x 
w l (t) ≥ (1 − ε1 ) max 

x ∈I 

∑ 

l∈ x 
w l (t) , 

hich concludes the proof of Lemma 1 . 

.5. Proof of Theorem 1 

In this subsection, we provide the proof for Theorem 1 in-

roduced in Section 2.3 . We first define the Lyapunov function

 (Q (t)) � 

∑ 

l∈L g(Q l (t)) , where Q (t) � (Q l (t)) l∈L and g ′ (x ) = f (x ) .

e denote the corresponding Lyapunov drift as 	(t) � E { L (Q (t +
)) − L (Q (t)) | Q (t) } . From Taylor’s Theorem, we have the follow-

ng 

(t) = 

∑ 

l∈L 
E 

{
f ( Q̄ l (t))(Q l (t + 1) − Q l (t)) | Q (t) 

}
= 

∑ 

l∈L 
E 

{
f ( Q̄ l (t)) βl (t) | Q (t) 

}
+ 

∑ 

l∈L 
E 

{
f ( Q̄ l (t))(A l (t) − μl (t)) | Q (t) 

}
, 

here Q̄ l (t) lies between Q l ( t ) and Q l (t + 1) , ∀ l ∈ L . 

Since βl (t) = 0 if Q l ( t ) ≥ 1, we have f ( ̄Q l (t)) βl (t) ≤ f (Q l (t +
)) 1 { Q l (t)=0 } ≤ f (A M 

) . Consequently, 

E { 	(t) } ≤L f (A M 

) + 

∑ 

l∈L 
E 

{
f ( Q̄ l (t))(A (t) − μl (t)) 

}
. (12) 

o upper-bound the expectation of the Lyapunov drift E { 	(t) } in

12) , we first find an upper-bound for f ( ̄Q l (t))(A l (t) − μl (t)) . From

roperty (ii) of the link weight function f , for any given ε3 > 0,

here exists Q M 

> 0 such that ∀ Q l ( t ) > Q M 

, 

(1 − ε3 ) f (Q l (t)) < f ( Q̄ l (t)) < (1 + ε3 ) f (Q l (t)) . 

tilizing the above property, if Q l ( t ) > Q M 

, we have 

f ( Q̄ l (t))(A l (t) − μl (t)) 

< (1 + ε3 ) f (Q l (t))[ A l (t) − μl (t)] + 

−(1 − ε3 ) f (Q l (t))[ μl (t) − A l (t)] + 

= f (Q l (t))(A l (t) − μl (t)) + ε3 f (Q l (t)) | A l (t) − μl (t) | 
≤ f (Q l (t))(A l (t) − μl (t)) + ε3 A M 

f (Q l (t)) . 

ence, f ( ̄Q l (t))(A l (t) − μl (t)) can be bounded from above as fol-

ows: 

f ( Q̄ l (t))(A l (t) − μl (t)) 

< f (Q l (t))(A l (t) − μl (t)) 1 { Q l (t) >Q M } 
+ f ( Q̄ l (t))(A l (t) − μl (t)) 1 { Q l (t) ≤Q M } + ε3 A M 

f (Q l (t)) 

≤ f (Q l (t))(A l (t) − μl (t)) + f (Q l (t))(μl (t) − A l (t)) 1 { Q l (t) ≤Q M } 
+ ε3 A M 

f (Q l (t)) + f (Q M 

+ A M 

) A M 

≤ f (Q l (t))(A l (t) − μl (t)) + ε3 A M 

f (Q l (t)) 

+ f (Q M 

) + f (Q M 

+ A M 

) A M 

, 

hich leads to the following inequaility: 

 { 	(t) } ≤ L f (A M 

) + L f (Q M 

) + L f (Q M 

+ A M 

) A M 

+ 

∑ 

l∈L 
E { f (Q l (t))(ε3 A M 

+ A l (t)) } 

−
∑ 

l∈L 
E { f (Q l (t)) μl (t) } . (13) 
v  
The last term of the RHS of the inequality (13) can be upper-

ounded by 

−
∑ 

l∈L 
E { f (Q l (t)) μl (t) } 

 − P (|| w (t) || > B ) 
∑ 

l∈L 
E { w l (t) μl (t) | (|| w (t) || > B ) } (14) 

P (|| w (t) || ≤ B ) 
∑ 

l∈L 
E { w l (t) μl (t) | (|| w (t) || ≤ B ) } 

≤ −γ P (|| w (t) || > B ) E { max 
x ∈I 

∑ 

l∈ x 
w l (t) | (|| w (t) || > B ) } 

≤ −γ P (|| w (t) || > B ) 
∑ 

l∈L 
E { w l (t) μSTAT 

l (t) | (|| w (t) || > B ) } 

= −γ
∑ 

l∈L 
E { w l (t) μSTAT 

l (t) } + γ P (|| w (t) || ≤ B ) 

×
∑ 

l∈L 
E { w l (t) μSTAT 

l (t) | (|| w (t) || ≤ B ) } 

≤ −γ
∑ 

l∈L 
E { w l (t) μSTAT 

l (t) } + γ BL, (15) 

here we have employed Lemma 1 to (14) and substituted

n (15) the stationary randomized algorithm STAT defined in

emma 2 . 

Employing the above result to (13) , we have 

 { 	(t) } ≤ B 2 + 

∑ 

l∈L 
E 

{
f (Q l (t)) 

[
ε3 A M 

+ A l (t) − γμSTAT 
l (t) 

]}
= B 2 + 

∑ 

l∈L 
E { f (Q l (t)) [ ε3 A M 

+ λl − γ λl (1 + ε2 ) ] } 

≤ B 2 − ε
∑ 

l∈L 
E { f (Q l (t)) } , (16) 

here we have employed Lemma 2 to (16) . 

Taking the time-average over t = 0 , 1 , . . . , T − 1 of both sides of

16) and taking the limsup with respect to T , we conclude 

lim sup 

T →∞ 

1 

T 

T −1 ∑ 

t=0 

E 

⎧ ⎨ 

⎩ 

[ ∑ 

l∈L 
f 2 (Q l (t)) 

] 

1 
2 

⎫ ⎬ 

⎭ 

≤ lim sup 

T →∞ 

1 

T 

T −1 ∑ 

t=0 

E { ∑ 

l∈L 
f (Q l (t)) } ≤ B 2 

ε
, 

hich proves (7) . 

. Further discussions 

In this section, we provide further discussions on the imple-

entation issues of the v ( t )-regulated CSMA algorithm. Specifi-

ally, a modified v T ( t )-regulated CSMA algorithm is proposed to ap-

roach time-scale separation in Section 3.1 and a feasible choice of

hresholds is introduced in 3.2 . 

.1. Approaching time-scale separation 

We recall that Lemma 1 (and hence Theorem 1 ) in Section 2.3 is

ased on the time-scale separation assumption. This assumption

equires the schedule determined by the algorithm to converge to

ts steady state faster than the rate at which link weights w l ( t )

hange over time. In this section, we propose a method, referred to

s v T ( t )-regulated CSMA algorithm, to approximate this time-scale

eparation by updating the link weights less frequently. 

The v T ( t )-regulated CSMA algorithm is illustrated in Fig. 3 .

pecifically, we make the Markov chain of the schedules con-

erge to the steady state distributions by updating the link weights
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Fig. 3. v T ( t )-regulated CSMA algorithm. 
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w l, T ( t ) in the v T ( t )-regulated CSMA algorithm periodically every T

time slots, l ∈ L , 

w l,T (t) = f (Q l (kT )) , kT ≤ t < (k + 1) T , (17)

where T denotes the update period and k takes integer values. Sim-

ilarly, we also update the indicator vector periodically as v T (t) =
(v l,T (t)) l∈L with 

v l,T (t) = v l (kT ) , kT ≤ t < (k + 1) T , l ∈ L . 

We note that the link activation probability is redefined as 

p l,T (t) � 

e w l,T (t) 

1 + e w l,T (t) 
. 

The throughput-optimality still holds with the modified algo-

rithm, which is formally stated in the following theorem. 

Theorem 2. The v T ( t ) -regulated CSMA algorithm is throughput-

optimal. 

The proof of Theorem 2 is provided in Appendix A . 

3.2. A guideline on choosing thresholds (ηl ) l∈L 

The selection of the thresholds (ηl ) l∈L is essential to the perfor-

mance of the v ( t )-regulated algorithm. Since it is extremely hard

to find closed-form results on packet delay for queue-length-based

CSMA algorithms (though there are a few works in the literature

that provide order results, e.g., [9] ), instead of finding an optimal

threshold that minimizes delay, we provide a guideline on the se-

lection of thresholds (ηl ) l∈L in the following. Note that the RHS

( 
B 2 
ε ) of (7) can be considered as an upper-bound for packet queue

lengths, which is an indicator on the delay performance. Thus, we

choose the thresholds ηl , l ∈ L , such that this upper-bound 

B 2 
ε is

minimized. In the following proposition, we introduce such a fea-

sible choice of (ηl ) l∈L for the proposed v ( t )-regulated CSMA algo-

rithm. 

Proposition 2. Given ε1 = δ1 ≤ ε2 
2(1+ ε2 ) 

, 

ηl = ηC � 

(L + 1) log 2 + log 1+ ε2 

ε2 

2 max x ∈I 
∑ 

l∈L 1 l∈ x 
, l ∈ L , (18)

guarantees that 
B 2 
ε is minimized. 

Proof. According to the definition of B 2 in (8) and the definition of

B in Lemma 1 , it is sufficient to prove that the choice (18) ensures

that 

2 

ε1 

max 
x ∈I 

∑ 

l∈ x 
ηl ≤ B 1 = 

1 

ε1 

(
L log 2 + log 

1 

δ1 

)
. 
For any l ∈ L , we obtain from (18) that 

2 

ε1 

max 
x ∈I 

∑ 

l∈ x 
ηl = 

1 

ε1 

(
(L + 1) log 2 + log 

1 + ε2 

ε2 

)
≤ B 1 , 

ompleting the proof. Remark that since ε1 and δ1 can be chosen

rbitrarily small, the given choice of ε1 and δ1 is feasible and en-

ures that the constraint (9) holds, i.e, γ = (1 − δ1 ) 
2 > 1 − 2 δ1 ≥

1 
1+ ε2 

. �

If local links do not have the knowledge of ε2 , which can

e considered as the “distance” between the arrival rate vector

nd the maximal throughput, we can utilize a more conservative

smaller) choice of ηl : 

l = 

(L + 1) log 2 

2 max x ∈I 
∑ 

l∈L 1 l∈ x 
, l ∈ L . 

We note again that the value ηC does not necessarily minimize

he delay or the expectation of packet queue lengths. Instead, we

how in Proposition 2 that this choice is suboptimal in that it min-

mizes an upper-bound for queue lengths. Through numerical eval-

ations presented in Section 5 , we show that choosing the thresh-

ld as ηC indeed leads to favorable delay performance and sig-

ificantly mitigates the temporal starvation compared to a regular

hroughput-optimal CSMA algorithm. 

. Implementations 

In this section, we first introduce a distributed implementa-

ion of the v ( t )-regulated CSMA algorithm in Section 4.1 . We fur-

her implement the proposed algorithm in hardware on the Cross-

ow TelosB platform and present the implementation results in

ection 4.2 . 

.1. Distributed implementation of the v ( t )-regulated CSMA algorithm 

In the following, we present a distributed implementation of

he v ( t )-regulated CSMA algorithm. This distributed implementa-

ion is based on the RTS/CTS mechanism. Note that the RTS/CTS

andshake is only a tool to implement the distributed local inter-

ction of the algorithm and other alternatives may exist. We as-

ume each node has a single transceiver, i.e., a node cannot trans-

it and receive at the same time. For each node n ∈ N , we define

he following link set: I n (t) � { (n, i ) ∈ L : v ni (t) = 1 } , where v ni ( t )

enotes v l ( t ) with l = (n, i ) . For initialization, we let μl (0) = 0 ,

 l ∈ L . 

The main difficulty in the distributed implementation is to ran-

omly select an independent link set satisfying condition ((3)). To

chieve this, we employ the RTS/CTS mechanism. Specifically, in

ach time slot, we assign a number of T s control mini-slots before



D. Xue et al. / Computer Networks 122 (2017) 56–69 63 

Fig. 4. Distributed implementation of the v ( t )-regulated CSMA algorithm. 
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ata transmissions. The CSMA algorithm is executed at each node

 ∈ N for each time slot t , as illustrated in Fig. 4 . At the begin-

ing of each time slot t , the node n selects a link ( n, r n ) from I n ( t )

niformly at random and chooses a random backoff time from the

rst ( T s -1) mini-slots (Step 1 in Fig. 4 ). Then under the conditions

peficified in Step 2 in Fig. 4 , node n initiates an RTS ( Request-To-

end )-CTS ( Clear-To-Send ) handshake with its destination node r n 
hen the backoff duration is over. To facilitate the RTS/CTS hand-

hake, each mini-slot is further split into two micro-slots (Step 2.1
nd Step 2.2 in Fig. 4 ), dedicated for CTS and RTS transmissions, re-

pectively. After the RTS/CTS handshakes, the CSMA algorithm as-

igns link rates (Step 3 in Fig. 4 ) following the v ( t )-regulated CSMA

lgorithm described in Section 2.2 . At the end of each time slot

 , the source node n of any scheduled link ( n, r n ) is required to

roadcast its updated v (n,r n ) (t + 1) to its neighboring nodes (Step

 in Fig. 4 ). 

For narrative clarity, in Fig. 4 we let RTS( n ) and CTS( n ) denote,

espectively, the RTS intended for node n and the CTS intended for

ode n , with n ∈ N . 

It is not difficult to check that under this distributed imple-

entation, any link set x ( t ) whose links succeed in the RTS-CTS

andshake (i.e., Step 2 in Fig. 4 ) is an independent link set and

 P(x (t)) > 0 x (t) = L (v (t)) , satisfying ((3)). Thus, the distributed al-

orithm is equivalent to the v ( t )-regulated CSMA algorithm intro-

uced in Section 2.2 . 

.2. Implementation results 

In this section, v ( t )-regulated CSMA algorithm is validated in

mplementation vis-a-vis the QCSMA algorithm [4] , a throughput-

ptimal queue-length-based algorithm. We employ the link weight

unction f (x ) = log (x + 1) , since it is shown via simulation in

4,6] that the log ( ·) form yields better delay performance than

f (x ) = x [3] and f (x ) = log log (x + e ) [5] . 

To quantify the degree of temporal starvation, we use the sec-

nd moment of inter-service intervals as our metric. Specifically,

 l ( i ) denoting the scheduled service time of i th packet of link l ∈ L ,

e define the second moment of inter-service intervals J l for link l

s: 

 l � lim 

I→∞ 

1 

I 

I ∑ 

i =1 

(s l (i + 1) − s l (i )) 2 . 

ote that a smaller J l implies that link l is scheduled more fre-

uently and its idle periods are shorter, indicating a lower level of

emporal starvation. For analytical simplicity, in the implementa-

ion and simulation evaluation, we refer to the second moment of

nter-service intervals as the average of J l over all links l ∈ L . 

We implement the proposed algorithm (introduced in

ection 4.1 ) and QCSMA algorithm in hardware on the Cross-

ow TelosB platform running NanoQplus OS [15] . Each Crossbow

elosB node is equipped with an IEEE 802.15.4 compliant RF

ransceiver and a programmable MSP430 processor [16] . To main-

ain the time-slotted structure, nodes periodically exchange timing

nformation every 50 time slots to realign their internal clocks,

hich is sufficient in this experiment to achieve a data collision

ate of less than 0.01%. 

We employ a node-exclusive interference model (or one-hop in-

erference model) under the 10-link topology in Fig. 5 . We assume

n identical arrival rate for all 10 communication links, i.e, λl = λ,

 ∈ L . Since at most two links can be active at each time slot un-
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Fig. 6. Implementation results on delay and 2nd moment of inter-service intervals with respect to arrival rate under topology in Fig. 5 , given ηl = ηC , ∀ l ∈ L . 
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der the node-exclusive model, the stabilizable range of λ is 0 < λ
< 0.2, with ε2 = 

0 . 2 
λ

− 1 characterizing the distance between λ and

the maximum per-link throughput 0.2. The arrival processes A l ( t )

follow independent Bernoulli processes with parameter λ. 

Fig. 6 illustrates the delay and the second moment of inter-

service intervals under the two algorithms (where the time slot

length is 360 ms with T s = 6 , and the confidence interval is 0.9),

with ηl = ηC , ∀ l ∈ L . The implementation results are averaged over

50 0 0 time slots to 90,0 0 0 time slots for different arrival rates in 5

runs such that the confidence interval is of acceptable range. When

arrival rate is lower than 0.18 (90% of maximum throughput), the

packet delay and the second moment of inter-service intervals,

both averaged over all 10 links, are much smaller under the v ( t )-

regulated CSMA algorithm than the QCSMA algorithm. The differ-

ence between the two algorithms in performance diminishes when

the arrival rate further increases. This can be explained as follows:

When the arrival rate increases towards the maximum (the value

of 0.2 in this case), the queue lengths become larger, and hence the

value of the threshold ηC ( ηC = 2 . 7 in this implementation setup)

becomes negligibly small compared to the queue length. Thus, the

behavior of v ( t )-regulated CSMA algorithm approaches the QCSMA

algorithm when the arrival rate λ is close to 0.2. However, even

in a large-arrival-rate region, the v ( t )-regulated CSMA algorithm

still yields much better performance. For instance, at an arrival rate

λ = 0 . 19 (achieving 95% of maximum throughput), the packet de-

lay is 53% smaller under the v ( t )-regulated CSMA algorithm than

the QCSMA algorithm; and the second moment of inter-service in-

tervals is 46% smaller. 

We also note that under both algorithms, in a small-arrival-rate

regime (e.g., λ = 0 . 05 , achieving 25% of the maximum throughput),

the inter-service intervals are potentially spaced farther apart be-

cause packet arrivals are farther apart, as well. Therefore, the sec-

ond moment of inter-service intervals decreases when the arrival

rate increases initially, as shown in Fig. 6 . When arrival rate fur-

ther increases, average queue lengths become larger, and it is more

likely that an active link occupies the channel for prolonged pe-

riods of time followed by prolonged periods of inactivity, leading

to a larger second moment of inter-service intervals, i.e., a higher

level of temporal starvation. 

5. Further numerical results 

In this section, we further present a numerical comparative

study of v ( t )-regulated CSMA algorithm with reference to the QC-

SMA algorithm. In the following two subsections, we illustrate the

numerical performance using two different interference models
nder two different network topologies with the link weight func-

ion f (x ) = log (x + 1) . 

.1. Numerical evaluation in a 10-link topology 

In this subsection, we consider the same topology of Fig. 5 and

he node-exclusive interference model with same arrival processes

s in Section 4 . To complement the implementation results, we fur-

her study the transient behavior of the system and the effect of

hresholds (ηl ) l∈L on the algorithm performance. 

When arrival rate λ = 0 . 19 (i.e., achieving 95% of the maximum

tabilizable throughput), we find that all queues are stabilized and

he throughput of 1.9 (summed over ten links) is indeed achieved.

 snapshot of link rate schedules is shown in Fig. 7 with the sug-

ested thresholds ηl = ηC , ∀ l ∈ L . To deliver a clear picture of in-

tantaneous schedules, we only show the schedules for links (1, 2),

1, 3), (4, 1), and (5, 1) in Fig. 7 . Compared to QCSMA algorithm un-

er which a single link can occupy the channel over hundreds of

ime slots, the switch of link schedules is much more frequent un-

er the v ( t )-regulated CSMA algorithm. Thus, the temporal starva-

ion issue is successfully mitigated under the proposed algorithm. 

We now study the effect of thresholds (ηl ) l∈L on the perfor-

ance of the v ( t )-regulated CSMA algorithm. In Fig. 8 with arrival

ate λ = 0 . 1 , we show the performance of delay and second mo-

ent of inter-service intervals by varying the value of η, where we

et ηl = η, l ∈ L . The starred point in Fig. 8 denotes the case with

l = ηC , l ∈ L . We observe that ηC is indeed a favorable choice for

he thresholds (ηl ) l∈L in that it leads to comparably good delay

erformance among all the thresholds. J l performance could fur-

her be improved when η grows larger than ηC . However, we note

hat the decrease in J l is trivial compared to the increase in delay

s η becomes larger. 

From Fig. 8 , we see that even a small value of threshold (e.g.,

= 1 ) can significantly reduce the delay and mitigate the issue of

emporal starvation compared to the QCSMA algorithm. However,

e notice that, as η gets larger, the delay increases. Recall that un-

er v ( t )-regulated CSMA algorithm, only link weights (increasing

unctions f of queue lengths) greater than the threshold η can be

cheduled. Thus, the average queue packet length is greater than

r equal to f −1 (� η� ) , where � · � denotes the floor function. When

grows significantly large, f −1 (� η� ) dominates the queue length.

hus, according to the Little’s Law, the average packet delay in-

reases accordingly in a large- η-regime. 

We also observe that, when η increases, the duration of a link

ccupying the channel is expected to become smaller, leading to

 more frequent change in schedules. Hence, the second moment

f inter-service intervals J becomes smaller in Fig. 8 . However, we
l 
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Fig. 7. Numerical results: Snapshot of Link schedules when arrival rate λ = 0 . 19 . 

Fig. 8. Numerical performance of delay and 2nd moment of inter-service interval with respect to threshold η under topology in Fig. 5 , given arrival rate λ = 0 . 1 . 
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Fig. 9. Grid network topology for simulation comparison. 

d  

c

 

o  
ote this decrease in J l is trivial compared to the increase in delay

hen η becomes large. Therefore, we consider ηC to be a good

hoice for the thresholds. 

.2. Numerical comparison in a grid topology 

It is pointed out in [11] that regular throughput-optimal CSMA

lgorithms (such as the QCSMA algorithm) suffer from serious

emporal starvation in grid/lattice topology. In this subsection,

e show that under a grid topology, our proposed v ( t )-regulated

SMA algorithm does not suffer as much from the temporal star-

ation as the QCSMA algorithm. In fact, our proposed algorithm far

utperforms the QCSMA algorithm in both delay and second mo-

ent of inter-service intervals. Note that different from the algo-

ithm in [11] which is intended for grid/lattice topology only, our

roposed algorithm works for arbitrary network topologies under

eneral conflict graph interference model. 

Specifically, we employ a two-hop interference model under the

rid topology in Fig. 9 . The arrival rate vector is set as λl = 

1 
4 λ

or l = 1 , 4 ; λl = 

1 
6 λ, for l = 5 , 9 , 14 , 18 , 23 , 25 , 27 , 28 , 31 ; and λl =

1 
12 λ, otherwise. The stabilizable range for λ is 0 < λ < 1, since

hese arrival rates can be represented by a convex combination of

2 maximal matching schedules. The arrival processes A l ( t ) follow

ndependent Bernoulli processes with parameter λ , ∀ l ∈ L . In ad-
l 
ition, we let ε2 = 

1 
λ

− 1 which denotes the distance between the

urrent arrival rates and the maximum per-link throughput. 

Similar to the results under the 10-link topology in the previ-

us section, results in Fig. 10 indicate that the proposed algorithm
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Fig. 10. Numerical performance comparison of delay and 2nd moment of inter-service interval under grid topology in Fig. 9 , with ηl = ηC , ∀ l ∈ L . 

Fig. 11. Numerical performance of delay and 2nd moment of inter-service interval with respect to threshold η under grid topology in Fig. 9 , when λ = 0 . 9 . 
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significantly outperforms the QCSMA algorithm in terms of delay

and second moment of inter-service intervals. In Fig. 11 , we show

that ηC , determined by (18) , is a suitable choice for the threshold,

since a larger threshold can lead to a large increase in delay with

insignificant improvement on the second moment of inter-service

intervals. 

6. Conclusions and future works 

In this paper, we proposed a v ( t )-regulated CSMA algorithm

that can be implemented via a distributed method and achieve op-

timal throughput in wireless networks with single-hop transmis-

sions. In the algorithm, link scheduling is performed favoring links

with sufficiently large queue lengths to reduce average delay and

ensure a more frequent switch between schedules. Via both hard-

ware implementation and numerical evaluations, we show that

compared to the QCSMA algorithm, the proposed algorithm signif-

icantly improves the delay performance and mitigates the problem

of temporal starvation. 

In our future work, we will further study the performance of

the proposed CSMA algorithm via a larger scale testbed implemen-

tation. Proving the throughput optimality without the time-scale

separation assumption will also be one of our future research di-

rections. 
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ppendix A. Proof of Theorem 2 

We utilize the following two lemmas to prove Theorem 2 . 

emma 4. Given kT ≤ t < (k + 1) T and any ε4 > 0, the following

nequality holds 

(1 + ε4 ) max 
x ∈I(v (kT )) 

∑ 

l∈ x 
w l (t) ≥ max 

x ∈I(v (t)) 

∑ 

l∈ x 
w l (t) , 

hen 

| w (t) || > 

1 

ε4 

max 
x ∈I 

∑ 

l∈ x 
f ( f −1 (ηl ) + (T − 1) A M 

) . (19)

roof. Let t = kT + i, 0 ≤ i < T . We can bound Q l ( t ) by the follow-

ng 

 l (kT ) − i ≤ Q l (t) ≤ Q l (kT ) + iA M 

, (20)

ccording to the queue dynamics (2) . For analytical simplicity, we

enote the following independent sets 

 1 � arg max 
x ∈I(v (kT )) 

∑ 

l∈ x 
w l (t) , 

 2 � arg max 
x ∈I(v (t)) 

∑ 

l∈ x 
w l (t) . 

Since 

 2 = (x 2 ∩ L (v (kT ))) ∪ (x 2 \L (v (kT ))) 

nd ∑ 

∈ x 2 ∩L (v (kT )) 

w l (t) ≤
∑ 

l∈ x 1 
w l (t) , 

http://dx.doi.org/10.13039/100000001
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e obtain that ∑ 

l∈ x 2 
w l (t) −

∑ 

l∈ x 1 
w l (t) 

≤
∑ 

l∈ x 2 \L (v (kT )) 

w l (t) 

≤
∑ 

l∈ x 2 \L (v (kT )) 

f ( f −1 (ηl ) + (T − 1) A M 

) , 

(21) 

here we have employed (20) in the last inequality. 

When (19) holds, 

| w (t) || > max 
l∈L 

f ( f −1 (ηl ) + (T − 1) A M 

) , 

hich leads to the following inequality: 

max 
l∈L 

Q l (t) > max 
l∈L 

f −1 (ηl ) + (T − 1) A M 

≥Q j (kT ) + (T − 1) A M 

≥ Q j (t) , 

or any j ∈ L\L (v (kT )) . Hence, when (19) holds, arg max l∈L Q l (t) ∈
 (v (kT )) and 

 

∈ x 1 
w l (t) ≥ max 

l∈L (v (kT )) 
w l (t) = || w (t) || . (22)

When (19) is satisfied, we conclude 

(1 + ε4 ) 
∑ 

l∈ x 1 
w l (t) 

≥
∑ 

l∈ x 1 
w l (t) + ε4 || w (t) || 

> 

∑ 

l∈ x 1 
w l (t) + max 

x ∈I 

∑ 

l∈ x 
f ( f −1 (ηl ) + (T − 1) A M 

) ≥
∑ 

l∈ x 2 
w l (t) , 

here the first and the last inequalities follow (22) and (21) , re-

pectively. This completes the proof of Lemma 4 . �

emma 5. With the v T ( t ) -regulated CSMA algorithm, under the time-

cale separation assumption, for any given 0 < ε′ 
1 , δ1 < 1 , we can find

 

′ (ε′ 
1 , δ1 ) 

2 , such that, whenever, || w ( t )|| > B ′ , 
 

l∈L 
w l (t) μl (t) ≥

(
1 − ε′ 

1 

2 

)
max 

x ∈I(v (t)) 

∑ 

l∈ x 
w l (t) . (23) 

roof. Similar to the derivation of inequality (11) in Lemma 1 , un-

er the time-scale separation assumption, we can obtain inequal-

ty (24) through the regular throughput-optimal CSMA algorithm

n v T ( t )-regulated topology (N , L (v T (t))) . Specifically, given 0 <
′ 
1 , δ1 < 1 and ε1 = 

ε′ 2 
4 , we can find B 1 ( ε1 , δ1 ) > 0 such that w.p.

reater than (1 − δ1 ) , the v T ( t )-regulated CSMA algorithm sched-

les (μl (t)) l∈L satisfy: ∑ 

l∈L 
w l,T (t) μl (t) ≥

(
1 − ε1 

2 

)
max 

x ∈I(v (kT )) 

∑ 

l∈ x 
w l,T (t) , 

whenever max 
l∈L 

w l,T (t) > B 1 . (24) 

Since f ′ ( x ) ≤ 1, ∀ x ≥ 0 (from Property (iii) of the link weight

unction f ), and 

f (Q l (t)) − f (Q l (kT )) = f ′ (Q 

′ 
l )(Q l (t) − Q l (kT )) 

here Q 

′ 
l 

lies between Q l ( t ) and Q l ( kT ), from (20) , we have 

 l (kT ) − i ≤ w l (t) ≤ w l (kT ) + iA M 

, ∀ l ∈ L . (25)

rom (25) we obtain that ∑ 

l∈ x 1 
w l (t) ≤

∑ 

l∈ x 1 
(w l (kT ) + iA M 

) 

≤ max 
x ∈I(v (kT )) 

∑ 

l∈ x 
w l (kT ) + iA M 

max 
x ∈I 

∑ 

l∈L 
1 { l∈ x } , 

(26) 
2 The construction of such a constant B ′ is provided in the proof. 

 

 

nd 

 

l∈L 
w l (t) μl (t) ≥

∑ 

l∈L 
w l (kT ) μl (t) − i max 

x ∈I 

∑ 

l∈L 
1 { l∈ x } . (27)

Applying (26) and (27) to (24) , we have, w.p. greater than (1 −
1 ) , whenever || w ( kT )|| > B 1 , 

 

l∈L 
w l (t) μl (t) 

≥ (1 − ε1 

2 

) max 
x ∈I(v (kT )) 

∑ 

l∈ x 
w l,T (t) − i max 

x ∈I 

∑ 

l∈L 
1 { l∈ x } 

≥ (1− ε1 

2 

) 
∑ 

l∈ x 1 
w l (t)−(T − 1) 

(
1 + A M 

(1− ε1 

2 

) 
)

max 
x ∈I 

∑ 

l∈L 
1 { l∈ x } 

≥ (1 − ε1 ) 
∑ 

l∈ x 1 
w l (t ) , when || w (t ) || > B 3 , 

= (1 − √ 

ε1 )(1 + 

√ 

ε1 ) 
∑ 

l∈ x 1 
w l (t) (28) 

here 

 3 � max 

{ 

f 
(

f −1 (B 1 ) + A M 

(T − 1) 
)
, 

2 

ε1 

(T − 1) 

[ 
1 + A M 

(1 − ε1 

2 

) 
] 

max 
x ∈I 

∑ 

l∈L 
1 { l∈ x } 

} 

. 

ote that when || w ( t )|| > B 3 , 

|| w (kT ) || ≥ f (|| Q (t) || − iA M 

) 

> f ( f −1 (B 3 ) − (T − 1) A M 

) ≥ B 1 , 

here we have utilized inequality (20) . 

Employing Lemma 4 to (28) with ε4 = 

√ 

ε1 , we conclude, w.p.

reater than (1 − δ1 ) , whenever || w ( t )|| > B ′ , 
 

l∈L 
w l (t) μl (t) ≥

(
1 − ε′ 

1 

2 

)∑ 

l∈ x 2 
w l (t) , 

here B ′ = max { B 3 , 2 
ε′ 

1 

max x ∈I 
∑ 

l∈ x f ( f −1 (ηl ) + (T − 1) A M 

) } , which

ompletes the proof. �

Since the v T ( t )-regulated CSMA algorithm has the same prop-

rty ( (23) in Lemma 5 ) as the v ( t )-regulated CSMA algorithm ( (6)

n Lemma 1 ), the proof of Theorem 2 directly follows that of

heorem 1 in Section 2.5 . 
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