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Abstract --- Due to the increasing level of integration achieved 
by Very Large Scale Integrated (VLSI) technology, traditional 
gate-level fault simulation becomes more complex, difficult, 
and costly. Behavioral fault simulation at top functional level, 
described in a hardware description language, offers very 
attractive alternatives to these problems. This paper presents 
a new way to simulate the behavioral fault models for the 
Very high speed integrated circuits Hardware Description 
Language (VHDL). The performance analysis shows that 
relatively small number of test patterns generated by the 
behavioral fault simulation and Automatic Test Pattern 
Generation (ATPG) system detects around 98 percent of all 
testable gate-level faults. 

1. htroduction 

The complexity of current VLSI and ULSI circuits has 
promoted the increasing use of Hardware Description Languages 
(HDLs), such as VHDL and Verilog, in circuit design. The use 
of HDLs coupled with synthesis tools provides an efficient design 
methodology for carrying out complex microcircuit design. 

While HDLs are gaining momentum in design area, fault 
modeling and test generation at higher levels of abstraction have 
not been well developed yet. The traditional gate-level fault 
simulator and ATPG system display inefficiency and shortfall 
when the large number of gates in VLSI challenges them. On the 
other hand, the behavioral fault simulation for circuits at the high 
level functional description in a HDL is very simple, efficient, 
and affordable. Ten different behavioral fault models were 
selected and used to generate test patterns. Actual behavioral 
fault simulation system was implemented and the results were 
compared with the gate-level approach. The comparison of the 
results shows that even though there exists a little gap between 
the behavioral fault models and the physical faults, the behavioral 
fault simulation offers a very attractive alternative to the gate- 
level fault simulation. especially for complex circuits. 

2. Overview of the Evaluation System 

The overview of the evaluation system is shown in Figure 1. 
The VHDL description is an input to the both behavioral 
ATPG/fault simulation and the synthesis tools. The VHDL code 
was synthesized to an equivalent gate-level representation so that 
the gate-level simulation can be carried out with the test pattems 
generated by the behavioral ATPG/fault simulation system. The 
results of the behavioral and the gate-level fault simulation are 
compared and analyzed. 

t C.-I. H. Chen was supported in part by the U. S.  Air Force under 
contract #F33615-93-C-1226. 
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Figure 1 .  Overview of the evaluation system. 

ATPGDehavioral Fault Simulation System 

The ATPG/behavioral fault simulation system is based on the 
behavioral fault simulation proposed in [ 11 which laid out good 
ground rules and guidelines. Some modifications. however, were 
made to accommodate ATPG and the fault grading system. The 
same notations introduced in [l] are used here also. In short, 
curly braces ({ 1) indicate a single file. For example, {L&] 
means a single file composed of two items. Square brackets ([ 1) 
indicate a collection of related files. Thus, [F,,F,,F,] denotes 
three related but separate files, F,, F,, and F,. 

Figure 2 shows the ATPG system utilizing the fault 
simulation, and the following describes each of the blocks. 

The VHDL source file, {Po}, is any VHDL model that is fault 
free from simulation. 

The pre-processor translates the VHDL code into a format that 
the fault extractor and the fault mapper can use. The output file 
of the preprocessor is denoted by {F'o}. 

The fault extractor module generates fault lists from the 
preprocessed source code based on ten behavioral fault models to 
be discussed in the next section. The output of this module is a 
list of N faults. Notation for the list of N faults is If,, f,, f3,..., 

The fault mapper takes {FI0} from the preprocessor and the 
fault list file {f,, f,, f,, ..., fn) from the fault extractor, and 
generates N faulty files, [PI, F,, F,, ..., F,]. These faulty files are 
used during behavioral fault simulation one at a time. The fault 
mapper also produces the control program (Unix shell script) and 
necessary data files to guide the ATPG process. 
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The control program controls the flow of the ATPG process. 
First, it selects a target fault. Second, it invokes a test generation 
routine for the target fault. Third, the control program will 
execute a test bench generator routine then invoke the VHDL 
simulator for behavioral fault simulation. Fourth, discard the 
detected fault and update the fault list, then go back to the first 
step. Continue until there is no more fault or only undetectable 
faults are left. 
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Figure 2. Behavioral ATPG/fault simulation system. 

The Gate-level Fault Grading and Simulation System 

In order to perform fault simulation at the gate-level for the 
circuit described in VHDL, the Synopsys Design Compiler 121 
was used to synthesize the behavioral VHDL code in structural 
VHDL. The gate-level fault simulator uses the structural VHDL 
code and the test patterns generated by ATPGBehavioral Fault 
Simulation block to grade faults and to generate the fault 
simulation report. 

3. Behavioral Fault Models and Fault Mapper 

Due to the potential advantages of the behavioral fault 
simulation, many different fault modeling techniques were 
introduced recently [1,3.4]. Our approach was to use the fault 
models whose effects were known or studied, and they were 
improved to handle various data types. The fault models selected 
for our study can be classified into ten categories: Input stuck-at 
fault, Output stuck-at fault, If stuck then fault, If stuck else fault, 
Elsif stuck then fault, Elsif stuck else fault, Assignment statement 
fault, Dead clause fault, Micro-operation fault, Local stuck data 
fault. 

The behavioral fault mapper generates faulty files by using the 
fault list and the preprocessed VHDL code. Each faulty file 
contains only one behavioral level fault inserted. Now, let's 
discuss the fault mapping techniques for all ten fault categories, 
and their representation of failures. 

Input stuck-at fault. The input stuck-at fault represents the failure 
of the primary input signal. The input signal can be stuck at 0 or 

1 for the bit and bit-vector types, and false or true for the 
boolean type. The std-logic and std-logic-vector are treated the 
same as the bit and bit-vector. This fault is mapped by replacing 
every occurrence of the input signal in the architecture body with 
the corresponding stuck-at fault. 

Example: Primary input = A; 
OU7'2 <= A; OUT1 <= A; 

When A is bit/std-logic type: 
s-a-1: OUTl <= '1'; OUT2 <= '1'; 
s-a-0: OUTl <= '0'; OUT2 <= '0'; 

s-a-1: OUTl <= "1111"; OUT2 <= "1111"; 
s-a-0: OUTl <= "0000"; OUT2 <= "0000"; 

s-a-false: OUTl <= false; OUT2 <= false; 
s-a-true : OUTl <= true; OUT2 <= true; 

When A is bit-vector/std-logic-vector with length of four: 

When A is boolean type: 

Output stuck-a fault. The output stuck-at fault represents the 
failure of the primary output signal. The output signal can be 
stuck at 0 or 1 for the bit/std-logic and bit-vector/ 
std-logic-vector types, and false or true for the boolean type. 
This fault is mapped by replacing the right hand side of all 
occurrences of the output signal assignment in the architecture 
body with the corresponding stuck-at fault. 

Example: Primary output = A; 
A <= COMl XOR COM2 XOR COM3; 

When A is bit/std-logic: 
When A is bit-vector/std-logic-vector with length four : 

s-a-0: A <= "OOOI)": 

s-a-1: A <= '1'; 

I f  stuck then fault. The if stuck then fault represents the failure 
to execute the else (and elsif, if exist) portion of statement(s) for 
the if construct. This fault is mapped by replacing 
logical-expression or condition between "if' and "then" with 
boolean value TRUE. Let's consider the following example to 
illustrate this fault. 

Example: 
1# IF (logical-expressionl) THEN 
2# A<= COMl; 
3# EISIF (logical-expression2) THEN 
4# A<=COM2; 
5# ELSE 
6# A<=COM3; 
7# END IF, 

in line 1 will be replaced with TRUE, i.e., 1# 
THEN. 

In the presence of an ifstuck then fault, the logical-expression1 
IF (TRUE) 

Ifstuck else fault. The ifstuck else fault represents the failure to 
execute the if then portion of statement(s) for the if construct. 
This fault is mapped by replacing logical-expression or condition 
between "if' and "then" with boolean value FALSE; i.e., 1# IF 
(FALSE) THEN. 

Elsif stuck then fault. The elsif stuck then fault represents the 
failure to execute the following else (and elsif, if exist) portion of 
statement(s) for the if construct. This fault is mapped by 
replacing logical-expression or condition between "elsif' and 
"then" with the boolean value TRUE. In the presence of an elsif 
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stuck then fault the logical-expression2 in line 3 of the above 
example will be replaced with TRUE so that A can be assigned 
to the signal value of COMl or COM2 depending on the result 
of the logical-expressionl, but not COM3. 

Elsif stuck else fault. The elsif stuck else fault represents the 
failure to execute the elsif then portion of statement(s) for the if 
construct. This fault is mapped by replacing logical-expression 
or condition between "elsif' and "then" with the boolean value 
FALSE; for the same example, the line 3 becomes "ELSF 
(FALSE) THEN". This mapping guarantees that A is assigned 
either COMl or COM3 but not COM2. 

AssiRnment statement fault. The assignment statement fault 
represents the failure to assign a new value to a signal. In the 
presence of an assignment statement fault the signal to the left 
side of assignment operator (e=) will be assigned to one of the 
logic values the signal can have. The fault is mapped by 
replacing the expression to the right of the assignment operator 
with corresponding logic value, for example '0' and '1' for bit 
type. This fault model is extended to not only bitlstd-logic, 
bit-vector/std-logic-vector, and boolean but also to the 
enumerated data type. Let's consider an example to illustrate the 
effect of the assignment statement fault on the enumerated type. 

Example: 
1# type trafficplight is (GREEN, YELLOW, RED); 
2# SIGNAL LIGHT: trafficplight; 
3# IF (condition-1) THEN 
4# LIGHT <= GREEN; 
5# ELSIF (condition-2) THEN 
6# LIGHT <= YELLOW; 
7# ELSE 
8# LIGHT <=RED; 
9# ENDIF; 

In this example, line 4 is mapped to three different ways since 
the type traffic-light has three values. The signal LIGHT can be 
assigned to GREEN, YELLOW, and RED. However, in line 4, 
the signal value GREEN is the original value, therefore, it should 
be mapped to either YELLOW or RED. The following shows the 
mapping results. 

The LIGHT is assigned to YELLOW (stuck at YELLOW): 
1# type traffic-light is (GREEN, YELLOW, RED); 
2# SIGNAL LIGHT: traffic-light; 
3# IF (condition-1) THEN 
4# LIGHT <= YELLOW; -- Mapped to YELLOW 
5# ELSE (condition-2) THEN 
6# LIGHT <= YELLOW; 
7# ELSE 
8# LIGHT <= RED; 
9# END IF; 

Dead clause fault. The dead clause fault represents the failure of 
a WHEN clause in a CASE statement to execute when selected. 
In the following example, there could be five dead clause faults 
since five alternatives exist in the CASE construct. Let's consider 
one of the five faults. Assume the fault is presented when 
OP-CODE is equal to "10". This implies that the multiplication 
operation will never be performed and the assignment of 
PC-WRITE will fail. 

Example: 
1# CASE OP-CODE IS 

2# WHEN "00" => 
3# INSTRUCTION <= ADD; 
4# WHEN "01" => 
5# INSTRUCTION <= SUB; 
6# REG-SEL <= '0'; 
7# WHEN"10  => 
8# INSTRUCI'ION <= MUL; 

lo# WHEN "11"  => 
11# INSTRIJCTION <= DIV; 
12# WHEN OTHERS => 
13# INSTRUCTION <= NO-OP; 
14# END CASE 

9# PC-WRrm <= '1'; 

The mapping of the fault when OP-CODE is "10" is done by 
replacing the expression to the right of the assignment operator 
with the signal name to the left of the operator in the WHEN 
clause. However, if the signal to the left of the operator is of 
type "OUT" then the fault is mapped by commenting the 
assignment statement in the WHEN clause. 

.... 
7# WHEN " 1 0  => 
8# -- INSTRUCTION <= MUL; ** instruction: "OUT" 
9# PC-WRITE <= P C - W R E ,  ** pc-write: signal 

Micro-operation fault. The micro-operation fault represents a 
failure of a micro-operation to perform its intended function. The 
operator can be classified into four categories; logical operators, 
relational operators, unary operators, and arithmetic operators. An 
operator may fail to any other operator in its category. This fault 
is mapped by replacing the operator considered with its counter 
operator which must be defined. For example, logical duality can 
be utilized to select the counter operator. Here are some 
examples, 

Example: 
COUT <=(A AND B) OR (B AND CIN); 
-- FAULTY: 1-st AND failed to OR 
COUT <=(A OR B) OR (B AND CIN); 

Local stuck data fault. The local stuck data fault represents a 
failure for a signal object to have a proper value within a local 
expression. More than one expression within a device model may 
use the signal. The fault is mapped such that the signal in only 
one expression will be replaced with one of logic values that the 
signal can have. The signal in other expressions will retain 
proper logic value. The local stuck data fault is extended to 
handle bit/std-logic, bit-vector/ std-logic-vector, boolean. and 
enumerated data types. 

Example: 
1# SIGNAL CO: STD_LOGIC; 
2# SUMl <= A1 XOR B1 XOR CO; 

2# SUMl <= A1 XOR B1 XOR '1': 
-- the local Stuck 10 ' 1 ' 

4. Behavioral ATPGiFault Simulation 

The ATPG system utilizing the behavioral fault simulation is 
outlined in Figure 2. Since the fault extractor and the fault 
mapper were described in previous sections, mainly the control 
flow of ATPG system is described in this section. 
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Control Program in ATPG System 

The purpose of the control program is to guide the behavioral 
fault simulation with the ATPG system. The control program is 
generated along with an additional shell script, a data fie, and 
three frame files by the fault mappe.r. The shell script is used to 
compile/analyze the fault-free VHDL model and all faulty files. 
The data file contains the names of all faulty files, one on each 
line. This data file is used by the control program to update the 
test bench and its configuration file. After update of the test 
bench and its configuration, the name of the faulty file is removed 
from the data file. When the data file becomes empty the fault 
simulation exits. Three frame files are used to create VHDL 
stimulus file and to update test bench and its configuration file. 

Behavioral Test Pattern Generator. The control program 
invokes a test generator to devise the test pattern($ for the target 
fault. The linear feedback shift register (LFSR) algorithm was 
utilized to generate the test patterns in this research. However, 
any test generation algorithm can be used for this purpose. 

Creating VHDL Stimulus. The control program invokes the 
VHDL stimulus generator. The VHDL stimulus file is generated 
by using the test patterns generated from previous step, stimulus 
frame file generated by the fault mapper, and fault list fie. The 
stimulus file is compiled. 

Creatindbdatinrz Test Bench. Once the VHDL stimulus file 
is generated then the control program invokes the test bench 
generator routine. The purpose of the test bench is to determine 
whether or not the set of test patterns (T) generated for the target 
fault could be a test for the other fault. The stimulus file 
(component in VHDL) generated from the test patterns drives the 
fault-free model and the faulty model, and the responses of these 
two models are compared. If they are different then the same set 
of test patterns are also tests for the fault modeled in the faulty 
f ie .  This procedure is repeated until all faulty files are 
completely simulated. The simulation of respective good (fault- 
free) model/faulty model pairs are controlled through the 
configuration file of the test bench. The following shows the 
frame of test bench in VHDL. Italicized terms denote the codes 
varying simulation to simulation. 

Frame for test bench: 
use std.texti0.d; 
ENTlTY-name-TB IS 
END entity-name-TB; 

ARCHlTECTURE STRUCTURE OF entity-mme_TB IS 

-- component declaration for good and faulty model 
component MUT 
PORT(inputprts :IN types; outputgorts :OUT types); 
end component; 

-- component declaration for stimulus 
component MUT-ST 
PORT(inputg0rts:OUT type); 
end component; 

-- signals used to drive good model and faulty model inputs 
signal AILINA2JN ....... ; 
-- Output signals from good model 

signal SI_0UTSZsZ_0UT ....... ; 
-- Output signals from faulty model 
signal sl_FOUTS2_FOuT,S3-~OuT,S4_FOUT,C4-FOuT:BIT, 

BEGIN 
-- component instanfiation of good model 

-- component instantiation of faulty model 
FAULTY:MUT port map(AI_INAZ_IN, ... SI_FOUTSZ-FOUT .... ); 
-- component instantiation of stimulus model 
STIMULUS: MUT-ST port map(AI_INAZ_IN, ......... ); 
-- Compare responses of good model and faulty model 
COMPARATOR: PROCESS 
FILE tp-file: TEXT is OUT "/homeAEMP.TP"; 
variable outline: LINE, 
variable st-tmp:string( 1 to 20); 
BEGIN 

GOOD: MUT port map(AI_INPZ_IN, ..... SI-OUTS2-0UT, ....... ); 

Wait on A1-m .... SI-OUT,SZ-OUT .... SI-FOUTSZ-FOLJT ,... ; 
st-tmp := "faulty file name"; 
if (SI-OUT /= SI-FOUT) then 

write(outlinePI_IN); write(outline.A-IN); 

write(outlie,Sl-OUT); write(outline,'x'); 

write(outline,st-tmp); writeline(tp-fde.outline); 
ASSERT FALSE report 'TEST GENERATED" severity failure; 

... 

... 

elsif (SZ-OUT /= S2-FOUT) then 

elsif (....... ) then 

else 

end if; -- 

..... 

.... 
-- This else clause is needed for sequential circuit only, 

..... -- (Capture input sequences since multiple input pattems 
are required to detect the faults in the sequential circuit.) 

END COMPARATOR PROCESS; 
END STRUCIZTRE. 

Discard Detected Faults. The control program will discard the 
detected faults by removing the name of the faulty files from the 
data file (entity-namenn). If the data file is not empty and the 
remaining faults are not redundant faults then go back to the 
behavioral test pattern generator to generate test patterns for a 
new target fault. 

5 .  Gate-Level Fault Gradinn and Simulation 

In general, it is difficult to correlate behavioral fault models 
and physical circuit failures due to the high level abstraction of 
behavioral faults. However, the effectiveness of the behavioral 
ATPG system in detecting physical defects must be evaluated and 
analyzed. One way to measure the quality of the behavioral 
ATPG system is to perform a fault simulation on the equivalent 
gate-level representation with the test patterns generated by the 
behavioral ATPG system. When starting with a behavioral 
description, it is a two-step process: the synthesis process and the 
gate-level fault simulation. 

The synthesis tool translates a RTL design description into a 
gate-level representation, and optimizes it with respect to a set of 
design goals/constraints for a given target technology library. The 
design compiler of Synopsys Inc.[2] was chosen as the synthesis 
tool. All example circuits were synthesized with respect to two 
separate design goals: one for the fastest circuit in speed, and the 
other for the smallest circuit in area. The technology library used 
for the synthesis was a strip down version of LSI Logic's 10K 
library. The synthesis results were saved in the form of a 
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structural VHDL description. 
Once the structural VHDL description is available from the 

synthesis process, it is converted to ISCAS benchmark formats 
[5, 61. This internal format and the test patterns from the 
behavioral ATPG system are used for one of the gate-level fault 
simulation. The gate-level single stuck-at fault model was used 
for the fault simulation. 

Since it is not guaranteed that the synthesized circuits are fully 
testable, the testability of the circuits must be estimated. In order 
to measure the testability, a large number of random test patterns 
were generated and the gate-level fault simulation was carried out. 

6. Results and Analysis 

The behavioral ATPG/fault simulation system was implemented 
by using Unix C-shell programming language and C language on 
SUN SparclC workstations. A couple of commercially available 
tools, Vantage Spreadsheet [71 and Synopsys VHDL System 
Simulator [8], were utilized to rupport the behavioral ATPG/fault 
simulation system. Nine circuits were used to evaluate the 
performance of the system. The results of the fault simulation are 
shown in Table I. For the gate-level fault simulation, the fault 
coverage with the test patterns generated by the behavioral 
ATPG/fault simulation system is provided under "BT" column 
and the fault coverage with the random test patterns is provided 
under "GT' column. 

The current implementation of the behavioral ATPG/fault 
simulation system performed exceptionally well in generating test 
patterns for the behavioral faults. System performance can be 
greatly enhanced if a more efficient behavioral test generation 
algorithm, instead of LFSR algorithm, is used for the target faults. 

The results of the fault simulation shows that relatively small 
number of the test patterns generated by the behavioral 
ATPG/fault simulation system detected around 98 percent of all 
testable gate-level faults. In particular, if synthesized circuits are 
testable. mainly combinational circuits, then the overall gate-level 
fault coverage achieved by using the test patterns of the 
behavioral ATPG/fault simulation system was around 98 percent. 
However, the synthesized sequential circuits displayed poor 
testability. This poor testability is an inherent characteristic of 
the sequential circuits and is partially caused by the logic 
optimization technique of the synthesis tool. Often, the logic 
optimization goal and testability goal conflict each other. Even 
though the overall gate-level fault coverage is low for the 
sequential circuits, it is important to notice that the test patterns 
of the behavioral ATPG/fault simulation system detected nearly 
all testable faults. 

7 .  Conclusions 

A complete behavioral fault simulation and ATPG system for 
circuits modeled in VHDL has been presented in this paper. Ten 
different behavioral fault models were selected and used to 
generate test patterns through fault simulation. The results are 
very encouraging but not perfect: the behavioral fault simulation 
detected about 98 percent of the testable gate-level faults. 
Nevertheless, gate-level fault simulation is not an effective 
solution for complex microcircuits, and the results of this research 
show that behavioral fault simulation will remain as a highly 
attractive alternative for the future generation of VLSI/UUI 
circuits. 

Table I: Fault Simulation Results. 

Test 
Circuits Fault Smallest 

Simulation 

16-bit 

8-hit 

100 

24 

- 

%.32 

150 
- 

Parallel Coverage (%) %.67 96.68 
Multiplier 
4-bit no. of patterns 125 125 

Mocxe Coverage (%) 100 100 
(FSM) 

no. of patterns 10 10 

' 

r(q 1; 

no. of patt 

Counter/ 

Vending 
Machine 
Controller 

Controller 
for RISC 

no. of patt 

100 

6 

84.82 

51 

- 

- 

52.50 

55 
- 

39.50 

101 
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