L7s Multiple Output example

The Problem (from text Unit 14)

- Problem Statement

14.5 A sequential circuit has one input (X) and two outputs $\left(Z_{1}\right.$ and $\left.Z_{2}\right)$. An output Z_{1} occurs every time the input sequence 010 is completed, provided that the sequence in has never occurred. An output $Z_{2}=1$ occurs every time the input 100 is completeil Note that once a $Z_{2}=1$ output has occurred, $Z_{1}=1$ can never occur but not vice venii Find a Mealy state graph and state table (minimum number of states is eight).

- Will do for Mealy and Moore
- One input X, two outputs Z1 and Z2
- Z1 = 1 occurs every time 010 is last 3 on input, provided 100 has never occurred
- Z2 = 1 every time 100 is last 3 on input

Choose a starting state (Mealy)

\square This is the state after a reset.
\square The slides will show the progression (developed on the board - now slides)

\author{

State	Meaning
S0	Starting State

}

Now add states transition from S0

\square When in S0 what happens when a 1 is input or a 0 is input?

State	Meaning
S0	Starting State
S1	an initial 0 of possibly 010
S3	an initial 1 of possibly 100

In S1

\square What happens on input of 0 - stay in S1
\square What happens on input of 1 - transition to new state S2.

State	Meaning
S0	Starting State
S1	an initial 0 of possibly 010
S2	have 01 as last 2 inputs
S3	an initial 1 of possibly 100

In S3

- Input of 1 - stay in S3

- Input of 0 - now have 10 of possible 100 seq

State	Meaning
S0	Starting State
S1	an initial 0 of possibly 010
S2	have 01 as last 2 inputs
S3	an initial 1 of possibly 100
S4	have 10 as last 2 inputs

In S2

- Input 1 - have 11 as last two $-1^{\text {st }} 1$ of 100 - transition to S3
- Input 0 - have completed 010 and have 10 as last two inputs, S4

State	Meaning
S0	Starting State
S1	an initial 0 of possibly 010
S2	have 01 as last 2 inputs
S3	an initial 1 of possibly 100
S4	have 10 as last 2 inputs

In S4

- Input 1 - have 01 as last 2 inputs - go to S2
- Input 0 - have 100 as last 3 and sequence 100 - go to new state S 5 and sequence 010 can not be recognized again

State	Meaning
S0	Starting State
S1	an initial 0 of possibly 010
S2	have 01 as last 2 inputs
S3	an initial 1 of possibly 100
S4	have 10 as last 2 inputs
S5	have seen sequence 100

In S5

- Input 0 - Have 00 as last two - not start of 100
- Input 1 - Have possible start of 100 - transition to S6

State	Meaning
S0	Starting State
S1	an initial 0 of possibly 010
S2	have 01 as last 2 inputs
S3	an initial 1 of possibly 100
S4	have 10 as last 2 inputs
S5	have seen sequence 100
S6	have a $1-$ start of 100

In S6

- Input 0 - have 10 of 100 - go to S7

- Input 1 - Stay in S6

State Meaning
Starting State
an initial 0 of possibly 010
have 01 as last 2 inputs an initial 1 of possibly 100 have 10 as last 2 inputs have seen sequence 100 have a 1 - start of 100 have a 10 of possible 100

In S7

- Input 0 - Now have 100 and output a 1 - go to S5
- Input 1 - Have a $1^{\text {st }} 1$ and could be start of 100 - go to S6
- Done

State	Meaning
S0	Starting State
S1	an initial 0 of possibly 010
S2	have 01 as last 2 inputs
S3	an initial 1 of possibly 100
S4	have 10 as last 2 inputs
S5	have seen sequence 100
S6	have a 1 - start of 100
S7	have a 10 of possible 100

Moore Machine implementation

- The Moore Machine implementation
- It adds 2 more states and is left to the student to work this through. Remember that the output is associated with the state, not a combination of the state and input as in a Mealy Machine.

State S0

\square Have a starting state S0 and its meaning
\square Remember - a Moore machine

State Meaning
S0 Starting state

ㅁ Note output designation on State symbol

In S0

- 0 input - have the start of 010
 $\square 1$ input - have the start of 100

State Meaning
S0 Starting state
S1 have $1^{\text {st }} 0$ of start of 010
S3 have $1^{\text {st }} 1$ of start of 100

In S1

- 0 input - last 2 are 00 - stay in S1
$\square 1$ input - last 2 are 01 - transition to state S2
State Meaning
S0 Starting state
S1 have $1^{\text {st }} 0$ of start of 010
S2 have 01 as last 2 inputs
S3 have $1^{\text {st }} 1$ of start of 100
S4 have 10 as last 2 inputs
S5 010 detected -10 as last two inputs
S6 100 detected - output Z2 $=1$
S7 after 100 - a 0 input
S8 after 100 - a 1 input
S9 after 100 - have 10 as last 2

In S3

- 0 input - have 10 as last 2 - go to S4

s: hemput - have 11 as last 2 - stay in S3

S0 Starting state
S1 have $1^{\text {st }} 0$ of start of 010
S2 have 01 as last 2 inputs
S3 have $1^{\text {st }} 1$ of start of 100
S4 have 10 as last 2 inputs
S5 010 detected - 10 as last two inputs
S6 100 detected - output $\mathrm{Z} 2=1$
S7 after 100 - a 0 input
S8 after 100 - a 1 input

S9 after 100 - have 10 as last 2

In S2

- 0 input - Have 010 as last 3 - 10 as last 2 - go to state S 5 which has $\mathrm{Z} 1=1$ as its output

$\square_{\frac{\text { state }}{\text { so }}} \underset{\substack{\text { intang } \\ \text { Stating state }}}{ }$ go to S3 as 11 are last 2 inputs
S1 have $1^{\text {st }} 0$ of start of 010
S2 have 01 as last 2 inputs
S3 have $1^{\text {st }} 1$ of start of 100
S4 have 10 as last 2 inputs
S5 010 detected - 10 as last two inputs
S6 100 detected - output $\mathrm{Z} 2=1$
S7 after 100 - a 0 input
S8 after 100 - a 1 input
S9 after 100 - have 10 as last 2

In S4

- 0 input - 100 has been detected - new state S6 where 010 can not be detected output Z2=1

- 1 input - last 3 are 101, i.e., last 2 are 01 - go sato ta_{1} S2
S0 Starting state
S1 have $1^{\text {st }} 0$ of start of 010
S2 have 01 as last 2 inputs
S3 have $1^{\text {st }} 1$ of start of 100
S4 have 10 as last 2 inputs
S5 010 detected - 10 as last two inputs
S6 100 detected - output Z2 $=1$
S7 after 100 - a 0 input
S8 after 100 - a 1 input
S9 after 100 - have 10 as last 2

In S5 - 010 detected

- 0 input - 100 are last 3 - go to S6
 - 1 input - 101 are last 3, 01 last 2 - go to S2

State	Meaning
S0	Starting state
S1	have $1^{\text {st }} 0$ of start of 010
S2	have 01 as last 2 inputs
S3	have $1^{\text {st }} 1$ of start of 100
S4	have 10 as last 2 inputs
S5	010 detected -10 as last two inputs
S6	100 detected - output Z2 = 1
S7	after $100-$ a 0 input
S8	after $100-$ a 1 input
S9	after $100-$ have 10 as last 2

In S6

- S6 have detected 100 and output Z2 = 1
 - 0 input - new state S 7 - means a 0 input
 ㅁ 1 input - new state S 8 - means a 1 received

State Meaning
S0 Starting state
S1 have $1^{\text {st }} 0$ of start of 010
S2 have 01 as last 2 inputs
S3 have $1^{\text {st }} 1$ of start of 100
S4 have 10 as last 2 inputs
S5 010 detected - 10 as last two inputs
S6 100 detected - output $\mathrm{Z} 2=1$
S7 after 100 - a 0 input
S8 after 100 - a 1 input
S9 after 100 - have 10 as last 2

In S7 - have a 0

- 0 input - Stay in S7

- 1 input - transition to S8

State	Meaning
S0	Starting state
S1	have $1^{\text {st }} 0$ of start of 010
S2	have 01 as last 2 inputs
S3	have $1^{\text {st }} 1$ of start of 100
S4	have 10 as last 2 inputs
S5	010 detected -10 as last two inputs
S6	100 detected - output Z2 = 1
S7	after $100-$ a 0 input
S8	after $100-$ a 1 input
S9	after $100-$ have 10 as last 2

In S8 - have xx01

- 0 input - now have 10 - go to new state S9
 - 1 input - stay in S8

State	Meaning
S0	Starting state
S1	have $1^{\text {st }} 0$ of start of 010
S2	have 01 as last 2 inputs
S3	have $1^{\text {st }} 1$ of start of 100
S4	have 10 as last 2 inputs
S5	010 detected -10 as last two inputs
S6	100 detected - output Z2 = 1
S7	after $100-$ a 0 input
S8	after $100-$ a 1 input
S9	after $100-$ have 10 as last 2

In state S9

- 0 input - have seen 100 as last 3 - back to S6
 - 1 input - have $1^{\text {st }} 1$ of 100 - back to S8

State	Meaning
S0	Starting state
S1	have $1^{\text {st }} 0$ of start of 010
S2	have 01 as last 2 inputs
S3	have $1^{\text {st }} 1$ of start of 100
S4	have 10 as last 2 inputs
S5	010 detected -10 as last two inputs
S6	100 detected - output $\mathrm{ZZ}=1$
S7	after $100-$ a 0 input
S8	after $100-$ a 1 input
S9	after $100-$ have 10 as last 2

Have seen contrast of Mealy/Moore

- Worked the development of a Mealy and Moore machine for the same specification
- Mealy - 8 states
- Moore - 10 states
- Machine has property that once certain conditions are met - a group of states can never be reached again. This type of machine is hard to test given the property of observeablilty.

