Arbiter for an Asynchronous Counterflow Pipeline

James Copus

This document attempts to describe a special type of circuit called an arbiter to be
used in a larger design called counterflow pipeline. First, a brief introduction of the
background of the subject will be described, including use of the arbiter in the system.
The design specifications will then follow, along with a suggested implementation for the
circuit. Finally, possibilities for addition, revision, and testing structures for an integrated

circuit implementation of the arbiter will be proposed.

Counterflow Pipelines

A counterflow pipeline is a radically different way of designing a microprocessor.
A good source for a detailed background of counterflow pipeline processors can be found
in [1], but in general, microprocessor instructions flow in one direction down the pipeline
and the results and register data flow in the other direction down the pipeline. Figure 1

shows a simple counterflow pipeline diagram.

The instructions flowing up the pipeline collect
the data it needs to execute from the results pipeline,
and after the instructions execute, the results are
inserted into the pipeline to go to later instructions that
need the data. All of these interactions happen
asynchronously, meaning that there is no system clock
controlling the data flow and operations. This
asynchronous operation requires a different
methodology than what is usually taught in digital
design. Also, since the counterflow pipeline’s
instruction data and result data must interact at each
stage, there must be some control to ensure that every
instruction meets every result without any skipping
occurring.

Arbiter

To control the flow between the stages of the
pipeline, an arbiter is used to prevent the instruction
data and the result data from moving at the same time
and handling requests to transfer data between the
stages. This arbiter works without a clock, and must
be able to handle requests occurring according to
specifications that will be defined later. Figure 2
shows a simple arbiter and how it fits into the pipeline
path between two stages.

Arbiter Specifications

Results

Results

Results

Stage 4
Inzgtructions

Y

Stage 3
Inzgtructions

Y

Stage 2
Inzgtructions

Y

Stage 1

Figure 1l: Simple
Counterflow Pipeline

The arbiter that will be built is the same one as shown in Figure 2. Below is the
explanation of the signal lines labeled in the arbiter figure.

RI: Request Receive Instruction — This signal is asserted when a pipeline stage is ready
to receive a new instruction.

SI: Request Send Instruction — This signal is asserted when a pipeline stage is ready to
send its instruction to the next stage.

GI: Grant Instruction
Transmission - The
arbiter asserts this
signal when both RI
and SI are asserted
AND there is no 4 A A
transmission
occurring in the Lo BT SE o

. . Instruction . RFesult
results pipeline at the Data TC GT ARBITER GR _ TC Data

time.

PIPELINE STAGE

’SI RE |g

R R: Request
Receive Result — v v Y
This signal is
asserted when a
pipeline stage is PIPELINE STAGE
ready to receive a
new set of results.

SR: Request Send Figure 2: Counterflow Pipeline

Result — This signal Arbiter and Signal Lines

is asserted when a pipeline stage is ready to send its result data to the next stage.

GR: Grant Result Transmission — The arbiter asserts this signal when both RR and SR
are asserted AND there is no transmission occurring in the instruction pipeline at the
time.

Instruction Data: This line represents a large bus containing all the data representing the
instruction data. Note that the arbiter does not directly use this data line and is therefore
outside the scope of the specific arbiter design.

Result Data: This line also represents a large bus containing all the results data. This is
also outside the scope of the specific arbiter design.

TC: Transfer Complete — These are acknowledge signals used to indicate to the sending
stage that the receiving stage has finished receiving and processing the data. Since the
arbiter does not directly see these signal lines, it does not need to be accounted for in the
arbiter design.

Arbitration Rules

The rules for the arbiter are rather simple. For permission to transmit data to be
granted, both stages must request it. Therefore, RI and SI must both be high for GI to be
asserted. In the same way, RR and SR must both be high for GR to be asserted. After
the arbiter grants the request, the other side of the pipeline cannot send data until the
transfer is complete. For the transfer to be complete, both stages must set their request
lines low. The granting signal for that side will be set low, and another transmission can
take place. If both sides request transmission at the same time, the arbiter must decide
which one to grant first. Note that the granting signals, GR and GI cannot be asserted at
the same time, which means that they are mutually exclusive. This prevents the two sides
of the pipeline from exchanging data at the same time. If this simultaneous exchange
were to happen, then the data being transferred would not be able to interact with each
other in a pipeline stage. A sort of “state table” for the circuit is included in Table 1
below.

Instruction Transfer
RI SI GI GR
0 0 0 X
0 1 |no change| X
1 0 |no change| X
1 1 1 0
Result Transfer
RR SR GR GI
0 0 0 X
0 1 |no change| X
1 0 |no change| X
1 1 1 0

Table 1: State table showing the results of some common
request signal values. Note that 'X' represents a value that
does not depend on the current listed inputs.

In the design proposed, the decision-making is handled so that the instruction and
result transmissions are granted randomly. Hopefully, the decision is made so that about
half the time GR is asserted, and the other half GI is asserted. Figure 3 shows a transistor
and logic gate level schematic of the mutual exclusion circuit that can handle this
function. Assuming that R1 and R2 represent requests for different actions (such as the
instruction or result transmission requests), G1 and G2 are the “granting” signals for the
R1 and R2 requests, respectively. The mutual exclusion circuit is designed so that when
one of the requesting signals goes to logic ‘1°, the granting signal corresponding to that
signal goes high and the other granting signal is forced low until the original requesting
signal goes back to ‘0’. If both requests occur at the same time, the circuit becomes
metastable, with the outputs of both NAND gates being at halfway between the supply
voltage and ground. While these “undefined” values exist, the circuit will keep the
granting signals at logical ‘0’. Eventually, one of the metastable sides of the circuit will

settle to a voltage past the threshold voltage of the transistor, forcing one of the grant
signals high and the other grant signal low. Thus a “decision” is made as to which
request to grant. A more complete explanation of this circuit can be found in [2].

G2 Gl

Figure 3: Mutual Exclusion Circuit (MUTEX)

State-Holding Elements

Since both RI and SI or RR and SR must be de-asserted before the grant signals
can be de-asserted, it would be helpful to use some sort of state-holding element that can
only be reset when two input signals are low. Since the design is asynchronous, normal
clocked flip-flops cannot be used.
However, a circuit called a Muller C-
Element [3] is a standard state-holding
element used in asynchronous designs.
The symbol for a C-element is shown in a
Figure 4. A transistor-level schematic
and “state table” is shown in Figure 5. C
Note that there is a feedback inverter that P —
provides the “state-holding” ability of the
circuit. This inverter is sized to be
overridden when the input signals are Figure 4: Muller C-element

both high or both low, so care must be taken during the design of a C-element so that the
transistors are sized to function properly.

a}j —
—

Figure 5: Schematic and specification
of a C-element.

ay
o

¥
a 0 a
0 1 no change
1 0 no change
1 1 1

The RI/SI and RR/SR signals can be fed into the C-elements and then go into the
mutual exclusion circuit described previously, as shown in Figure 6. This circuit should
successfully implement the complete asynchronous arbitration circuit.

RI SR

81 RR

Rl R2

GI Gl G2 GR

Figure 6: Full design of
asynchronous arbiter

Proposal

The arbitration circuit described above should be designed and tested to verify
that it functions as specified. To aid in testing of the fabricated circuit, multiple instances
of the arbiter could be layed out. Additional test circuitry should be added to allow some
instances of the arbiter have some self-test functions. The schematic of the arbiter
described above is just one way to implement the arbitration rules; it is not necessarily
the only way. Other functionality could be added to the arbiter, such as a reset signal.

To understand more about the background of asynchronous circuits and
specifically counterflow pipelines, read the sources provided. I can provide access to the
sources, along with additional resources. Any questions or comments are welcome.

SOURCES:

[1] R. F. Sprowll, L. E. Sutherland, and C. E. Molnar, “The Counterflow Pipeline
Processor Architecture,” Design & Test of Computers, IEEE, vol. 11, pp. 48-
59, Autumn/Fall 1994.

[2] Jens Sparso and Steve Furber, Principles of Asynchronous Circuit Design: A
Systems Perspective, chapter 5.8: Mutual exclusion, arbitration, and
metstability, pp. 77-80, European Low-Power Initiative for Electronic System
Design, Kluwer Academic Publishers, Boston, 2001.

[3] Jens Sparso and Steve Furber, Principles of Asynchronous Circuit Design: A
Systems Perspective, chapter 2.2: The Muller C-element and the indication
principle, pp. 14-16, European Low-Power Initiative for Electronic System
Design, Kluwer Academic Publishers, Boston, 2001.

