
Behavioral Fault Simulation and ATPG System for VHDL

Tim H. Noh Chien-In Henry Chent Soon M. Chung
ELX/Custom Microelectronics
Defense Electronics Supply Center Wright State University Wright State University
Dayton, OH 45444-5765 Dayton, OH 45435 Dayton, OH 45435

Dept. of Electrical Eng'g Dept. of Computer Science & Eng'g

Abstract --- Due to the increasing level of integration achieved
by Very Large Scale Integrated (VLSI) technology, traditional
gate-level fault simulation becomes more complex, difficult,
and costly. Behavioral fault simulation at top functional level,
described in a hardware description language, offers very
attractive alternatives to these problems. This paper presents
a new way to simulate the behavioral fault models for the
Very high speed integrated circuits Hardware Description
Language (VHDL). The performance analysis shows that
relatively small number of test patterns generated by the
behavioral fault simulation and Automatic Test Pattern
Generation (ATPG) system detects around 98 percent of all
testable gate-level faults.

1. htroduction

The complexity of current VLSI and ULSI circuits has
promoted the increasing use of Hardware Description Languages
(HDLs), such as VHDL and Verilog, in circuit design. The use
of HDLs coupled with synthesis tools provides an efficient design
methodology for carrying out complex microcircuit design.

While HDLs are gaining momentum in design area, fault
modeling and test generation at higher levels of abstraction have
not been well developed yet. The traditional gate-level fault
simulator and ATPG system display inefficiency and shortfall
when the large number of gates in VLSI challenges them. On the
other hand, the behavioral fault simulation for circuits at the high
level functional description in a HDL is very simple, efficient,
and affordable. Ten different behavioral fault models were
selected and used to generate test patterns. Actual behavioral
fault simulation system was implemented and the results were
compared with the gate-level approach. The comparison of the
results shows that even though there exists a little gap between
the behavioral fault models and the physical faults, the behavioral
fault simulation offers a very attractive alternative to the gate-
level fault simulation. especially for complex circuits.

2. Overview of the Evaluation System

The overview of the evaluation system is shown in Figure 1.
The VHDL description is an input to the both behavioral
ATPG/fault simulation and the synthesis tools. The VHDL code
was synthesized to an equivalent gate-level representation so that
the gate-level simulation can be carried out with the test pattems
generated by the behavioral ATPG/fault simulation system. The
results of the behavioral and the gate-level fault simulation are
compared and analyzed.

t C.-I. H. Chen was supported in part by the U. S. Air Force under
contract #F33615-93-C-1226.

1

Figure 1 . Overview of the evaluation system.

ATPGDehavioral Fault Simulation System

The ATPG/behavioral fault simulation system is based on the
behavioral fault simulation proposed in [11 which laid out good
ground rules and guidelines. Some modifications. however, were
made to accommodate ATPG and the fault grading system. The
same notations introduced in [l] are used here also. In short,
curly braces ({ 1) indicate a single file. For example, {L&]
means a single file composed of two items. Square brackets ([1)
indicate a collection of related files. Thus, [F,,F,,F,] denotes
three related but separate files, F,, F,, and F,.

Figure 2 shows the ATPG system utilizing the fault
simulation, and the following describes each of the blocks.

The VHDL source file, {Po}, is any VHDL model that is fault
free from simulation.

The pre-processor translates the VHDL code into a format that
the fault extractor and the fault mapper can use. The output file
of the preprocessor is denoted by {F'o}.

The fault extractor module generates fault lists from the
preprocessed source code based on ten behavioral fault models to
be discussed in the next section. The output of this module is a
list of N faults. Notation for the list of N faults is If,, f,, f3,...,

The fault mapper takes {FI0} from the preprocessor and the
fault list file {f,, f,, f,, ..., fn) from the fault extractor, and
generates N faulty files, [PI, F,, F,, ..., F,]. These faulty files are
used during behavioral fault simulation one at a time. The fault
mapper also produces the control program (Unix shell script) and
necessary data files to guide the ATPG process.

f"1.

0-7803-2020-4194 $4.00 0 IEEE 412

The control program controls the flow of the ATPG process.
First, it selects a target fault. Second, it invokes a test generation
routine for the target fault. Third, the control program will
execute a test bench generator routine then invoke the VHDL
simulator for behavioral fault simulation. Fourth, discard the
detected fault and update the fault list, then go back to the first
step. Continue until there is no more fault or only undetectable
faults are left.

* - - ,' U

Figure 2. Behavioral ATPG/fault simulation system.

The Gate-level Fault Grading and Simulation System

In order to perform fault simulation at the gate-level for the
circuit described in VHDL, the Synopsys Design Compiler 121
was used to synthesize the behavioral VHDL code in structural
VHDL. The gate-level fault simulator uses the structural VHDL
code and the test patterns generated by ATPGBehavioral Fault
Simulation block to grade faults and to generate the fault
simulation report.

3. Behavioral Fault Models and Fault Mapper

Due to the potential advantages of the behavioral fault
simulation, many different fault modeling techniques were
introduced recently [1,3.4]. Our approach was to use the fault
models whose effects were known or studied, and they were
improved to handle various data types. The fault models selected
for our study can be classified into ten categories: Input stuck-at
fault, Output stuck-at fault, If stuck then fault, If stuck else fault,
Elsif stuck then fault, Elsif stuck else fault, Assignment statement
fault, Dead clause fault, Micro-operation fault, Local stuck data
fault.

The behavioral fault mapper generates faulty files by using the
fault list and the preprocessed VHDL code. Each faulty file
contains only one behavioral level fault inserted. Now, let's
discuss the fault mapping techniques for all ten fault categories,
and their representation of failures.

Input stuck-at fault. The input stuck-at fault represents the failure
of the primary input signal. The input signal can be stuck at 0 or

1 for the bit and bit-vector types, and false or true for the
boolean type. The std-logic and std-logic-vector are treated the
same as the bit and bit-vector. This fault is mapped by replacing
every occurrence of the input signal in the architecture body with
the corresponding stuck-at fault.

Example: Primary input = A;
OU7'2 <= A; OUT1 <= A;

When A is bit/std-logic type:
s-a-1: OUTl <= '1'; OUT2 <= '1';
s-a-0: OUTl <= '0'; OUT2 <= '0';

s-a-1: OUTl <= "1111"; OUT2 <= "1111";
s-a-0: OUTl <= "0000"; OUT2 <= "0000";

s-a-false: OUTl <= false; OUT2 <= false;
s-a-true : OUTl <= true; OUT2 <= true;

When A is bit-vector/std-logic-vector with length of four:

When A is boolean type:

Output stuck-a fault. The output stuck-at fault represents the
failure of the primary output signal. The output signal can be
stuck at 0 or 1 for the bit/std-logic and bit-vector/
std-logic-vector types, and false or true for the boolean type.
This fault is mapped by replacing the right hand side of all
occurrences of the output signal assignment in the architecture
body with the corresponding stuck-at fault.

Example: Primary output = A;
A <= COMl XOR COM2 XOR COM3;

When A is bit/std-logic:
When A is bit-vector/std-logic-vector with length four :

s-a-0: A <= "OOOI)":

s-a-1: A <= '1';

I f stuck then fault. The if stuck then fault represents the failure
to execute the else (and elsif, if exist) portion of statement(s) for
the if construct. This fault is mapped by replacing
logical-expression or condition between "if' and "then" with
boolean value TRUE. Let's consider the following example to
illustrate this fault.

Example:
1# IF (logical-expressionl) THEN
2# A<= COMl;
3# EISIF (logical-expression2) THEN
4# A<=COM2;
5# ELSE
6# A<=COM3;
7# END IF,

in line 1 will be replaced with TRUE, i.e., 1#
THEN.

In the presence of an ifstuck then fault, the logical-expression1
IF (TRUE)

Ifstuck else fault. The ifstuck else fault represents the failure to
execute the if then portion of statement(s) for the if construct.
This fault is mapped by replacing logical-expression or condition
between "if' and "then" with boolean value FALSE; i.e., 1# IF
(FALSE) THEN.

Elsif stuck then fault. The elsif stuck then fault represents the
failure to execute the following else (and elsif, if exist) portion of
statement(s) for the if construct. This fault is mapped by
replacing logical-expression or condition between "elsif' and
"then" with the boolean value TRUE. In the presence of an elsif

41 3

stuck then fault the logical-expression2 in line 3 of the above
example will be replaced with TRUE so that A can be assigned
to the signal value of COMl or COM2 depending on the result
of the logical-expressionl, but not COM3.

Elsif stuck else fault. The elsif stuck else fault represents the
failure to execute the elsif then portion of statement(s) for the if
construct. This fault is mapped by replacing logical-expression
or condition between "elsif' and "then" with the boolean value
FALSE; for the same example, the line 3 becomes "ELSF
(FALSE) THEN". This mapping guarantees that A is assigned
either COMl or COM3 but not COM2.

AssiRnment statement fault. The assignment statement fault
represents the failure to assign a new value to a signal. In the
presence of an assignment statement fault the signal to the left
side of assignment operator (e=) will be assigned to one of the
logic values the signal can have. The fault is mapped by
replacing the expression to the right of the assignment operator
with corresponding logic value, for example '0' and '1' for bit
type. This fault model is extended to not only bitlstd-logic,
bit-vector/std-logic-vector, and boolean but also to the
enumerated data type. Let's consider an example to illustrate the
effect of the assignment statement fault on the enumerated type.

Example:
1# type trafficplight is (GREEN, YELLOW, RED);
2# SIGNAL LIGHT: trafficplight;
3# IF (condition-1) THEN
4# LIGHT <= GREEN;
5# ELSIF (condition-2) THEN
6# LIGHT <= YELLOW;
7# ELSE
8# LIGHT <=RED;
9# ENDIF;

In this example, line 4 is mapped to three different ways since
the type traffic-light has three values. The signal LIGHT can be
assigned to GREEN, YELLOW, and RED. However, in line 4,
the signal value GREEN is the original value, therefore, it should
be mapped to either YELLOW or RED. The following shows the
mapping results.

The LIGHT is assigned to YELLOW (stuck at YELLOW):
1# type traffic-light is (GREEN, YELLOW, RED);
2# SIGNAL LIGHT: traffic-light;
3# IF (condition-1) THEN
4# LIGHT <= YELLOW; -- Mapped to YELLOW
5# ELSE (condition-2) THEN
6# LIGHT <= YELLOW;
7# ELSE
8# LIGHT <= RED;
9# END IF;

Dead clause fault. The dead clause fault represents the failure of
a WHEN clause in a CASE statement to execute when selected.
In the following example, there could be five dead clause faults
since five alternatives exist in the CASE construct. Let's consider
one of the five faults. Assume the fault is presented when
OP-CODE is equal to "10". This implies that the multiplication
operation will never be performed and the assignment of
PC-WRITE will fail.

Example:
1# CASE OP-CODE IS

2# WHEN "00" =>
3# INSTRUCTION <= ADD;
4# WHEN "01" =>
5# INSTRUCTION <= SUB;
6# REG-SEL <= '0';
7# WHEN"10 =>
8# INSTRUCI'ION <= MUL;

lo# WHEN "11" =>
11# INSTRIJCTION <= DIV;
12# WHEN OTHERS =>
13# INSTRUCTION <= NO-OP;
14# END CASE

9# PC-WRrm <= '1';

The mapping of the fault when OP-CODE is "10" is done by
replacing the expression to the right of the assignment operator
with the signal name to the left of the operator in the WHEN
clause. However, if the signal to the left of the operator is of
type "OUT" then the fault is mapped by commenting the
assignment statement in the WHEN clause.

....
7# WHEN " 1 0 =>
8# -- INSTRUCTION <= MUL; ** instruction: "OUT"
9# PC-WRITE <= P C - W R E , ** pc-write: signal

Micro-operation fault. The micro-operation fault represents a
failure of a micro-operation to perform its intended function. The
operator can be classified into four categories; logical operators,
relational operators, unary operators, and arithmetic operators. An
operator may fail to any other operator in its category. This fault
is mapped by replacing the operator considered with its counter
operator which must be defined. For example, logical duality can
be utilized to select the counter operator. Here are some
examples,

Example:
COUT <=(A AND B) OR (B AND CIN);
-- FAULTY: 1-st AND failed to OR
COUT <=(A OR B) OR (B AND CIN);

Local stuck data fault. The local stuck data fault represents a
failure for a signal object to have a proper value within a local
expression. More than one expression within a device model may
use the signal. The fault is mapped such that the signal in only
one expression will be replaced with one of logic values that the
signal can have. The signal in other expressions will retain
proper logic value. The local stuck data fault is extended to
handle bit/std-logic, bit-vector/ std-logic-vector, boolean. and
enumerated data types.

Example:
1# SIGNAL CO: STD_LOGIC;
2# SUMl <= A1 XOR B1 XOR CO;

2# SUMl <= A1 XOR B1 XOR '1':
-- the local Stuck 10 ' 1 '

4. Behavioral ATPGiFault Simulation

The ATPG system utilizing the behavioral fault simulation is
outlined in Figure 2. Since the fault extractor and the fault
mapper were described in previous sections, mainly the control
flow of ATPG system is described in this section.

414

Control Program in ATPG System

The purpose of the control program is to guide the behavioral
fault simulation with the ATPG system. The control program is
generated along with an additional shell script, a data fie, and
three frame files by the fault mappe.r. The shell script is used to
compile/analyze the fault-free VHDL model and all faulty files.
The data file contains the names of all faulty files, one on each
line. This data file is used by the control program to update the
test bench and its configuration file. After update of the test
bench and its configuration, the name of the faulty file is removed
from the data file. When the data file becomes empty the fault
simulation exits. Three frame files are used to create VHDL
stimulus file and to update test bench and its configuration file.

Behavioral Test Pattern Generator. The control program
invokes a test generator to devise the test pattern($ for the target
fault. The linear feedback shift register (LFSR) algorithm was
utilized to generate the test patterns in this research. However,
any test generation algorithm can be used for this purpose.

Creating VHDL Stimulus. The control program invokes the
VHDL stimulus generator. The VHDL stimulus file is generated
by using the test patterns generated from previous step, stimulus
frame file generated by the fault mapper, and fault list fie. The
stimulus file is compiled.

Creatindbdatinrz Test Bench. Once the VHDL stimulus file
is generated then the control program invokes the test bench
generator routine. The purpose of the test bench is to determine
whether or not the set of test patterns (T) generated for the target
fault could be a test for the other fault. The stimulus file
(component in VHDL) generated from the test patterns drives the
fault-free model and the faulty model, and the responses of these
two models are compared. If they are different then the same set
of test patterns are also tests for the fault modeled in the faulty
f ie . This procedure is repeated until all faulty files are
completely simulated. The simulation of respective good (fault-
free) model/faulty model pairs are controlled through the
configuration file of the test bench. The following shows the
frame of test bench in VHDL. Italicized terms denote the codes
varying simulation to simulation.

Frame for test bench:
use std.texti0.d;
ENTlTY-name-TB IS
END entity-name-TB;

ARCHlTECTURE STRUCTURE OF entity-mme_TB IS

-- component declaration for good and faulty model
component MUT
PORT(inputprts :IN types; outputgorts :OUT types);
end component;

-- component declaration for stimulus
component MUT-ST
PORT(inputg0rts:OUT type);
end component;

-- signals used to drive good model and faulty model inputs
signal AILINA2JN ;
-- Output signals from good model

signal SI_0UTSZsZ_0UT ;
-- Output signals from faulty model
signal sl_FOUTS2_FOuT,S3-~OuT,S4_FOUT,C4-FOuT:BIT,

BEGIN
-- component instanfiation of good model

-- component instantiation of faulty model
FAULTY:MUT port map(AI_INAZ_IN, ... SI_FOUTSZ-FOUT);
-- component instantiation of stimulus model
STIMULUS: MUT-ST port map(AI_INAZ_IN,);
-- Compare responses of good model and faulty model
COMPARATOR: PROCESS
FILE tp-file: TEXT is OUT "/homeAEMP.TP";
variable outline: LINE,
variable st-tmp:string(1 to 20);
BEGIN

GOOD: MUT port map(AI_INPZ_IN, SI-OUTS2-0UT,);

Wait on A1-m SI-OUT,SZ-OUT SI-FOUTSZ-FOLJT ,... ;
st-tmp := "faulty file name";
if (SI-OUT /= SI-FOUT) then

write(outlinePI_IN); write(outline.A-IN);

write(outlie,Sl-OUT); write(outline,'x');

write(outline,st-tmp); writeline(tp-fde.outline);
ASSERT FALSE report 'TEST GENERATED" severity failure;

...

...

elsif (SZ-OUT /= S2-FOUT) then

elsif (.......) then

else

end if; --

.....

....
-- This else clause is needed for sequential circuit only,

..... -- (Capture input sequences since multiple input pattems
are required to detect the faults in the sequential circuit.)

END COMPARATOR PROCESS;
END STRUCIZTRE.

Discard Detected Faults. The control program will discard the
detected faults by removing the name of the faulty files from the
data file (entity-namenn). If the data file is not empty and the
remaining faults are not redundant faults then go back to the
behavioral test pattern generator to generate test patterns for a
new target fault.

5 . Gate-Level Fault Gradinn and Simulation

In general, it is difficult to correlate behavioral fault models
and physical circuit failures due to the high level abstraction of
behavioral faults. However, the effectiveness of the behavioral
ATPG system in detecting physical defects must be evaluated and
analyzed. One way to measure the quality of the behavioral
ATPG system is to perform a fault simulation on the equivalent
gate-level representation with the test patterns generated by the
behavioral ATPG system. When starting with a behavioral
description, it is a two-step process: the synthesis process and the
gate-level fault simulation.

The synthesis tool translates a RTL design description into a
gate-level representation, and optimizes it with respect to a set of
design goals/constraints for a given target technology library. The
design compiler of Synopsys Inc.[2] was chosen as the synthesis
tool. All example circuits were synthesized with respect to two
separate design goals: one for the fastest circuit in speed, and the
other for the smallest circuit in area. The technology library used
for the synthesis was a strip down version of LSI Logic's 10K
library. The synthesis results were saved in the form of a

41 5

structural VHDL description.
Once the structural VHDL description is available from the

synthesis process, it is converted to ISCAS benchmark formats
[5, 61. This internal format and the test patterns from the
behavioral ATPG system are used for one of the gate-level fault
simulation. The gate-level single stuck-at fault model was used
for the fault simulation.

Since it is not guaranteed that the synthesized circuits are fully
testable, the testability of the circuits must be estimated. In order
to measure the testability, a large number of random test patterns
were generated and the gate-level fault simulation was carried out.

6. Results and Analysis

The behavioral ATPG/fault simulation system was implemented
by using Unix C-shell programming language and C language on
SUN SparclC workstations. A couple of commercially available
tools, Vantage Spreadsheet [71 and Synopsys VHDL System
Simulator [8], were utilized to rupport the behavioral ATPG/fault
simulation system. Nine circuits were used to evaluate the
performance of the system. The results of the fault simulation are
shown in Table I. For the gate-level fault simulation, the fault
coverage with the test patterns generated by the behavioral
ATPG/fault simulation system is provided under "BT" column
and the fault coverage with the random test patterns is provided
under "GT' column.

The current implementation of the behavioral ATPG/fault
simulation system performed exceptionally well in generating test
patterns for the behavioral faults. System performance can be
greatly enhanced if a more efficient behavioral test generation
algorithm, instead of LFSR algorithm, is used for the target faults.

The results of the fault simulation shows that relatively small
number of the test patterns generated by the behavioral
ATPG/fault simulation system detected around 98 percent of all
testable gate-level faults. In particular, if synthesized circuits are
testable. mainly combinational circuits, then the overall gate-level
fault coverage achieved by using the test patterns of the
behavioral ATPG/fault simulation system was around 98 percent.
However, the synthesized sequential circuits displayed poor
testability. This poor testability is an inherent characteristic of
the sequential circuits and is partially caused by the logic
optimization technique of the synthesis tool. Often, the logic
optimization goal and testability goal conflict each other. Even
though the overall gate-level fault coverage is low for the
sequential circuits, it is important to notice that the test patterns
of the behavioral ATPG/fault simulation system detected nearly
all testable faults.

7 . Conclusions

A complete behavioral fault simulation and ATPG system for
circuits modeled in VHDL has been presented in this paper. Ten
different behavioral fault models were selected and used to
generate test patterns through fault simulation. The results are
very encouraging but not perfect: the behavioral fault simulation
detected about 98 percent of the testable gate-level faults.
Nevertheless, gate-level fault simulation is not an effective
solution for complex microcircuits, and the results of this research
show that behavioral fault simulation will remain as a highly
attractive alternative for the future generation of VLSI/UUI
circuits.

Table I: Fault Simulation Results.

Test
Circuits Fault Smallest

Simulation

16-bit

8-hit

100

24

-

%.32

150
-

Parallel Coverage (%) %.67 96.68
Multiplier
4-bit no. of patterns 125 125

Mocxe Coverage (%) 100 100
(FSM)

no. of patterns 10 10

'

r(q 1;

no. of patt

Counter/

Vending
Machine
Controller

Controller
for RISC

no. of patt

100

6

84.82

51

-

-

52.50

55
-

39.50

101

[l] P. C. Ward and J. R. Armstrong,"Behavioral Fault Simulation in
VHDL", Proc. of 27th ACM/EEE Design Automation Conference, pp.

[2] Synopsys Design Compiler Reference manual, Synopsys, Inc., 1994.
[3] U.H. Levendel and P.R. Menon, "Test Generation Algorithms for
Computer Hardware Description Languages", IEEE Transactions on
Computers, Vol. C-31 (7), pp.577-588, 1982.
[4] C.-I. H. Chen and S. Perumal, "Analysis of the Gap between
Behavioral and Gate-Level Fault Simulation", Proc. of 6th Annual IEEE
International ASIC Conference and Exhibit, September, pp.144-147.1993.
[SI F. Brglez, P. Pownall, and R. Hum, "Accelerated ATPG and Fault
Grading via Testability Analysis", Proc. of IEEE International Symposium
on Circuits and Systems, pp. 695-698, 1985.
[6] F. Brglez, D. Bryan, and K. Kozminski, "Combinational Profdes of
Sequential Benchmark Circuits", Proc. of IEEE Intemationd Symposium
on Circuits and Systems, pp. 1929-1934, 1989.
[7] Vantage Spreadsheet User Guide, Vantage Analysis Systems, Inc.,
1993.
[SI Synopsys VHDL System Simulator reference manual, Synopsys, Inc.,
1994.

587-593, 1990.

41 6

