

ECE 265 – LECTURE 14

Analog Signal Acquisition The A/D converters

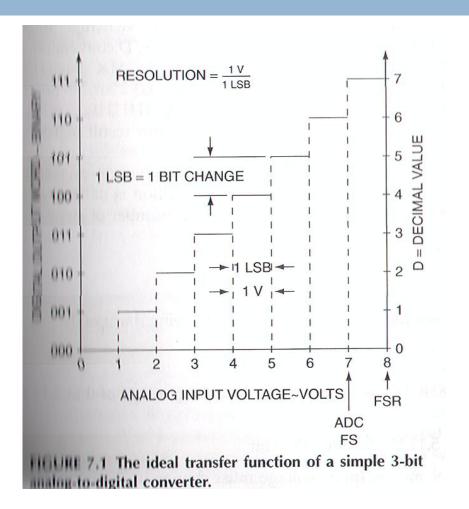
12/1/2010

Lecture Overview

- □ Analog signal acquistion
- □ The A/D Converters on the 68HC11
- REF: Chapters 7 and 8 plus the 68HC11 reference manual.

- Analog output is typical of most transducers and sensors.
- Need to convert these analog signals into a digital representation so the microcontroller can use it.
- □ Some characteristics of analog signals.

- Analog output is typical of most transducers and sensors.
- Need to convert these analog signals into a digital representation so the microcontroller can use it.
- Some characteristics of analog signals.
 Maximum and minimum voltages


- Analog output is typical of most transducers and sensors.
- Need to convert these analog signals into a digital representation so the microcontroller can use it.
- Some characteristics of analog signals.
 Maximum and minimum voltages
 Precise continuous signals

- Analog output is typical of most transducers and sensors.
- Need to convert these analog signals into a digital representation so the microcontroller can use it.
- □ Some characteristics of analog signals.
 - Maximum and minimum voltages
 - Precise continuous signals
 - Rate of voltage change

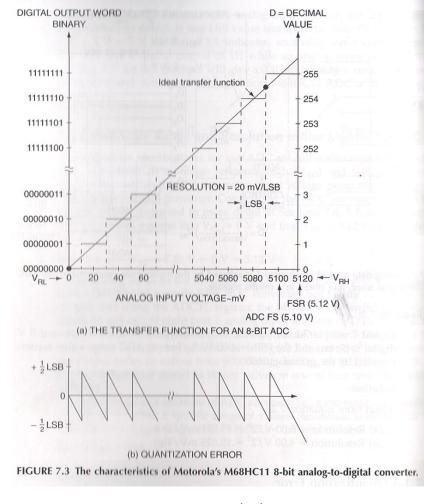
- Analog output is typical of most transducers and sensors.
- Need to convert these analog signals into a digital representation so the microcontroller can use it.
- □ Some characteristics of analog signals.
 - Maximum and minimum voltages
 - Precise continuous signals
 - Rate of voltage change
 - Frequency if not a steady state signal

Analog-to-Digital Converters

- 8
- The ideal transfer function of a 3-bit ADC
- Full-scale (input voltage) range (FSR)
- Analog signal is continuous
- Digital finite and discrete
 - In general n-bit converter
 - □ Total of 2ⁿ output codes

© Joanne E. DeGroat, OSU

ECE265 12/1/2010


Quantization Error and FS

- 9
- □ The smallest input change that can be detected.
- In the 3 bit example it would be 1 Volt and defines the converters LSB accuracy.
- Another term Full Scale input the largest analog voltage that a converter can detect. Voltages greater than the FS input will result in a converted value of 111---11.
- Similarly inputs less than the minimum input voltage result in 000---00.

Quantization Error of the 68HC11

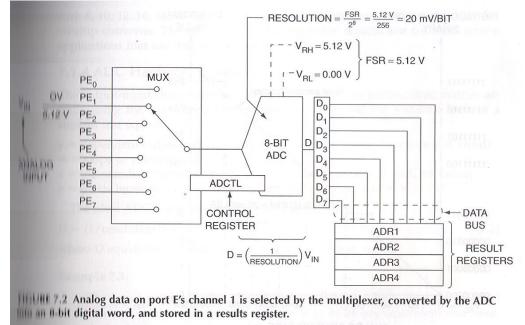
□ Graphical view

- □ Note how discrete
- values represent
- □ the analog signal

© Joanne E. DeGroat, OSU

ECE265 12/1/2010

The 68HC11


- The 68HC11 has an 8 bit A/D converter which results in 256 possible digital output values.
- \square The resolution = FSR/256
- The FSR of the 68HC11 is 0 to 5.12V so the resolution is 20mV/1bit
 - □ 5.12V/256 = .02031 V/bit = 20.3 mV/bit
 - Meaning input change of 20mV changes LSB

68HC11 ADRs

12

□ 68HC11 has 4 A-to-D conversion registers

When a conversion is done, result is placed in one of the ADRx registers, where x is 1 to 4.

© Joanne E. DeGroat, OSU

ECE265 12/1/2010

Math Conversion equation

13

The output-input characteristic equation of an ADC

 $\square D = (1/resolution)V_m$

Where D is the decimal value of the output word and V_m is the measured voltage.

- Example (from Ex 7.3)
- The input voltage is 2.56V what is the converted digital value?
- Output
 - D = (1bit/20mV)2560mV = 128
 - Converting to binary gives 1000 0000 which will be stored in one of the 4 result registers.

Port E and ADR addresses

- When using Port E as a digital port the port is accessed through address \$100A
- The A/D control register, ADCTL, is at address \$1030
- The ADR registers are at addresses these are read only registers.
 - **ADR1 -** \$1031
 - **ADR2 -** \$1032
 - **ADR3 -** \$1033
 - **ADR4 -** \$1034

ADCTL register

- 15
- To use the A/D converter on the 68HC11 the users only needs to write to ADCTL for the CPU to read results from the register. There are 8 A/D channels but only 4 results from one of the two groups of 4 can be stored at any one time.
 - Could also use the 4 registers to save 4 conversions from one input pin
- ADCTL register controls how the A/D converter works and how the registers are used.

The bits in the control register

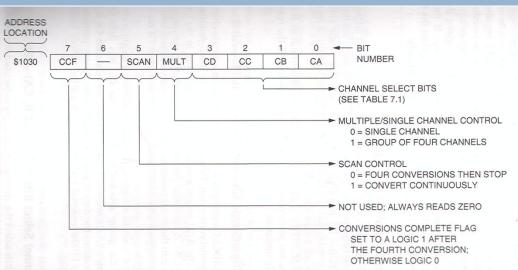


FIGURE 7.6 A/D control and status register (ADCTL).

- $\Box \quad Bit 7 Conversion complete a read only bit$
 - Cleared any time the control register written to
 - Set when the A/D completes the 4th conversion and results stored in registers.
 - Conversion starts immediately after a write to this register. If a conversion was in progress it is aborted to allow the initiation of the new conversion.
 - When set up for continuous conversion results are updated automatically.

© Joanne E. DeGroat, OSU

ECE265 12/1/2010

Control register continued

- \square Bit 6 unused
- \square Bit 5 SCAN
 - Value of 0 single conversion mode conversion takes place after a write to the register.
 - Value of 1 continuous conversion mode conversions take place in round robin mode on the enabled analog input pins.
- □ Bit 4 Multiple/Single Channel Control (MULT)
 - Value of 0 Single channel Consecutive conversions results are stored in consecutive ADRx registers
 - Value of 1 each pin in the group is converted and the result stored in the ADR register.

More on control register

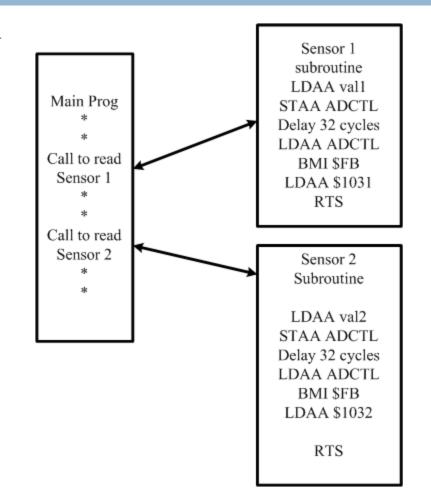
- □ Bits 3,2,1,0 Channel select bits
 - For the 48-pin package only 4 A/D inputs
 - How the CD, CC, CB, CA control bits work
- □ The MULT bit says
- $\square \quad 1 \text{ channel or all } 4$
- Table lists specific group
- \square and pin(s)

TABLE 7.1		Channel Selection When Bit 4 = 1			
CD	сс	СВ	CA	Port E	Result Register
0	0	0	0	PEO	ADRI
0	0	0	1	PE1	ADR2
0	0	1	0	PE2	ADR3
0	0	1	1	PE3	ADR4
0	1	0	0	PE4	ADR1
0	1	0	1	PE5	ADR2
0	1	1	0	PE6	ADR3
0	1	080 1330	1	PE7	ADR4

Example of interface setup

- What configuration is needed in the ADCTL register for the A/D to convert continuously group 0?
- □ <u>Solution</u>: Bits 7 and 6 are don't cares
- $\Box \qquad \text{Bit } 5 = 1 \text{ convert continuously}$
- $\Box \qquad \text{Bit } 4 = 1 \text{ group of 4 channels}$
- $\square \qquad \text{Bits 3 and } 2 = 00 \text{ group 0, PE0-3}$
- □ Bits 1 and 0 are not used.
- Value of xx11 00xx or could store 0011 0000
 \$30

Setup example 2


- 20
- What value needs to be written to the ADCTL register to have continuous conversions of pin PE0? What assembler language instructions would you use to set up this?
- □ Set ADCTL as follows:
 - Bits 7 and 6 don't cares
 - Bit 5 1 convert continuously
 - **Bit** 4 0 single channel
 - Bit 3,2,1,0 0000 the value for PE0
- □ The assembler code (assumes A accumulator is free)
 - □ LDAA #\$20
 - **STAA** \$1030

© Joanne E. DeGroat, OSU

val – 0010 0000

Example 3

- Your system has 2 analog sensors. You only need to acquire the value of a given sensor at certain points. How would this be set up.
- Probably through subroutines.
- Specifications of the problem
 - Sensor 1 on pin PE0-ADR1
 - Sensor 2 on pin PE1-ADR2
- □ The valx values for the code
 - □ val1 0010 0000
 - □ val2 0010 0001
- How is the A/D being set up for conversion?
 - Could also be done with 0000 0000 and 0000 0001

Signal setup for A/D use

- □ The 68HC11 needs 2 reference input voltages.
 - A low voltage reference V_{RL} pin 51
 - A high voltage reference $-V_{RH} pin 52$
- To prevent damage the analog input signals must be current limited.
 - Input current should not exceed 25mA
- Connect signal through a resistor of value 1kΩ to 10kΩ

Input sensors

- Transducers, such as pressure, temperature, and acceleration, covert the physical quantity being monitored into and output of voltage, current, or resistance.
- To get the signal to the 68HC11 the signal needs to be a voltage.
- A simple connection for the LM335 temperature sensor can be accomplished.
 - Application circuit from Jameco page.

Lecture summary

□ Use of the 68HC11 A to D converter

- Basic setup of use
- The A/D configurations
- Software setup
- Interfacing signals

□ None