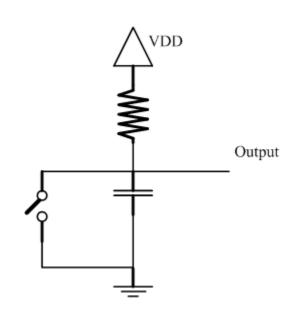


ECE 265 – LECTURE 13

Interface to switches and LEDs

Lecture Overview


- □ Interfacing to a switch
 - Debounce a switch
 - Connection to LEDs.
- REF: Chapters 1, 6, and 9 plus the 68HC11 reference manual.

Switch inputs

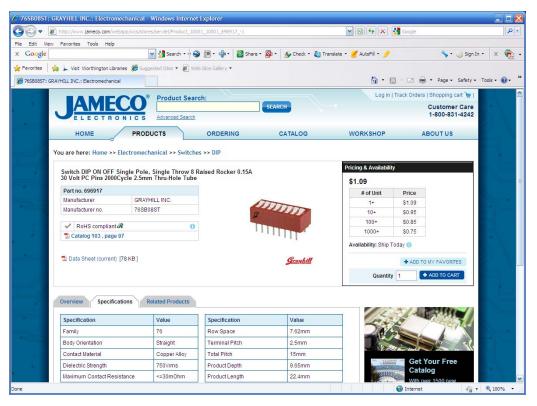
- In most embedded systems where you use a microcontroller you need to sense the outside world. A lot of this sensing is done by switches activated at specific pressures, temperatures, humidity, etc. or a push button switch momentary swich activated by the user.
 - Example: An automotive speed control. There is typically a switch on the brake (and clutch) pedal that disengages the speed control when it is pressed.
 - Debouncing The output of a switch at open and close is very, very noisy with multiple spikes in voltage. If not correctly debounced, these spikes could be seen as multiple switch closures (openings).

Debounce

- □ A de-bounce circuit
- In a typical application the switch signal is input to the microcontroller pin. Inputs to the chip need to be connected such that they are always driven to either Vdd or GND.
- The resistor is needed to current limit the circuit when the switch is closed and the output is a logic 0.
 - In a system with VDD of ~5V and a limit resistor of 330 ohms this gives a current of 0.015 Amp

A note on connection to pins

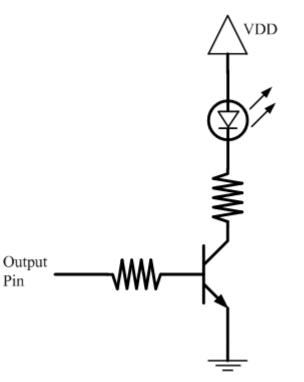
- All input pins on the chip MUST be connected to an input signal, or connected to Vdd or GND as appropriate.
- □ No <u>input</u> pin can be left floating. Why?

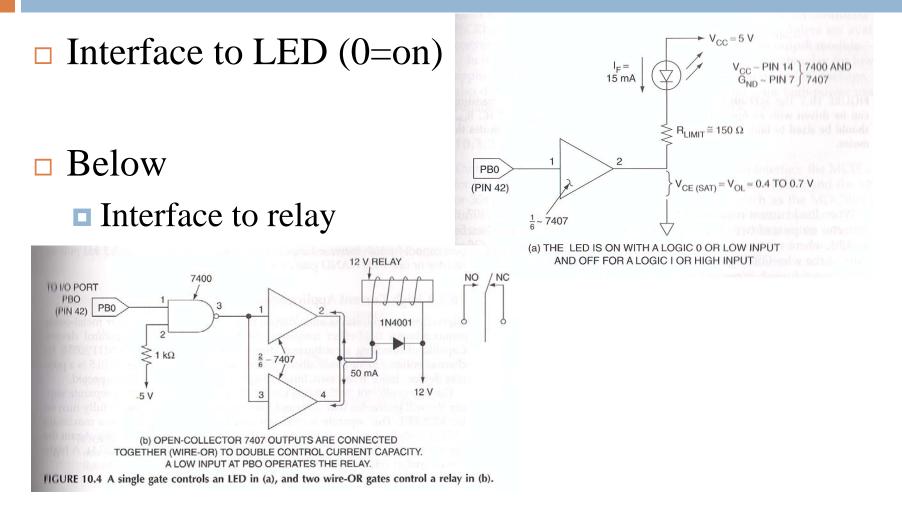

Switch DIP packages

6

□ For computer interface there are DIP package

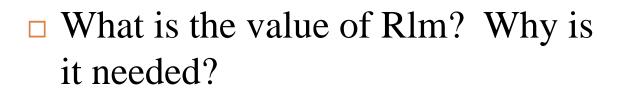
switches.


For these the interface is the same as the switch interface looked at before.


Ouput to a LED device

- □ LEDs are often used as output devices.
- □ Single LED as a status indication.
- □ 7-Segment displays
 - Each segment of display is a LED
- □ A positive logic circuit for
 - driving a LED
 - □ Ouput is 0 LED off
 - □ Output is 1 LED on

Pin

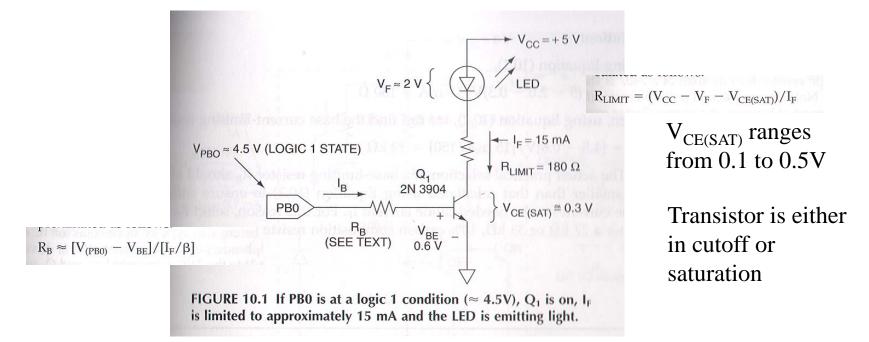

LED and other devices

ECE265 2/17/2012

LED interface

- Interface structure when interfacing to a switch or LED.
- This circuit is one possible output structure to do the interface.
- □ What happens when a 1 is output?
- □ What happens when a 0 is output?

© Joanne E. DeGroat, OSU


Output Pin VDD

Rlm

The current limit resistors

10

Example from the text shows how to size the resistors.

More on Resistor Sizing

Example 10.1:

The LED illustrated in Figure 10.1 is to be interfaced to port B using a 2N3904 small-signal general-purpose NPN transistor with a $V_{CE(SAT)}$ of 0.3 V and a typical value of beta (β) of 150. Assume $V_{(PB0)}$ is typically 4.5 V. Calculate both R_{LIMIT} and R_{B} .

Solution:

Using Equation (10.1),

 $R_{\text{LIMIT}} = (5 - 2.0 - 0.3)V/15 \text{ mA} = 180 \Omega$

Then, using Equation (10.2), we can find the base current-limiting realities

 $R_{B} = [4.5 - 0.6]V/[15 \text{ mA}/150] = 39 \text{ k}\Omega$

The actual practical selection of a base-limiting resistor R_B should always be smaller than that calculated using Equation (10.2) to ensure sufficient base current for the needed diode current I_F . For this reason, select R_B in ineither a 27 k Ω or 33 k Ω , 10% carbon composition resistor.

Summary

- □ How do you interface a switch to the 68HC11
- How do you interface a LED or other device to the 69HC11.