Open Digital HDL to Synthesized Layout Flow for
Mixed-Signal IC’s

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

James Robert Copus,

* ok k% %
The Ohio State University

2003

Master’s Examination Committee: Approved by

Dr. Steven Bibyk, Adviser

Dr. Joanne DeGroat
Adviser

Department of Electrical
Engineering



© Copyright by
James Robert Copus

2003



ABSTRACT

As mixed-signal circuits become larger and more complex, manual creation of the
digital parts of these designs becomes more difficult. To simplify and speed up the
design process, synthesis and place-and-route tools are used to automate much of the
design of the digital components. A design flow was established and analyzed using
BuildGates Extreme for synthesis, and Silicon Ensemble for automatic cell placement
and routing. The methodology starts with a hardware model created in either VHDL
or Verilog, and the final product of the flow is a layout that can be imported into
Cadence for integration into a mixed-signal design.

To support the design flow, a digital standard cell library was created using the
AMI 0.5 pum process. The details of standard cell library generation are discussed,
including the establishment standard cell rules and standard cell inclusion choices.

Three other university-built standard cell libraries were compared against the
OSU standard cell library. All four libraries were used as a target of the design flow,
and three different sample designs were created using each standard cell library. The
OSU library proved to be the most flexible in terms of different types of cells, and
designs created using the library usually had the smallest layout area. The library and
design flow is a viable option for rapid design and layout of the digital components

of mixed-signal integrated circuits in the research setting.

ii



Open Digital HDL to Synthesized Layout Flow for
Mixed-Signal IC’s

By
James Robert Copus, M.S.

The Ohio State University, 2003
Dr. Steven Bibyk, Adviser

As mixed-signal circuits become larger and more complex, manual creation of the
digital parts of these designs becomes more difficult. To simplify and speed up the
design process, synthesis and place-and-route tools are used to automate much of the
design of the digital components. A design flow was established and analyzed using
BuildGates Extreme for synthesis, and Silicon Ensemble for automatic cell placement
and routing. The methodology starts with a hardware model created in either VHDL
or Verilog, and the final product of the flow is a layout that can be imported into
Cadence for integration into a mixed-signal design.

To support the design flow, a digital standard cell library was created using the
AMI 0.5 pum process. The details of standard cell library generation are discussed,
including the establishment standard cell rules and standard cell inclusion choices.

Three other university-built standard cell libraries were compared against the
OSU standard cell library. All four libraries were used as a target of the design flow,

1



and three different sample designs were created using each standard cell library. The
OSU library proved to be the most flexible in terms of different types of cells, and
designs created using the library usually had the smallest layout area. The library and
design flow is a viable option for rapid design and layout of the digital components

of mixed-signal integrated circuits in the research setting.



To my family and friends, who provided support and encouragement throughout my

education.

iii



ACKNOWLEDGMENTS

I would like to thank Dr. Stephen Bibyk for the opportunity to work in his research
group and his assistance with my research and thesis, and also for agreeing to serve
on my examination committee.

I would also like to thank Dr. Joanne DeGroat for her insight on digital VLSI
techniques and agreeing to serve on my examination committee.

Thanks go to the Information Electronics group, especially Jason Abele, Todd
James, Jason Parry, and John Fisher, for ideas, assistance, and feedback.

Thanks also go to the FEH Program, especially to Dr John Demel and Dr. Rick
Freuler, for providing a place for me during a time of many changes. The faculty,
staff, and students involved in the program helped make my time in graduate school
enjoyable and educational.

I would also like to thank all my friends for listening to my rants and frustrations,
for being there when I needed a break, and understanding when I could not take a
break. Along the same lines, praise needs to go to the Cartoon Network and their
late-night Adult Swim lineup for providing the background noise during long nights
of writing my thesis.

Finally, I would like to thank George, Lucille, and Angela Copus for their loving

support when it looked like I was becoming a permanent student.

v



VITA

October 21, 1977 ... .o Born - Springfield, OH

June 8, 2001 ... ... B.S. Electrical & Computer Eng.,
The Ohio State University,
Columbus, OH

September 2001 to present .................. Graduate Teaching Associate,
The Ohio State University,
Columbus, OH

James Robert Copus was born in Springfield, Ohio on October 21, 1977 to Rev-
erend George and Lucille Copus. After graduation from Riverdale High School in
1996, he attended The Ohio State University, where he pursued various academic
interests and became involved in multiple extra-curricular groups. After obtaining a
Bachelors degree in Electrical and Computer Engineering in 2001, his interests led to
graduate school research with the Information Electronics research group and teach-
ing with the Fundamentals of Engineering Honors Program as a Graduate Teaching
Associate while pursuing a Masters Degree in Electrical Engineering.

FIELDS OF STUDY

Major Field: Electrical Engineering

Studies in Information Electronics: Dr. Stephen Bibyk



List of Figures . . . .

Chapters:

1.

2.

TABLE OF CONTENTS

Introduction to Digital VLSI Circuit Design . . . . . . . .. .. ... ..

1.1 Introduction
1.2 Synthesis .

1.3 Circuit Layout Generation . . . . . . . ... ... ... .......
1.3.1 Programmable Logic Devices . . . . .. ... ... .. ...
1.3.2 Gate Arrays. . . . . . . . ..
1.3.3 Standard Cell Libraries . . . .. .. .. ... ... .....

1.4 Full-Custom
1.5 1IP Reuse .

vs. Automated Synthesis and Place & Route . . . . .

Automatic Synthesis and Place & Route Methodology . . . .. ... ..

2.1 Design Flow

vi

Page
ii
iii

v

xi

—_

O~ Ot i W~



3. Design Flow Implementation . . . . . .. ... .. .. ... .. ... .. 17

3.1

3.2

3.3

3.4

3.5
3.6
3.7

3.8

3.9

3.10

Standard Cell Library Design . . . . . . ... ... ... ... .. 17
Standard Cell Design Rules . . . . . . ... .. .. ... ...... 20
3.2.1 Standard Cell Height . . . . . .. ... ... ... ..... 20
3.2.2 Inter-Cell Routing Rules . . . . . . ... ... ... .. ... 21
3.2.3 Intra-Cell Routing Rules . . . . . ... ... ... .. .... 25
3.2.4 Power and Ground Rails . . . . . .. ... ... ... 25
3.2.5 Feedthroughs . . . . .. .. .. ... oL 26
326 Filler Cells . . . .. .. ... Lo 26
Cell Schematic Design . . . . . . . ... ... .. 0oL 26
3.3.1 Cell Inclusion Choices . . . . . .. ... ... ... ..... 27
3.3.2 Naming Conventions . . . . . . ... ... .. ........ 28
3.3.3 Individual Cell Testing . . . . . ... ... .. ... .... 30
Abstract Generation . . . . . . ... Lo 30
3.4.1 Separate Abstract Library . . . . . . .. .. ... L. 33
3.4.2 Verilog Gate List . . . . .. ... ... 0L 35
3.4.3 Synthesis Library File Creation . . . . . .. ... ... ... 36
Synthesis Steps . . . . . . . ... 37
BuildGates Scripting . . . . . . . ..o L oL 39
Limitations of Synthesis Software . . . . . . .. ... ... ... .. 41
3.7.1 Single Signal Transition . . . .. ... ... ... .. .... 41
3.7.2 Clauses in IF Statement . . . . . ... ... ... . .... 42
3.7.3 WAIT Statements . . . .. .. ... .. ... ........ 43
Place & Route Steps . . . . . . . . . . . . . ... o 43
3.8.1 Software Initialization . . . . . ... .. ... ... ... .. 43
3.8.2 Floorplan Initialization . . . .. .. ... ... ....... 44
3.8.3 Power Planning . . . . . .. ... ... ... 000 45
3.8.4 Pin and Cell Placement . . . . ... .. ... ... ..... 46
3.8.0 Routing . . . .. .. ..o 47
3.8.6 Export ... .. ... ... 48
387 DEF . . . .. 49
3.8.8 GDSIT. ... ... . . 49
3.8.9 Silicon Ensemble Scripting . . . . . . . ... 0oL 20
Import Into Cadence . . . . . . .. ... ... 52
3.9.1 Import Verilog as Schematic . . . . . ... ... ... .. .. 52
3.9.2 Import DEF as Layout . . . . .. .. .. ... ... ..... 53
3.9.3 Import GDSII as Layout . . . .. ... ... ........ 54
3.9.4 Design Checking . . . . . ... ... ... L. 95
Cell Libraries Used As Reference . . . . .. ... ... ... .... 56
3.10.1 IITO6.STDCELLS . . . . . ... ... ... ... ..... 56

vii



3.10.2 UT_.LP.AMIO6 . . . .. . ... oo o7

3.10.3 MSU_Jennings . . . . . . . . ... oo o7

3.11 VHDL Sample Models . . . . . . ... ... ... ... ....... 58

3.11.1 8-bit Bidirectional Bus . . . . . . . ... ... 58

3.11.2 Mini-Universal Asynchronous Receiver-Transmitter . . . . . 58

3.11.3 AVR Microprocessor COre . . . . . . . . . . oo v ... 59

4. Results. . . . . . o 60

4.1 Comparison of Standard Cell Libraries . . . . . ... ... ... .. 60

4.2 Synthesis Results . . . . .. .. ... 00000 61

4.2.1 Bidirectional Bus . . . . . . ... ... 0oL L. 64

4.2.2 MiniUART . .. ... . . 64

4.2.3 AVR Microprocessor Core . . . . . . .. .. .. ... .... 65

4.2.4 Post-Synthesis, Pre-Routing Analysis . . . . . . . ... ... 65

4.3 Placement and Routing . . . . .. ... ... 66

4.3.1 Design Checking . . . . ... ... ... . 69

5. Conclusions . . . . . . ... 72

5.1 Contributions . . . . . . . ..o 72

5.2 Future Work . . . . . ..o 73

5.2.1 Standard Cell Library Improvements . . . . . . ... .. .. 73

5.2.2 Software Tools . . . . . . . .. ... ... 74

5.3 Final Remarks . . . . . . .. ... .. ... ... ... ... 75
Appendices:

A. VHDL/Verilog Synthesis, Place & Route Flow Tutorial . . . . . . . ... 76

A1 Synthesis . . . . . . . L 76

A.2 Place & Route Design . . . . . .. ... .. ... ... ... 7

B. Abstract Generator Tutorial for Standard Cells . . . . . . ... ... .. 80

C. Synopsis Library . . . . . . .. o 82

D. Symbol Library . . . . . . . . . 92

E. LEF Conversion for Silicon Ensemble . . . . . . . .. .. ... ...... 94

viii



F. LEF Conversion to Verilog . . . . . . . . ... ... .. ... .. 96
G. LEF Conversion to Synopsis LIB . . . . . . ... .. .. .. L. 99
H. BuildGates Synthesis Scripts . . . . . . . .. ... oL 101
H.1 Master Script . . . . . . . . . . . . 101
H.2 Bidirectional Bus Synthesis Script . . . . ... ... ... ... .. 102
H.3 MiniUART Synthesis Script . . . . . . . . ... ... ... .. ... 102
H.4 AVR Core Synthesis Script . . . . . ... ... ... ... ..... 102
I.  Silicon Ensemble Pin Constraint Format . . . .. .. ... ... ... .. 103
J.  Silicon Ensemble Place & Route Scripts . . . . . ... .. ... ... .. 105
J.1 Shell Script . . . . . . .. 105
J.2 Bidirectional Bus Place & Route Script . . . .. ... ... .... 106
K. Synthesis Summary Reports . . . . . . . ... .. ... ... ....... 108
K.1 OSU AVR Microprocessor . . . . . . . . . .. ... ... 108
K.2 OSU Bidirectonal Bus . . . .. .. ... ... ... ......... 109
K.3 OSU miniUART . . . . .. .. .. ... ... . . ..., 110
K.4 UT AVR Microprocessor . . . . . . . . . . . . v ... 111
K.5 UT miniUART . . . . . . . .. . 112
K.6 IIT Bidirectional Bus . . . . . .. ... ... ... .. ... 113
K.7 TIT miniUART . . . . . . . . . . oo 114
K.8 MSU AVR Microprocessor . . . . . . . . . v v v v v ii .. 115
K.9 MSU miniUART . . . . .. . . ... 116
L. OSU Standard Cell Library Contents . . . . . . . ... ... ....... 118
M. OSU Standard Cell Library . . . . . . . ... .. ... ... ....... 119
N. Sample Layouts . . . . . . . . ... 191
Bibliography . . . . . . . . 195

X



LIST OF TABLES

Table

4.1 Comparison of Standard Cell Libraries. . . . . . . .. .. .. ... ..
4.2 Comparison of Number of Cells in the Standard Cell Libraries. . . . .
4.3 Area Comparison of OSU Cells with Smallest in Other Library.

4.4 Synthesis Results of Bidirectional Bus. . . . . . . .. ... ... ...
4.5 Synthesis Results of MiniUART Design. . . . .. ... ... ... ..
4.6 Synthesis Results of AVR Microprocessor. . . . . .. .. ... ....
4.7 Final Design Layout Areas. . . . .. ... .. ... ... .......

4.8 Core Row Utilization of all placed-and-routed designs. . . . . . . . ..

Page
62
63

63



LIST OF FIGURES

Figure Page
2.1 HDL to Layout Design Flow . . . . . ... .. ... ... ....... 14
2.2 Software Tools Used in HDL to Layout Flow . . . . . .. ... . ... 16
3.1 Standard Cell Library Generation . . . . . . .. ... ... ...... 19
3.2 Different Minimum Spacing Methods . . . . . .. ... ... ... .. 22
3.3 How Grid Offset Increases Grid Intersections. . . . . . ... ... .. 23
3.4 Routing Grid . . . . . ... Lo 24
D.1 BuildGates Graphical Symbol Library . . . . . .. ... ... ... .. 93
M.1 Symbol of a022x1 . . . . . . . . . Lo 120
M.2 Schematic of a022x1 . . . . . . . ..o oL 121
M.3 Layout of a022x1 . . . . . . . . . . 122
M.4 Symbol of a0i22x1 . . . . . . . ..o 123
M.5 Schematic of a0i22x1 . . . . . . . . . ... Lo 124
M.6 Layout of a0i22x1 . . . . . . . . . . ..o 125
M.7 Symbol of bufxl . . . . . . . ... 126
M.8 Schematic of bufxl . . . . . ... .. . o 0oL 127

xi



M.9 Layout of bufxl . . . . . . . .. ... .o oo 128

M.10Symbol of bufx4 . . . . . . . ... 129
M.11Schematic of bufx4 . . . . . . . . ... oL 130
M.12Layout of bufx4 . . . . . . . ... 131
M.13Symbol of bufxzl . . . . . .. ... o oo 132
M.14Schematic of bufzx1 . . . . . . . . ... L oL 133
M.15Layout of bufzx1 . . . . . . . ... o oo 134
M.16Symbol of dff . . . . . . ..o oo 135
M.17Schematicof dff . . . . . . . ..o oo 136
M.8Layout of dff. . . . . . . . ..o 137
M.19Symbol of dffpc . . . . . . ..o 138
M.20Schematic of dffpc . . . . . . .. ..o oL oL 139
M.21Layout of dffpc . . . . . . . ..o 140
M.22Layout of filll . . . . . . . . ... 141
M.23Layout of fill2 . . . . . . . . ... 142
M.24Symbol of invx1 . . . . . .. ..o 143
M.25Schematic of invx1 . . . . . .. ..o Lo 144
M.26Layout of invx1 . . . . . . . .. .. 145
M.27Symbol of invx4 . . . . . ... 146
M.28Schematic of invx4 . . . . . . ..o oL 147
M.29Layout of invx4 . . . . . . . ... 148

xii



M.30Symbol of invzxl . . . . . . ... 149

M.31Schematic of invzx1 . . . . . . . ..o oo 150
M.32Layout of invzxl . . . . . . .. .. Lo 151
M.33Symbol of lat . . . . . . .. .. 152
M.34Schematicoflat . . . . . . . . ..o o oo 153
M.35Layout of lat . . . . . . ... 154
M.36Symbol of latpe . . . . . . ..o 155
M.37Schematic of latpc . . . . . . . ..o 156
M.38Layout of latpc . . . . . . . .. .. 157
M.39Symbol of mux21x1 . . . . . . . . ..o 158
M.40Schematic of mux21x1 . . . . . . . . ... oL 159
M.41Layout of mux21x1 . . . . . . . . . ..o 160
M.42Symbol of nand2x1 . . . . . . ..o 161
M.43Schematic of nand2x1 . . . . . . . . . ..o Lo 162
M.44Layout of nand2x1 . . . . . . . . ... Lo 163
M.45Symbol of nand3x1 . . . . . .. ..o 164
M.46Schematic of nand3x1 . . . . . . . . ..o L oo 165
M.47Layout of nand3x1 . . . . . . ... Lo Lo 166
M.48Symbol of nand4x1 . . . . . . . ..o 167
M.49Schematic of nand4x1 . . . . . . . ..o oL Lo 168

xiii



M.50Layout of nand4x1 . . . . . . . . ..o Lo 169

M.51Symbol of nor2x1 . . . . . . ... Lo 170
M.52Schematic of nor2x1 . . . . . . . ..o Lo 171
M.53Layout of nor2x1 . . . . . . .. Lo L 172
M.54Symbol of nor3x1 . . . . . . ... 173
M.55Schematic of nor3x1 . . . . . . . ..o Lo 174
M.56Layout of nor3x1 . . . . . . .. ..o 175
M.57Symbol of nordx1 . . . . . . ..o 176
M.58Schematic of nordx1 . . . . . . . ..o oo 177
M.59Layout of nordx1 . . . . . . ..o 178
M.60Symbol of tiehigh . . . . . .. ... oo oo oo 179
M.61Schematic of tiehigh . . . . . ... ..o 0000000 180
M.62Layout of tiehigh . . . . . . . .. ... oo oo 181
M.63Symbol of tielow . . . . . . ... 182
M.64Schematic of tielow . . . . . . . . ..o oL Lo 183
M.65Layout of tielow . . . . . . . . ... ... 184
M.66Symbol of xnor2x1 . . . . . .. Lo 185
M.67Schematic of xnor2x1 . . . . . . . ..o Lo 186
M.68Layout of xnor2x1 . . . . . . . . .. Lo 187
M.69Symbol of xor2x1 . . . . . . ..o 188
M.70Schematic of xor2x1 . . . . . . . ... oo 189

xXiv



M.71Layout of xor2x1 . . . . . . . . . . 190
N.1 Layout of Bidirectional Bus on OSU Digital Standard Cell Library. . 192
N.2 Layout of MiniUART on OSU Digital Standard Cell Library. . . . . . 193

N.3 Layout of AVR Microprocessor Core on OSU Digital Standard Cell
Library. . . . . . . oo 194

XV



CHAPTER 1

Introduction to Digital VLSI Circuit Design

1.1 Introduction

Over the last few decades, the semiconductor industry has been able to constantly
miniaturize their fabrication technologies, allowing more transistors to fit on a single
silicon wafer. This higher transistor density has allowed larger and more complicated
digital circuits to be created. However, as integrated circuits are designed on a larger
scale, it becomes almost impossible to design and verify the circuits manually. This
task becomes even more difficult during the creation of mixed-signal integrated cir-
cuits, since the analog part of the design takes up a large part of the design resources.

The current methodology for creating Very Large Scale Integrated (VLSI) circuits,
which are defined as a circuit containing hundreds of thousands of transistors, is to
use a hardware description language, such as VHDL or Verilog, to define the behav-
ior of a circuit. This model is then verified for functionality, and then synthesized
using a software tool such as Synopsis Design Compiler or Ambit BuildGates. The
synthesized circuit is usually in the form of a gate-level netlist that can be mapped
to physical layouts contained in a standard cell library. A place-and-route tool, such
as Synopsis Physical Compiler or Cadence Silicon Ensemble, takes the netlist and

1



creates a physical layout containing the standard cells and the proper wire routing
between the cells. This finished layout can then be tested, either through netlist
extraction and verification or through a layout- versus- schematic test that can verify
that both the layout and a schematic are equivalent.

This type of design methodology allows a top-down design flow, where the overall
specifications can be created, and large digital blocks can be instantiated at a be-
havioral, dataflow, register transfer level, or structural level. These blocks can then
be synthesized and easily reused in other designs to even further speed up the de-
sign process. The low-level problems of cell placement and routing can be handled
by automated software, and further refinement can be performed to achieve timing
convergence with the original specifications.

This document outlines a design flow to generate a working semiconductor layout
from a hardware description language model. The layout could then be easily inte-
grated into a mixed-signal layout using Cadence, a widely-used tool in analog and
mixed-signal circuit design. A digital standard cell library was created in support
of this design flow. The flow Chapter 1 provides a brief background of digital VLSI
circuit design techniques. Chapter 2 outlines an automatic synthesis and place-and-
route methodology, and Chapter 3 describes in detail the steps used to create and
use this flow. The construction of the standard cell library is also described. Chapter
4 discusses the results of some analyses of the standard cell library and design flow.

Chapter 5 draws some conclusions and offers ideas for future work in this area.



1.2 Synthesis

Hardware description languages are used to model and simulate hardware designs
at different levels of abstraction: from a behavioral or algorithmic level to a gate-level
logic or register transfer level (RTL). Two languages are commonly used to model
hardware: VHDL and Verilog. VHDL was first developed for the Department Of
Defense VHSIC (Very High Speed Integrated Circuits) groups. It eventually became
an IEEE and ANSI standard. The language was updated in 1993 to add more features
and clarifications of previous features [1]. The Verilog Hardware Description Language
was created by Gateway Design Automation in 1984. Gateway Design Automation
was later bought out by Cadence Design Systems in 1989, and Cadence later made
the Verilog language an open standard. Verilog became an IEEE standard in 1995.
[2] Both of these languages are widely used, with VHDL used heavily in defense work,
and Verilog in industry, although both languages are used in both sectors.

Synthesis is the process of construction a gate-level netlist from a model of a circuit
described in a hardware description language. Since VHDL is primarily designed to
be a hardware simulation language, not all VHDL models can be synthesized into
a netlist, or even realized into hardware. Different synthesis tools support different
subsets of VHDL, and may require a specific modeling style to properly synthesize a
circuit. [1]

Current synthesis software can take a model in a hardware description language
and synthesize it into a physical design. The tool can then optimize that design for
minimal area or speed requirements, according to the timing and size characteristics
of the target technology. Many synthesis tools can also add automatic test circuitry

such as scan chains or built-in self-test logic.

3



1.3 Circuit Layout Generation

Automatic placement and routing algorithms for digital standard cells advanced
to take advantage of more complex semiconductor processes. When only one or two
metal layers were available for routing, the software tools usually required that all
routing occurred around the digital cells, and connection pins had to be at the cell
boundaries. Cells were usually of different cell heights, so care had to be taken so that
power and ground connections lined up correctly. Since all inter-cell routing had to
occur between the cells (as opposed to through or over the cells), a large proportion of
the layout area was consumed with routing. As more routing layers became available,
more complex algorithms were developed to utilize space more efficiently, and over-
the-cell routing became widely used.

More than one way has been developed to speed up the VLSI circuit design and
production process. Programmable logic devices, such as field-programmable gate
arrays (FPGA’s) and complex programmable logic devices (CPLD’s) are a fast way
to make small amounts of digital chips, at the expense of circuit speed and area.
Gate arrays depend on part of the semiconductor being prefabricated to allow fast
turnaround times. Standard cell based designs provide the most flexibility, and high-
est circuit speeds of the automated methods, at the expense of slow turnaround times
and high initial fabrication costs. These methods provide different speed, production
times, and price points. The choice depends on the specifications and constraints of

the design and project.



1.3.1 Programmable Logic Devices

Programmable Logic Devices are integrated circuits that contain logic blocks or
gate arrays that can be connected in different ways to implement logic gates and
memory to produce digital circuits. The devices can be mass-produced, and then
programmed by the end user. This provides a cheap way to produce a small number
of devices and eliminates fabrication time, since parts can be kept on hand and
programmed when needed. However, they are slower and less area-efficient than
ASICs. They are ideal for individual projects, design testing for ASICs, and low
volume production. Many software tools exist to easily synthesize HDL models and

automatically program FPGA’s and CPLD’s.
1.3.2 Gate Arrays

The gate array method of producing integrated circuits attempts to significantly
shorten fabrication time by prefabricating part of the circuit, and adding custom
routing to the chip to produce a unique design. A layout is initially covered in pairs
of transistors spread out at predefined intervals that can be interconnected with wires
on multiple layers. Depending on how the wires are connected, different designs can
be produced from a prefabricated transistor image. In many cases, this can reduce
design time and fabrication cost, since the metal layers can be added to the partially
fabricated chip kept in stock relatively quickly. This decreases the turnaround time
for producing custom ASICs, at the expense of lower transistor densities and slower
circuit speeds compared to custom layouts or standard cell layouts. The gate array

method is also useful because transistors can be connected quickly without much



knowledge of the design rules of the process. This makes design significantly faster
than full-custom layout.

The defining characteristic of the standard gate array method, as opposed to the
sea of gates or path programmable logic method, is that standard gate arrays have
channels on the silicon wafer left vacant between rows of transistors. These channels
provide room for routing. This was important for processes that only had a few
metal routing layers. However, the channels decreased the density of transistors on
the chip.[3]

A way of increasing the layout density of a gate array is by using the "sea of
gates” method. This method does not use channels between rows of transistor pairs.
Usually, a transistor pattern is created, and over-the-cell routing is used to connect
them to form gates. The prefabricated transistor image can make production cheaper
and faster, in the same manner as the standard gate array method. [4] [5]

A similar approach to the ”sea of gates” methodology is the ”sea of wires” or path
programmable logic design approach [5]. Instead of a predefined transistor layout that
is routed to create the circuit, the layout is initially covered with a horizontal and
vertical grid of wires that can be connected together with transistors. A section of
the grid that contains a subset of the wires is called the unit cell. The unit cells are
considered blank cells when they do not contain any transistors. These blank cells are
replaced with cells that add functions, similar to the standard cells used in standard
cell logic design. These logic cells have predefined pins that connect to the wire
grids, and depending on how the transistors are placed, different logic functions are
created. The benefits of this methodology is that a layout can be quickly be created,

and have functionality only mildly worse than full-custom design. The drawback



is that, as silicon process technology has progressed, there are more metal routing
layers, making routing more complex. Other methods have proved more popular and

efficient since this technique was first proposed.

1.3.3 Standard Cell Libraries

The approach most widely used method for producing large high-speed digital
designs is the standard cell methodology. Custom blocks are produced that implement
common logic functions and memory elements. Large, complex circuits are made
up of combinations of these blocks, which are then connected with metal routing.
Standard cell design methodologies will be discussed in more detail in Chapter 3.1.
The advantage is that cells can easily be placed and routed, either by hand or using
automatic tools. The standard cells have high transistor densities and good speed
and power characteristics. Automatic cell placement and routing allows much higher
speeds in a smaller area than reprogrammable devices or gate array technologies.
Manual design and layout methods are still superior, at the expense of an extremely

large design time.

1.4 Full-Custom vs. Automated Synthesis and Place & Route

Before automatic synthesis and routing tools became common, it was common to
spend many man-years producing a large working digital chip using full-custom design
and layout tools. Automatic synthesis and routing software tools have drastically
decreased the design and verification time for integrated circuits, at the expense
of speed, area, and power dissipation. As tools have improved, however, the gap
between custom circuit design and layout and automatic circuit design and layout

has narrowed.



Studies have been published over the years comparing automated logic synthesis
and routing to full-custom circuit design. One such study used simple gates from
a standard cell library to synthesize some small logic circuits such as ripple-carry
adders and reduction-tree multipliers using BuildGates and placed and routed the
design using Silicon Ensemble. [6] The results were compared to full-custom designs
of the same circuits. It was found that although full-custom designs are generally
smaller, faster and more power efficient than automated designs, the design time
using automated software tools was 50% to 75% shorter. This is a significant benefit.
It was also found that Silicon Ensemble could perform placement and routing as
efficiently as a custom designer for designs with inter-bitslice connection, but full-
custom designs could reach higher performance through the use of advanced circuit
techniques. This increased performance could lower the slowest-path delay by 50% to
70%. The place and route tools, such as Silicon Ensemble, were expected to perform
better at exploiting the freedom and complexity of using a large number of metal
layers, such as in a six- or eight-layer metal process technology.

Intel discussed automatic routing tools in 1988 that handled the merging of chan-
nels for better channel utilization [7]. The placing back-to-back of abutted rows of
standard cells was called ”doubleback.” Every other row was inverted, so that power
and ground rails could be shared, and well areas could be combined. Previously, in
silicon process technologies that contained only a single metal layer, all cell connec-
tion points were placed at the borders of the cell. The addition of more layers to
the process technologies allowed over-the-cell routing, so pins could be placed at any
point in the cell. The Dense Auto Place and Route (DAPR) software tool was able

to route to pins anywhere inside of a cell, and could handle multiple pin connection



points. The routing technique used by the software tool was called Channel Routing,
and it was gridless, with pins that were any size or location, Metal2 and Poly pins
could overlap, and there was no standard cell height. Even though there was no
standard cell height, the power and ground lines had to be continuous when the cells
abutted and overlapped. Analysis of the routing software results showed that their
techniques produced designs with 20% to 25% larger area than full custom designs,
but the automatically generated circuits had much greater throughput.

Another more recent study compared full-custom design to standard cell design,
but with an emphasis on low power VLSI [8]. A cross between full-custom and
automated design was analyzed by exploiting the fact that digital filters have regular
structures, so the ”full-custom” design can be readily automated with the help of
layout generators and scripts. It was found that the ability to introduce custom
tailored cells in critical places was advantageous in the reduction of power dissipation.
The custom designed circuit using low power techniques was found to consume about
one-fourth the power of a standard-cell circuit. However, custom designed circuits
were found to take more time to produce, even with the automatic generation of
regular structures.

These studies have shown that, although full-custom designs are usually superior
in speed, power dissipation, and area optimization, automated techniques greatly
speed up the design time by up to a factor of four. Also, it is possible to produce
much more complex designs while using less design resources than full-custom tech-
niques. As synthesis and place-and-route tools have improved, the disadvantages of

using standard-cell synthesis have decreased. In fact, automated routing tools can



take better advantage of the availability of multiple metal routing layers, making au-
tomated designs superior to full-custom designs in some cases. Continuing research
work focuses on further improving automatic design, synthesis, and layout generation
methodology and tools. Work has been done to improve peak performance, reduce
timing overhead, lower power dissipation, and develop new synthesis and layout al-

gorithms [9].
1.5 IP Reuse

The ability to reuse intellectual property (IP) in chip designs speeds up overall
production times. Companies generally reuse large blocks of digital or analog cir-
cuits in many designs. This lowers design times, and gives greater confidence in the
correctness of the circuit, since many components have been successfully verified and
fabricated in other circuits. If an IP block has been properly characterized for power
and timing information, it becomes easy to put together various blocks for certain
purposes with a reasonable confidence in the outcome. However, companies usually
only reuse IP internally, or patent and license the designs to other companies. This
means that many people have to redesign common digital cores from scratch if they
cannot obtain a commercial equivalent.

A free source of open digital IP cores is the OpenCores Project, found on the World
Wide Web [10]. The object of the OpenCores Project is "to design and publish core
designs under a license for hardware modeled on the General Public License (GPL)
[11] for software. ” The cores are primarily designed for use in FPGAs, which are
relatively cheap for small scale use. These cores should also work well for ASIC

designs. FEach design has its own license, which is usually modeled after the GNU

10



GPL or another open license. The AVR microprocessor core [12] and the miniUART
[13] circuit, which have been synthesized as part of the analysis of the Ohio State
University digital standard cell library, are both published on the OpenCores website.

The advantage of an open repository of IP cores is that digital cores can be quickly
added to a larger design without having to design the implementation of that core,
or paying another company to provide the design. Of course, there is no assurance
the core will work, even though someone else may have tested it. Nor is it necessarily
the most efficient design, since individuals, companies, students, and hobbyists of
varying abilities and motivations provide the designs without charge. However, since
the designs are provided in a hardware description language, anyone can verify the
design and check to see if it is usable for their purposes. Another problem is that
project documentation may be scarce or non-existent. Some projects have quite
detailed documentation and data sheets, such as with the miniUART project. Others
may have only a couple pages describing the basic functionality of the design.

The licensing schemes of the designs provided by Open Cores also vary. Some
have no limitations, meaning that one can copy or modify the design code freely,
and produce digital hardware with no restrictions. Other licenses may require that
modifications be resubmitted to the Open Cores project so that the core can possibly
include the modifications. One has to carefully decide if the license is acceptable

before using the specific core.

11



CHAPTER 2

Automatic Synthesis and Place & Route Methodology

This chapter outlines the HDL-to-layout design flow, which will be implemented

in Chapter 3.

2.1 Design Flow

The design flow proposed and analyzed in this document assumes that a function-
ally verified hardware model has been created in a language such as VHDL or Verilog.
The design flows used in the current research environment at The Ohio State Univer-
sity have well-established methods of design, simulation, and verification of hardware
descriptions using HDLs. The Mentor software suite, including ModelSim, is a widely
used and well-understood toolset for designing and simulating hardware descriptions,
although Cadence also contains various tools for VHDL and Verilog design and sim-
ulation.

The layout end of the design flow also has a well-established and well-understood
set, of tools for design and analysis. Magic and Cadence Virtuoso can produce custom
semiconductor layouts. Various derivatives of Berkeley Spice, Irsim, and Cadence

Analog Environment can simulate and test transistor-level designs.

12



The high-level methods used in digital ASIC design flows and the low-level tools
used in digital ASIC design flows are both highly used in the OSU research environ-
ment. However, the tool-flow needed to automatically produce suitable layouts from
hardware descriptions has not been well-documented in this research environment.

A working design flow was developed to bring the two separate flows together.
Software tools were configured and the appropriate libraries were developed so that a
working hardware description written in either VHDL or Verilog could be transformed
into a working transistor layout ready for fabrication. An overview of the design flow
is shown in Figure 2.1. A hardware description goes through the process of synthesis,
which turns the hardware description into a physically-realizable circuit design. A
layout is then generated from the design, and the layout has all necessary logic cells
placed and wires routed between them, producing a finished layout.

A more detailed description of the design flow is shown in Figure 2.2. This toolflow
starts where a typical large-scale HDL design flow ends: with a valid design written in
a language such as VHDL or Verilog. The design is put through a software synthesis
package, in this case BuildGates Extreme. The synthesis stage analyzes the design
and forms a gate-level circuit that is equivalent to the original design. This new circuit
can be optimized and mapped to a standard cell library so that a physical circuit can
eventually be created. The synthesized design is exported as a Verilog netlist, which
contains a listing of all inputs and outputs, all logical cells used, and how the cell
pins are connected. This netlist is imported into the place-and-route software, called
Silicon Ensemble. Silicon Ensemble creates a layout containing all the standard cells
used in the design, plans power, ground, and any clock information provided to it.

Then the tool routes all necessary wiring to connect the cells and input and output

13



Hardware Description

Synthesis

Placement & Routing

Final Layout

Figure 2.1: HDL to Layout Design Flow

14



pins. When the design is successfully routed without any errors, exported using a
special Design Exchange Format, and imported into Cadence’s Virtuoso software to
verify the layout, or combine with any custom-designed layouts. The finished circuit
can then be sent to a foundry for fabrication.

The specific target of this flow is the AMI 0.5 micron process provided as part of
the MOSIS Educational Program [14]. This process is the smallest process available
for free to integrated circuit design classes at educational institutions. A standard
cell library was created to use with the target process, and libraries based on the
standard cell library provided the physical cells the synthesis and place-and-route
tools used in the design flow. The standard cell library was compared against three

other research-oriented digital standard cell libraries using the same toolflow.

15



: Hardware )
: Description VHDL/Verilog

Model

BuildGates Extreme

Synthesis

Verilog Netlist

Silicon Ensemble

Placement
&
Routing

Design Exchange
Format (DEF)

Layout Cadence ICFB

Figure 2.2: Software Tools Used in HDL to Layout Flow

16



CHAPTER 3

Design Flow Implementation

To implement the design flow outlined in Chapter 2, a standard cell library was
created, as described in section Section 3.1. Support files were created so that the
library could be used with the software tools needed for synthesizing a hardware model
and generating a semiconductor layout. This is described in Section 3.4. Then, the
step-by-step operation of the software tools was documented in Sections 3.5 and 3.8.
Finally, other standard cell libraries to be used for comparison to the newly created
library were chosen, along with sample designs. These are described in Sections 3.10

and 3.11.

3.1 Standard Cell Library Design

There were certain goals to be met in the design of a new digital standard cell
library. The first was to minimize the physical design of the cells, since the primary
use for the library was to be used in the MOSIS TinyChip program for student
projects. The AMI 0.5 micron process is the smallest process available for student
projects, and the die size available is 1500 microns on a side, and only 900 microns on
a side after a standard padframe is placed. The small cell area was achieved by using
a minimum-sized standard-cell height and aggressive intra-cell routing that utilized

17



two metal layers to minimize the cell widths. The second goal was for the library
to be reliable, since the cells may be re-used in many different projects. To increase
the reliability, the original cell schematics were based on the Tanner Library [15], on
which the University of Tennessee based their standard cell libraries.

To be useful, the standard cell library had to be available for use in different
software tools, such as the synthesis tools and place-and-route tools. The steps used in
the standard library file generation is shown in Figure 3.1. Schematics are generated
for each logic cell used in the library. A layout is also created according to the
standard cell design rules discussed later. Once the schematic and layout for every
cell is proved equivalent using the Layout-Versus-Schematic (LVS) tool in Cadence,
abstracts can be generated from the layout. The Abstract Generator tool extracts
only the information necessary for the place-and-route tool, and creates a version of
the layout that only contains this information. The abstracts are automatically saved
in the Cadence ICFB library containing the standard cells. The abstracts, along
with information about the process technology, are exported into a Library Exchange
Format (LEF). A script were created to convert this LEF file into a slightly different
LEF file compatible with the Silicon Ensemble Place & Route tool. A script was also
created to take the LEF file information and generate a Verilog gate listing for use in
the Silicon Ensemble tool. A third script takes the LEF file information and creates
most of the information needed to generated a Synopsis synthesis library (LIB) file.
Once the rest of the logic information about the library is manually entered, it can
be compiled into the Ambit Library Format (ALF) that BuildGates Extreme requires

for synthesis to a standard cell library.

18



Schematic > Layout
LVS
Check
A 4
Abstract
Generation
ICFB LEF
Abstracts
\ 4
Silicon Ensemblg Verilog Synopsis
Abstracts Gate Listing LIB
\ 4
BuildGates
ALF

Figure 3.1: Standard Cell Library Generation

19




Certain rules had to be set up to be able to produce a set of consistent cells that
could be abutted and flipped upside down, thus requiring no space between cell rows
and allowing cells to share power and ground rails with the cells above and below.
Also, the AMI 0.5 micron design rules, available through the MOSIS foundry, had to
be followed. Cell design strategies used by Virginia Tech [16], Mississippi State [17],
and the University of Tennessee were studied in the formulation of the Ohio State
standard cell library.

As can be seen, there are multiple digital standard cell libraries available for the
research community built for the AMI 0.5 micron process. The goal in designing yet
another cell library was to produce a full-featured set of logic and minimize the size
of each individual cell. The main target of this standard cell library is student class
and research project that can be fabricated using the MOSIS TinyChip educational
program [14]. The limitations of the other standard cell libraries became evident when
they were compared to the Ohio State standard cell library. To minimize the size of
the standard cells, certain strategies were developed, such as limited internal use of
a second metal routing layer. The standard cell library design rules are described in

detail in the next section.

3.2 Standard Cell Design Rules

3.2.1 Standard Cell Height

A single standard cell height was defined to allow simple placement of cells. Having
a single cell height makes it possible to place cells side-by-side and have the power
and ground rails automatically line up at the top and bottom edges, respectively. The

height was defined to make room for NMOS and PMOS transistors and the intra-cell

20



routing to connect the transistors. The height was also devised to be a multiple of

the horizontal routing grid spacing, which will be discussed next.
3.2.2 Inter-Cell Routing Rules

To make wire routing faster and easier for automatic routing software, a regular
routing grid was devised with horizontal and vertical grid spacing optimized so that
parallel wires and their vias are at a minimum distance according to the process
design rules. The routing rules were defined so that Metall and Metal3 were to be
used for horizontal routing, and Metal2 was to be used for vertical routing. The metal
layers have different spacing and pitch rules, so different spacing was required for the
horizontal and vertical gridlines.

The minimum spacing between parallel routes on the same metal layer could be
defined in different ways. The spacing depends on how, or if, vias need to be used
in metal routes. The different ways to define wire spacing are shown in Figure 3.2.
The actual spacing between the wires is called line-on-line spacing, meaning the
minimum spacing is defined by the minimum pitch between two wires, assuming no
vias. If there were no need to connect between layers of metal, line-on-line spacing
could be used. This method is not feasible for a standard cell library, since vias need
to be used during routing. The second type of spacing is line-on-via spacing. This
is the minimum spacing between a via and a metal route, according to the process
technology design rules.. This could be used for routing in a standard cell library,
but the vias on parallel sets of wires would have to be staggered so that the distance
between vias did not violate the design rules for the process. This also could be done,

but would complicate routing algorithms and possibly make standard cell design more

21



Pitch Pitch Pitch

| Min. | | Min. Min.
Spacing Spacing Spacing
| | | | | |
| | | | | |
| | | | | |
Line - on Line Spacing Line - on Via Spacing Via - on Via Spacing

Figure 3.2: Different Minimum Spacing Methods

complex. The third way of defining the minimum spacing between metal routes is
via-on-via spacing. In this case, the minimum spacing is defined by the minimum
distance allowed between two vias on a layer, according to the design rules. Via-on-
via spacing is used for most standard cell libraries, since it allows vias to be placed
next to each other on parallel routes. The downside of this method is that it makes
the wiring slightly less dense than with line-on-via spacing.

Using the minimum via spacing rules defined for the AMI 0.5 micron process, the
via-on-via pitch determined that the vertical gridlines on the standard cells would be
spaced 2.4 microns apart and the horizontal gridlines would be spaced 3.0 microns
apart. The standard cell height is then a multiple of the horizontal grid spacing.
Each individual cell may have a different cell width, but it must be a multiple of the

vertical grid spacing.

22



Grid
Intersection A A MR BT

o o o _— 4- 4- 4- 4~
. . . . . Y

I 1 I 1 1

v o v o v o

. . . . .

Figure 3.3: How Grid Offset Increases Grid Intersections.

An offset was added to the standard cell grid in order to allow more room for grid
intersections inside the cell, and therefore more locations for pins on the grid. Figure
3.3 shows how the number of intersections are increased with the addition of an offset.
In the figure, both grids are of the same area, but the second grid has a half-grid offset
in each directions. This increased the number of available intersections from nine to
sixteen. KEach intersection of the vertical and horizontal gridlines is a location on
which a pin or via can be located. The via-on-via spacing for both directions allowed
unlimited via stacking at those points, meaning that one metal layer can be connected
to any other at a grid intersection using multiple vias.

A diagram of the routing grid, along with the power and ground rails, is shown

in Figure 3.4.

23



VDD
(Metall)

3.00 microns

Metal2 Pins

Placed At Intersections

EEEEPP R e e 4
; + 2.40 microns :
: 4 > :
| Z S o eenens R :

GND
(Metall)

24
Figure 3.4: Routing Grid



3.2.3 Intra-Cell Routing Rules

Routing between transistors inside of a cell do not require that metal layers go
along the routing grids. In fact, some standard cell libraries choose to route a metal
layer in the opposite direction inside of a cell from the routing direction between
cells. This makes placing vias easier for the automatic routing tool, and is a preferred
method when many metal routing layers are available. [16] Routing in this manner
can cause over-the-cell routing congestion for a process with three or less metal routing
layers, however. This technique was avoided to allow as many paths through a cell
as possible.

To maximize the amount of routing room between cells, Metal3 was not used in
any of the standard cells, and Metal2 was used as little as possible. Metall was used
extensively inside the cells, so the automatic routing tool will rarely use Metall to
route inside of a cell, except in the case of routing power and ground signals and the
connections of cells in adjacent rows. In many other university standard cell libraries
that use a three-metal layer process, the second routing layer is completely avoided
to maximize the inter-cell routing paths[16]. It was decided to allow some Metal2
inside the cells in an attempt to minimize the cell sizes, at the expense of vertical
feedthrough paths on the routing grid. This tradeoff of less routing paths for smaller
cell area was acceptable for certain designs that required a small layout area and had

relatively few inter-cell wires.
3.2.4 Power and Ground Rails

Power and Ground rails were placed horizontally at the top and bottom, respec-

tively, of all standard cells. These rails actually extend outside of the defined standard

25



cell boundary so that the cells in rows above and below overlap and share common
power and ground rails.

N-taps and P-taps are placed in a regular pattern under the rails so that NMOS
transistors have their bulk tied to ground and PMOS transistors have their bulk tied

to power. These taps also are shared between cells in abutting rows.
3.2.5 Feedthroughs

Some standard cell libraries add extra room for dedicated feedthrough paths
through the cells [18]. These are paths through the cells with no obstructions or
logic pins. This is important for processes with only a few metal layers, but was

eliminated for this process, since minimizing cell area was a major goal.
3.2.6 Filler Cells

Not all cells placed in a layout will be abutted with another logical cell. To ensure
N-well and power and ground rail continuity, filler cells are usually placed between
other standard cells cells in a layout. Filler cells contain no transistors, but do contain
an N-well and power and ground rails using the same design rules as the rest of the
standard cell library. The width of the standard fill cell is the same as the minimum
spacing of the vertical routing grid, 2.4 microns. Fill cells can be added to the layout
by the automatic place-and-route software after the placement of the logic cells and

before wire routing occurs.

3.3 Cell Schematic Design

Schematics were created using Cadence Virtuoso for each logic cell used in the

standard cell library. The schematics became the basis for the cell layouts that

26



were created according to the previously specified standard cell design rules. The
design methodology for the cells were taken from standard complementary CMOS

logic design methods commonly used in digital design [19].
3.3.1 Cell Inclusion Choices

To properly synthesize circuits, certain logic cells had to be included in the library.
The 2-input NAND gate could be used to synthesize any other combinatorial logic,
and a clocked memory element, such as a flip-flop, would be required to implement a
state machine.

To provide more efficient cell synthesis, NAND gates with 2, 3, and 4 inputs were
added, along with 2, 3, and 4 input NOR gates. Two-input XOR and XNOR gates
were also included. More complex combinational logic functions were created, such
as the AND-OR and AND-OR-INVERTER gates that act as compound gates. A
two-input multiplexor was included to provide further flexibility.

Inverters with different drive strengths were added to allow complementary inputs
and outputs. Buffers were also created with different drive strengths to provide better
circuit performance. To allow tri-state circuits, an inverter and a buffer were included
that were able to have a high-impedance output, so that devices such as busses could
be synthesized under the standard cell library.

State-holding elements were designed for the standard cell library. D flip-flops
were included so that the library would have clocked memory elements, and latches
were included for designs that do not need the memory elements to be clocked. Two
types of D flip-flops were added: one with a preset and clear and one without. Two

types of latches were added: one with a preset and clear and one without. The added

27



circuitry for preset and clear on both the flip-flops and latches increase the cell area,
so the synthesis tool will try to use the versions of the cells without preset and clear,
if possible. There was no random access memory (RAM) element included in the cell
library, since a separate RAM compiler is used to generate large blocks of memory
more efficiently than a typical synthesis tool. The memory elements included with
the standard cell library were designed to be used in such memory elements as state
machines and data registers.

Cells were also added to tie an input to logical 1’ or ’0’. The ”tie high” and ”tie
low” cells force the input of another cell to logical ’1” or ’0” without shorting the input

directly to the power or ground rails. This is useful when the inputs to a WHY?
3.3.2 Naming Conventions

Naming conventions were specified in order to create a consistent set of logic cells.
The naming conventions were applied to standard cell names, along with the names
of all input and output pins.

Standard cells were named according to their function, and in some cases the
names specified their relative drive strength. For example, a two-input NAND gate
with minimum-sized transistors (and therefore single drive strength) was named
nand2x1.

Compound gates, such as the AND-OR-INVERTER. compound gate, had sim-
plified names that implied the function of the cell and the layout of the inputs and

outputs, such as aoi22x1.

28



Memory cells, such as flip-flops and latches, had the cell type and any extra
functionality included in the cell names. A D flip-flop with preset and clear was
named dffpc, while a D flip-flop without preset or clear was named dff.

The input and output names for all the standard cells also followed standard
naming conventions. Inputs to simple logic gates were named alphabetically, starting
with A and increasing in alphabetical order for each additional input. Outputs of
simple logic gates were labelled Y.

The power and ground pins were labelled vdd! and gnd/, respectively. The ex-
clamation point after the pin names signifies that they are global pins to Cadence
Virtuoso. A global pin has an implied connection to all other global pins of that name
in a circuit. Global pin names were needed so that Cadence would recognize the power
and ground pins in schematics made from an imported Verilog netlist. When those
pins were declared as being global, the power and ground nets did not have to be
explicitly connected in the original Verilog netlist. This was important because the
imported schematics were used to verify that the final design layouts matched the
synthesized Verilog design.

Special-purpose pins were given names that implied their purpose. These were:

CLK Clock signal input pin.

CLR Clear signal input pin.

D Data input pin of a memory cell.

EN Input pin that enables an output.

HI Pin with constant output of logical “1.’

29



LO Pin with constant output of logical “0.’
PRE Preset signal input pin.

QN Negative output pin of a memory cell.
QP Positive output pin of a memory cell.
Sel Select input pin on a multiplexor.

TriState Input pin that enables a high-impedance output.

A complete listing of all standard cells is found in Appendix L. The complete

standard cell library, including schematics and layouts is found in Appendix M
3.3.3 Individual Cell Testing

Each cell layout in the library was checked for design rule violations using the DRC
check included with Cadence Virtuoso. Then, each layout had a netlist extracted and
compared to the original schematics. The Cadence Layout Versus Schematic (LVS)
tool was used to verify that the extracted layout matched the schematic. Some
informal testing occurred by placing layouts back-to-back in abutted rows to check

for DRC violations arising from improper overlaps and spacing between cells.

3.4 Abstract Generation

The Cadence Abstract Generator was used to create abstract cells of the layouts.
Abstract cells contain only the information that the place-and-route tool needs to
properly connect pins and avoid obstructions while routing. The NCSU AMI06 Tech-

nology Library available and widely used with the OSU Cadence system does not

30



natively handle abstract generation with the Abstract Generator tool. Some changes
specific to placement-and-routing parameters found in the technology file had to be
made. The Cadence documentation provided background information on what tech-
nology file options existed [20]. The original NCSU technology library was dumped
into and ASCII .tf format techfile. Place and Route rules were appended to the

original file. The classes added to the technology file were:

prRoutinglayers(
; ( layer preferredDirection )
(- )
( poly "vertical" )
( metall "horizontal" )
( metal2 "vertical" )
( metal3 "horizontal" )
) ;prRoutinglayers
prViaTypes(
; ( (device cellViewName) viaType )
( (M1_POLY symbolic) "default" )
( (M2_M1 symbolic) "default" )
( (M3_M2 symbolic) "default" )
( (via symbolic) "default" )
( (via2 symbolic) "default" )
) ; prViaTypes
prRoutingPitch(
; ( layer pitch )
e )
( poly 1.800 )
( metall 3.000 )
( metal2 2.400 )
( metal3 3.000 )

) ;prRoutingPitch

The prRoutingLayers() class defined the routable layers and specified the pre-
ferred routing direction for each layer. The polysilicon layer had to be included for
compatibility with the abstract generation tool, but was not listed as a valid routing
layer in the final library files used in the place-and-route tool. The horizontal-vertical-
horizontal or "HVH, routing preference was specified for the metal layers, meaning
that the Metall layer would route in the horizontal direction, the Metal2 layer in the

vertical direction, and the Metal3 layer in the horizontal direction.

31



The prViaTypes() class listed all the valid vias between routing layers, such as
M1_POLY, M2_M1, and M3_M2 vias. The prRoutingPitch() defined the minimum
pitch between parallel routes of the same metal type. This pitch depends on the
minimum distance between two different metal routes in the same layer as defined in
the design rules for the technology, and also the minimum width of the routing wires
and vias in the technology. These classes were defined in the technology file, along
with the removal of outdated and unused cp, ca, and ce via types, which also caused
some compatibility problems with Abstract Generator.

The altered technology file was uploaded as a new library called ami05_abstract_friendly
and the digital cell library properties were changed to be referenced to the new tech-
nology library, instead of NCSU_TechLib_ami06. The original technology file could
have been altered to be compatible, but many different projects depend on this tech-
nology library. It was safer to create a new temporary library for the abstract gen-
eration process, in case the changes to the technology file broke compatibility with
other projects using the library. Abstracts could be created from the finished digi-
tal cell library using the algorithm shown in Appendix B derived from the Cadence
Documentation [21].

The abstract generation process resulted in a Library Exchange Format (LEF) file.
However, this file was still not compatible with Silicon Ensemble. A Perl script was
developed to alter the abstract LEF file so that it would import correctly into Silicon
Ensemble. This script, found in Appendix E, was inspired by the Rice University’s
Cadence Tutorials [22], however, the types of changes the LEF required were almost
completely different than what Rice’s scripts provided. First, nwell, nactive, and

pactive information needed to be added to to the LEF, for software compatibility

32



reasons. The polysilicon layer was changed from a routing layer to a masterslice
layer, meaning Silicon Ensemble would know the layer existed, but would not try to
route with it. This was to prevent long, high-resistance polysilicon wires from being
used to connect pins, which would potentially hurt the circuit performance. Since the
elec layer was not used for any of the standard cells, the M1_ELEC via was removed
from the library for Silicon Ensemble compatibility reasons. Silicon Ensemble did not
know the ELEC layer existed, nor was it desired to use the layer for routing. Via
generation rules were added to the file to allow the generation of more complex vias,
such as for the power ring, which is usually wider than a standard routing wire, and
needs more than one simple via for Silicon Ensemble to generate the ring correctly.
Finally, the sites ”Core” and ” CoreSite” were added to the LEF. Sites define the type
of cell in a library. The abstract generator created cells of those types, and the cells
type was listed in each of the cell definitions. Therefore, the definitions of Core and
CoreSite, along with the symmetry of the cell types and the base sizes of the cell
types was included for Silicon Ensemble.

The final LEF file could be imported into Silicon Ensemble for the placement-and-
routing phase of the design flow. A few more library files were created from this LEF,
such as a Verilog file containing a standard cell gate listing and a Synopsis-compatible

synthesis library.
3.4.1 Separate Abstract Library

Due to some odd quirks in Cadence, it was difficult to re-import a finished layout

back from Silicon Ensemble. The DEF file that gets imported into Cadence from

33



Silicon Ensemble refers to the abstract cells in the standard cell library. Cadence au-
tomatically puts the abstract cells in the layout during the import process. However,
these abstract cells do not have all the information required to produce a full layout.
The abstract cells need to be replaced with the standard layout cells. Previous ver-
sions of Cadence had simple methods of replacing the cell types, but these methods
were removed in the most recent version. In the current version, the abstract cells
in the design could be replaced by their layout equivalent by performing a Search
and Replace on the layout, by searching for all cell types of “abstract” and replacing
them with cell types of “layout.” Unfortunately, this method would cause Cadence
to crash randomly. Yet another alternative was devised to replace the abstracts with
layouts.

The abstract cells in the Cadence library could simply contain the layouts, since
there was no need to have the abstracts in the library, except for during the import
process. Unfortunately, another problem would occur if the layouts were simple copied
to the locations of the abstracts in the standard cell library. The DEF import process
would happen successfully, but the final layout produced would have the cells in the
wrong places. It turned out that the cell origins were different between the abstract
and layout versions of the standard cell library cells.

Finally, a working solution was developed. Two separate libraries would be cre-
ated, each contained the standard cell library. The first had abstracts that actually
contained the layouts of the standard cells. The second, called the Import library, had
the original abstracts from the standard cell library. The DEF file could be imported
using the Import library, and the imported layout would contain properly oriented

abstract cells. Then, the Rename Reference Library function could be used to change

34



all instances in the imported library from referring to the Import library to referring
to the main standard cell library. This caused the final imported layout to contain
the correct standard cell layouts, with the correct orientation. The only problem with
this method was that Cadence did not always remove the “lock file” that kept the
imported layout from being changed. The lock file had to be manually deleted at the
UNIX command line so that the Rename Reference Library process could write to
the imported layout.

After much work, a successful strategy for importing the final layout into Cadence
was devised. A second standard cell library had to be created in Cadence, called
OSU_digital_ami05_import. This second library increased the complexity of the design
flow, but this method proved to be the most stable and consistent way of importing

designs from Silicon Ensemble into Cadence Virtuoso.
3.4.2 Verilog Gate List

When Silicon Ensemble imports a Verilog netlist of a synthesized design, it requires
a listing of the cells that make up the standard cell library. This list tells Silicon
Ensemble what cells in the Verilog netlist are part of the standard cell library, and
what pin names to expect. The gate listing contains a module declaration of each
cell, along with a listing of the input and output pins of the cell. A Perl script was
created to read in the cell information from the LEF file, and generate the Verilog
module declarations. The Perl script can be found in Appendix F. At this point,
all libraries required to successfully place-and-route with Silicon Ensemble had been

generated for the standard cell library.

35



3.4.3 Synthesis Library File Creation

The target synthesis environment for this design flow was BuildGates Extreme,
provided in the Cadence suite of tools. BuildGates uses a synthesis library format
that may contain cell logic, area, power dissipation, capacitance, and detailed timings.
This library format is the ALF, or Ambit Library Format. This binary format can be
created using the libcompile program that is distributed with BuildGates Extreme.
The source file format is the ASCII-text and well-documented Synopsis Library (.LIB)
format. The use of the Synopsis format also provides for easy portability to new
synthesis tools as they become available.

The Synopsis library was created by using a Perl script to read in the standard
cell library data from the LEF file created during the abstract generation process.
The script can be found in Appendix G. It reads the cell names, pin names, pin
directions, and cell areas from the LEF and converts the data into the LIB format.
The script also generates generic maximum fanout and fanout load data based on cell
data observed in other libraries. The cell logic was added manually into the new file,
along with any state information for latches and flip-flops. Timing and capacitance
information could be added to the library in the future; however, it was not vital
for simple minimum-area synthesis and place-and-route circuit design. The complete
LIB file was then converted to the ALF binary format using libcompile.

A graphical symbol library makes the graphical user interface for BuildGates
Extreme more useful. It contains graphical gate-type views of all the standard cells.
BuildGates Extreme maps the synthesized schematic instances to the gates found in
the symbol library to make the diagrams more clear. Most symbols in the .sym library

were manually created using generic symbols found in the BuildGates distribution.

36



Other symbols were created using the symedit tool found in the BuildGates software.

The symbol library for the OSU standard cell library can be found in Appendix D.

3.5 Synthesis Steps

BuildGates Extreme was used to synthesize the sample VHDL models and map
the synthesized circuits to the standard cell library. On the HP-UX machines found
in the Electrical Engineering department, BuildGates Extreme was started by first

sourcing the startup file and calling the name of the program at the command line:

>source /opt/local/cadence/StartupSPR.EE

>bgx_shell -gui &

The -gui option starts the graphical user interface for BuildGates Extreme. This is
not necessary when running automatic synthesis scripts, which will be discussed later.

After starting the program, the VHDL file was imported by using the menubar:
File -> Open

The “File Type” was selected as VHDL, and the VHDL model file was selected. The
imported design was then synthesized into a set of generic digital gates using the

menu:
Commands -> Build Generic

The Build Generic menu contains a few options: All, Group all processes, Group

named processes, Group all subprograms, and Ezxtract FSM. For a simple design, with

37



one one top-level circuit, none of these options needed to be checked. If more than
one top-level design exists, then the All option must be checked. If more than one
process or subprogram exists, they can be grouped using the other options. The
Extract FSM option extracts a finite state machine from the design.

After the design was synthesized, the design could be optimized. The optimization
step requires a physical standard cell library so that area and timing optimizations

can occur. To import the library, the options were selected from the menu:
File -> Open

The “File Type” was selected as ALF library, and the digital cell library file was
selected. After the library was imported, the library was made the target technology

by using the menu:
Commands -> Set Target Technology

The appropriate technology library was then selected. The options used in the op-
timization process depended on the target optimizations that needed to occur. The

menu command that should have started the optimization was:
Commands -> Optimize

Many options are brought up in a menu. However, a quirk with the graphical user

interface in BuildGates caused a TCL script error:

Error: can’t read "vgb_optimize(insert_clocktree)":

no such element in array

The workaround was to type the optimization command into the BuildGates com-

mand window:

38



> do_optimize

All of the options available in the graphical menus are also available in command-line
equivalents. After optimization, the synthesized design was exported as a Verilog

netlist by selecting from the menu:
File -> Save

The “File Type” was selected as Verilog and a file name was entered. The Verilog

netlist could then be imported into Silicon Ensemble for placement and routing.

3.6 BuildGates Scripting

It was not necessary to use the graphical version of BuildGates Extreme to perform
synthesis. The whole process could be synthesized using a script written in the TCL
scripting language. There are command-line equivalents for all the steps used in
the synthesis process in BuildGates Extreme. The scripts were used to automate
the synthesis of multiple circuits under multiple standard cell libraries. A sample

synthesis script is shown:

read_alf “/synthesis/0SU_diglib_ami06/0SU_diglib_ami06.alf
read_vhdl ~/nc/bus/bus.vhd

do_build_generic

do_optimize -priority area

write_verilog -hierarchical 0SU_diglib_amiO6_bus.v

exit

The read_alf command loads the digital standard cell library into the system. The

read_vhdl command loads the VHDL design file into the system. The do_build_generic

39



command synthesizes the loaded design and maps it to generic gates. The do_optimize
command performs the optimization of the design for the target technology. Note
that the -priority area option is called, which optimizes the circuit for minimum area.
The write_verilog command exports the optimized design as a Verilog netlist. The
-hierarchical option preserves the block hierarchy found in the original VHDL design.
The exit command ends the script and exits BuildGates Extreme.

A report containing information about the synthesized circuit can be written by

adding the following line to the TCL script:
report_area -cells -summary filename.txt

The -cells option reports information about the cells, and the -summary option pro-
vides a summary of the entire synthesized design.

The TCL script can be called at the UNIX command line:
> bgx_shell script.tcl

A separate script was generated for each individual design that was synthesized.
This was because BuildGates Extreme scripting tools did not easily synthesize mul-
tiple designs under multiple libraries during the same synthesis session. A “master”
shell script called individual BuildGates instances for every single design that was
synthesized under different libraries. This also helped localize and identify problems
in the synthesis process for a single design. The TCL scripts and the master shell
script is found in Appendix H. Note that the nohup command preceding the bgx_shell
command allow the process to run independent of the terminal, even if the user is
logged out [23]. The nice command runs the bgz_shell command at a lower prior-
ity, so that other users can easily share processor time. The use of scripting greatly

40



automated the synthesis process, allowing a large batch of designs to be synthesized
without user interaction. A tutorial that goes step-by-step through the process of

synthesizing a sample design in BuildGates extreme is shown in Appendix A.1.

3.7 Limitations of Synthesis Software

Current synthesis tools, such as Synopsis and BuildGates are able to synthesize
a wide variety of circuits. However, they still have limitations. The limitations
discussed next mostly result from the synthesis software not being able to handle
certain VHDL constructs. This list is not exhaustive; it merely shows important
synthesis limitations observed while examining various VHDL models and synthesis

tools.
3.7.1 Single Signal Transition

A synthesizable process can only look for a signal transition on one signal at a
time. This is because the flip-flop that the synthesis tools use can only be sensitive
to one clock or other signal transition. A different process in the same model can be
sensitive to a different signal transition, or a single process can be sensitive to the
VALUES of multiple signals.

An example of a process that cannot be synthesized in VHDL because of two

signal transitions is shown below:

process(clkl, clk2)
IF (clk1’EVENT AND clk2’EVENT )
<VHDL Code>

END IF;

41



end process;

The code must be rewritten so that either the separate clock transitions are han-
dled by different processes, or the second clock transition is handled inside the process

without being part of the process sensitivity list.
3.7.2 Clauses in IF Statement

Another limitation of synthesis tools is the use of multiple clauses in an IF state-

ment. For example:

IF (clk’EVENT AND clk = ’1’ AND start=’1’)
<VHDL Code>

END IF;

This type of statement cannot be synthesized, simply because of limitations in the
synthesis tools. Separating the code into two ”"IF” statements allows the code to be

synthesized:

IF (start= ’1’) THEN
IF (clk’EVENT AND clk = ’1’) THEN
<VHDL Code>
END IF;

END TIF;

Note that the IF statement that contains an ’EVENT has to be the second if
statement in to loop to synthesize properly in BuildGates [24]. This also makes the

start signal asynchronous.

42



3.7.3 WAIT Statements

Not all types of WAIT statements are synthesizable. The WAIT FOR time state-
ment cannot be synthesized. However, the WAIT UNTIL condition statement can

be synthesized by some tools. [1].

3.8 Place & Route Steps

The placement step of automatic digital VLSI design takes a synthesized netlist
of the design and lays out the standard cell equivalents in a manner conducive to
easy routing within the area and timing constraints specified for the design. The
routing step wires the cells together as specified in the netlist, according to routing
rules specified in the technology library. Usually, these steps are performed by the
same software tool. The automatic cell placement and wire routing tool used was

Silicon Ensemble, provided by Cadence.
3.8.1 Software Initialization

The Silicon Ensemble software was started by sourcing the startup script for the

package, and then calling the program name:

> source /opt/local/cadence/Startup.EE

> sedsm -m=500 &

The -m=500 option allocates 500 Megabytes of memory to Silicon Ensemble. Other
amounts of memory can be allocated depending on the need. Failure to allocate
enough memory for a complex design will cause Silicon Ensemble to crash. The
graphical user interface automatically starts unless the -gd=ans: option is called with
the sedsm command.

43



After the Silicon Ensemble graphical interface started, the LEF library file con-
taining the digital standard cell library and the process technology information was

imported using the menu:
File -> Import -> LEF

The LEF file name was entered, and the Clear Ezisting Design Data option was
checked, to make sure that no previous saved designs existed. If the option was not
checked and previous design files existed in the working directory, the import would
not succeed. Next, the synthesized design was imported as a Verilog netlist using the

menu:
File -> Import -> Verilog

The Verilog netlist was entered in the Verilog Source Files option of the “Import
Verilog” dialog box, along with the Verilog gate-listing file that was generated for
the digital standard cell library. The name of the top-level block was entered in the

Verilog Top Module option. The power and ground options were left at their defaults.
3.8.2 Floorplan Initialization

Next, the floorplan of the design was initialized using the menu:
Floorplan -> Initialize Floorplan

The “Initialize Floorplan” dialog box popped up, and the Flip Every Other Row and
Abut Rows options were checked. These options allowed the placement tools to flip the
cells of every other row so that the power and ground rails were shared, and the cells
abutted each other. The IO To Core Distance values were inputted; for example, 20
microns each. The Row Utilization (%) option could be changed to make sure there

44



was enough room for the cells to be placed and routing wires connected between
the cells. The Calculate button gave an estimated Width, Height, Chip Area, and
Core Row Utilization. Changing the options in the window can change the expected
results. The Core Row Utilization shown in the “Expected Results” box must be
below 100 % for the cells to be placed correctly. Even if the Core Row Utilization
is below 100 %, the routing steps may not complete successfully, because there may
not be enough room to route wires. After these options were set up, the floorplan
was initialized, and the basic chip layout appeared, which showed the rows that cells

could be placed in as blocks.
3.8.3 Power Planning

This step could have been done before or after cell placement. The power planning

stage was started by using the menu:
Route —-> Plan Power

The “Plan Power” dialog box then appeared. Selecting the Add Rings option brought
up the dialog box that allowed power and ground rings around the design to be spec-
ified. There must be enough space specified for the rings to fit in the area between
the edge of the layout and the standard cell rows. If not, the rings cannot be placed.
This was specified in the previous IO to Core Distance settings from the original floor-
planning. The Core Ring Width was specified for both the Horizontal and Vertical
directions; for example. 2.40 microns. When done, the power and ground rings ap-
peared. The next option in the “Plan Power” dialog box, Add Stripes, could be used
to add vertical power and ground stripes through the circuit. The Width, Spacing,

and Stripe Set-to-Set Spacing could all be entered to specify the stripes. Stripes are

45



really only necessary for large designs, to provide consistent power and ground sup-
plies to the cells in the middle of the layout block. For example, the Width of a strip
could be specified as 1.2 microns, and the Set-to-Set Spacing could be specified as 100
microns. This means that every 100 microns there would be a pair of vertical power
and ground stripes. When these options were entered, the vertical stripes appeared.
However, the rings and stripes are still not connected to each other or the cells in the

block. The power and ground paths were connected using the menu option:

Route -> Connect Ring

Various options exist to connect the ring together, including switches to connect
stripes, blocks, rings, IO pads, and cell pins. The width of the connections could also

be specified. However, for most cases, the options already selected by default are fine.

3.8.4 Pin and Cell Placement

The next step was to place the input and output pins specified in the Verilog

netlist. This was done using the menu option:

Place -> I0Os

The default Random option simply places them clockwise around the circuit in the
order they are specified in the netlist. Another option, I O Constraint File, places the
pins according to a constraint file. This allows manual placement of pins for maximum
flexibility. A sample constraint file is shown in Appendix I. There is also an option
to Refine Pin Placement after the cells have been placed or routing has occurred,
which can improve the design timing or lessen the amount of routing required in the

layout. The pins can also be assigned to be on different layers using the Pin Layer

46



Assignment option. The spacing between pins can also be specified in this dialog,
and the options are to be spaced Evenly, Abutted, or Center Abutted. The default
option, Random was the only option necessary to successfully place the pins.

After pin placement, cell placement occurred using the menu option:
Place -> Cells

The defaults were again used in the resulting dialog box. There were several options
included that could change cell placement depending on timing or pin placement, and
generate timing analyses and congestion maps.

After cell placement, there were still gaps between the cells. To ensure n-well
continuity and power and ground rail continuity, filler cells were added. This was

done using the menu:
Place —> Filler Cells -> Add Cells

The model name, which was the name of the fill cell in the standard cell library, was
entered, along with a prefix name, which could be any text. The Placement options
found in the dialog box had to be set to have only North and Flip South check. This
was because the fill cells could only be in those two orientations to place successfully
without overlap. Special Pins and Special Nets were also added to the appropriate
dialog box, by adding the proper names of the power and ground pins to the dialog

box. After the settings were entered, fill cells were added to the design.

3.8.5 Routing

Since all cells had been placed, routing could now be started. This was done using

the menu:

47



Route -> WRoute

The WRoute option allowed a few different options. The defaults, Global and Final
Route with Auto Search and Repair also selected, was used. The steps could also be
broken up to only do global routing by checking Global Route Only, or redo the final
routing by checking Incremental Final Route. Using that option, it was also possible
to redo the global routing for violations using the appropriate checkbox. Timing
Driwven Routing could also be specified. After being set up, the final routing step
placed wires using the technology and routing constraints given to it The blockages
inside the cells were avoided if necessary, and each metal layer wire was usually routed
in the direction specified in the LEF file. In some cases, wires on a metal layer would
route in the direction opposite to the directions specified in the LEF. This is because
Silicon Ensemble will break some of the routing rules in order to properly route a
layout without producing design errors or geometry violations.

If geometry violations existed in the routed layout, a few options existed. First,
the final routing stage could be rerun, to try and reroute the wires and remove the
errors. Also, the floorplan could be re-initialized, using different settings. The 10 to
Core distance could be increased, or the Row Core Utilization percentage could be
lowered. Lowering the row core utilization spreads out the cells, and gives more room

for wire routing. This was usually the best option.
3.8.6 Export

After the routed layout was completed without errors, the design could be ex-

ported. The layout could be exported into the following formats: Encrypted LEF,

48



DEF, Verilog, LEF Block, PDEF, SDF, and GDS II. The only options successfully

explored were the DEF and GDS II formats.

3.8.7 DEF

The Design Exchange Format (DEF) was mostly used to exchange the design
between Silicon Ensemble and Cadence’s Virtuoso layout software. The DEF was

exported using the menu:
File -> Export -> DEF

The exported filename was entered and the following options checked: Cells, Nets,
Special Nets, Vias, Groups, Modifications, and Layout Modifications. This provided

enough information for Cadence to successfully import the DEF file.
3.8.8 GDSII

Some digital standard cell libraries did not contain the required abstracts to be
able to import the design into Cadence using the DEF file format. An alternate
method of exchanging files between Silicon Ensemble and Cadence is using the GDSII
file format. The layer map files needed to use this method are taken from the Illinois
Institute of Technology standard cell library support files [25]. These files are named
gd2_icfb.map and gds2_seultra.map.

First, the finished design was exported from Silicon Ensemble using the menu:
File -> Export -> GDS II...

The name of the output file was entered into the GDS-II File box. The gds2_seultra.map
map file was entered into the Map File box. Finally, the name of the top module of
the design was entered into the Structure Name box.

49



A quick tutorial that takes a sample design through this part of the design flow

can be found in A.2.
3.8.9 Silicon Ensemble Scripting

There are limited scripting capabilities included with Silicon Ensemble. FEvery
time a Silicon Ensemble session is started, a journal file is created, listing all the
commands used in the session. Renaming the extension of the journal file from
Jjnl to .mac turns the file into a Silicon Ensemble command script file. This allows
for a session to be run ezactly as a previous session was run. Editing the script
commands allows for more flexibility, but there are some major limitations with the
script commands. Some commands require layout area information, which is not
available until other commands have been executed. This means that more complex
layouts cannot be successfully automated, because the command structure in the
script will not execute properly if the area values are incorrect.

An example problem occurs when adding fill cells to the layout, to ensure n-well

continuity in the circuit layout. The command to do this is:

SROUTE ADDCELL MODEL filll PREFIX filll NO FS SPIN
vdd! NET vdd! SPIN gnd! NET gnd!

AREA ( -84240 -84300 ) ( 84480 84600 ) ;

90



The values after the ”AREA” option in the command represent the coordinate values
of the layout corners. The size of the floorplan is not established until after the floor-
plan is initialized by a previous command. The fill cells will not be added correctly
if the coordinates are not entered correctly.

Another problem caused by incorrect area information occurs when trying to add
rows of a different standard cell height to the circuit. This is done when a standard
cell library contains cells of multiple heights. The ADD ROW command requires
coordinate values that are not available until the floorplan has been initialized. If the
area is too small, there may not be enough room to place the cells of the different
height. If the area is too large, the coordinates will be out of coordinate boundaries
of the floorplan, which will cause an error.

Another problem that occurs with trying to create Silicon Ensemble scripts is that
the core row utilization percentage may be too high to be able to route the layout
successfully. In this case, the percentage specified in the script can be lowered, and
the script can be re-run. Other such script parameters can be modified manually,
such as the IO to Core Distance, or the width and spacing of power and ground rings
and stripes. The manual modification of these scripts limits the usefulness of the
scripting tools, since the time savings of scripting over use of the graphical interface
are minimal.

Despite these problems, some semi-autonomous place-and-route scripts were cre-
ated. These scripts can be found in Appendix J. A master shell script called these
Silicon Ensemble scripts, and redirected some of the script output messages to files.
These helped identify problems or errors in the script generation. Each script was

called using the command:

o1



nohup nice sedsm -gd=ansi -m=500 "EXECUTE script.mac"

| grep -e violations -e ERROR > errors.txt

As with the synthesis scripts, the program is run in the background at a low pri-
ority. The -gd=ansi option runs Silicon Ensemble in the terminal window instead of
having a graphical user interface. The "EXECUTE script.mac” command executes
the place-and-route script. The rest of the command redirects any output lines con-
taining the words wiolations or ERROR to a file named errors.tzt. Most relevant
messages about script execution problems or geometry violations in the layout con-
tain those words. When an error occurred, the script was manually altered, and then

re-run.

3.9 Import Into Cadence

The designs exported from Silicon Ensemble were imported into Cadence Virtuoso
for final layout verification. The layout was checked for design errors, and then

compared to a schematic of the synthesized design to prove they were equivalent.
3.9.1 Import Verilog as Schematic

Schematics based on the synthesized Verilog netlist created by BuildGates Ex-
treme were imported into Cadence. The cells used in the netlist were referenced to
the schematics contained in the Cadence version of the standard cell library.

First, a Cadence library was created to contain the design. It was mapped to the
NCSU_TechLib_ami06 reference library. Then, the Verilog netlist was imported using

the ICFB menu:

File -> Import -> Verilog

52



The newly created design library was entered as the Target Library Name, and
“basic” and “digital lib_ami06” were entered as the Reference Libraries. The verilog
files to be imported were entered in the Verilog Files To Import box. If this was not
the first time importing files into the new library, the Querwrite Erxisting Views box
needed to be checked. When properly set up, executing this dialog box imported all
cells in the Verilog netlist, and properly referenced cells in the design to the standard
cell library schematics and symbols already found in the OSU_digital_ami05 library.
If there is more than one module in the netlist hierarchy, schematics will be created
and properly referenced to each other. If a module is referenced that is not defined
in the standard cell library or in the netlist itself, then a “blackbox” symbol will be

created, without any reference to a schematic.

3.9.2 Import DEF as Layout

To import the DEF created by Silicon Ensemble, the Cadence ICFB menu was

used:
File -> Import -> DEF

The library name was filled into the Library Name box, and the name of the top
level of the design was filled into the Cell Name box. The View Name was filled in as
“layout.” The Use Ref. Library Names: box was filled in with “OSU _digital ami05_import.”
This was because the proper abstracts referred to in the DEF file are contained in
that library, rather than the normal OSU_digital_ami05 library. The DEF File Name:
was also entered before executing the dialog box. A new cellview was created called
layout in the top module of the design library. It consisted of all the placed abstracts
taken from the standard cell library, and all the routing created by Silicon Ensemble.

93



The layout is not quite finished. The abstract standard library cells had to be
converted into layout cells. This was done using the Rename Reference Library func-
tions. However, due to a quirk with Cadence, a file lock was usually placed on the
directory containing the layout. While this lock exists, the file cannot be edited by a
Cadence program.

To remove the file lock, the lock file was removed from the directory:
> rm <Cadence Directory>/<Library>/<Cell>/layout/layout.cdb.cdslck

The lock could also be removed most of the time by exiting Cadence and restarting
the program. After the lock file was removed, the reference library could be changed

using the Design Manager Window:

Edit -> Rename Reference Library

The From Library: box was filled with “OSU _digital_ ami05_import” and the To Li-
brary: was filled with “OSU_digital_.ami05.” Executing this command changed all
cells that were referenced to the import version of the library, which contained the
abstracts, to the regular version of the library, which had the abstract cells replaced
with the normal layouts. The layout cell was now a valid semiconductor layout that

could be tested in the same manner as a custom-built layout.

3.9.3 Import GDS II as Layout

To import a GDS II stream created by Silicon Ensemble into Cadence, a library

first had to be created to contain the imported file. Then, all of the standard cells

54



that would be used in the final design had to be copied from the standard cell library
into the new library. This was so that the GDS II file could reference the proper files
during import.

The GDS II File could be imported into Cadence using the ICFB menu:
File -> Import -> Stream

The path and name of the input stream file was entered into the Input File box.
The name of the top module in the design was entered into the Top Cell Name box.
The name of the Cadence Library that would contain the imported design was entered
into the Library Name box. Next, the name of the layer map table was entered by
clicking on the button: User Defined Data. In the dialog box that popped up, the
name of the layer map, in this case “gds2_icfb.map,” was entered into the Layer Map
Table box. After these options were set, the file would import into the directory, and
reference the proper layouts copied from the standard cell library. The layout, if the

import was successful, could be tested in the same manner as a custom-built layout.
3.9.4 Design Checking

The design checking followed standard procedures common to layout creation in
Cadence. The design was checked using the DRC tool to find design rule violations.
If the design was imported properly, no design errors should have existed. Then the
layout was extracted into a transistor-level netlist, so that a Layout-Versus-Schematic
check could be performed. The LVS check compares the schematics derived from
the imported Verilog netlist to the imported layout. Functionally, this test can only

prove that the layout matches the post-synthesis design. Therefore, the Verilog netlist

95



should also be simulated against the original hardware description to verify that the
Verilog description is correct.

The layout can be combined with any analog or mixed-signal designs and exported
in a foundry-compatible format in the same manner as any other Cadence layout. A

full tutorial that goes from HDL to a Cadence layout can be found in Appendix A.

3.10 Cell Libraries Used As Reference

Once the standard cell library had been created and proper libraries set up, it could
be compared to other similar research standard cell libraries. The other standard cell
libraries were provided by The Illinios Institute of Technology [25], The University
of Tennessee [26], and The Mississippi State University [17]. Eventually, these three
libraries were used in the HDL-to-layout design flow, so each library had some minor

modifications so that it was compatible with the software used in the flow.
3.10.1 IITO6_STDCELLS

The Illinois Institute of Technology created this standard cell library for use in stu-
dent projects at the university [27]. It is freely available for educational use. Library
files are available for Synopsis synthesis, Verilog and VHDL simulation, Silicon En-
semble placement-and-routing [25]. Layouts of 26 different cells are included. Various
scripts to automate synthesis, place-and-route, and conversion to different software
environments, such as Cadence, SignalStorm, Magic, and TRSIM are also available
with the library. A RuleVia symbol must be added to the Cadence ICFB instance of
the library, to allow proper importing of Metal2 to Metall vias from the completed

Silicon Ensemble layout.

o6



3.10.2 UT_LP_AMIO6

This library was created at the University of Tennessee as part of a class that
developed a low-power library of standard cells [28]. These cells were derived from
the Tanner AMI-0.5u Standard Cell Library [15]. The library cells are available in the
Cadence design library format at the University of Tennessee website [26]. A verilog
cell description and LEF file were included for use in Silicon Ensemble. Synthesis
libraries were not included with the library, so the same techniques that were used to

develop the OSU synthesis library files were utilized to create synthesis libraries.
3.10.3 MSU _Jennings

The Mississippi State University standard cell library was created by former MSU
student Scott Jennings and is used for course work at MSU [17]. This minimal library
only contains six digital cells. This library also contains a double-height cell, meaning
that the height of the cell is twice the height of the normal standard-cell library height.
The D flip-flop is double-height because it is much larger than the rest of the cells in
the library. Increasing the height of the cell allows more efficient intra-cell routing,
which may decrease the overall area compared to a single-height version of the same
cell.

The MSU library and relevant design flows were well-documented on the MSU
website. The Synopsis synthesis libraries were provided, along with the LEF file
needed for placement and routing. A Verilog gate list was created from the LEF file
using the scripts developed for the OSU library. Also, a RuleVia symbol was added
to the Cadence ICFB instance of the library, to allow proper importing of Metal2 to

Metall vias from the completed Silicon Ensemble layout.

o7



3.11 VHDL Sample Models

Three different test designs were synthesized using four different digital standard
cell libraries. Not all designs were able to be synthesized using all cell libraries, due
to the differences in functions available in the libraries. The next sections briefly

describe each of the sample models.
3.11.1 8-bit Bidirectional Bus

The VHDL model for this design was produced by Altera, which produces pro-
grammable logic devices. It is a sample design meant for use on a CPLD, but can
easily be synthesized by most of the standard cell libraries. The model contains a

behavioral representation of an 8-bit bidirectional bus. [29]
3.11.2 Mini-Universal Asynchronous Receiver-Transmitter

This design was obtained from the OpenCores Project website. The MiniUART is
much more complex than the bidirectional bus sample design, however still relatively
simple. The MiniUART is used to interface an 8-bit data bus to an RS-232 serial
line. It can handle multiple baudrates, but contains no control handshaking so it
cannot be used to interface with a modem. It also does not support FIFO input or
output. This design is a larger and more useful circuit to test than the bidirectional
bus design. It was found that a synthesized design used many different types of cells,
but had much less internal wiring than a complex system, such as a microprocessor.
This allowed a denser layout to be created, which helped identify standard cell design

errors. [13]

o8



3.11.3 AVR Microprocessor core

The AVR microprocessor is the most complex design synthesized during the anal-
ysis of the standard cell libraries. This particular core is compatible with the AT-
megal03 [30]. It contains 32 8-bit registers, and allows most of the instructions found
in the ATmegal03 core, except for the SLEEP and CLRWDT instructions. The
AVR RISC architecture is designed for low power operation, and can execute most
instructions in a single clock cycle. This processor core design was chosen because of
the relative popularity of the AVR architecture, making it a good ”real world” type of
test for the standard cell libraries. It also provides a larger and more complex design

than the other two models used for analysis. [12]

99



CHAPTER 4

Results

The design flow that was developed was used to produce layouts from three dif-
ferent hardware descriptions. The three layouts were produced using the Ohio State
standard cell library, along with three other similar standard cell libraries for compar-
ison. In this chapter, the standard cell libraries will be compared. Then, the results

of the synthesis and layout stages of the design flow will be discussed.

4.1 Comparison of Standard Cell Libraries

The four standard cell libraries compared had many similar features. Since they
were all based on the AMI 0.5 micron process, they all had to follow the same design
rules. However, they all followed different standard cell design rules, with different
routing grid sizes, standard cell heights, and size requirements. The types of cells
chosen for each library also differed.

A comparison of the standard cell libraries is shown in Table 4.1. Cells that are
functionally identical are contained in the same row. The library with the largest
number of cells was the Illinois Institute of Technology library, although many of
these cells have the same logic, but have different drive strengths. A comparison of

the total number of cells in each library, and also a comparison of the number of cells

60



that don’t include repeated cells of different drive strengths is included in Table 4.2.
After discounting the functionally identical cells with different drive strengths, it was
found that the OSU library had slightly more cells than the IIT library.

Since one of the design goals of the OSU standard cell lib was to minimize cell
area, the relative sizes of equivalent cells were compared. Table 4.3 shows all cells in
the OSU library that have an equivalent cell in another library, and the area of the
smallest cell in the other library compared to the OSU cell. Most of the OSU cells
were 16.7 % smaller than the next smallest equivalent cell found in another library.
This was due to the fact that the second smallest library was made by the University
of Tennessee, and their standard cell height was 16.7 % taller than the standard cell
height of the OSU library. Only one cell in the OSU standard cell library was actually
larger than the smallest equivalent cell from another standard library. The dff cell
was 0.88 % larger than the D flip-flop found in the UT library. Also, the muz21z1
cell was only 0.88 % smaller than the the multiplexor found in the UT library. In
general, though, the OSU cells were significantly smaller than the cells found in the

other libraries.

4.2 Synthesis Results

Synthesis of the three sample cores under the four different standard cell libraries
was achieved using the software tool BuildGates Extreme provided by Cadence. The
summary files produced by BuildGates as a result of synthesizing the designs can
be found in Appendix K. Not every library was able to synthesize every sample
core. The University of Tennessee library and the Mississippi State library lacked a

tri-state device, which made them unsuitable for synthesizing the bidirectional bus

61



MSU IIT UT OSU
Cell Area Cell Area Cell Area Cell Area
AND2X1 288
AND2X2 288
AQOI21X1 288
ao22x1 252
AQOI22X1 360 AQI22 216 a0i22x1 180
BUFX2 216 BUF1 129.6 bufx1 108
BUFX4 288 BUF4 259.2 bufx4 216
DFFNEGX1 864
DFFPOSX1 864 DFF_S 820.8 dff 828
DFFSRX1 1209.6 DFFPC.S 1166.4 dffpc 1116
FAX1 1080
HAX1 720
INVX1 86.4 INVX1 144 INV 86.4 invxl 72
INVX2 144
INVX4 216 invx4 180
INVXS 360
invzx1 216
lat 360
latpc 540
MUX2X1 432 MUX2 345.6 mux21xl 342.72
NAND2X1 129.6 NAND2X1 216 NAND2 129.6 nand2x1 108
NAND3X1 324 NAND3 172.8 nand3x1 144
NAND4 216 nand4x1 180
NOR2X1 129.6 NOR2X1 216 NOR2 129.6 nor2x1 108
NOR3X1 576 NOR3 172.8 nor3x1 144
nor4dx1 180
OAI21X1 207
0OAI22X1 360
OR2X1 288
OR2X2 288
TBUFX1 360 bufzx1 288
TBUFX2 504
TIEHI 86.4 TIEHI 86.4 tiehigh 72
TIELO 86.4 TIELO 86.4 tielow 72
xnor2x1 252
XOR2X1 504 XOR2 302.4 xor2x1 252

Table 4.1: Comparison of Standard Cell Libraries.

62



MSU IIT UT OSU
Total Number Cells 6 26 15 23
Unique Cells 6 20 14 21

Table 4.2: Comparison of Number of Cells in the Standard Cell Libraries.

OSU Cell Area (microns) Other Library Area (microns) % Difference
aoi22x1 180 UT 216 -16.7 %
bufx1 108 UT 129.6 -16.7 %
dff 828 uT 820.8 +0.88 %
dffpc 1116 uT 1166.4 -4.3 %
invx1 72 UT/MSU 86.4 -16.7 %
invx4 180 T 216 -16.7 %
mux21x1 342.72 UT 345.6 -0.88 %
nand2x1 108 UT/MSU 129.6 -16.7 %
nand3x1 144 uT 172.8 -16.7 %
nand4x1 180 uT 216 -16.7 %
nor2x1 108 UT/MSU 129.6 -16.7 %
nor3x1 144 UT 172.8 -16.7 %
bufzx1 280 I1T 360 -20 %
xor2x1 252 uT 302.4 -16.7 %

Table 4.3: Area Comparison of OSU Cells with Smallest in Other Library.

63



design. The Illinois Institute of Technology’s library lacked a flip-flop that contained
preset or clear, which made it unable to synthesize the AVR microprocessor core.
The Ohio State library was the only library capable of synthesizing all three designs.
This was an unintended consequence of the varied sample designs, but it shows how
a large number of available cells in a library can greatly improve the usefulness of a

standard cell library.

4.2.1 Bidirectional Bus

The two libraries that successfully synthesized the bidirectional bus design were
the II'T and the OSU libraries. A comparison of the two synthesized designs is found
in Table 4.4. The others lacked a tri-state device required to implement the type of
bus the synthesis tool created. The II'T version of the synthesized circuit was created
a bit differently than the OSU version, due to the slightly different composition of the
cell libraries. The IIT version contained an extra seven inverters. Combined with the
fact that the OSU library cells are significantly smaller, the total unrouted cell area of
the OSU implementation is 15.7 % smaller than the IIT implementation. Note that
the value of 15,048 microns is the area of just the cells, and is not the final area of
the placed and routed circuit. The improvements in cell density in the OSU library
could be offset by lack of feedthrough paths through the cells, which would cause the

cells to be placed farther apart to increase routing paths in the final layout.

4.2.2 MiniUART

BuildGates was able to successfully synthesize the miniUART sample design using
all four standard cell libraries. A table comparing the number of cells used and the

total circuit area is shown in Table 4.5. The OSU library again came out smallest

64



IIT OSU
Total Number of Instances 32 25
Total Cell Area (microns ?) 17,856 15,048

Table 4.4: Synthesis Results of Bidirectional Bus.

MSU uT Ir OSU
Total Number of Instances 693 413 478 478
Total Cell Area (microns?) 175,478.4 129,384 159,993 122,505.12

Table 4.5: Synthesis Results of MiniUART Design.

in total area, although the UT and IIT libraries used fewer cells. The OSU library
was 5.6% smaller than the next smallest library, and 30.4% smaller than the largest

library.
4.2.3 AVR Microprocessor Core

The design of the AVR microprocessor core required a register with preset or clear
to properly synthesize, so the IIT library was unable to be utilized to synthesize this
core. A comparison of the remaining three libraries is shown in Table 4.6. Again, the
OSU library has more cells than the UT library, but a smaller total area. The OSU

library is 8.6% smaller than the UT library, and 23.6% smaller than the MSU library.
4.2.4 Post-Synthesis, Pre-Routing Analysis

It is clear that the strategy of minimizing cell area seems to be advantageous,

but it is also clear that a large, full-featured library of cells is even more important.

65



MSU UuT OSU
Total Number of Instances 6,797 3,453 3,098
Total Cell Area (microns?) 1,343,822.42 1,122,249.62 1,024,963.2

Table 4.6: Synthesis Results of AVR Microprocessor.

The synthesized circuits used a fewer number of total cells when mapped to the
UT library than the OSU library. However, that library lacked a tri-state buffer
or tri-state inverter, so the bidirectional bus design could not be synthesized. In
the IIT library, the lack of a complex memory element such as the dffpc element in
the OSU library kept it from being synthesized for the AVR microprocessor core.
The OSU library had all of the essential elements for successful synthesis, but the
library could be expanded to make the synthesis more efficient by using more complex
function blocks in a single cell to perform the same function taken up by multiple
combinational logic cells. This assumes that the compound logic blocks would take
up less area than stringing together multiple simple logic blocks.

The synthesis analysis showed that the OSU library was a very good option for
synthesis, since it contained a wide variety of cells, and had, on average, significant
area advantages over the other cell libraries. The area advantages were not so impor-

tant at this stage, since wire routing could take up a large part of the final design.

4.3 Placement and Routing

The place-and-route stage of the design flow depended less on the types of cells

and types of designs being used, and more on the number of cells, physical cell layouts,

66



and amount of wiring in the design. Thus, the final layout areas would differ greatly
from the synthesized estimation of the design area.

The software tool used for the place-and-route stage of the design flow was Silicon
Ensemble. This software, provided by Cadence, is widely used in the university
research environment. The graphical user interface for Silicon Ensemble is useful for
the detailed place-and-route of a single design, because many placement and routing
settings can be tweaked and altered to generate the desired layout. The scripting
commands that are used with the software are not as flexible as those used in the
synthesis tools. A good knowledge of the expected layout area and density is required
because the script commands require area-knowledgeable parameters.

To achieve desired automated placement and routing with Silicon Ensemble, a
sample design was put through the graphical version of the Silicon Ensemble and
successfully placed and routed. Silicon Ensemble automatically writes all the com-
mands used in a session to a journal file. Changing the file extension of the journal
file from ”.jnl” to ”.mac” and executing the file with Silicon Ensemble reruns all the
commands used in the previous session. This journal file was used as the basis for all
the scripts used to produce layouts from the synthesized designs for all the libraries.

The Silicon Ensemble execution scripts used to place-and-route some of the sample
designs can be found in Appendix J. Various changes had to be implemented for each
sample design and each library. Filenames and library references were changed for the
appropriate designs. Power and Ground declarations in the script had to be changed
to match the references in the relevant standard cell library. An extra command
had to be added for the MSU _Jennings library designs to add rows of double cell

height in addition to the single cell height rows. This was to allow the placement of

67



Design MSU UT 1T OSU

Bidirectional Bus Area (microns?) N/A N/A 45,624.96 38,025

MiniUART Area (microns?) 288,369 205,752.96 257,049 199,809

AVR Core Area (microns?) 2,493,872.64 2,424,249 N/A 3,721,041

Table 4.7: Final Design Layout Areas.

the D flip-flop onto the layouts. Each design required a different core row utilization
percentage to allow enough room for the routing between the cells. This was achieved
by running a master shell script that would run each of the designs sequentially, and
create text files with a quick summary of Silicon Ensemble errors or layout geometry
violations. If the place-and-route stage successfully passed, the command to execute
that script was commented out manually, and the core row utilization percentage
was commented next to the appropriate execution command. If the design did not
execute successfully, then the core row utilization percentage was decreased by five
percent in the relevant script, and the master shell script was rerun. This process
was repeated until all scripts completed successfully.

The final layout areas of all the circuits that were created are shown in Table
4.7. Screenshots of the final layouts produced by the OSU _digital_ ami05 library can
be found Appendix N. As was expected, the OSU library was the smallest for the
bidirectional bus design and the miniUART sample. In fact, the bus design was 16.7
% smaller than the other design,about the same amount that the individual standard
library cells were smaller than the other libraries, in general. The MiniUART design
was only about 2.9 % smaller than the next smallest design, which used the UT

library. However, the AVR core design using the OSU standard cell library was much

68



larger than the other designs. In fact, the layout was more than 50 % larger than the
smallest design, created using the UT library. The limiting factor was the D flip-flop
with preset and clear, which was widely used in all the layouts. The area of the OSU
version of the D flip-flop was comparable to or smaller than the other libraries, but
the wide use of Metal2 to route between transistors in the cell made routing vertical
paths over the cell very difficult. This was because Metal2 was the only metal layer
allowed to route vertically in the automatic place-and-route software.

After all layouts were successfully created, it became clear that as the designs
became more complex, the core row utilization percentage dropped dramatically, as
seen in Table 4.8. The small designs had a row utilization of about 80-85 %, while
the AVR microprocessor core had row utilizations that varied quite a bit.

The new Ohio State library seems comparable to the other libraries with respect
to core row utilization, except with the AVR core, which was only at 35 %. When
using the place-and-route software with the graphical user interface, certain ”search
and repair” techniques to fix geometry violations can bring the core row utilization
of the OSU library up to about 45 % for the AVR core. This is more difficult to do
when batch scripting multiple designs, because it requires feedback on the success or
failure of the routing process. This could be difficult to implement using the Silicon

Ensemble scripting environment.
4.3.1 Design Checking

All of the synthesized designs were able to be placed-and-routed, but some of the
reference standard cell libraries had trouble being re-imported into Cadence. This

was mainly due to the other libraries not having quite the same setup as the OSU

69



Design MSU UT 1IIT OSU
Bidirectional Bus (%) N/A N/A 85 85
MiniUART (%) 85 8 8 80
AVR Core (%) 60 50 N/A 35

Table 4.8: Core Row Utilization of all placed-and-routed designs.

library. The IIT library did not contain abstract cells in the Cadence version of the
library. These would have to be created to use the DEF import process used by the
OSU library. The MSU library imported without problems, but didn’t pass the design
rule check, possibly due to spacing errors involving the boundaries of the D flip-flop.
This might be due to different boundary rules that may not have been communicated
properly to Silicon Ensemble, although this difference was never established as the
problem. The UT library also imported properly, but the Search & Replace option in
Cadence was needed to replace the abstract cells in the designs with layout views. The
only problem with this approach was that it sometimes tended to cause Cadence to
crash abruptly. The UT library also did not pass DRC, due to a spacing issue between
an active contact in the D flip-flop and any abutting active layer from another cell.
The designs built using the OSU library all passed DRC. The designs were all
successfully extracted into a netlist for layout-versus-schematic verification. The
non-OSU libraries were not checked for LVS equivalency because of the previously
mentioned problems with import into Cadence and DRC errors. It also was not a
high priority because the focus of the design flow was the custom-built standard cell

library.

70



The bidirectional bus and miniUART layouts both easily passed LVS, however,
the AVR microprocessor core had a problem with the schematic that had been im-
ported from the Verilog netlist. One of the modules created by the synthesis tool was
AWRS_partition_2. This schematic contained terminals that were “shorted together,”
causing errors when trying to check and save the schematic in Cadence. This issue
must be taken into account when trying to verify a layout by checking it against a

schematic imported from BuildGates.

71



CHAPTER 5

Conclusions

The HDL to Layout design flow allows simple ASIC design generation, and easy
integration into current digital and analog design methodology. The design can be
created, simulated, and verified using standard digital design tools, and the results can
be automatically synthesized and mapped to a standard cell library. The synthesized
design can be easily turned into a layout, and imported into the same environment
that is heavily used for analog and mixed-signal design, simulation, and layout. Once
in this environment, digital and analog blocks can be placed side-by-side, allowing
production of mixed-signal integrated circuits.

The support libraries, files, and documentation outlined proved successful when
used to process hardware descriptions into finished layouts. The layouts all passed
design-rule checking and in most cases could be proved equivalent to their schematic

counterparts.

5.1 Contributions

Implementing a methodology that automated generation of digital integrated cir-
cuits and allowed integration of these designs with analog and mixed-signal layouts

was the focus of this research. To that end, a flexible digital standard cell library

72



was created, along with all necessary support files. The information gleaned from
comparison of the standard cell library will hopefully assist others in deciding how to

use this flow, depending on their design requirements.

5.2 Future Work

5.2.1 Standard Cell Library Improvements

The standard cell library used in this design flow proved successful, improvements
would improve the power and flexibility of the software tools. Performing power and
timing characterization and adding this information to the synthesis files would open
up many more synthesis options. The synthesis tools would then be able to perform
timing-knowledgeable synthesis and low power synthesis. The resulting synthesized
netlists would better match design requirements. Timing and power characterization
were not a high priority during initial standard cell library design, since the AMI
0.5 micron process is not a cutting-edge process and would not likely be used for
high-speed designs.

More logic cells could also be added to the library to improve flexibility. Different
types of custom-built compound logic gates could be added that would minimize
cell area, since the gates would be optimized for area. Also, less routing would be
needed, since the cells would replace groups of logic gates wired together in the layout.
Additional types of memory element, such as flip-flops and latches, could be added
to help minimize area. For example, a flip-flop that can only be cleared could replace
one with preset and clear if the design did not need the preset functionality.

Cells currently in the standard cell library could be improved through redesign.

Specifically, the D flip-flop with preset and clear is large and contains a large amount

73



of Metal2. The cell proves to be a large obstacle when trying to route large designs.
Rebuilding this cell, even at the expense of increasing the cell area, would improve
the routability of large designs, such as the AVR microprocessor core. Improving the
routability would allow a higher row utilization, which allow denser designs, more

than offsetting an increase in cell area of the D flip-flop.

5.2.2 Software Tools

Many features and options pertaining to the software tools used in the design
flow have not been fully explored. These tools could be better documented, and
different features could prove useful for generating layouts from a hardware description
language.

In particular, the scripting abilities of Silicon Ensemble are very limited. The
scripting language is only useful for repeating the same routing process for the same
design. The scripting tools with Silicon Ensemble should be further explored to see
if more advanced scripting options exist.

Various inconsistencies were found in the software tools, from broken library com-
patibility between programs to user interface errors within some tools. At the very
least, better workarounds for these problems could be explored, such as fixing the
problems that prevented one of the Verilog-generated schematics from being used in
LVS testing.

Other software tools exist for HDL synthesis and design placement-and-routing.
The library files needed by the Synopsis Design Compiler have already been created,

so adding this software as an option in the design flow should be trivial. The tools

74



provided by other companies should also be explored and analyzed for suitability in

the design flow.

5.3 Final Remarks

Advances in automatic creation of digital integrated circuits has allowed more of
the design time to be spend on the analog portions of mixed-signal circuits. It is
hoped that the design flow developed during the course of this research can be used
to introduce others to the types of methods common in modern digital VLSI circuit
production. It is also hoped that the digital standard cell library will serve as the
basis for other projects, and that the library itself will be expanded and improved in

the future.

75



APPENDIX A

VHDL /Verilog Synthesis, Place & Route Flow Tutorial

This is a tutorial showing how to take a VHDL hardware model and synthesize
it into a Verilog netlist, then take the design and produce a fully placed and routed

layout.

Sample Design: Mini-UART
Universal Asynchronous Receiver Transmitter
http://www.opencores.org/cvsweb.shtml/MiniUART/

miniUART.vhd (VHDL descriptions)
RxUnit.vhd

TxUnit.vhd

clkUnit.vhd

Target Technology: 0SU_diglib_amiO6

A.1 Synthesis

Files needed for Synthesis:
0SU_diglib_ami06.alf
0SU_diglib_amiO6.sym (for graphical use)

1) source /opt/local/cadence/StartupSPR.EE

2) bgx_shell -gui &

3) Import VHDL Design

- File -> Open

- Select File Type: VHDL, select:

miniUART.vhd

RxUnit.vhd

TxUnit.vhd

clkUnit.vhd

- Click 0K

command line equivalent: read_vhdl /rcc4/student/copusj/flow_tutorial/RxUnit.vhd
read_vhdl /rcc4/student/copusj/flow_tutorial/TxUnit.vhd
read_vhdl /rcc4/student/copusj/flow_tutorial/clkUnit.vhd
read_vhdl /rcc4/student/copusj/flow_tutorial/miniUART.vhd

76



4) Synthesize Design

- Commands -> Build_Generic

- Click OK

command line equivalent: do_build_generic

You can view the schematic at this point by right-clicking "miniUART" in the
Logical Tab and selecting Open Schematic -> Main Window.

5) Optimize and Map to Desired Library

- File -> Open

- Select File Type: ALF library, browse to proper directory and select 0SU_diglib_ami06.alf
- Click OK

command line equivalent: read_alf /rcc4/student/1/0SU_diglib_ami06.alf

- Commands -> Set Target Technology, select 0SU_diglib_ami06 Click 0K
- Commands -> Optimize, select Priority Area Click 0K
command line equivalent: do_optimize -priority area

6) Save as Verilog Netlist
- File -> Save As, select Verilog, type in file name
command line equivalent: write_verilog miniUART _built.v

-Note, this whole process can be scripted in a .tcl file:
read_alf 0SU_diglib_ami06.alf
set_global hdl_vhdl_environment common

read_vhdl RxUnit.vhd
read_vhdl TxUnit.vhd
read_vhdl clkUnit.vhd
read_vhdl miniUART.vhd

do_build_generic
do_optimize -priority area
write_verilog -hierarchical miniUART_built.v

-Then, run bgx_shell <filename.tcl> to synthesize the circuit.

A.2 Place & Route Design

Files Needed for Place & Route:

0SU_diglib_amiQO6.lef : Library Exchange Format of digital cell library
0SU_diglib_ami06.v : Verilog modules of digital cell library gates
miniUART_built.v : Verilog design from previous step

1) Create a Silicon Ensemble work directory and start the software

- mkdir se

- sedsm -m=500 &

starts Silicon Ensemble and allocates 500 MB of memory (good for very large
designs)

2) Import LEF:
- File -> Import -> LEF, select LEF file
- Click OK.

3) Import Verilog:

- File -> Import -> Verilog

- Browse and add miniUART_built.v (your design) AND 0SU_diglib_amiO6_gates.v
Add the Verilog Top Module (bidir) to the form

Click OK.

7



4) Initialize Floorplan:

- Floorplan -> Initialize Floorplan

- Select "Flip Every Other Row" and "Abut Rows"

- Change the I0 To Core Distance to 20 microns for each
- Change Cell Demsity to 75%

- Click OK

5) Place I0’s and Cells:

- Place -> I0s, Click 0K

- Place -> Cells, Click 0K

- Place -> Filler Cells -> Add

Model: filll

Prefix: f£illl

Placement: ONLY North and Flip South checked.

Special Pins:

Special Pin Special Net
vdd! vdd!

gnd! gnd!

- Click OK.

6) Routing:

- Route -> Plan Power
- Select Add Rings

Fill in the Core Ring Width to the desired width (3.00 microms for both,
for example) Sizing is important when importing the vias back into cadence?

- Click OK

- Click Close

- Route -> Connect Ring

- Click 0K

- Route -> WRoute, Select Global and Final Route and Auto Search and Repair
- Click OK

7) Export Design:

- File -> Export -> DEF

- Fill in name (miniUART.def)
Select:

Cells Modifications
Nets Layout Modifications
Special Nets

Vias

Groups

- Click 0K

- Exit Silicon Ensemble

Import into Cadence:

1) Create a new library (miniUART) attached to the NCSU_TechLib_amiO6 library.
2) Import the Verilog netlist as a schematic

- File -> Import -> Verilog

Target Library Name : miniUART

Reference Libraries : basic 0SU_diglib_amiO6

Verilog Files To Import : miniUART_built.v

Check "Overwrite Existing Views" if necessary.

- Click OK.

3) Import Layout

- File -> Import -> DEF

Library Name: miniUART

Cell Name: miniUART

View Name: layout

Use Ref. Library Names: 0SU_diglibimport_amiO6

DEF File Name: <path/filename> (~/flow_tutorial/se/miniUART.def)

78



Make sure you select the new cellview and save it.

4) To properly turn the "abstract" cells into "layout" cells in the imported
layout view, go to the Library Manager and select Edit -> Rename Reference
Library.

You may need to go to the location of the layout file, as in

~/<Cadence Directory>/miniUART/miniUART/layout/

and delete the layout.cdb.cdslck file if it exists.

In Library: miniUART

From Library: 0SU_diglibimport_amiO6

To Library: 0SU_diglib_amiO6
Click OK.

79



APPENDIX B

Abstract Generator Tutorial for Standard Cells

This tutorial assumes you have Cadence version IC50 with Abstract Generator
version 5.0.32.11. The purpose of this document is to show how to take standard
cell library layouts created with Cadence Virtuoso and create a set of abstract
cells that can be exported as a .LEF file and used in Silicon Ensemble for
automatic place & route.

(If you have pins residing in other layers of the cell (such as our vdd! and
y P g y
gnd! pins), be sure to select all areas of the cell in Virtuoso, select:

Edit -> Hierarchy -> Flatten.
Flatten Mode : one level.
Flatten Pcells and Preserve Pins checked.

To start the abstract generation process:

-Open one of the cell layouts in Virtuoso
-Select:
Tools -> Abstract Editor.

-There should now be a new option in the menu: Abstract.
-Select:
Abstract -> Create Abstract.

-In the "Create Advanced Abstract" window, select Library.

-All cells should be imported into the Core bin. If the cell has a valid layout,
there should be a checkmark beside the cell in the Layout column. For any cells
that you do not wish to create abstracts (pads, test cells, etc),

you can move to the Ignore bin.

-To move a cell to the Ignore bin:
-Click on the cell.
-Select Cells -> Move.
-Select the Ignore bin and click "OK".
-Multiple cells can be selected at a time and moved in this manner.

We can now start creating abstracts for the cells remaining in the Core bin.
-Select Cells -> Select All to highlight all the cells.
- Select Flow -> Pinms

- The default options should be fine.
- Click "RUN"

80



-Select Cells -> Extract

-DESELECT: Extract Signal Nets

-DESELECT: Extract Power Nets

This is because only premade pins should be extracted.

WARNING:

Due to a bug in the Abstract Generator, the Abstract options window is
almost 1000 pixels tall with no option to resize the window to get to
the run button. You may need to adjust the resolution of your screen
to use this function.

-Select Cells -> Abstract
-Blockage:
Layer Assignment for Blockage: select metall, metal2, metal3, via, and via2.

Check any warnings you receive. Some may not be a problem, however, some

warnings could result from an error in the layout or in the abstract
generation process.

Currently, the Verify function does not work, due to compatibility problems between
the Abstract Generator and Silicon Ensemble

Export as LEF:

File -> Export -> LEF

-Choose a filename (default is abstract.lef)

-Make sure Export Geometry LEF Data and Export Tech LEF Data are checked.

-Make sure LEF Version is set to: 5.3
-Export LEF for Bin is set to: ALL

81



APPENDIX C

Synopsis Library

Synopsis Library for OSU Standard Cell Library

library (0SU_diglib_ami06) {

cell(dffpc) {
area : 1116 ;
vhdl_name : "dffpc"

pin(CLK) {
direction : input;
fanout_load :4;

¥

pin (D) {
direction : input;
fanout_load : 1;

}

pin(CLR) {
direction : input;
fanout_load : 3;
}

pin (PRE) {
direction : input;
fanout_load : 4;
}

££("IQ", "IQN"){
next_state : "D"
clocked_on : "CLK"
clear : "CLR’"
preset : "PRE"
clear_preset_varl
clear_preset_var2 :

}

pin(QP) {
direction : output;
max_fanout : 50;
function : "IQ";

internal_node : "QP";

82



}

pin(QN) {

direction : output;
max_fanout : 50;
function : "IQN";
internal_node : "QN";

}
}

cell(xor2xl) {
area : 252 ;
vhdl_name : "xor2x1"

pin(B) {

direction : input;
fanout_load : 1;

¥

pin(4) {

direction : input;
fanout_load : 1;

}

pin(Y) {

direction : output;
max_fanout : 50;
function : "(A*B’)+(A’*B)";
¥

}

cell(xnor2xl) {

area : 252 ;
vhdl_name : "xnor2x1"

pin(B) {

direction : input;
fanout_load : 1;

}

pin(4) {

direction : input;
fanout_load : 1;

}

pin(¥) {

direction : output;
max_fanout : 50;
function : "((A*B’)+(A’*B))’";

¥

}

[Hmmmmmmm————— */
cell(nordxl) {

area : 180 ;
vhdl_name : "nor4xl"
pin(Y) {

direction : output;
max_fanout : 50;
function : "(A+B+C+D)’";
}

pin(C) {

direction : input;
fanout_load : 1;

}

pin(B) {



direction : input;
fanout_load : 1;

}

pin(D) {

direction : input;
fanout_load : 1;

}

pin(4) {

direction : input;
fanout_load : 1;

}

}

cell(nor3xl) {
area : 144 ;
vhdl_name : "nor3x1"

pin(C) {

direction : input;
fanout_load : 1;

}

pin(B) {

direction : input;
fanout_load : 1;

¥

pin(A) {

direction : input;
fanout_load : 1;

¥

pin(Y) {

direction : output;
max_fanout : 50;
function : "(A+B+C)’";

cell(nor2x1) {
area : 108 ;
vhdl_name : "nor2x1"

pin(4) {

direction : input;
fanout_load : 1;

}

pin(B) {
direction : input;
fanout_load : 1;

}

pin(Y) {

direction : output;
max_fanout : 50;

function : "(A+B)’";
}

}

[H———m e ————— */

cell(nand4x1) {
area : 180 ;
vhdl_name : "nand4xi1"

84



pin(D) {

direction : input;
fanout_load : 1;

}

pin(B) {

direction : input;
fanout_load : 1;

}

pin(Y) {

direction : output;
max_fanout : 50;
function : "(AxBxCxD)’";
}

pin(C) {

direction : input;
fanout_load : 1;

}

pin(4) {

direction : input;
fanout_load : 1;

cell(nand3x1) {
area : 144 ;
vhdl_name : "nand3x1"

pin(A) {

direction : input;
fanout_load : 1;

}

pin(B) {

direction : input;
fanout_load : 1;

}

pin(Y) {

direction : output;
max_fanout : 50;
function : "(A*BxC)’";
}

pin(C) {

direction : input;
fanout_load : 1;

}

}

cell(nand2x1) {
area : 108 ;
vhdl_name : '"nand2x1" ;

pin(B) {

direction : input;
fanout_load : 1;

}

pin(Y) {

direction : output;
max_fanout : 50;
function : "(A*B)’";
}

pin(a) {

direction : input;

85



fanout_load : 1;
¥
}

cell (mux21ix1) {
area : 342.72 ;
vhdl_name : "mux21xi"

pin(Y) {

direction : output;
max_fanout : 50;
function : "(A*Sel)+(BxSel’)";
}

pin(A) {

direction : input;
fanout_load : 1;

}

pin(Sel) {
direction : input;
fanout_load : 1;

}

pin(B) {

direction : input;
fanout_load : 1;

}

}

cell(invxl) {
area : 72 ;
vhdl_name : "invx1l"

pin(a) {

direction : input;
fanout_load : 1;

}

pin(Y) {

direction : output;
max_fanout : 50;
function : "A’";

}

}

cell(dff) {
area : 828 ;
vhdl_name : "dff" ;

pin(D) {
direction : input;
fanout_load : 1;

¥

pin(CLK) {
direction : input;
fanout_load : 1;

}

ff(IIIQII, IIIQNII){
next_state : "D"
clocked_on : "CLK"
¥

pin(QN) {



direction : output;
max_fanout : 50;
function : "IQN";

}

pin(QP) {
direction : output;
max_fanout : 50;
function : "IQ";

}

¥

cell(bufxl) {
area : 108 ;
vhdl_name : "bufxl"

pin(Y) {

direction : output;
max_fanout : 50;
function : "A";

}

pin(a) {

direction : input;
fanout_load : 1;

}

}

[kmmmmmm */
cell(aoi22x1) {

area : 180 ;
vhdl_name : "aoi22x1"
pin(a) {

direction : input;
fanout_load : 1;

}

pin(B) {

direction : input;
fanout_load : 1;

}

pin(C) {

direction : input;
fanout_load : 1;

}

pin(Y) {

direction : output;
max_fanout : 50;
function : "((A*B)+(CxD))’";
}

pin(D) {

direction : input;
fanout_load : 1;

¥

}

[Hmmmmmmm————— */
cell(ao22x1) {

area : 2562 ;

vhdl_name : "ao22x1" ;
pin(Y) {

87



direction : output;
max_fanout : 50;
function : "(A*B)+(C*D)";
}

pin(B) {

direction : input;
fanout_load : 1;

}

pin(C) {

direction : input;
fanout_load : 1;

}

pin(D) {

direction : input;
fanout_load : 1;

}

pin(a) {

direction : input;
fanout_load : 1;

¥

}

[H——mm */
cell(bufzxl) {

area : 288 ;

vhdl_name : "bufzxl" ;
pin(a) {

direction : input;
fanout_load : 1;

}

pin(TriState) {
direction : input;
fanout_load : 1;

}

pin(Y) {
direction : output;
max_fanout : 50;
function : "A";
three_state : "TriState";

}

}

[k——m——————————— */

cell(tiehigh) {
area : 72 ;
vhdl_name : "tiehigh"

pin(HI) {
direction : output;
max_fanout : 50;
function : "0";

cell(tielow) {
area : 72 ;
vhdl_name : "tielow" ;

88



pin(L0) {
direction : output;
max_fanout : 50;
function : "1";

cell(bufx4) {
area : 216 ;
vhdl_name : "bufx4"

pin(Y) {

direction : output;
max_fanout : 50;
function : "A";

}

pin(4) {

direction : input;
fanout_load : 1;

}

}

cell(lat) {
area : 360 ;
vhdl_name : "lat" ;

pin(EN) {
direction : input;
fanout_load : 1;

}

pin(D) {
direction : input;
fanout_load : 1;

}

latch(“IQ" s "IQN") {
enable : "EN"
data_in : "D"

}

pin(QP) {
direction : output;
max_fanout : 50;
function : "IQ";

}

pin(QN) {
direction : output;
max_fanout : 50;
function : "IQN";

}

}

cell(latpc) {
area : 540 ;
vhdl_name : "latpc"

pin(EN) {
direction : input;
fanout_load : 1;
}



pin(PRE) {
direction : input;
fanout_load : 1;

}

pin(CLR) {
direction : input;
fanout_load : 1;

}

pin(D) {
direction : input;
fanout_load : 1;

}

latch("IQ" s "IQN") {
enable : "EN"
data_in : "D"
clear : "CLR"
preset : "PRE"
clear_preset_varl
clear_preset_var2

}

pin(QP) {
direction : output;
max_fanout : 50;
function : "IQ";

}

pin(QN) {
direction : output;
max_fanout : 50;
function : "IQN";

cell(invx4) {
area : 180 ;
vhdl_name : "invx4"

pin(4) {

direction : input;
fanout_load : 1;

¥

pin(Y) {

direction : output;
max_fanout : 50;
function : "A’";

}

}

cell(invzxl) {
area : 216 ;
vhdl_name : "invzxl"

pin(A) {
direction
fanout_load

¥
pin(TriState) {

: L;
: H;

input;
1;

90



direction : input;
fanout_load : 1;

}

pin(Y) {
direction : output;
max_fanout : 50;
function : "A’";
three_state : "TriState";

}

¥

[Rm—mmm——————— */

}

91



APPENDIX D

Symbol Library

The symbol library used in BuildGates Extreme is found in Figure D.1. All logic
cells used by the synthesis tool are mapped to a symbol for use in the schematic view

of the graphical version of BuildGates.

92



€6

1" 231

Areiqry oquiAg [eotyderr) sejyenpring

C D E F G
i9 i8 i22 A i15
A
>0t Ao v }:}
B
invx4 invx1 Xnor2x1 € nandax1
L7 Lo i14
PRE A
b — Y
tielow @
QN nand2x1
—P> Ol tiehigh .
CLR ANL13
HI
P v
i6 i
i2 ux21x1
— QPL_ Y N
o i1
—> ok M- a0i22x1 %}
dff i a022x1
TiStig TriSe
A N A Y
ufzx1 invzxl
i4 i11
A N
bufx4 a°
i23 —EN QN{—
A
5 Y lat
Xor2x1 12
i PRE
i3 b op
A Y
—EN QN{—
bufx1 ClR
T latpc

Irccd/student/copusj/digital_lib_amiO5_stuff/symlib/digital_lib_ami05.sym

29 Oct 2003 14:42 ‘ Page 1 of 1

m

D | | F | G




APPENDIX E

LEF Conversion for Silicon Ensemble

#!/usr/local/bin/perl

# This script changes the LEF file created by Cadence’s Abstract Generator
# so that it will import into Silicon Ensemble correctly.

#

# ./lef_abstract_to_se.perl input_file.lef > output_file.lef

while(<>) {

# add extra layer information (for some reason, SE wants this)
if ($_ =~ /END UNITS/)
{
print "END UNITS\n\n";
print "LAYER nwell\n TYPE MASTERSLICE ;\nEND nwell\n\n";
print "LAYER nactive\n TYPE MASTERSLICE ;\nEND nactive\n\n";
print "LAYER pactive\n TYPE MASTERSLICE ;\nEND pactive\n\n";

}

# change poly from routing layer to masterslice
elsif($_ =~ /LAYER poly/ &! $one_instance)
{

$poly_flag =1;
print "LAYER poly\n\tType MASTERSLICE ;\n";

}

elsif($_ =~ /TYPE ROUTING ;/ && $poly_flag){}

elsif($_ =~ /WIDTH 0.60 ;/ && $poly_flag){}

elsif($_ =" /SPACING 0.90 ;/ && $poly_flag){}

elsif($_ =" /OFFSET 0.90 ;/ && $poly_flag){}

elsif($_ =~ /PITCH 1.80 ;/ && $poly_flag){}

elsif($_ =" /DIRECTION VERTICAL ;/ && $poly_flag){$poly_flag = 0; $one_instance=1;}

# REMOVE VIA M1_ELEC information

elsif ($_ =~ /VIA M1_ELEC/)

{ $flag = 1; }

elsif ($_ =" /LAYER elec ;/ && $flag){}

elsif ($_ =" /RECT -0.90 -0.90 0.90 0.90 ;/ && $flag){}
elsif ($_ =~ /LAYER cc ;/ && $flag){}

elsif ($_ =" /RECT -0.30 -0.30 0.30 0.30 ;/ && $flag){}
elsif ($_ =~ /LAYER metall ;/ && $flag){}

elsif ($_ =" /RECT -0.60 -0.60 0.60 0.60 ;/ && $flag){}
elsif ($_ =~ /END M1_ELEC/ && $flag){$flag = 0;}

# Add VIARULES, Site Core and Site CoreSite
elsif ($_ =~ /END M3_M2/)

94



print "END M3_M2\n\n";

print "VIARULE viagen21 GENERATE\n\tLAYER metall ;
\n\t\tDIRECTION HORIZONTAL ;\n\t\tWIDTH 1.2 TO 120 ;\n\t\tOVERHANG 0.3;
\n\t\tMETALOVERHANG O ;\n\tLAYER metal2 ;\n\t\tDIRECTION VERTICAL ;
\n\t\tWIDTH 1.2 TO 120 ;\n\t\tOVERHANG 0.3 ;\n\t\tMETALOVERHANG 0 ;
\n\tLAYER via ;\n\t\tRECT -0.3 -0.3 0.3 0.3 ;\n\t\tSPACING 1.5 BY 1.5 ;
\nEND viagen2i\n\n";

print "VIARULE TURN1 GENERATE\n\tLAYER metall ;
\n\t\tDIRECTION HORIZONTAL ;
\n\tLAYER metall ;\n\t\tDIRECTION VERTICAL ;
\nEND TURNi\n\n";

print "VIARULE TURN2 GENERATE\n\tLAYER metal2 ;\n\t\tDIRECTION HORIZONTAL ;
\n\tLAYER metal2 ;\n\t\tDIRECTION VERTICAL ;\nEND TURN2\n\n";

print "VIARULE TURN3 GENERATE\n\tLAYER metal3 ;\n\t\tDIRECTION HORIZONTAL ;
\n\tLAYER metal3 ;\n\t\tDIRECTION VERTICAL ;\nEND TURN3\n\n";

print "SITE Core\n\tCLASS CORE ;\n\tSYMMETRY Y ;

\n\tSIZE 2.400 BY 15.000 ;\nEND Core\n\n";
print "SITE CoreSite\n\tCLASS CORE ;\n\tSYMMETRY Y ;

\n\tSIZE 2.400 BY 15.000 ;\nEND CoreSite\n\n";

else

print $_;

95



APPENDIX F

LEF Conversion to Verilog

#!/usr/local/bin/perl

# This script converts the LEF file containing a standard cell library into
# a verilog module listing for use with Silicon Ensemble.

#

# ./lef_to_verilog.perl input_file.lef > output_file.v

while(<>) {
if ($_ =" /MACRO ([~ I*)\n/){

$cell_name = $1;
print "module $cell_name (";

$flag = 1;
}
elsif (($_ =" /PIN ([~ 1#)\n/) && $flag &! $pin_1_flag){
$pin_1_data = $1;
$pin_1_flag = 1;
}
elsif (($_ =" /DIRECTION ([~ 1) ;\n/) && $pin_1_flag &' $pin_2_flag){
$pin_1_direction = $1;
}

elsif (($_ =" /PIN ([" 1#)\n/) && $flag &! $pin_2_flag){
$pin_2_data = $1;
$pin_2_flag = 1;

}

elsif (($_ = /DIRECTION ([~ 1%) ;\n/) && $pin_2_flag &! $pin_3_flag){
$pin_2_direction = $1;

}

elsif (($_ =~ /PIN ([~ 1%¥)\n/) && $flag &' $pin_3_flag){
$pin_3_data = $1;
$pin_3_flag = 1;

}

elsif (($_ = /DIRECTION ([~ I%) ;\n/) && $pin_3_flag &! $pin_4_flag){
$pin_3_direction = $1;

}

elsif (($_ =~ /PIN ([" I*)\n/) && $flag &! $pin_4_flag){
$pin_4_data = $1;
$pin_4_flag = 1;

}

elsif (($_ =" /DIRECTION ([~ 1*) ;\n/) && $pin_4_flag &' $pin_5_flag){
$pin_4_direction = $1;

}

elsif (($_ =" /PIN ([" 1#)\n/) && $flag &! $pin_5_flag){
$pin_5_data = $1;
$pin_5_flag = 1;

96



}

}

elsif (($_ =" /DIRECTION ([~ 1*) ;\n/) && $pin_5_flag &' $pin_6_flag){

$pin_5_direction = $1;

}

elsif (($_ = /PIN ([~ 1*)\n/) && $flag &' $pin_6_flag){
$pin_6_data = $1;
$pin_6_flag = 1;

}

elsif (($_ =~ /DIRECTION ([~ 1*) ;\n/) && $pin_6_flag &! $pin_7_flag){

$pin_6_direction = $1;

}

elsif (($_ =~ /PIN ([* 1¥)\n/) &k $flag &' $pin_7_tlag){
$pin_7_data = $1;
$pin_7_flag = 1;

}elsif (($_ =~ /DIRECTION ([~ I#) ;\n/) && $pin_7_flag){
$pin_7_direction = $1;

zlsif($_ =" /END $cell_name\n/ && flag){

($pin_1_£flag)

print $pin_1_data;

($pin_2_flag)

print ", ".$pin_2_data;

($pin_3_flag)

print ", ".$pin_3_data;

($pin_4_flag)

print ", ".$pin_4_data;

($pin_5_flag)

print ", ".$pin_5_data;

($pin_6_flag)

print ", ".$pin_6_data;

($pin_7_£flag)

print ", ".$pin_7_data;

print ") ;\n";
print "\t\tinput ";

if
}
if

}
if

}
if

($pin_1_flag && ($pin_1_direction =~ /INPUT/ || $pin_1_direction

print $pin_1_data;

($pin_2_flag && ($pin_2_direction =~ /INPUT/ || $pin_2_direction

=~ /INOUT/)){

=" /INOUT/)){

if ($pin_1_direction =" /INPUT/ || $pin_1_direction =~ /INOUT/){print ",";}

print " ".$pin_2_data;

($pin_3_flag && ($pin_3_direction =~ /INPUT/ || $pin_3_direction

="/INOUT/)){

if ($pin_1_direction =~ /INPUT/ || $pin_1_direction =~ /INOUT/ ||$pin_2_direction =~/INPUT/ || $pin_2_direction =~

{print ",";}
print " ".$pin_3_data;

($pin_4_flag && ($pin_4_direction =~ /INPUT/ || $pin_4_direction

=" /INOUT/)){

if ($pin_1_direction =~ /INPUT/ || $pin_1_direction =~ /INOUT/||$pin_2_direction ="/INPUT/ || $pin_2_direction ="/I

{print ",";}

97



print " ".$pin_4_data;
¥
if ($pin_5_flag && ($pin_5_direction =" /INPUT/ || $pin_5_direction =" /INOUT/)){
if ($pin_1_direction =~ /INPUT/ || $pin_1_direction =~ /INOUT/||$pin_2_direction ="/INPUT/ || $pin_2_direction =" /
{print u,u;}
print " ".$pin_5_data;
T
if ($pin_6_flag && ($pin_6_direction =~ /INPUT/ || $pin_6_direction =~/INOUT/)){
if ($pin_1_direction =~ /INPUT/ || /INOUT/||$pin_2_direction =~/INPUT/ || /INOUT/||$pin_3_direction ="/INPUT/ || /I
{print u,u;}
print " ".$pin_6_data;
}
if ($pin_7_flag && ($pin_7_direction =~ /INPUT/ || $pin_7_direction =~ /INOUT/)){
if ($pin_1_direction =~ /INPUT/ || /INOUT/||$pin_2_direction ="/INPUT/ || /INOUT/||$pin_3_direction =~/INPUT/ || /I
{print n s n ;}
print " ".$pin_7_data;
T
print ";\n";
print "\t\toutput ";

if ($pin_1_flag && ($pin_1_direction =~ /OUTPUT/)){
print $pin_1_data;

T

if ($pin_2_flag && ($pin_2_direction =" /QUTPUT/)){
if ($pin_1_direction =~ /OUTPUT/){print ",";}
print " ".$pin_2_data;

if ($pin_3_flag && ($pin_3_direction =" /OUTPUT/)){
if ($pin_1_direction =~ /OUTPUT/||$pin_2_direction =~/0UTPUT/)
{print non.y
print " ".$pin_3_data;

if ($pin_4_flag && ($pin_4_direction =~ /OUTPUT/)){
if ($pin_1_direction =~ /OUTPUT/||$pin_2_direction ="/0UTPUT/||$pin_3_direction =~/0UTPUT/)
{print ",";}
print " ".$pin_4_data;

if ($pin_5_flag && ($pin_5_direction =~ /OUTPUT/)){
if ($pin_1_direction =~ /OUTPUT/||$pin_2_direction =~/0UTPUT/||$pin_3_direction =/0UTPUT/||$pin_4_direction =~ /0U
{print ",";}
print " ".$pin_5_data;

if ($pin_6_flag && ($pin_6_direction =~ /OUTPUT/)){
if ($pin_1_direction =~ /OUTPUT/||$pin_2_direction ="/0UTPUT/||$pin_3_direction =~/0UTPUT/||$pin_4_direction =" /0U
{print ",";}
print " ".$pin_6_data;

if ($pin_7_flag && ($pin_7_direction =~ /OUTPUT/)){
if ($pin_1_direction =~ /OUTPUT/||$pin_2_direction ="/0UTPUT/||$pin_3_direction =~/0UTPUT/||$pin_4_direction =" /0U
{print ",";}
print " ".$pin_7_data;

¥

print ";\nendmodule\n\n";
$flag=0;
$pin_1_flag=0;
$pin_2_flag=0;
$pin_3_flag=0;
$pin_4_flag=0;
$pin_5_flag=0;
$pin_6_flag=0;
$pin_7_flag=0;
}
}

98



APPENDIX G
LEF Conversion to Synopsis LIB

#!/usr/local/bin/perl
# This script converts the LEF file containing a standard cell library into
# the Synopsys LIB format. (From there, the .lib can be converted to

# the binary .alf format used by Ambit BuildGates using the libcompile

# command.

#

# ./lef_to_lib.perl input_file.lef > output_file.lib

while(<>) {
# Write file header information

if($_ ="/VERSION 5.3 ;/){
print "library (0SU_diglib_ami06) {\n\n";
}

# Look for first macro standard cell
elsif ($_ =" /MACRO ([~ I*)\n/){
$cell_name = $1;
$cell_flag = 1;
print "cell(".$cell_name.") {\n";

}
elsif (($_ ="/SIZE ([~ 1%) BY ([~ 1%) ;/) && $cell_flag) {
$area = $1 * $2;
print "area : ".$area." ;\n";
print "vhdl_name : \"".$cell_name."\" ;\n\n";

T
elsif(($_ =~ /PIN ([~ 1x)\n/) && $cell_flag
&& ($_ !~ /PIN vdd\!/) && ($_ !" /PIN gnd\!/)) {
print "pin(".$1.") {\n";
$valid_pin = 1;
T

elsif(($_ =" /DIRECTION ([~ J*) ;/) && $cell_flag && $valid_pin) {
$direction = $1;
$direction =" tr/A-Z/a-z/;
print "\tdirection : ".$direction.";\n";
if($direction =~ /output/) {
print "\tmax_fanout : 50;\n";
print "\tfunction : \"INSERT FUNCTION\";\n}\n";
}
else {
print "\tfanout_load : 1;\n}\n";

99



}
$valid_pin = 0;

T
elsif(($_ =~ /END $cell_name/) && $cell_flag) {
$cell_flag = 0;
print "}\n\n";
print "/#=—-—=—=—-—aeea */\n\n";
T
elsif($_ =~ /END LIBRARY/) {
print "\n}\n";
}
else{}
T

100



APPENDIX H

BuildGates Synthesis Scripts

The master script synthesizes designs for all standard cell libraries, but TCL

scripts are only included for the OSU library.

H.1 Master Script

Shell script that calls multiple instances of BuildGates Extreme. Each instance of

BuildGates uses its own TCL script.

# Calls multiple instances of BuildGates Extreme
# with .tcl scripts controlling the action

source /opt/local/cadence/StartupSPR.EE

# UT_LP_AMIO6

nohup nice bgx_shell “/synthesis/UT_LP_AMIO6/synth_UT_LP_AMIO6_avr.tcl
nohup nice bgx_shell ~/synthesis/UT_LP_AMIO6/synth_UT_LP_AMIO6_bus.tcl
nohup nice bgx_shell “/synthesis/UT_LP_AMIO6/synth_UT_LP_AMIO6_miniUART.tcl

# iit_stdcells

nohup nice bgx_shell ~/synthesis/iit_stdcells/synth_iit_avr.tcl
nohup nice bgx_shell “/synthesis/iit_stdcells/synth_iit_bus.tcl
nohup nice bgx_shell ~/synthesis/iit_stdcells/synth_iit_miniUART.tcl

# msu_jennings

nohup nice bgx_shell ~/synthesis/msu_jennings/synth_msu_bus.tcl
nohup nice bgx_shell “/synthesis/msu_jennings/synth_msu_miniUART.tcl
nohup nice bgx_shell “/synthesis/msu_jennings/synth_msu_avr.tcl

# 0SU_diglib_amiO6

nohup nice bgx_shell “/synthesis/0SU_diglib_amiO6/synth_osu_bus.tcl
nohup nice bgx_shell ~/synthesis/0SU_diglib_ami06/synth_osu_miniUART.tcl
nohup nice bgx_shell “/synthesis/0SU_diglib_amiO6/synth_osu_avr.tcl

101



H.2 Bidirectional Bus Synthesis Script

Targetted for the OSU Standard Cell Library

# 0SU_diglib_amiO6 library synthesis
read_alf ~/synthesis/0SU_diglib_ami06/0SU_diglib_ami06.alf

# Bidirectional Bus

read_vhdl ~/nc/bus/bus.vhd

do_build_generic

do_optimize -priority area

write_verilog -hierarchical 0SU_diglib_amiO6_bus.v
report_area -cells -summary 0SU_diglib_amiO6_bus.summary
exit

H.3 MiniUART Synthesis Script
Targetted for the OSU Standard Cell Library

# 0SU_diglib_amiO6 library synthesis

read_alf ~/synthesis/0SU_diglib_ami06/0SU_diglib_ami06.alf
# miniUART

read_vhdl ~/flow_tutorial/RxUnit.vhd

read_vhdl ~/flow_tutorial/TxUnit.vhd

read_vhdl ~/flow_tutorial/clkUnit.vhd

read_vhdl ~/flow_tutorial/miniUART.vhd

do_build_generic

do_optimize -priority area

write_verilog -hierarchical 0SU_diglib_ami06_miniUART.v
report_area -cells -summary 0SU_diglib_amiO6_miniUART.summary
exit

H.4 AVR Core Synthesis Script
Targetted for the OSU Standard Cell Library

# 0SU_diglib_amiO6 library synthesis

read_alf ~/synthesis/0SU_diglib_ami06/0SU_diglib_ami06.alf
# AVR Microprocessor Core

read_vhdl ~/nc/avr/AVRuCPackage.vhd

read_vhdl “/nc/avr/reg_file.vhd

read_vhdl ~/nc/avr/io_reg_file.vhd

read_vhdl “/nc/avr/io_adr_dec.vhd

read_vhdl ~/nc/avr/bit_processor.vhd

read_vhdl ~/nc/avr/pm_fetch_dec.vhd

read_vhdl ~/nc/avr/alu_avr.vhd

read_vhdl ~/nc/avr/avr_core.vhd

do_build_generic

do_optimize -priority area

write_verilog -hierarchical 0SU_diglib_amiO6_avr.v
report_area -cells -summary 0SU_diglib_amiO6_avr.summary
exit

102



APPENDIX I

Silicon Ensemble Pin Constraint Format

Sample constraint file that Silicon Ensemble uses to place pins. This is the pin

listing for the ALU module in the AVR microprocessor core.

# for alu_avr module
LEFT ( # ordered from BOTTOM to TOP

(IOPIN alu_c_flag_in );
(IOPIN alu_z_flag_in );
(IOPIN idc_add );
(IOPIN idc_adc );
(IOPIN idc_adiw );
(IOPIN idc_sub );
(IOPIN idc_subi );
(IOPIN idc_sbc );
(IOPIN idc_sbci );
(IOPIN idc_sbiw );
(IOPIN adiw_st );
(IOPIN sbiw_st );
(IOPIN idc_and );
(IOPIN idc_andi );
(IOPIN idc_or );
(IOPIN idc_ori );
(IOPIN idc_eor );
(IOPIN idc_com );
(IOPIN idc_neg );
(IOPIN idc_inc );
(IOPIN idc_dec );
(IOPIN idc_cp );
(IOPIN idc_cpc );
(IOPIN idc_cpi );
(IOPIN idc_cpse );
(IOPIN idc_1lsr );
(IOPIN idc_ror );
(IOPIN idc_asr );
(IOPIN idc_swap );
)

TOP ( # ordered from left to right

(IOPIN alu_data_r_in[0] );
(IOPIN alu_data_r_in[1] );

103



(IOPIN
(I0PIN
(I0PIN
(I0OPIN
(I0PIN
(IOPIN

(I0PIN
(I0PIN
(IOPIN
(I0PIN
(I0PIN
(IOPIN
(I0PIN
(IOPIN

)

alu_data_r_in[2]
alu_data_r_in[3]
alu_data_r_in[4]
alu_data_r_in[5]
alu_data_r_in[6]
alu_data_r_in[7]

alu_data_d_in[0]
alu_data_d_in[1]
alu_data_d_in[2]
alu_data_d_in[3]
alu_data_d_in[4]
alu_data_d_in[5]
alu_data_d_in[6]
alu_data_d_in[7]

BOTTOM ( # ordered from left

(IOPIN
(I0PIN
(IOPIN
(IOPIN
(I0PIN
(IOPIN
(IOPIN
(I0PIN
(I0PIN
(IOPIN
(I0PIN
(IOPIN
(I0PIN
(I0PIN

alu_data_out [0]
alu_data_out[1]
alu_data_out[2]
alu_data_out[3]
alu_data_out [4]
alu_data_out [5]
alu_data_out[6]
alu_data_out[7]

alu_c_flag_out );
alu_z_flag_out );
alu_n_flag_out );
alu_v_flag out );
alu_s_flag_out );
alu_h_flag out );

to right

104



APPENDIX J

Silicon Ensemble Place & Route Scripts

Included is the master shell script that calls the Silicon Ensemble program, which
uses its own command script. Only one command script is included, since the com-
mand structure is almost identical, with only varying file name, module name, and

area information commands, in most cases.

J.1 Shell Script

The master shell script calls multiple instances of Silicon Ensemble.

# P&R 0SU Designs

echo "P&R 0SU bus"
nohup nice sedsm -gd=ansi -m=500 "EXECUTE osu_bus.mac"
| grep -e violations -e ERROR > osu_bus_errors.txt # 85
echo "P&R 0SU miniUART"
nohup nice sedsm -gd=ansi -m=500 "EXECUTE osu_miniUART.mac"
| grep -e violations -e ERROR > osu_miniUART_errors.txt # 807
echo "P&R 0SU avr"
nohup nice sedsm -gd=ansi -m=500 "EXECUTE osu_avr.mac"
| grep -e violations -e ERROR > osu_avr_errors.txt # 35}
echo "Finished 0SU designs"

# P&R IIT Designs
echo "P&R IIT bus"
nohup nice sedsm -gd=ansi -m=500 "EXECUTE iit_bus.mac"
| grep -e violations -e ERROR > iit_bus_errors.txt #85J
echo "P&R IIT miniUART"
nohup nice sedsm -gd=ansi -m=500 "EXECUTE iit_miniUART.mac"
| grep -e violations -e ERROR > iit_miniUART_errors.txt # 85/
echo "Finished IIT designs"

# P&R MSU Designs

echo "P&R MSU miniUART"
nohup nice sedsm -gd=ansi -m=500 "EXECUTE msu_miniUART.mac"

105



| grep -e violations -e ERROR > msu_miniUART_errors.txt # 85/
echo "P&R MSU avr"
nohup nice sedsm -gd=ansi -m=500 "EXECUTE msu_avr.mac"

| grep -e violations -e ERROR > msu_avr_errors.txt
echo "Finished MSU Designs"

# P&R UT Designs
echo "P&R UT miniUART"
nohup nice sedsm -gd=ansi -m=500 "EXECUTE ut_miniUART.mac"
| grep -e violations -e ERROR > ut_miniUART_errors.txt # 85 ¥
echo "P&R UT avr"
nohup nice sedsm -gd=ansi -m=500 "EXECUTE ut_avr.mac"
| grep -e violations -e ERROR > ut_avr_errors.txt # 50%
echo "Finished UT Designs"

J.2 Bidirectional Bus Place & Route Script

Targetted for the OSU Standard Cell Library

set v draw.row.at ON;

FINPUT LEF FILENAME "~/synthesis/0SU_diglib_ami06/0SU_diglib_ami06.lef"
REPORTFILE "importlef.rpt"

SET VAR INPUT.VERILOG.POWER.NET "vdd!";

SET VAR INPUT.VERILOG.GROUND.NET "gnd!";

SET VAR INPUT.VERILOG.LOGIC.1.NET "vdd!";

SET VAR INPUT.VERILOG.LOGIC.O.NET "gnd!";

SET VAR INPUT.VERILOG.SPECIAL.NETS "vdd! gnd!";

INPUT VERILOG FILE "0SU_diglib_ami06/0SU_diglib_amiO6_gates.v 0SU_diglib_amiO6_bus.v"
LIB "cds_vbin" REFLIB "cds_vbin " DESIGN "cds_vbin.bidir:hdl"

set v USERLEVEL EXPERT;

set v PLAN.REPORT.STAT " ";

FINIT FLOOR;

FINIT FLOORPLAN rowu 0.85 rowsp O blockhalo 2000 f a 1 abut xio 3000 yio 3000 ;

set v UPDATECOREROW.BLOCKHALO.GLOBAL 2000;

IOPLACE AUTOMATIC STYLE EVEN ;

SET VAR QPWR.RSPF ""

SET VAR QPLACE.PLACE.GROUTE.ANALYSIS ""
SET VAR QPLACE.OQPT.TIMING.TYPE ""
SET VAR QPLACE.PLACE.PIN ""

QPLACE NOCONFIG
SROUTE ADDCELL MODEL filli PREFIX £illl NO FS SPIN vdd!
NET vdd! SPIN gnd! NET gnd! AREA ( -21840 -21600 ) ( 22080 21900 ) ;
SET VAR DRAW.SWIRE.AT ON ;
SET VAR DRAW.CHANNEL.AT ON ;
BUILD CHANNEL ;
CONSTRUCT RING
NET "gnd!"
NET "vdd!"
LAYER metall CORERINGWIDTH 240 SPACING CENTER BLOCKRINGWIDTH O
LAYER metal2 CORERINGWIDTH 240 SPACING CENTER BLOCKRINGWIDTH O

106



DISPOSE CHANNEL ;

SET VAR DRAW.CHANNEL.AT OFF ;

SET VAR DRAW.SWIRE.AT SMALL ;
CONNECT RING NET "gnd!" NET "vdd!"

STRIPE BLOCK ALLPORT IOPAD ALLPORT IORING FOLLOWPIN

SET VAR WROUTE.FINAL TRUE

SET VAR WROUTE.GLOBAL TRUE
SET VAR WROUTE.INCREMENTAL.FINAL FALSE

WROUTE NOCONFIG

OUTPUT DEF CELLS NETS SPECIALNETS VIAS
GROUPS MODIFICATIONS EXTPIN LAYOUTMODIFICATION
FQUIT ;

107

FILENAME

"osu_bus.def"



APPENDIX K

Synthesis Summary Reports

The summary files produced by BuildGates Extreme show such things as the
number of cells in each stage of the design hierarchy, the number of nets in the

design, and the total cell area of the design.

K.1 OSU AVR Microprocessor

B et e e e L e P P +

| Date 20031016.202758 |

| Tool bgx_shell |

| Release | v5.11-s079 |

| Version | Aug 19 2003 04:51:32 |

B A e e +

| Module | avr_core |
Bt e L L PP e PR +

Summary Area Report

Source of Area : Timing Library

B e -+
| Module | Wireload | Cell Area | Net Area | Total Area |
| === - Fmmmm e ———— pm————————— + -
| avr_core | NONE | 1024963.20 | 0.00 | 1024963.20 |
| alu_avr | NONE | 36092.16 | 0.00 | 36092.16 |
| bit_processor | NONE | 26308.80 | 0.00 | 26308.80 |
| io_adr_dec | NONE | 6228.00 | 0.00 | 6228.00 |
| io_reg_file | NONE |  74629.44 | 0.00 |  74629.44 |
I pm_fetch_dec | NONE | 378146.88 | 0.00 | 378146.88 |
| reg_file_ResetRegFilel | NONE | 503557.92 | 0.00 | 503557.92 |
| AWDP_DEC_00 | NONE | 8028.00 | 0.00 | 8028.00 |
| AWDP_INC_11 | NONE | 9216.00 | 0.00 | 9216.00 |
| AWDP_ADD_O | NONE | 9504.00 | 0.00 | 9504.00 |
| AWDP_INC_98 | NONE | 9216.00 | 0.00 | 9216.00 |
| AWRS_partition_2 | NONE | 15930.72 | 0.00 | 15930.72 |
| AWDP_partition_2 | NONE | 11952.00 | 0.00 | 11952.00 |

108



| AWDP_DEC_0 | NONE | 8028.00 | 0.00 | 8028.00 |
| AWDP_INC_10 | NONE | 9216.00 | 0.00 | 9216.00 |
B T e e +
BT T +
| Block report for module ’avr_core’ | Current | Cumulative |
I | Module |
|- ————————————— . ——_—_—_——_———-F—-, -, Y ., — Fmmm—————— o m |
| Number of combinational instances | 0| 3116 |
| Number of noncombinational instances | o | 468 |
| Number of hierarchical instances | 6 | 14 |
| Number of blackbox instances | 0| 0 |
| Total number of instances | 6 | 3598 |
| Area of combinational cells | 0.00 | 502675.20 |
| Area of non-combinational cells | 0.00 | 522288.00 |
| Total cell area | 0.00 | 1024963.20 |
| Number of nets | 336 | 3750 |
| Area of nets | 0.00 | 0.00 |
| Total area | 0.00 | 1024963.20 |
B T +
o o o
| Cell Usage Table
| === e e e e e
| Cellref | Library | Number of | Cell Type | Cell Area | Total Area
| | | Instances | | |
B L e L Fmm—————————— o —————— pmm———————— + e —————— |
| alu_avr | netlist | 1] hier | 36092.16 | 36092.16
| bit_processor | netlist | 1] hier | 26308.80 | 26308.80
| io_adr_dec | netlist | 1] hier | 6228.00 | 6228.00
| io_reg_file | netlist | 1] hier | 74629.44 | 74629.44
| pm_fetch_dec | netlist | 1] hier | 378146.88 | 378146.88
| reg_file_ResetRegFilel | netlist | 11 hier | 503557.92 | 503557.92
K.2 OSU Bidirectonal Bus

___________________________________ +

| Report | report_area

| e e e e e e e s m oo |
| Options | -cells -summary 0SU_diglib_amiO6_bus.summary |
+ B e EE +
| Date | 20031016.202509

| Tool | bgx_shell

| Release | v5.11-s079

| Version | Aug 19 2003 04:51:32

+ B e L E e P P T R P +
| Module | bidir

e e e e e +
Summary Area Report

Source of Area : Timing Library

| Module | Wireload | Cell Area |

| + B ittt Fmmmm e m T e |
I bidir | NONE | 15048.00 | 0.00 |

+

Net Area | Total Area |

15048.00



| Block report for module ’bidir’ | Current | Cumulative |

| | Module | |

| === B Fom |

| Number of combinational instances | 1] 1]

| Number of noncombinational instances | 24 | 24 |

| Number of hierarchical instances | 0| o1

| Number of blackbox instances | 0| 0|

| Total number of instances | 25 | 25 |

| Area of combinational cells | 72.00 | 72.00 |

| Area of non-combinational cells | 14976.00 | 14976.00 |

| Total cell area | 15048.00 | 15048.00 |

| Number of nets | 35 | 35 |

| Area of nets | 0.00 | 0.00 |

| Total area | 15048.00 | 15048.00 |

B +
e
| Cell Usage Table

[ == m m
| Cellref | Library | Number of | Cell Type | Cell Area | Total Area |
| | | Instances | | |
|- e T e mmm - Fm———— B et
I invxl | 0SU_diglib_ami06 | 1| comb | 72.00 | 72.00 |
| invzxl | 0SU_diglib_amiO6 | 8 | noncomb | 216.00 | 1728.00 |
I dff | 0SU_diglib_amiO6 | 16 | noncomb | 828.00 |  13248.00 |
K.3 OSU miniUART
e +

| Report | report_area |

|- ittt ittt |

| Options | -cells -summary 0SU_diglib_amiO6_miniUART.summary |

Fommm e o +

| Date | 20031016.202524 |

| Tool | bgx_shell |

| Release | v5.11-s079 |

| Version | Aug 19 2003 04:51:32 |

Fommmmmm e +

| Module | miniUART |

e e e +

Summary Area Report

Source of Area : Timing Library

________________________________________________________________ +

| Wireload | Cell Area | Net Area | Total Area |
Fom Hom Fom - Hom - |

| miniUART | NONE | 122505.12 | 0.00 | 122505.12 |

| ClkUnit | NONE | 23654.88 | 0.00 | 23654.88 |

| RxUnit | NONE | 41312.16 | 0.00 | 41312.16 |

| TxUnit | NONE | 35248.32 | 0.00 | 35248.32 |

| AWDP_DEC_1 | NONE | 3708.00 | 0.00 | 3708.00 |

e e e +

o o +

| Block report for module ’miniUART’ | Current | Cumulative |

| | Module | |

110



+ +
Number of combinational instances |
Number of noncombinational instances |
Number of hierarchical instances |
Number of blackbox instances |
Total number of instances | 72 | 478
| |
| |
| |
| |
| |
| |

Area of combinational cells 7385.76 52125.12

Area of non-combinational cells 14904.00 70380.00

Total cell area 22289.76 122505.12

Number of nets 101 502

Area of nets 0.00 0.00

Total area 22289.76 122505.12

________________________________________ +

e +
I Cell Usage Table |
| = e - |
| Cellref | Library | Number of | Cell Type | Cell Area | Total Area |
| | | Instances | | | |
| B Fom +-——= +-———- Bttt |
| ClkUnit | netlist | 1] hier | 23654.88 | 23654.88 |
| RxUnit | netlist | 1] hier | 41312.16 | 41312.16 |
| TxUnit | netlist | 1] hier | 35248.32 | 35248.32 |
| nand4x1 | 0SU_diglib_ami06 | 1| comb | 180.00 | 180.00 |
I tiehigh | 0SU_diglib_amiO6 | 1| comb | 72.00 | 72.00 |
| nor3x1l | 0SU_diglib_amiO6 | 3 | comb | 144 .00 | 432.00 |
I nand3x1 | 0SU_diglib_amiO6 | 6 | comb | 144.00 | 864.00 |
| mux21x1 | 0SU_diglib_ami06 | 8 | comb | 342.72 | 2741.76 |
| nor2x1 | 0SU_diglib_amiO6 | 9 | comb | 108.00 | 972.00 |
| invxl | 0SU_diglib_amiO6 | 10 | comb | 72.00 | 720.00 |
I nand2x1 | 0SU_diglib_amiO6 | 13 | comb | 108.00 | 1404.00 |
I dff | 0SU_diglib_amiO6 | 18 | noncomb | 828.00 |  14904.00 |
B e T R +
K.4 UT AVR Microprocessor
e +
| Report | report_area |
! s |
| Options | -cells -summary UT_LP_AMIO6_avr.summary |
+ e T +
| Date | 20031016.201856 |
| Tool | bgx_shell |
| Release | v5.11-s079 |
| Version | Aug 19 2003 04:51:32 |
+ T T +
| Module | avr_core |
e +
Summary Area Report
Source of Area : Timing Library
B T e -+
| Module | Wireload | Cell Area | Net Area | Total Area |
| —— Hom - + —-————t -
| avr_core | NONE | 1122249.62 | 0.00 | 1122249.62 |
| alu_avr | NONE | 43113.60 | 0.00 | 43113.60 |
| bit_processor | NONE |  29030.40 | 0.00 |  29030.40 |
| io_adr_dec | NONE | 7646.40 | 0.00 | 7646.40 |
| io_reg_file | NONE | 83635.20 | 0.00 | 83635.20 |
I pm_fetch_dec | NONE | 416923.21 | 0.00 | 416923.21 |
| reg_file_ResetRegFilel | NONE | 541900.81 | 0.00 | 541900.81 |

111



| AWDP_DEC_00 | NONE | 10497.60 | 0.00 | 10497.60 |

| AWDP_INC_11 | NONE | 11318.40 | 0.00 | 11318.40 |

| AWRS_partition_2 | NONE | 19137.60 | 0.00 | 19137.60 |

| AWRS_partition_3 | NONE | 18230.40 | 0.00 | 18230.40 |

| AWDP_partition_2 | NONE | 14428.80 | 0.00 | 14428.80 |

I AWDP_partition_3 | NONE |  11404.80 | 0.00 |  11404.80 |

| AWDP_DEC_0 | NONE | 10497.60 | 0.00 | 10497.60 |

| AWDP_INC_10 | NONE | 11318.40 | 0.00 | 11318.40 |

B T -+

B T +

| Block report for module ’avr_core’ | Current | Cumulative |

| | Module |

|- ——————————— Fo— - o |

| Number of combinational instances | (V| 2971 |

| Number of noncombinational instances | (V| 468 |

| Number of hierarchical instances | 6 | 14 |

| Number of blackbox instances | 0| 0|

| Total number of instances | 6 | 3453 |

| Area of combinational cells | 0.00 | 576374.41 |

| Area of non-combinational cells | 0.00 | 545875.21 |

| Total cell area | 0.00 | 1122249.62 |

| Number of nets | 336 | 3612 |

| Area of nets | 0.00 | 0.00 |

| Total area | 0.00 | 1122249.62 |

B e TR N +

B e T T T +
| Cell Usage Table I
| !
| Cellref | Library | Number of | Cell Type | Cell Area | Total Area |
| | | Instances | | | |
| —— - Hom - + —-———— B |
| alu_avr | netlist | 1] hier | 43113.60 | 43113.60 |
| bit_processor | netlist | 1] hier | 29030.40 | 29030.40 |
| io_adr_dec | netlist | 1] hier | 7646.40 | 7646.40 |
| io_reg_file | netlist | 1] hier | 83635.20 | 83635.20 |
| pm_fetch_dec | netlist | 1] hier | 416923.21 | 416923.21 |
| reg_file_ResetRegFilel | netlist | 1] hier | 541900.81 | 541900.81 |
e e e e e e e m e m - ——— +

K.5 UT mintUART

Aug 19 2003 04:51:32

Summary Area
Source of Ar

Report
ea :

Module

| Wireload |

| Report | report_area

| +

| Optioms |

| Date | 20031016.201918
| Tool | bgx_shell

| Release | v5.11-s079

| Version |

| Module | miniUART

Timing Library

Cell Area |

Net Area | Total Area |

112



+
| miniUART NONE |
| ClkUnit NONE |
| RxUnit NONE |
| TxUnit NONE |
| AWDP_DEC_1 NONE |

129384.00

44064.00
36288.00
4622.40

Block report for module ’miniUART’

Number of combinational instances
Number of noncombinational instances

Number of hierarchical instances

Total number of instances

Area of combinational cells
Area of non-combinational cells

Total cell area
Number of nets
Area of nets

Total area

|
|
|
|
|
|
| Number of blackbox instances
|
|
|
|
|
|
|

+
|
25920.00 |
|
|
|

72
8337.60
14774.40
23112.00
101

|

|

| Cellref | Library | Number of

| | | Instances

| + ————m e

| ClkUnit | netlist | 1

| NAND4 | UT_LP_AMIO6 | 1

| RxUnit | netlist | 1

| TIELO | UT_LP_AMIO6 | 1

| TxUnit | netlist | 1

| NOR3 | UT_LP_AMIO6 | 3

| NAND3 | UT_LP_AMIO6 | 6

| MUX2 | UT_LP_AMIO6 | 8

| NOR2 | UT_LP_AMIO6 | 9

| INV | UT_LP_AMIO6 | 10

| NAND2 | UT_LP_AMIO6 | 13

| DFF_S | UT_LP_AMIO6 | 18
K.6 IIT Bidirectional Bus
| Report | report_area

| B e e e et
| Options | -cells -summary iit_bus.summary |
| Date | 20031016.202144

| Tool | bgx_shell

| Release | vb5.11-s079

| Version | Aug 19 2003 04:51:32

| Module | bidir

Summary Area Report

Source of Area :

Timing Library

113

+
0.00 | 129384.00
0.00 | 25920.00
0.00 | 44064 .00
0.00 | 36288.00
0.00 | 4622.40
+
| Cumulative |
| |
Fom |
| 324 |
| 85 |
31 4 |
0| 01
| 413 |
| 59616.00 |
| 69768.00 |
| 129384.00 |
| 446 |
| 0.00 |
| 129384.00 |
| Cell Area | Total Area |
| |
hier | 25920.00 | 25920.00
comb | 216.00 | 216.00
hier | 44064.00 | 44064 .00
comb | 86.40 | 86.40
hier | 36288.00 | 36288.00
comb | 172.80 | 518.40
comb | 172.80 | 1036.80
comb | 345.60 | 2764.80
comb | 129.60 | 1166.40
comb | 86.40 | 864.00
comb | 129.60 | 1684.80
| 820.80 | 14774 .40

——4



B T et +
| Module | Wireload | Cell Area | Net Area | Total Area |
|——————————— e o Fmmmm e m |

| bidir | NONE | 17856.00 | 0.00 | 17856.00 |

B i +

D T e T T +

| Block report for module ’bidir’ | Current | Cumulative |

| | Module | |

| === R Fom |

| Number of combinational instances | 8 | 8 |

| Number of noncombinational instances | 24 | 24 |

| Number of hierarchical instances | 0 | o1

| Number of blackbox instances | 0| o1

| Total number of instances | 32 | 32 |

| Area of combinational cells | 1152.00 | 1152.00 |

| Area of non-combinational cells | 16704.00 | 16704.00 |

| Total cell area | 17856.00 | 17856.00 |

| Number of nets | 42 | 42 |

| Area of nets | 0.00 | 0.00 |

| Total area | 17856.00 | 17856.00 |

L e +

| Cell Usage Table

| o m e m

| Cellref | Library | Number of | Cell Type |

| | | Instances | | |
| B e e L L L e T et +-- +--= +
| INVX1 | iit06_stdcells_pads | 8 | comb | 144.00 |
| TBUFX1 | iit06_stdcells_pads | 8 | noncomb | 360.00 |
| DFFP0SX1 | iit06_stdcells_pads | 16 | noncomb | 864.00 |

K.7 IIT miniUART

Report

Options

Tool bgx_shell
Release v5.11-s079
Version | Aug 19 2003 04:51:32

|
|
Date | 20031016.202158
|
|
|
|

Module miniUART

F—F — — — — 4+ — — — 4

Summary Area Report
Source of Area : Timing Library

| Module | Wireload | Cell Area | Net Area | Total Area
| + EEEt EEE R Fom - B T |
| miniUART | NONE | 159993.00 | 0.00 | 159993.00
| ClkUnit | NONE | 32868.00 | 0.00 | 32868.00
| RxUnit | NONE | 54567.00 | 0.00 | 54567.00
| TxUnit | NONE | 44055.00 | 0.00 | 44055.00
| AWDP_DEC_1 | NONE | 5976.00 | 0.00 | 5976.00

1152.00
2880.00
13824.00

Cell Area | Total Area |



| Block report for module ’miniUART’ | Current | Cumulative |

| | Module | |

|- ——————————— Fomm - o —— |

| Number of combinational instances | 60 | 389 |

| Number of noncombinational instances | 18 | 85 |

| Number of hierarchical instances | 31 4 |

| Number of blackbox instances | 0 | (V]

| Total number of instances | 81 | 478 |

| Area of combinational cells | 12951.00 | 86553.00 |

| Area of non-combinational cells | 15552.00 | 73440.00 |

| Total cell area | 28503.00 | 159993.00 |

| Number of nets | 110 | 491 |

| Area of nets | 0.00 | 0.00 |

| Total area | 28503.00 | 159993.00 |

e e e e - +

e e e e e e e e e e e e e e e e e e e e e e e
| Cell Usage Table

| = mm m
| Cellref | Library | Number of | Cell Type | Cell Area | Total Area
| | | Instances | | |

| e Fmm—————————— +== - o ———————— |
| AOI21X1 | 1it06_stdcells_pads | 1] comb | 288.00 | 288.00
| ClkUnit | netlist | 1] hier | 32868.00 | 32868.00
| RxUnit | netlist | 1] hier | 54567.00 | 54567.00
| TxUnit | netlist | 1] hier | 44055.00 | 44055.00
| OR2X1 | iitO6_stdcells_pads | 2 | comb | 288.00 | 576.00
| AND2X1 | iit06_stdcells_pads | 6 | comb | 288.00 | 1728.00
| NAND3X1 | iitO6_stdcells_pads | 6 | comb | 324.00 | 1944.00
| DFFPOSX1 | iit06_stdcells_pads | 71 noncomb | 864.00 | 6048.00
|  DFFNEGX1 | iit06_stdcells_pads | 11 | noncomb | 864.00 | 9504.00
| NAND2X1 | iitO6_stdcells_pads | 12 | comb | 216.00 | 2592.00
| INVX1 | iit06_stdcells_pads | 16 | comb | 144 .00 | 2304.00
I 0AI21X1 | iitO6_stdcells_pads | 17 | comb | 207.00 | 3519.00
K.8 MSU AVR Microprocessor
B +

| Report | report_area |

| === ittt |

| Options | -cells -summary msu_avr.summary |

fmm——————— e it +

| Date | 20031016.202500 |

| Tool | bgx_shell |

| Release | v5.11-s079 |

| Version | Aug 19 2003 04:51:32 |

B B T +

| Module | avr_core |

e +

Summary Area Report

Source of Area : Timing Library
e +

| Module | Wireload | Cell Area | Net Area | Total Area |
|- Fomm - e et b—————————— + -

| avr_core | NONE | 1343822.42 | 0.00 | 1343822.42 |

| alu_avr | NONE | 57456.00 | 0.00 | 57456.00 |

| bit_processor | NONE | 33998.40 | 0.00 | 33998.40 |

115



| io_adr_dec | NONE | 13003.20 | 0.00 | 13003.20
| io_reg_file | NONE | 94478.40 | 0.00 | 94478.40
| pm_fetch_dec | NONE | 512481.61 | 0.00 | 512481.61
| reg_file_ResetRegFilel | NONE | 632404.81 | 0.00 | 632404.81
| AWDP_DEC_00 | NONE | 14342.40 | 0.00 | 14342.40
| AWDP_INC_11 | NONE | 11620.80 | 0.00 | 11620.80
| AWRS_partition_2 | NONE | 33350.40 | 0.00 | 33350.40
| AWRS_partition_3 | NONE | 24883.20 | 0.00 | 24883.20
| AWDP_partition_2 | NONE | 26870.40 | 0.00 | 26870.40
| AWDP_partition_3 | NONE | 17280.00 | 0.00 | 17280.00
| AWDP_DEC_0 | NONE | 14342.40 | 0.00 | 14342.40
| AWDP_INC_10 | NONE | 11620.80 | 0.00 | 11620.80
B +
| Block report for module ’avr_core’ | Current | Cumulative |
I |  Module |
| == e o ————— Fmmm————————— |
| Number of combinational instances | o | 6315 |
| Number of noncombinational instances | 0 | 468 |
| Number of hierarchical instances | 6 | 14 |
| Number of blackbox instances | 0| 0|
| Total number of instances | 6 | 6797 |
| Area of combinational cells | 0.00 | 777729.63 |
| Area of non-combinational cells | 0.00 | 566092.79 |
| Total cell area | 0.00 | 1343822.42 |
| Number of nets | 336 | 6951 |
| Area of nets | 0.00 | 0.00 |
| Total area | 0.00 | 1343822.42 |
B T +
| Cell Usage Table
| === e e e e e e e
| Cellref | Library | Number of | Cell Type |
| | | Instances |
| —— Hom - + —-————t
| alu_avr | netlist | 1] hier | 57456.00
| bit_processor | netlist | 1] hier | 33998.40
| io_adr_dec | netlist | 1] hier | 13003.20
| io_reg_file | netlist | 1] hier | 94478.40
| pm_fetch_dec | netlist | 1] hier | 512481.61
| reg_file_ResetRegFilel | netlist | 1] hier | 632404.81
K.9 MSU miniUART

__________________________ +

Aug 19 2003 04:51:32

Summary Area
Source of Ar

Report
ea :

| Report | report_area

| +

| Optioms |

| Date | 20031016.202220
| Tool | bgx_shell

| Release | vb5.11-s079

| Version |

| Module | miniUART

Timing Library

116

-+

512481.
632404 .



miniUART
ClkUnit
RxUnit
TxUnit
AWDP_DEC_1

Block report for module

Wireload | Cell Area
____________ o ———————————
NONE | 175478.40

NONE | 35078.40

NONE | 59961.60

NONE | 48513.60

NONE | 6652.80

’miniUART’

Number of combinational instances

Number of noncombinational instances

Number of hierarchical instances
Number of blackbox instances
Total number of instances

Area of combinational cells
Area of non-combinational cells
Total cell area

Number of nets

Area of net
Total area

s

Current
Module

106
10152.00
21772.80
31924.80

131

0.00
31924.80

|

|

|

|
693 |
72662.40 |
102816.00 |
175478.40 |
702 |

0.00 |
175478.40 |

ClkUnit
RxUnit
TIEHI
TIELQ
TxUnit
DFFSRX1
INVX1
NOR2X1
NAND2X1

netlist
netlist
jennings_pads_noqn
jennings_pads_nogn
netlist
jennings_pads_nogn
jennings_pads_nogn
jennings_pads_noqn
jennings_pads_nogn

117

Cell Usage Table
Number of | Cell Type | Cell Area | Total Area
Instances | | |
1] hier | 35078.40 | 35078.40
1] hier | 59961.60 | 59961.60
1] comb | 86.40 | 86.40
1] comb | 86.40 | 86.40
1] hier | 48513.60 | 48513.60
18 | noncomb | 1209.60 | 21772.80
18 | comb | 86.40 | 1555.20
18 | comb | 129.60 | 2332.80
47 | comb | 129.60 | 6091.20



APPENDIX L

OSU Standard Cell Library Contents

Name Cell Type Function

ao22x1 And-0r Y=(A*B)+(C*D)

ao0i22x1 And-0r-Inv Y=((A*B)+(Cx*D))"’

bufx1 Buffer (1x drive strength) Y=A

bufx4 Buffer (4x drive strength) Y=A

bufzx1 Tri-State Buffer Y=A*TriState:’Z’*Tristate’

dff D Flip-Flop D=Data;CLK=Clock; QP=0utput; QN=Output’
dffpc D Flip-Flop D=Data;CLK=Clock;PRE=Preset;CLR= Clear;P=0utput;(QN=0utput’
f£illl Single-Width Fill Cell (none)

£i112 Double-Width Fill Cell (none)

invx1 Inverter (1x drive strength) Y=A"

invx4 Inverter (4x drive strength) Y=A"

invzx1 Tri-State Inverter Y=A’xTriState:’Z’*Tristate’

lat Latch D=Data; EN=Enable; QP=0utput; QN=0utput’
latpc Latch D=Data;EN=Enable;PRE=Preset;CLR=Clear ;QP=0utput ;QN=0utput’
mux21x1 Multiplexor Y=(A*Sel)+(B*Sel’)

nand2x1 2-Input NAND Y=(A*B)’

nand3x1 3-Input NAND Y=(A*B*C)’

nand4x1 4-Input NAND Y=(A*B*C*D)’

nor2x1 2-Input NAND Y=(A+B)’

nor3x1 3-Input NAND Y=(A+B+C)’

nor4x1 4-Input NAND Y=(A+B+C+D)’

tiehigh Tie High Y="1°

tielow Tie Low Y="0’

xnor2x1 Exclusive NOR Y=((A*B’)+(A’*B))’

xor2x1 Exclusive OR Y=(A*B’)+(A’*B)

118



APPENDIX M

OSU Standard Cell Library

119



EY

[DWDONLDAd®]

DNSOUDISUID)]

Figure M.1: Symbol of a022x1

120



v

ﬁ LYO ﬁ FMEIwi <
A3 37IS
[sndoo
A8
| X2 0D COOZ LVISEILL 39S 100
d3Lvadn
£)1sI0ATUN) 2)€)S O1YQ AU

ipub
| mzi‘ oy
' | o
LN |
b | o
|
| Nzi‘ 0
9N |
[ EE‘ 8

]

3lva NOILdI¥0S3a EE] aNoz

SNOISIAFY

il Sl SR ;é
L

Figure M.2: Schematic of a022x1

121



e

S /_./fﬂ/_/ﬂ/_//_mﬁﬁ
NN

RRRR RN
R

Figure M.3: Layout of a022x1

122



E

[SLWDNLDOAd®]

LIDNO2OUDISUID)]

Figure M.4: Symbol of a0i22x1

123



v

ﬁ WO ﬁ FMMIL <
A3 371S
[sndoo
A9
| XC 10D COBZ 95'SELL §F 190
Qa3Lvadn
£)1s19A1U) 91@}S OIYQ BY],
wz_u‘:utmu
¢ W * MZE‘ a
B o.-vﬁ#m SZE‘ v
W . NZE‘ 3
B o.vhw#m ZE‘ 8
S
9NId -4 hd
e |
NEﬂ T&&T‘
LA
.-QMMT‘
e nz.a‘%?
Jiva NOILdI¥0S3d A3d 3INOZ

SNOISIAFY

Figure M.5: Schematic of a0i22x1

124



N

NN

B % cubl . ull

SHRNANNN

Lot

__ -

RN

et

L1

o

Figure M.6: Layout of a0i22x1

125



[SUUDNIWWDA®)]
T 0=
A v
[SLWDNSoURIS e N

Figure M.7: Symbol of bufx1

126



v

EMIL <

A3d 37is

[sndoo

A8

| X4ng £O0Z G190/ BS 190

£)1sI0A1U) 91R)S OIYQ oY,

ipub

ippA

3lva

NOLLdI40S3a A3 aNnoz

SNOISIAIY

Figure M.8: Schematic of bufx1

127



N
N
N
% ¥ §
I :
%7
7
AN o N
| AN
N N
N
N W
N T T
N
N
1
N
N
N

Figure M.9: Layout of bufx1

128




[SLUDNILDA®)]

129

Figure M.10: Symbol of bufx4

[ LUDON=20UDISLHE—+



v

| 1O | EIL

7 x4ng

A3 Mm
[sndoo

A9

e Lol 99 120

Qa3Lvadn

£)1s19A1U) 91@}S OIYQ BY],

°0 ipub
mza‘ ipu

) 9'0/8" 9'0/8
N N
eNId A v ZNId v
(%) 9'0/ L 9'a/
8

kel

iPPA
* °0 %E‘,%

3lvad

NOILdI¥0S3a EE] aNoz

SNOISIAFY

Figure M.11: Schematic of bufx4

130






ENl

[SLUDN2

JONLIDAD)]

A

OUDISUID)]

N

i

Figure M.13: Symbol of bufxzl

SRS

132



v

ﬁ Lvo ﬁ FMMIL <
hEE] 37I1S
[sndoo
A8
| XZ1Ng CODZ SLILTL BT VO
a3Lvadn

£)1s19A1U) 91@}S OIYQ BY],

ipub
° Py lza‘%:
Q.E. T m.S\m.f\A
210151
#zaﬁ 1oiseL

ralcy
=
3 3 @ A

TGN

eNId

3lva NOILdI¥0S3a EE] aNoz

SNOISIAFY

Figure M.14: Schematic of bufzx1
133




7

i\

)

NI

®

-

LIRS

Vel

1Xzjnq Jo JnoAer] :GT N 2Ind1q

S
.
777 B N\

o |\

1 S %
i

o w




[LDN22UD)

SUl@)]

d0
NO

[cwDNULdD]
O <
Z O
O U

d
A 10

Figure M.16: Symbol of dff

135



v

10

Eurmi

HP

v

A3y 3zis
fsndoo L

A8

COVC LS L1 BF 3P0

Q31yddn

£)1sa9ATU) 9)R)S OIYQ |

o

= T

mZE-D

3va

NOILdI¥0S3Q

A3 | 3INOZ

SNOISIAZY

s‘ ippA

Figure M.17: Schematic of dff

136



e ]
(LS m 5

[ 1 | | WM

R = (A
s i
i el

%ﬁf

Li w
L

iﬁmw

il

e

Figure M.18: Layout of dff

137



[2LUDON=22UD

~

.‘

NO

d0

[SWDNLDA®)]

Jdd

d
o 10
A 10

4

L]

Figure M.19: Symbol of dffpc

138



z ¢ « 9 ’
ul E]
o
sdyp e
Mys1aatun 3183g o1yQ AYL
——
- 4 4 |
a4 Hf [
Ll e oo e U P - . o
Lor P RW B L Ca L « 7 " iy T
L I [
] =
L1 [
Lol el Lhn e L, L [,
G e A e e e R b
| z ¢ } 9 L

Figure M.20: Schematic of dffpc

139



4]
=

2

Ck

ovl

.
R

e

ST

7

v

[ T TR R 7 =

=

LIS

% L
= ] Ftl
-

P = = = = = = = = = = =

odyp jJo InoAeT :1Z N 2InJi ]




Figure M.22: Layout of filll

141




Figure M.23: Layout of fill2

142




O LUDONL

| SLUDN20UD]

.

Figure M.24: Symbol of invx1

143



v

| 1O | EIL <
A3 371S
[sndoo
A9
| XAUI CORT TYOTLL BT Y0
Qa3Lvadn

£)1s19A1U) 91@}S OIYQ BY],

ipub

ZNId

ippA

3lvad NOILdI¥0S3a

EE]

aNoz

SNOISIAFY

Figure M.25: Schematic of invx1

144



B oa
I

7

Figure M.26: Layout of invx1

145



O LUDONL

| SLUDN20UD]

.

Figure M.27: Symbol of invx4

146



v

| 1O | EIL <
A3d 3zis
[sndoo
Ag
7 XAUI COBT 8TWTLL S 10
d3Lvadn
£)Isaoa1Uf) 93e}S O1YQ oYl

ipub

v

iPpPA

31va NOILdI¥OS3a A3d 3NOZ

SNOISIAFY

Figure M.28: Schematic of invx4

147



Figure M.29: Layout of invx4

148




[SUWDN1IDAD)]

[OUUDN22UD)

i

Figure M.30: Symbol of invzx1

1015H |

149



v

| 1O | EIL <
A3 371S
[sndoo
A9
| XZAUI COPT SLICT/L @S 100
Qa3Lvadn

£)1s19A1U) 91@}S OIYQ BY],

ipub
M ﬁ mzi‘%c

N

eNId

210351
o 1e3SHL

v Hm :
i @ rr

GNId

3lva NOILdI¥0S3a EE] aNoz

SNOISIAFY

Figure M.31: Schematic of invzx1
150




Ve -

ANNRARRN: -

n

TN

a
A

Figure M.32: Layout of invzx1

151



B—CO NO N
[SWDNOAdD)]
- 0

B

d

[

|

Figure M.33: Symbol of lat

[SWDN82UPISUID)]

152



v

| 1O | EIL <
A3d 3zis
[sndoo
Ag
10| COOZ BLYTLL GF 120
d3Lvadn
£)1s19A1U) 91@}S OIYQ BY],
e an‘%cv
o ——
9'0/8 T
Ay o
sng VO p— qque
LANT
=S
NId =
o dc
sge o
Zd
i mzi‘%ﬁ;
31va NOILdI¥OS3a A3d 3NOZ

SNOISIAFY

Figure M.34: Schematic of lat

153



RL |
.

-
|
;,-;/

0

ﬁ!f

.

Figure M.35: Layout of lat

154



Efala
B—C NO N
[SWDNLDAdD)]
-
g 10

B

{

f

Figure M.36: Symbol of latpc

|

[SLUDNBOUDISUID)]

155



v

| 1O | EIL <
A3d 3zis
[sndoo
Ag
QQME COOZ B1STLL BF 120
d3Lvadn
£)1s19A1U) 91@}S OIYQ BY],
* * e e s @ZE‘E:m
- @PT ey e
i
gl
L [
6N qu
LNId ZO‘ ﬁ ‘ GNId - N3
N 40 4@ e a1 maﬂﬁ
o T\ 8d b’ 'Ld & 9d & W
9we 94/ 99/e T\ e p T|Av T\ T\
4\2_&‘ Jpd
*—o * * *—e * * * * *—o mza‘%E
e I
31va NOILdI¥OS3a A3d 3NOZ

SNOISIAFY

Figure M.37: Schematic of latpc

156



LG1

odyey Jo InoAer Qe N 2In3Iq

]
i

ﬁﬁ..:

4 M\ I rb‘
e ] 8
i i Zm
e f%* I
= W W = m

AN

P

e AL LN
. SRR RN




O
-
O
o O
O -
% O
N T
} N
o O
@ @GN
= ()
/|
N
O
< (1) )
] N ]

Figure M.39: Symbol of mux21x1

158




v

| 1O | EIL <
A3 371S
[sndoo
A9
| X | XUl COPT SLI9TH/L @S 10
Qa3Lvadn

£)1s19A1U) 91@}S OIYQ BY],

oNId

A

2, @0

EE‘ s

3lvad

NOILdI¥0S3a

EE]

aNoz

SNOISIAFY

oNId ipen

Figure M.40: Schematic of mux21x1

159



W :

I

W

o

23

SN

W | m[m

o
e
o
e /// e

WAy - v s .

» owa) W

gabx]

" A

NG

0N
%/

NN

Figure M.41: Layout of mux21x1

160



[QWDNLOAd®]

A

[SLUDN32UDISUIG)]

Figure M.42: Symbol of nand2x1

161



v

N

EMIL

| XZPpUuDu

[sndoo

A9

coBC

LLLCLL

@¢ 120

a3Lvadn

AY1SaI9AIU() 91818

O1yO 94l

3lvad

NOILdI¥0S3a

EE]

aNoz

SNOISIAFY

Figure M.43: Schematic of nand2x1

162



Figure M.44: Layout of nand2x1

163




E

[SLUD N

LUDN1IDA®)]

A

ah

HOUDISUID)]

Figure M.45: Symbol of nand3x1

164



v

N

EMIL

| XCPUDU

[sndoo

A9

COBC SY-8C-LL

@¢ 120

a3Lvadn

£)1s19A1U) 91@}S OIYQ BY],

2‘ v

@Z‘ 8

:H‘ 9

3lvad

NOILdI¥0S3a

EE]

aNoz

SNOISIAFY

Figure M.46: Schematic of nand3x1

165



Figure M.47: Layout of nand3x1

166




eNamel

Figure M.48: Symbol of nand4x1

167

() ?
- }. —
= O
) Z
e .

O
© 5

©

< | DO MO
H B B B




v

N

EMIL

| X PuUDU

[sndoo

A9

COOC DL-6C-LL

@¢ 120

a3Lvadn

£)1s19A1U) 91@}S OIYQ BY],

ipub
¢zi‘ iPe

N:‘ v

m:‘ 8

4\:‘ °

3lvad

NOILdI¥0S3a

EE]

aNoz

SNOISIAFY

m:‘ a

iPPA

Figure M.49: Schematic of nand4x1

168






[DUWDONLDAdD)]

[SLUDN

A

S50UDISUID)]

Figure M.51: Symbol of nor2x1

170



v

| 1O | EIL <
hEE] 37I1S
[sndoo

A9
| X 40U COBT 8T LL BS 120
a3Lvadn

AY1sI2ATU]) 21818 OIY(Q 9],
* oo «z_a‘%cm

w.S\mF—T.S\m

Jlva NOILdI¥OS3d A3d 3INOZ

SNOISIAFY

Figure M.52: Schematic of nor2x1

171



AN

Figure M.53: Layout of nor2x1

172




EX

[OLUDND

LUDNLDA®)]

OUDISUID)]

Figure M.54: Symbol of nor3x1

173



v

| 1O | EIL <
A3 371S
[sndoo
A9
| X¢JOou COPT LTS @S 10
Qa3Lvadn

£)1s19A1U) 91@}S OIYQ BY],

N:‘ °

f:‘ 8
JP _s:.<

NZE‘ ipen

3lva NOILdI¥0S3a EE] aNoz

SNOISIAFY

Figure M.55: Schematic of nor3x1
174




Figure M.56: Layout of nor3x1

175




[DUWDONLDAdD)]

[SLUDN

A

S50UDISUID)]

< | ] O

Figure M.57: Symbol of nordx1

176



v

| 1O | EIL <
A3 371S
[sndoo
A9
| X4740U CORT BTTSLL BT Y0
Qa3Lvadn

£)1s19A1U) 91@}S OIYQ BY],

9NId

Eam
=

:—L’j—o
=

e
I

e
I

ipub
mZE‘ Py

sz_u‘ v

ﬁZE‘ 8

ZNId ‘ °

mz_u‘ a

3lvad NOILdI¥0S3a

EE] N0z

SNOISIAFY

LNId ‘ ippn

Figure M.58: Schematic of nordx1

177



2 s f_\fw #Nf///ﬁﬂﬁr%%{%qx
G SNSEONANN

178

Figure M.59: Layout of nor4x1




.‘

[H [2WDONYDd@]

[SLUDNS2UDISUID)]

Figure M.60: Symbol of tiehigh

179



v

ﬁ WO ﬁ FMMIL <
A3 371S

[sndoo
A9
SISIFE! c007 clieeiLl B8 190
Qa3Lvadn

£)1s19A1U) 91@}S OIYQ BY],
I NId ,vU:m
CNId H
hd s @ P
Jiva NOILdI¥0S3d A3d 3NOZ

SNOISIAFY

Figure M.61: Schematic of tiehigh

180



RN

n

W

Figure M.62: Layout of tiehigh

181




.‘

O [3WLDONHDAdD)]

[SLUDNS2UDISUID)]

Figure M.63: Symbol of tielow

182



v

| 1O | EIL <
A3d 3zis
[sndoo
Ag
MO|311 COBT 60 VSILL 9 Y0
d3Lvadn
£)Isaoa1Uf) 93e}S O1YQ oYl
ZNId o1
31va NOILdI¥OS3a A3d 3NOZ

SNOISIAFY

ipub

iPPA

Figure M.64: Schematic of tielow

183



=

Figure M.65: Layout of tielow

184




EX

[OLUDND

LUDNLDA®)]

OUDISUID)]

Figure M.66: Symbol of xnor2x1

185



v

ZNid ds

fzi‘ v

| 1O | EIL <
hEE] 37I1S
[sndoo
A9
| X JOUX COBT 9B'GELL BE 120
a3Lvadn
AY1sI2ATU]) 21818 OIY(Q 9],
Jlva NOILdI¥OS3d A3d 3INOZ

SNOISIAFY

Figure M.67: Schematic of xnor2x1

186



B

ThRRY

LLLLLLLY

////////

e

e

Figure M.68: Layout of xnor2x1

187



EX

[SLUDN®

LUDNLDA®)]

DUDISUID)]

Figure M.69: Symbol of xor2x1

188



v

| 1O | EIL <
A3 371S
[sndoo
A9
| X 4OX COBT 90:9¢: /L 89S 120
Qa3Lvadn
£)1s19A1U) 91@}S OIYQ BY],
4 A d A d ® ® o ‘.%:mv
— LL QEJ
] ° a:
#NId W o g
6N L y
goeJp—
. . ® oo
Jiva NOILdI¥0S3d A3d 3NOZ

SNOISIAFY

Figure M.70: Schematic of xor2x1

189



061

[XgI0X Jo moker] 1. N 2Indi

H
o

[
1}
N

] L E
NNAStotetd
X T T




APPENDIX N

Sample Layouts

191



Figure N.1: Layout of Bidirectional Bus on OSU Digital Standard Cell Library.

192



Figure N.2: Layout of MiniUART on OSU Digital Standard Cell Library.

193



Figure N.3: Layout of AVR Microprocessor Core on OSU Digital Standard Cell Li-
brary.

194



BIBLIOGRAPHY

[1] J. Bhasker, A VHDL Synthesis Primer, Star Galaxy Publishing, 1996.

[2] “Verilog History,” URL: http://www.vol.webnexus.com/Sample/overview/

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]
[11]

[12]

history.html.

A. Cataldo and R. Wilson, “Embattled gate array players pull out an ace,” URL:
http://www.commsdesign.com/news/tech_beat/0EG2002031850011.

“Why Sea-of-Gates?,” URL: http://cas.et.tudelft.nl/"patrick/docs/
wwman/section2.3.1.html.

T. Carter and K. Smith, “Path-programmable logic,” in Second Annual IEEE
ASIC Seminar and Ezhibit, Sept. 1989, pp. P14-5/1-4.

H. Eriksson and P. Larsson-Edefors, “Full-custom vs. standard-cell design flow
- an adder case study,” in Proceedings of the ASP-DAC 2008 Asia and South
Pacific Design Automation Conference, Jan. 2003, pp. 507-510.

M. Rose, M. Wiesel, D. Kirkpatrick, and N. Nettleton, “Dense, performance
directed, auto place and route,” in Proceedings of the IEEE Custom Integrated
Circuits Conference, May 1988, pp. 11.1/1-11.1/4.

M. Kontiala, A. Heinonen, and J. Nurmi, “Low-power methodology issues in dig-
ital circuit design,” in IEEFE International Symposium on Circuits and Systems,
May 2002, pp. 11-493-1-496.

D. Chinnery and K.Keutzer, Closing The Gap Between ASIC & Custom, Kluwer
Adademic Publishers, 2002.

“The OpenCores Project,” URL: http://www.opencores.org.
“GNU general public license,” URL: http://www.gnu.org/licenses/gpl.txt.

“Project: AVR core,” URL: http://wuw.opencores.org/projects/avr_core,
May 2003.

195



[13] “Project:  Serial wuart,” URL: http://www.opencores.org/projects/
miniuart2, Jan. 2003.

[14] “MOSIS FAQ: Educational program,” URL: http://www.mosis.org/Faqs/
faq-education.html, May 2003.

[15] “Standard cell library for MOSIS SCMOS,” URL: http://www.mosis.org/
Technical/Designsupport/std-cell-library-scmos.html.

[16] J. Sulistyo, “Development of CMOS Standard Cell Library,” URL: http://
www.ee.vt.edu/"jgtront/ece5546/standard_cells.pdf.

[17] “Mississippi State University Standard Cell Library,” URL: http://wuw.erc.
msstate.edu/mpl/education/cadence/standard_cell/downloads.html.

(18] R. Tsui, A. Shenoy, J. Tampone, and S. Taylor, “A three-layer router for standard
cell VLSI circuits,” in IEEE International Symposium on Circuits and Systems,
June 1988, pp. 1441-1444.

[19] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems
Perspective, Addison-Wesley, second edition, 1992.

[20] Cadence Design Systems Inc., Technology File and Display Resource File User
Guide, Apr. 2001.

[21] Cadence Design Systems Inc., Cadence Abstract Generator User Guide, Product
Version 5.0, June 2003.

[22] T. Haunsperger, “Tutorial help for cadence,” URL: http://www.owlnet.rice.
edu/"watkinst/tutorial/index.html, Rice University.

[23] “The Single UNIX Specification, Version 2: Nohup,” URL: http://wuw.
opengroup.org/onlinepubs/007908799/xcu/nohup.html, 1997.

[24] “VHDL Synthesis,” URL:  http://mikro.e-technik.uni-ulm.de/vhdl/
anl-engl.syn/html/node3.html.

[25] “Standard cells for use with magic and cadence/synopsis,” URL: http://wuw.
ece.iit.edu/"cad/scells/.

[26] “Ami-0.6 standard-cell library for cadence,” URL: http://vlsil.engr.utk.
edu/ece/bouldin_courses/ut-1lp-ami06.html.

[27] J. Grad and J.E. Stine, “A standard cell library for student projects,” in In-
ternational Conference on Microelectronic Systems FEducation. IEEE Computer
Society, 2003, pp. 98-99.

196



[28] D. Bouldin, “Microelectronic system courses,” URL: http://vlsil.engr.utk.
edu/ece/bouldin_courses/.

[29] “VHDL: Bidirectional bus,” URL: http://www.altera.com/support/
examples/vhdl/v_bidir.html.

[30] ATMEL, “8-bit AVR microcontroller with 128K in-system programmable flash:
ATmegal03, ATmegal03L,” Datasheet.

197



