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Abstract—This paper describes hardware that has been built
to compress video in real time using full-search vector quanti-
zation (VQ). This architecture implements a differential-vector-
quantization (DVQ) algorithm and features a special-purpose
digital associative memory, the VAMPIRE chip, which has been
fabricated in 2 pym CMOS. We describe the DVQ algorithm, its
adaptations for sampled NTSC composite-color video, and details
of its hardware implementation. We conclude by presenting both
numerical results and images drawn from real-time operation of
the DVQ hardware. :

I. INTRODUCTION

ECTOR quantization has become well-known and widely

studied since Shannon first established the merits of
quantizing vectors rather than scalars [1]. Since that time,
vector quantization (VQ) has been shown to be useful in the
realm of data compression, particularly attracting attention for
its efficient compression of digitized speech and image data.
Meanwhile, as digital data has become more prevalent, the
demand for real-time image-coding hardware has increased
dramatically. The design of real-time vector quantizers for
image coding has been particularly difficult due to the inherent
computational complexity of VQ encoders and the extremely
fast speeds demanded by real-time video applications. While
much of the research effort directed at image compression via
VQ has not been directly applicable to real-time hardware
coding architectures, some recent proposals have been put
forward ([2]-[5]). Unfortunately, the actual performance of
VQ of real video signals in real time has not been sufficiently
demonstrated. The work presented here represents a real-time
demonstration of the merits of VQ.

In this paper, we begin with a review of VQ and previously
proposed hardware VQ architectures. Next, we give a
description of an algorithm for video compression called
differential vector quantization (DVQ), a combination of
differential-pulse-code modulation (DPCM) and full-search
VQ. We present an architecture that, having been constructed
in hardware, implements this algorithm in real time. This
architecture  is centered around a special-purpose digital
associative memory, the VAMPIRE chip, which has been
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fabricated with a 2 yum CMOS n-well process and is described
briefly here. We conclude with several examples drawn from
the actual operation of the hardware.

II. VECTOR QUANTIZATION

Vector quantization is a well-known technique for data
compression and has been discussed extensively elsewhere
(see in particular [6] and [7]). What follows is a brief overview
of the theory of VQ and some of the research directed toward
hardware solutions of VQ encoding.

A. Vector-Quantization Theory

The philosophy of VQ stems from Shannon’s rate-distortion
theory which implies that, theoretically, better performance
can always be obtained from co&ing vectors of information
rather than scalars [1]. An extensive discussion of VQ tech-
niques and applications is given in [6], and the basic theory is
summarized in the context of image applications in [8].

In a typical application of VQ to image coding, the image
is broken into blocks of pixels called tiles. Each image tile
of n x m pixels can be considered a vector, u, of dimension
k = mn. For each image tile, the encoder selects the codeword
y that yields the lowest distortion by some distortion measure
d(u,y). The index, j, of that codeword is sent through the
transmission channel. If the channel is errorless, the decoder
retrieves the codeword y associated with index j and outputs
y as the reconstructed image tile, G.

In the past, VQ has had limited use in image-compression
applications because of the large computational expenses of
both the encoding and training processes. In both processes,
distortions are calculated for each codeword in the codebook
and these distortions are compared to find the closest code-
word. Since these calculations must be performed for each
input vector, the overall operation is quite computationally
expensive. Another disadvantage of VQ is that, because it
encodes blocks, it tends to make the image edges “blocky”
[9].

In an effort to reduce the amount of computation associated
with full-search VQ encoding as discussed above, several
suboptimal methods have been proposed. These suboptimal
alternatives typically restrict the codeword search to a subset
of the codebook (tree-structured VQ), or split the quantization
into separate steps that each use smaller codebooks (multistage
VQ and mean/residual VQ). These suboptimal approaches
have been shown to effectively reduce computational expenses
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while sacrificing some encoder performance. For an detailed
survey of these techniques, refer to [7].

B. Associative Memories and VQ

Associative memories (AM’s), also known as content-
addressable memories (CAM’s), are data storage devices
which are accessed by the contents of the memory cells
rather than the addresses of the cells. This property gives
AM’s inherent search capabilities which are nonexistent in
conventional memories. VQ is well-suited to associative
techniques; indeed, an AM that operates on the VQ distortion
measure d(u,y) is a direct implementation of VQ into
hardware [18]. The use of an AM is one of the few
viable alternatives for performing video-rate VQ since the
address space of a standard look-up table is too large to be
practically implementable, and serial-search techniques are
too time-consuming for real-time operation [18].

Although well-studied in the literature, relatively few AM’s
have been designed and implemented because they tend to

be more application specific than ordinary RAM memory..

Additionally, of those that do exist, most AM’s are restricted
to exact matches; that is, the input word must be exactly the
same as the stored word for the match to be found [18]. For
our implementation of VQ, we need an AM that can perform
inexact matches governed by a suitable VQ distortion measure.

C. Hardware VQ Architectures

Despite the promising performance of VQ in theory, prac-
tical hardware VQ architectures for image coding have been
somewhat scarce in literature. The first hardware VQ encoders
were designed for speech; however, real-time video encoding
requires significantly faster processing. Rather than attempt
full-search VQ at these rates, several proposed architectures
for real-time video VQ are based on the suboptimal techniques
discussed above. For example, Dezhgosha et al. [2] propose
an architecture based on mean/residual VQ and Ramamoorthy
et al. [12] propose using multi-stage VQ.

Recent advances in VLSI technology have made full-search
VQ at video rates possible. For example, Panchanthan and
Goldberg [3] propose an architecture based on an exact-match
CAM. More recently, analog VQ encoding chips have been
fabricated by Fang et al. [4] and Tuttle et al. [5]. However,
none of the above have actually demonstrated performance of
real-time video VQ. A number of papers (e.g., [2], [3], and
[12]) have presented proposals for hardware architectures, but
few have actually fabricated their designs. The analog designs
of [4] and [5] suffer from limited precision and conclusive
operational behavior for real-time video has not been proven
for either.

Below, we present an algorithm for VQ of real-time sampled
NTSC video. The architecture which implements the algorithm
is described and results which were obtained from real-
time operation of the hardware are given. The heart of the
design features a digital AM, the VAMPIRE chip, which is
described below with the hardware implementation of the
DVQ algorithm. The VAMPIRE chip is an inexact-match AM
that calculates absolute distance between stored vectors and
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Fig. 1. Block diagram of DVQ algorithm

an input vector. The VAMPIRE chip delivers the quantization
performance associated with full-search VQ without suffering
from the limited precision of analog designs.

III. ALGORITHM DESCRIPTION

In this section, we discuss the algorithm for image com-
pression which is the basis of the hardware implementation

“presented later in the paper. This algorithm has been explored

in detail previously [8], so only a brief overview is given here.
We conclude the algorithm description by presenting several
practical considerations relevant to real-time processing of
sampled NTSC video signals using our algorithm.

Our algorithm is called differential vector quantization
(DVQ) and it combines the methods of VQ and DPCM.
An artificial neural network (ANN) is used to train the VQ
codebooks. A brief overview of these techniques follows.

A. Artificial Neural Networks and Vector Quantization

The computational complexity of traditional methods for
the design of VQ codebooks has restricted their use in real-
time applications [6], [13]. One such traditional approach is
the Linde, Buzo, and Gray (LBG) algorithm [13], a locally
optimal algorithm that has been used extensively in designing
vector quantizers for speech and image encoding. It has been
shown that ANN’s can be used for design of VQ codebooks
to circumvent the limitations of traditional algorithms [14].

ANN’s consist of a large number of simple, interconnected
computational units that can be operated in parallel. Also,
ANN-codebook-design algorithms do not need access to the
entire training data set at once during the training process.
These features make ANN algorithms ideally suited for the
design of adaptive vector quantizers.
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Fig. 2. Prediction of sampled NTSC composite-color video. (a) Prediction from reconstructed tiles of previous, intrafield lines. (b) Phase considerations.

One ANN algorithm, frequency-sensitive competitive learn-
ing (FSCL) [15], [16] features a modified distortion measure
that ensures all codewords in the codebook are updated equally
frequently during iterations of the training process. It has been
shown that codebooks designed with FSCL yield mean squared
errors and signal-to-noise ratios comparable to those of the
locally optimal LBG algorithm [14]. Also, the FSCL ANN
yields codebooks with good mean-squared-error performance
and with sufficient entropy so that entropy coding of the VQ
indices would not provide significant additional compression

[8].

B. The Differential-Vector-Quantization Algorithm

DVQ combines the methods of VQ and DPCM. DVQ
replaces the scalar quantizer in the DPCM framework with
a vector quantizer, and consequently has many of the com-
pression advantages of both VQ and DPCM. DVQ has been
presented previously in [9], where it was called vector DPCM,
and in [7], where it was called predictive VQ (PVQ). One of
the first applications of prediction to VQ for image coding was
[17], which also featured a delayed-decision encoding tree.

Fig. 1 shows the general block diagram of our DVQ algo-
rithm. In the encoding process, the predictor uses previously
reconstructed tiles to predict the pixel values of the current
tile. This predicted tile, PV, is subtracted pixel by pixel
from the actual tile, PIX. The resulting difference tile, DIFF,
is vector-quantized and the index, INDEX, is broadcast via

Interisced lines
of other fleld
resicde here

(nor shownr)

the transmission channel to the decoder. The encoder inverse
vector-quantizes INDEX , producing a reconstructed tile, PIX ,
to be used in later predictions. Note that, since the vector
quantizer processes difference tiles, the VQ codebook must be
appropriately derived from “difference images.”

The decoder architecture is very similar to that of the en-
coder; in fact, a decoder is contained within the encoder. This
replication exists so that the encoder tracks the performance
of the decoder in order that the predictions in the encoder
are identical to those in the decoder. Hence, in the absence
of channel errors, the output of the decoder can be found in
the encoder. Thus, for prototyping purposes, algorithm perfor-
mance can be demonstrated by constructing only the encoder.

DVQ has several advantages over both scalar DPCM and
VQ. As mentioned above, the quantization of vectors yields
better compression performance than that of scalars. Addition-
ally, since the VQ is performed on difference values rather than
on the image itself, the resulting image is less “blocky” [9].
Finally, the codebooks for DVQ tend to be more robust and
more representative of many images than codebooks designed
for VQ because the difference tiles in a BVQ codebook are
more generic than the image tiles in a VQ codebook [9].

There are many decisions to be considered in the design
of a DVQ algorithm, such as tile size, distortion criterion,
and method of prediction. These issues have been discussed
in previous publications and so are omitted here. For more
detail, refer to [8].

!
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C. NTSC Considerations

The hardware implementation of our DVQ algorithm pro-
cesses NTSC composite-color video signals. Generally, color
video is comprised of three signals: one luminance signal
and two separate color signals. In composite-color video, the
two color signals are combined in quadrature, modulated by
a specially chosen frequency called the color subcarrier, and
added to the luminance signal. Finally, horizontal and vertical
synchronization pulses are included to produce the baseband
composite-color video signal.

In typical discussions of image compression, compression
is performed on red-green-blue pixel arrays (ppm-format im-
ages), and, consequently, nearest-neighbor pixels can be used
in prediction. In contrast, the hardware implementation of
our DVQ algorithm processes sampled NTSC composite-color
video signals. To correctly perform prediction on sampled
composite-color video, one must consider the phasing of the
color subcarrier.

Fig. 2 illustrates the prediction scheme of our DVQ algo-
rithm and how it accounts for the phase of the color subcarrier.
Imagine that the video signal to be processed is a flat field
of one color at a constant intensity. Thus, the luminance
signal and both chrominance signals are constant (DC) values.
However, due to the fact that the chrominance signals are mod-
ulated in quadrature by the color subcarrier, the resulting com-
posite video signal is not DC, but rather shows sinusoidal oscil-
lations at the color-subcarrier frequency, as shown in Fig. 2(b).
Consequently, only those samples that have the same phase as

the current pixel may be used in the prediction. Thus, our pre-

diction scheme accounts for the phasing of the color informa-
tion in the video signal at the expense of using pixels which are
farther away from the current pixel than the nearest neighbors.

Fig. 2(a) shows the prediction used in the hardware imple-
mentation of our DVQ algorithm in relation to the tiling of
the pixels by the vector quantizer. The NTSC video signal is
sampled at four times the color-subcarrier frequency (14.31
818 MHz). The vectors for VQ are tiles of 4x1 samples.
Note that, as shown in Fig. 2(b), consecutive intrafield lines
of NTSC video have a phase difference of 180°.

IV. THE VAMPIRE CHIp

The Vector-quantizing Associative Memory Processor Im-
plementing Real-time Encoding (VAMPIRE) is a special-
purpose, digital associative memory designed for video-rate
vector quantization. The details of the design and operation of
this chip are found elsewhere [18], so only a brief overview
is given here. Fig. 3 shows the general structure of the
VAMPIRE chip.

The VAMPIRE chip is designed to quantize vectors at video
rates. The input to the chip is 32 bits representing a 4-D
vector with each vector component having 8 bits of resolution.
Since these vectors are composed of four video samples, the
designed throughput is that of the NTSC colorburst (3.579
545 MHz, or one vector every 280 ns). Each VAMPIRE chip
holds 32 codewords. The chips can be operated alone (for
codebooks of 32 or less codewords) or can be linked together
to accommodate codebooks of greater than 32 codewords.

TABLE 1
EXAMPLE ABSOLUTE-DISTANCE CALCULATION USING 3-BIT VALUES

(i) Original Problem: [011 — 101]
(ii) Complement the larger and add: 011+ 010 = 101
(iii) Complement the result: 101 — 010

The VAMPIRE chip calculates the [; metric (also known
as absolute distance or city-block distance) between the input
vector and each of the 32 codewords stored in its memory.
These distortion calculations are done digitally and in parallel
by 256 computation cells (8 computation cells for each of the
32 codewords, see Fig. 3(a)). A priority encoder selects the
codeword with the lowest distortion and places the address
on the output bus. Additionally, the distortion is placed on a
wired-NOR compare bus. This bus is used to compare each
chip’s minimum internal distortion to the overall minimum
distance as broadcast among chips when several chips are con-
nected together for codebooks of greater than 32 codewords.
Each chip ‘‘disqualifies’” itself if it doesn’t hold the winning
codeword; the address of the winning codeword is then placed
on the address bus.

Fig. 3(a) shows the basic layout of the VAMPIRE chip.
The computational cells, CC;;, receive the 32-bit input vector,
VECTOR_IN(31:0), and calculate the absolute distance between
the input vector and each stored codeword. The winning
codeword, which is the codeword with the smallest absolute
distance, is determined by the computation cells in conjunction
with the priority-encoder circuitry. This smallest distance is
output to the compare lines while the address of the winning
codeword is output to the ADDR_OUT lines.

A. Absolute-Distance Calculation

The algorithm for calculating the absolute-distance metric
is as follows. Let C? be vector component ¢ of codeword j
and I; be vector component ¢ of the input vector. The absolute
distance, D7, for codeword j is

DI =>"DI (1)
where
Dl =|ci -1 )

The method for calculating D] is as follows. First, determine
which value is larger, Cf or I;. Form the 1’s complement
of this larger value and add it to the other value. Then 1’s
complement the result. For an example of the calculation, see
Table I. Although this approach is unconventional, it is easily
implemented in silicon and involves less layout area than other
methods involving 2’s complement arithmetic [18].

B. The Computation Cell

Fig. 3(b) is a detailed diagram of the computation cell for
bit 7 of codeword j. The 4 bits of RAM of this computation
cell represent the same bit position of the 4 vector components
of codeword j. Thus, 8 of these computation cells are placed
side by side, as in Fig. 3(a), to form a complete codeword
consisting of four 8-bit vector components.
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for bit ¢ of codeword j.

For each bit of the computation cell, a greater-than circuit
determines whether the stored codeword is greater than the
input vector (signals INPUT(7,3:0) in Fig. 3(b)). This calcula-
tion cascades between adjacent computation cells, via GT_IN
and GT_OUT, from the least-significant to the most-significant
bit of the codeword. At the most-significant bit, the final
greater-than result GT is the fed back to all the computation
cells of the codeword. Using the GT information, the four
absolute-difference values are calculated for the codeword. As
discussed above, this calculation involves 1’s complements
and an addition. Carries are cascaded between computation
cells (CIN-DIFF and COUT-DIFF).

(W)
Fig. 3. General structure of the VAMPIRE chip. (a) Detailed floorplan showing N =

INPUT(i, 3:0)

32 codewords. (b) Structure of the computation cell, CC;;,

The four absolute-difference values are added together by
the two component sum circuits and the final sum circuit
shown in Fig. 3(b). The final sum is the absolute-distortion
metric which is then passed to the global compare circuit
(GCO).

C. The Global Compare Circuit

The GCC determines which codeword on the chip has
the smallest absolute distortion. Again, this calculation is
done bit-wise in the computation cells. Fig. 4 shows the
GCC of each computation cell. The internal compare lines
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Fig. 4. The GCC within a computation cell of the VAMPIRE chip. METRIC
is one bit of the absolute-distance metric.

form a wired-NOR bus. The PROPAGATE signal ripples from
the most-significant to the least-significant bit of the final
absolute distance. As long as PROPAGATE-IN is asserted, then
that particular codeword has not been eliminated from the
winner-selection process. For a given bit, the COMPARE line
is driven low if any codeword’s absolute distance is low in
that bit position. If the COMPARE line is low for that bit,
and the codeword’s distance is high, then the codeword is
eliminated from the winner-selection process and PROPAGATE-
OUT is driven low. Otherwise, PROPAGATE-OUT remains high
and the processing continues to the next bit position.

Fig. 5 shows one bit-slice of the internal compare bus and
each codeword’s GCC for that bit. When the winner-selection
process has completed rippling through each bit, the final,
winning absolute distance remains on the internal COMPARE
bus. The interchip-winner-selection circuit extends the wired-
NOR COMPARE bus to external compare pins so that a winner
may be determined between multiple chips. For a given chip,
the interchip-winner-selection circuit functions as follows. If
an internal COMPARE line is low, then the chip drives the
external COMPARE pin low. If the internal COMPARE line is high,
then the pin becomes an input. At any progressively lower bit
positions, a chip is disqualified from competition if the internal
and external COMPARE states differ. Disqualification occurs by
setting the CHIP-VALID-OUT line high. This CHIP-VALID-OUT line
ripples through each bit of the internal COMPARE bus.

D. Fabrication and Testing

Twelve VAMPIRE chips were fabricated by the MOSIS
service using a 2 pm CMOS n-well process. Preliminary
low-speed testing indicated that the chip functioned correctly
on a codebook of 32 codewords. However, there was a
minor design error that prevented connecting chips to expand
processing to codebooks of more than 32 codewords: the NOR
gate of the interchip-winner-selection circuitry (see Fig. 5) was
inadvertently fabricated as a NOT, thus preventing correct
operation of the external COMPARE bus.

Another problem was found during high-speed testing: the
maximum processing time of the chip was determined to be
380 ns (35% slower than the desired speed of 280 ns). It
was proposed that the pull-down transistors on the internal
compare bus (see Fig. 4) in the GCC’s were too small to pull
these lines down fast enough.

COMPARE(i)
(extemal pin)
l
B o
Select = L —> Input = pin
Select = H ~> pin = Output
Select Input Output

CHIP-VALID-OUT

GHIP-VALID-IN
PULL-UP RESISTOR
b COMPARE(i) (internal bus)
PROPAGATE-IN PROPAGATE-OUT
[ ]
L
o
PROPAGATE-IN PROPAGATE-OUT
Fig. 5. One bit-slice of the winner-selection circuitry of the VAMPIRE

chip. Each codeword’s GCC connects to the internal COMPARE bus. The
interchip-winner-selection circuit extends the internal COMPARE bus off the
chip to select a winning codeword from multiple chips.

{SvncH]
FRAME scsl
—E " BUFFEHH CONTROLLER H INTERFAGE l

+—= ENCODER DECODER

N b 2l

Fig. 6. Block diagram of the DVQ system

Another batch of VAMPIRE chips was fabricated. In the
design of these new chips, the NOR-gate error of the interchip-
winner-selection circuitry was corrected, and the pull-down
transitors in the GCC’s were doubled in size. It has been
verified that these new chips correctly connect together to
implement codebooks of more than 32 codewords. However,
doubling the size of the pull-down transistors did not fix
the speed inadequacy. Further investigation is underway to
determine why this fix did not work, although it is suspected
that the problem may lie in the off-chip interface circuitry
that drives the external pins. If this is the case, it may be
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necessary that the chips be fabricated in 0.5 pm CMOS; this
was not done before because of the greater fabrication cost
of this faster technology. However, the slow speed of the
VAMPIRE chips does not impede their usefulness in our DVQ
system. Indeed, in the next section, we present a workaround
that enables the DVQ system to operate in real-time with a
128-codeword codebook.

V. SYSTEM DETAILS

Fig. 6 shows the organization of the hardware constructed
to implement our DVQ video-compression algorithm. The
system is composed of the following logical units: controller
and interface; A/D converter and frame buffer; encoder; and
decoder. Discussion of these units follows. To meet the speed
requirements of real-time operation, FAST Advanced Schottky
TTL logic was used in most of the units. Figs. 9-11 are
photographs of the DVQ system.

A. Controller and Interface

The controller routes the flow of data between the units
of the system. In addition, it drives a SCSI-bus interface
which allows communication with a PC. The SCSI bus is
used to transfer commands to the system and also to upload
or download single frames of video.

Pixel Out

B. Sampling and Frame Buffer

The A/D converter samples the incoming video at four times
the color-subcarrier frequency (14.31 818 MHz). In addition
to the active-video portion of the signal, all horizontal and ver-
tical synchronization pulses are sampled and processed. Thus,
one frame of sampled video consists of 910 x 526 samples.

The frame buffer consists of a 512 x 8 dynamic RAM
and associated addressing and synchronization circuitry. The
frame buffer is used to store a frame of video from the A/D
converter for output through the SCSI bus. Additionally, it can
receive a frame from the SCSI bus and output it repeatedly
to the D/A converter or to the encoder. The synchronization
circuitry analyses the incoming video and provides the frame
buffer with information indicating the starting and stopping
points of a frame.

C. Encoder

Fig. 7 shows a block diagram of the architecture of the
encoder. The encoder consists of the following units: predictor,
vector quantizer, and inverse vector quantizer. The encoder
runs in real-time without buffering, processing input pixel
samples and outputting reconstructed pixels at the sample rate
(14.31 818 MHz).

The predictor calculates predicted values at the sample
rate. At this rate, the predictor has 69 ns to generate each
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Fig. 9. Photograph of board 1 of the DVQ system. This board contains the
A/D converter, the SCSI interface, and the system controller. The predictor
resides on the upper-right of the board, and the inverse VQ RAM’s are on
the upper-left.

predicted value. The prediction process involves extracting
three 8-bit reconstructed pixel values from FIFO memory and
performing two 8-bit additions and two divisions-by-2. High-
speed, CMOS FIFO’s (size = 2 048 x 9, access time = 10
ns) are used. Each 8-bit addition is accomplished with two
74F283 4-bit adders. The divisions result from ignoring the
least-significant bit.

The inverse vector quantizer is composed of 4 dynamic
RAM’s, one for each of the four vector components. The VQ

Schematic diagram of the vector quantizer showing the VAMPIRE chips in “flip-flop” configuration.

Fig. 10. Photograph of board 2 of the DVQ system. This board does all
the VQ processing. The VAMPIRE chips are the large chips in the middle.
Processing “flip-flops” between the left and right columns of the VAMPIRE
chips, effectively doubling the allowable VQ-processing time.

codebook is stored in both the vector quantizer and the inverse
vector quantizer (This storage is done via the SCSI bus by
circuitry not shown in Fig. 7). The inverse vector quantizer
performs a table lookup into the codebook given the index
value generated by the vector quantizer.

D. Vector Quantizer

As discussed in Section IV, the vector quantizer that has
been constructed operates with up to 128 codewords. Since the



Fig. 11.  Photograph of the entire DVQ system.

speed of the VAMPIRE chips is 35% too slow, it was necessary
to use two sets VAMPIRE chips in the vector quantizer, as
shown in Fig. 8 for the case of a 32-codeword codebook. The
processing in Fig. 8 is staggered so that each chip quantizes
every-other vector. This ““flip-flop’” arrangement allows each
chip twice the time to process (560 ns instead of 280 ns) while
ensuring every vector is quantized. In the current configuration
of the DVQ system, two sets of 4 VAMPIRE chips use
this *“flip-flop” arrangement to implement a codebook of 128
codewords and the 7-bit VQ indices are output at 3.57 954
MHz.

The training of the VQ codebooks was done offline using
the FSCL ANN algorithm. Six frames of video were sampled
using the frame buffer and were uploaded via the SCSI bus to a
Sun SPARC workstation for training. The resulting codebooks
were then downloaded to the DVQ architecture via the SCSI
bus.

E. Decoder

As seen in Fig. 1, the architecture of the decoder is simply
a replication of a subset of the encoder architecture. In the
absence of channel errors, the output of the decoder is the
same as the reconstructed values found within the encoder.
Thus, for proof of principle, only the encoder was constructed.
The results shown below are generated by the encoder. The
decoder is a simple extension of the system hardware, and we
plan to construct it in the near future so that tests over an
error-prone channel can be performed.

VI. RESULTS

Figs. 12 and 13 present the results obtained during real-time
operation of our hardware DVQ implementation on NTSC

TABLE II
MSE VALUES FROM COMPUTER SIMULATIONS OF DVQ
ON VIDEO IMAGE WITH CODEBOOKS OF VARYING SIZE

Codebook Size

Image 256 128 64 32

banal* 124 205 293 57.1
fbi 55 7.7 11.1 202
kate 49 72 95 18.8
laura* 55 7.5 10.3 20.6
paris* 48 6.7 9.7 15.3
pete 7.2 98 142 259
piano 6.8 94 138 26.9
rhino* 89 129 20.0 315
rio 9.0 14.1 19.7 47.4
rrdiner* 9.2 13.0 20.2 34.1
snake* 48 6.6 94 18.6
talk 11.8 183 24.7 42.7

*Images used in training the vector quantizer.

TABLE III
SUMMARY OF VAMPIRE CHIP CHARACTERISTICS
Die size 4.6 X 6.8mm
Technology 2um CMOS n-well

Vector Rate
Encoding delay*
Codebook size

2.63 x 10° vectors/s

approx. lus

32 codewords on one chip;
expandable to 256 with 8 chips
Vector dimension Four 8-bit components

Power supply 5V

Operating Rate** 1.01 x 10° ops/s

*Encoding delay is for the VAMPIRE chip operating in the DVQ
architecture

**Indicates number of mathematical operations per second

video. Fig. 12(a) shows one frame from the original video
sequence. Fig. 12(b) shows that same frame from the output
video sequence, which has been compressed and reconstructed
by the DVQ hardware using 32 codewords (a compression
ratio of 6.4:1, channel rate of 17.9 Mbits/s). Some “blocky”
effects on the edges, along with some color distortion, are
visible. Fig. 13 shows these same results obtained for another
frame of the video sequence. Table II shows how the image
distortion varies with the compression rate by presenting
MSE values calculated by computer simulations of the DVQ
algorithm for several codebooks of varying size.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have described our DVQ algorithm,
presented a hardware architecture implementing it, and demon-
strated real-time operation of this hardware on NTSC video.
The heart of this compression system is the VAMPIRE chip,
whose characteristics are summarized in Table III. Digital
associative memories, such as the VAMPIRE chip, will cer-
tainly play a role in bringing VQ to prominence in practical,
real-time applications. It should be noted that the vector
dimension provided by the VAMPIRE chip, 4 components,
may be too small for some applications. Proposals have been
made for modifications to the VAMPIRE design to expand
this maximum number of vector components [18]. It has
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(d)

Fig. 12. Output of the DVQ hardware on real-time video. (a) Original video
frame. (b) Frame from output video compressed using VQ with 32 codewords.

been proposed to cascade several chips together to obtain
longer vectors in a fashion similar to the way the current
VAMPIRE design allows several chips to connect to form
larger codebooks. An alternate strategy calls for a synchronous
design in which each vector component is input individually
and the distortion is successively calculated and added to an
accumulator.

The system implementation presented is here is simple and
straightforward: Simplicity and speed was emphasized over
flexibility so that real-time operation was achieved. The main
goal of this work has been to demonstrate VQ in real time
on real video, not to provide a design immediately applicable
to commercial broadcasting. Since in this implementation we
were limited to 128 codewords, the quality we obtained, al-
though reasonable and as expected from computer simulations,
was not sufficient for broadcast applications.

There are several modifications that would improve the
picture quality and compression performance. First, compres-
sion should be performed on only the active-video portion
of the signal. To this end, a digital television chip set, such
as the one made by Philips, could be used to strip out the
sync information. The sync information should be removed
from the signal before compression and then restored to the

(®)

Fig. 13. Output of the DVQ hardware on real-time video. (a) Original video
frame. (b) Frame from output video compressed using VQ with 32 codewords.

signal by the decoder. Not only would greater compression be
obtained, since only the active video is processed, but also the
decompressed signal would be of better quality, since the sync
information would not endure the distortion due to quantiza-
tion. Additionally, the digital TV chips could demodulate the
color signals from the luminance. In composite-color video,
the color signals appear as high-frequency ‘‘noise’’ in the
luminance signal. Consequently, the predictor tends to distort
this color ‘‘noise,”” despite the compensatory measures taken
during the design of the predictor to ensure that prediction is
done using only same-phase samples. For better edge and color
fidelity, the results presented here indicate that it is imperative
that the color signals be demodulated and processed separately.
Finally, the predictor should incorporate temporal information
in the form of motion estimation. These ideas are the topics
of further research which we hope will extend the utility of
our architecture.
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