
Behavioral Fault Simulation in VHDL’

P. c. Ward
Robertshaw Controls Co.

Richmond VA.

J. R. Armstrong
Bradley Department of Electrical Engineering

Virginia Polytechnic Institute and State University
Blacksburg, VA.

Abstract

This paper presents two tools which facilitate the fault sim-
ulation of behavioral models described using VHDL. The
first tool is the Behavioral Fault Mapper (BFM). The BFM
algorithm accepts a fault-free VHDL model and a fault list
of N faults from which it produces N faulty models. The
process of mapping the faults in the fault list onto copies of
the original VHDL model is automated. The N faulty
models are immediately suitable for fault simulation. The
second tool presented is the Test Bench Generator (TBG).
The TBG algorithm creates the VHDL TestBench and all
other files necessary to complete a batch-mode fault simu-
lation of the N faulty models.

Zntroduction

For small applications, including some early LSI devices. the
gate-level view is a viable approach to test generation and
fault simulation. However, the fact that the problem is
NP-complete (11 dictates that for very large combinational
circuits the problem will quickly become intractable.

In functional testing, the magnitudes of the fault testing and
fault simulation problems are reduced by collapsing the ef-
fects of individual faults and sets of faults into single func-
tional faults. At this level of abstraction, the circuit models
are typically described in Hardware Description Languages
(HDLs) such as the VHSIC HDL (VHDL) (2-31 employed
in this research. Automatic test-pattern generation (ATPG)
techniques at this level have been developed [4-51 which are
high level variations on the classical D-algorithm, The pre-
ferred method of validating a proposed VHDL-based
ATPG algorithm is fault simulation. However, the VHDL
model may be entirely behavioral; suggesting no structure
and, therefore, no specific gate-level representation.

Traditional fault simulation algorithms 16-81 are ill equipped
to simulate models which are behavioral in nature. This is
due to the requirement that the circuit description input to
these simulators must be resolvable into a predefined set of
primitives. The Whistle system described in [9]
provides a partial solution to simulation at various levels of
abstraction. However, while the interconnections of the
functional blocks of this system may be described in VHDL,
the functional blocks themselves (as they exist in the design
library) must be gate-level implementation descriptions.

System Overview

The Behavioral Fault Mapper (BFM) and Test Bench
Generator (TBG) algorithms were designed to provide
maximum utilty in the VHDL-based ATPG/Fault Simu-
lation environment under development at Virginia Tech.
This section discusses the use of the BFM and TBG in both
the ATPG Validation and standard fault simulation envi-
ronments.

ATPG Validation

Figure 1 shows the relationship of the BFM and TBG tools
to the other components of the VHDL-based ATPG/Fault
Simulation environment. The notation used in the figure is
as follows: Curly braces ((,}) indicate a single file. Thus,
(C,,C,j would indicate a single file composed of the two
components C, and C1. The components may be any
amount of ASCII text, including none. Square brackets ([,I)
indicate a collection of related files. Thus, [FI,F2,F3] would
indicate a collection of three related files, F1, FZ, and Fs.
The names of software modules are printed in boldface type.

The important elements of the figure are as follows:

0 The VHDL source file, (F,), is any fault free VHDL
part description (both Entity and Architecture) written
in a subset of VHDL acceptable to afl of the software
modules.

0 The Preprocessor selects and numbers the lines of the
source file which will be the sites of behavioral faults.
The Preprocessor also constructs any necessary
internal representation (e.g. Prolog predicates) required
by the Test Generation Algorithm and appends this
representation to the text of the source file. The file
output by the Preprocessor is denoted as (F’,).

0 The Test Generation Algorithm is considered to be the
Unit Under Test (UUT) in this system, since the effec-
tiveness of the ATPG is that which is to be determined.
The expected output of the Test Generation Algorithm
is a file containing the fault list and a file containing the
test vectors. The Test Generation Algorithm block is
actually composed of separate modules for fault list
extraction and for further processing of the internal
representation in addition to the actual ATPG algo-
rithm.

l The Behavioral Fault Mapper (BFM) accepts the pre-
processed source file, {F’,), from the preprocessor and

1 The research described here was supported in part by Mitre Grant B-44230.

27th ACM/IEEE Design Automation Conference@

@ 1990 IEEE 073&100X19010006/0587 $1 .OO

Paper 35.2

587

the fault list, {f f 1, 2 ,..., fN), from the Test Generation
Algorithm and produces the N faulty source files,
FI,F~,..., FN). Any line numbering introduced into {
F’,,) by the Preprocessor is removed from the
FI,Fs,..., FN] files by the BFM.

l The Test Bench Generator (TBG) accepts as input a
copy of the source file, (F,], and the test vectors,
(1 t 1, 2r...rtN), from which it produces the Test Bench file,
{To}, and the collection of Simulation Support Files
@SF]). The Test Bench is the top-level design unit re-
quired by the simulation facility. The Simulation Sup-
port Files are those tiles required for simulation in
addition to the VHDL source file, the N faulty files and
the Test Bench. The SSF will always include one or
more files related to generating the simulation report.
Optionally, the SSF include a command file which au-
tomates the fault simulation procedure. Other files are
present as needed.

a The Files Required for Simulation block typically re-
presents a sub-directory on the host machine. The out-
put of this block consists of all of the files necessary to
perform the fault simulation. The grouping of the
simulation tiles, [To,FO,F1 ,..., F,,[SSF]], into a sub-
directory is required if batch processing will be per-
formed using the SSF batch control file supplied by the
Test Bench Generator.

a The VHDL Simulation block represents all of the pro-
cedures necessary for executing the Intermetrics VHDL
1076 Support Environment. The software includes the
VHDL Library System (VLS), the Analyzer, and the
Simulator. The functions of the components of the
Intermetrics VHDL 1076 Support Environment are
fully described in [lo].

The result of simulation is the Fault Simulation Report. If
the simulation is run using the Simulation Support Files,
then the fault coverage achieved by the ATPG for a partic-
ular run may be determined by inspection of the fault simu-
lation report(s). Thus, a software facility for developing and
evaluating ATPG algorithms is made availabie.

Fault Simulation

The BFM and TBG tools are not restricted to operation
within the ATPG validation system described in the previous
section. Both tools are eminently useful in standard fault
simulation. For example, the BFM requires only a num-
bered VHDL source model and a fault list to create the N
faulty models. (A numbered source model is simply a model
in which those statements or language constructs that are to
be altered by the BFM have been preceded by a unique in-
teger followed by a colon.) Furthermore, the ATPG soft-
ware will typically include a separate Fault List Extractor
(FLE) module which may be used to automatically generate
the fault list. The FLE typically requires the same numbered
source tile as does the BFM. In the absence of an FLE, the
fault list may be generated manually.

To perform its function, the TBG requires the entity decla-
ration portion of the source model and a test set. The test
set is a file containing collections of input vectors. There
will be one test set tile per fault simulation, and one col-
lection of input vectors per faulty model within the file. The
output of the TBG is a TestBench and the set of Simulation
Support Files previously discussed. The fault simulation
may be performed in batch-mode using the batch control file
provided by the TBG.

Behavioral Fault Mapper

The purpose of the Behavioral Fault Mapper (BFM) is to
automate the mapping of faults from a fault list onto aopies
of a VHDL sourc:e model. Each faulty model generated by
the BFM will contain a single behavioral level fault. The
faulty models will be immediately suitabte for fault simu-
lation.

Fault Classes

The behavioral level faults mapped by the BFM are divided
into eight categories known as fault classes. These eight
fault classes constitute the fault model used in this research.
This behavioral fault model is based on a form of model
perturbation [4] which has been shown to provide good
equivalent gate-level coverage [ll]. The eight fault classes
are:

::
Stuck-Then
Stuck-Else

3. Assignment Control
4. Dead Process
5. Dead Clause

76:
Micro-operation
Local Stuck-data

8. Global Stuck-data

Fault Mappings

Discussion of each of the fault mappings will include the type
of failure represented and how the failure is mapped into a
device description. A criterion which greatly influenced the
selection of the mappings for each of the faults was that the
source code be minimally altered. Given a set of valid
source code modifications, the one chosen will always be the
one which modifies the source model the l.east while achiev-
ing the desired faulting effect.

Stuck- Tken

The Stuck-Then fault represents a failure of the if-then-else
construct to ever execute the else statements. In the follow-
ing example the signal A will always be assigned the value
‘1’ in the presence of a Stuck-Then fault, regardless of the
value of logical-expression.

Example:
if (logical-expression) then

A < = ‘1’; else
A < = ‘0’; end if;

The Stuck-Then fault is mapped by replacing the logical
expression between the if and then k.eywords with the
Boolean value TRUE. (TRUE and FALSE are defined in
Package STANDARD [2].) The BFM would alter the if
statement in the previous example to read:

if (TRUE) then
A <= ‘1’; else
A < = ‘0’; end ifi

This modification insures that the rhen portion of the if-then
statement will always be selected.

Paper 35.2
588

Stuck- Etse signed a value by any activity within the source model. The
BFM would modify the previous example to read:

The Stuck-Else fault represents a failure of the if-then-else
construct to ever execute the then statements. It is the dual
of the Stuck-Then fault and is mapped by replacing the log-
ical expression between the if and then keywords with the
Boolean value FALSE.

process(STATIC-BIT)
begin

statement I
statement12

statement-n

Assignment Control end process;

The Assignment Control fault represents a failure of the
VHDL assignment operator to assign a new value to a sig-
nal. In the following example the value of the signal A would
never be altered if an Assignment Control fault were associ-
ated with this statement.

Example:
A <= new-value-expression;

The Assignment Control fault is mapped by replacing the
expression to the right of the assignment operator, the
new-value-expression, with the signal name to the left of the
operator unless the signal is of type out. Signals of type out
can not be read, that is, they can not appear on the right
hand side of an assignment statement or in an expression.
Therefore, the assignment control fault for out signals is
mapped by placing the comment symbol (,,-“) in front of the
assignment statement. This has the desired effect of pre-
venting the output signal from being altered by this state-
ment. The BFM would modify the statement in the previous
example to read:

A<=A;

If signal A was of type out, the mapping would be:

-A<= new-value-expression;

Dead Process

The Dead Process fault is a failure of the statements within
a process construct to execute. In the following example, the
statements within the process would never be executed in the
presence of a Dead Process fault.

Dead Clause

The Dead Clause fault is a faiiure of the VHDL CASE
construct to execute one of the alternative sequences of
statements (clauses). In the following example, none of the
statements in the third of the four alternative sequences
would be executed in the presence of a deadclause fault
specified as: S, DEADCLAUSE, sn, bv, 10. where S is the
fault serial number, DEADCLAUSE is the fault class, sn is
the statement number of the CASE construct within the
numbered source file, bv is a keyword indicating that the
quantity which follows should be interpreted as a bit-vector,
and 10 is the length two bit-vector which denotes the faulted
clause. In the example, CON is a bit-vector of length two.

Example:
case CON is

&n “go” =>
CON!XG <= "1000"s
ENIT <= ‘O’s

&n “Ol*’ =>
CONSIG <= "01OO"j
ENIT <= ‘0’1

w&n “10” =>
CONSIG <= "0OlO"j
ENIT <= '1'1

&n "11" =>
CONSIG <= "0001")
ENIT -z= ‘1’)

when others =>
null,

and casei

The BFM maps the dead clause fault by requesting the As-
signment Control fault for all assignment statements within
the specified clause. Thus, the BFM would modify the when

Example:
process(A,B,C)

begin
statement I
statement12

”

statement-n
end process;

The Dead Process fault is mapped by replacing the sensitiv-
ity iist of the process statement with the reserved signal
STATIC-BIT. The signal value of STATIC-BIT never
changes. Consequently, if STATIC-BIT is the only signal in
the sensitivity list of the process statement, the process will
never be triggered. (The sensitivity list is the list of signals
which trigger evaluation of the statements within the proc-
ess() construct.) In the preceding example, the sensitivity list
is composed of the three signals A,B, and C. The mapping
algorithm declares the signal STATIC-BIT in the architec-
ture portion of the device model and uses it to replace A,B,
and C. The signal name STATIC-BIT is reserved by the
BFM for mapping Dead Process faults and must not be as-

10” clause in the previous example to read:

&n “10” =>
CONSIG <= CONSIGj
ENIT <= ENIT,

The Assignment Control fault mappings requested following
witen “IO” = > prevent the assignment of values to any of the
signal objects within the clause.

Micro-operation

A Micro-operation fault is the failure of an operator to per-
form its intended function. The operator may fail to any
other operator in its class. For example, in the assignment
statement A < = B XOR C; the XOR may fail to any
operator in the logical operator class (and, or, nand, nor,
xor). Other operator classes in use are relational (= , / = ,
c, < =), and miscellaneous (not). Additionally, the bit-
vector functions ADD and SUB are recognized as a class
of interchangeable operators even though they are not op-

Paper 35.2
589

erators by definition. The ADD and SUB functions are
implemented in VHDL as subprograms.

The micro-operation fault is mapped by replacing the target
operator with the replacement operator. The replacement
operator is expected to be supplied in the fault description.

Example:
Fault: BITAND + BITOR
ENBLD < = DSl and not NDSZ; --good
ENBLD < = DSl or not NDSZ; --faulty

Local Stuck-data

The Local Stuck-data fault is the failure of a signal or vari-
able object to have the correct value. The local stuck-data
fault is restricted to the expression into which it is mapped.
That is, a signal or object, A, will only be “stuck” in one
expression of the device model. All other occurences of A
in the model will retain their expected values. An example
of a physical defect modeled by this fault is an open circuit
at the input to a TTL gate. Assume the input signal is A and
that A is normally connected to pin D of the TTL gate. The
open circuit between A and pin D will cause pin D to
“float” to a logical 1 (or possibly become indeterminate.)
However, the signal A is unaffected in the remainder of the
circuit since pin D does not drive signal A.

Example:
Fault: stuckdata, bit, 0;
if (STRB = ‘1’) then --good
if (STRB = ‘0’) then --faulty

Global Stuck-data

The Global Stuck-data fault is the failure of a signal or var-
iable to change value within the device model. The global
stuck-data fault is similar to the local stuck-data fault except
that a global stuck-data fault is not restricted to faulting a
single line of the device model. The global stuck-data fault
will inhibit transitions on a given signal or variable caused
by statements within a specified range of the source model.
The range over which the signal or variable is stuck is spec-
ified in the fault description. The range may vary from a
single numbered line of the device description to all num-
bered lines of the device description. An example of a
physical defect modeled by this fault is a stuck-at fault on a
primary circuit input.

In the following example, no statements would be allowed
to modify signal DO in the presence of a global stuck-data
fault specified as: S, GSTUCKDATA, sl, ~7, DO. where
S is the fault serial number, sl and s7 are the beginning and
ending line numbers (inclusive) over which the fault is to be
mapped, and DO is the target. (Note that the signal DO
appears on the left-hand side of assignment statements at
numbered statements 6 and 7.)

Example:
entity REGISTER is

port (DI : in BIT-VECTORt 1 to 8 13
STRB, ENBLD : in BIT3
DO : out BIT-VECTORI 1 to 8 3 33

end REGISTER,

architecture BEHAVIOR of REGISTER is
signal DID: BIT-VECTORt 1 to 8 33

begin
1: procasd STRB 1

begin
2: if (STRB ='l') then
3: DID ‘:= DI3

end if3
end process ;

4: procesd CtID,EEIBLD)
begin

5: if (ENBLD ='1'3 then
6: DO c= DID)

else
7: DO C= "11111111"3

end if3
end process3
end BEHAVIOR3

The BFM maps the global stuck-data fault by requesting the
Assignment Control fault at all numbered lines within the
specified range which contain the target. The BFM would
modify the previous statements 6 and 7 in the example to
read:

if (ENBLD ='l') then
DO <= DO,

else
DO <= DO3

end if3

Test Bench Generator

The purpose of the Test Bench Generator (TBG) is to au-
tomate generation of the files required to perform fault sim-
ulation within the lntermetrics VHDL 1076 Support
Environment [lo]. The test bench is the top-level design unit
required to perform simulation in the Support Environment.
Conceptually, the test bench is a software implemented
breadboard. As with traditional breadbords, circuit com-
ponents are wired together, stimuli applied and response
data collected. All of the flexibility of the traditional
breadboard is present. The two types of test benches
produced by the TBG are the ATPG Validation test bench
and the Fault Simulation test bench.

The ATPG Validation Test Bench

The ATPG validation test bench is desig,ned to check the
validity of a set of test vectors generated by a behavioral-
level ATPG algorithm. Figure 2 shows the simple config-
uration used to determine whether or n’ot the set of test
vectors (X) is a test for the fault in the faulty model (M).
Let Y be the set of all output bits of the faulty model and Z
be the corresponding output bits of the reference model.
Further, let y represent the subset of faulty model output bits
that are expected to differ from the corresponding subset of
good yodel output bits (~1. If X_covers the fault in M, then
zi xor yi= 1 for some i 3 z! E Z, yi E Y . The TBG requires
the ATPG to indicate which faulty model output signal(s)
are to cont.ra_dict the referen_ce model; that is, the ATPG
must spe$fy y . The bits in y are compared with the corre-
sponding z bits. 411 other output bits are ignored. The re-
quirement that y be specified prevents ATPG coverage
statistics from being inflated by false hits. A false hit occurs
when the applied test vector causes an unexpected subset of
the faulty modet output bits to be direrent from those of the
reference model. The test still is said to cover the fault;
however, the algorithm which generated the vector is prob-
ably not functioning correctly. Confidence in the algorithm

Paper 35.2
590

is not warranted since similar behavioral faults in other
models may or may not be found.

The configuration of Figure 2 is repeated N times within a
single test bench in order to apply the N different test vectors
to their respective good model/faulty model pairs. The N
tests run during a simulation of the test bench have separate
signal spaces. Thus, no dependencies exist between the tests.

Shown below is the form of a validation test bench generated
by the TBG. The portions of the test bench which vary from
simulation to simulation are shown in italics.

entity TEST-BENCH is
end TEST BENCH;
use WORl?.all;
architecture entity-name-TEST of TEST-BENCH is

-- Signal used to begin test process
signal INIT: BIT;
-- Comparator output signals
signal CI,C2,...,CN : BIT;
-- Good model output signals
signal 21 ,ZZ,...,ZN : type-declaration;
-- Faulty model I/O signals
signal numbered port declaration signals
-- Component declarations
component componenr-name

port declaration
end component;
component COMP

port (A, B: IN BIT-VECTOR, C: OUT BIT):
end component;
-- Use statements
for Ri: component-name
use entity work.entity-name(archirecture);

for F,: component-name
use entity work.entiry namefi(architecture);

for Xi: COMP use ensty work.COMP(BEHAVIOR);
begin

-- component instantiation
INIT < = ‘1’;
process(INIT)
begin

-- test vectors
end process;
-- bit comparators

end entity-name-TEST;

The elements of the test bench are interpreted as follows:

The entity-name identifier provides a device name for
the model. For example, an S-bit register might have
an entity-name of REGISTER or REG8. This identi-
fier is supplied by the user during program initializa-
tion.
The Comparator output signals convey the results of the
individual comparison operations. The signals are all
of type bit. The integer following the letter C is the fault
number. In general, the fault numbers will not be se-
quential as implied by the figure.
The Good model output signals transfer the g bits of the
reference output to the comparator.
The Faulty model l/O signals apply the test vecto_ts to
both the faulty and good models, and transfer the y bits
of the faulty model to the comparator. The faulty
model I/O signal declarations are created by appending
“faulmumber” to each of the signals in the port dec-
laration for each of the faults in the fault list. This op-
eration creates the N required sets of distinct
interconnect signals.

The Component declarations section declares the inter-
face to the source model and, optionally, the interface
to the bit-vector comparator. The component-name
identifier in the source model interface is set equal to
the entity-name identifier previously described. The
port declaration part of the source model interface is a
copy of the interface specification provided in the entity
declaration of the VHDL source model. The
comparator module, COM-P, is declared for use when-
ever one or more z and y subsets are larger than a
single bit. The COMP component declaration is absent
otherwise.
The Use statements associate binding information with
the component labels representing specific instances of
a given component. The figure shows the ith set of use
statements. A simulation involving N models will re-
quire N sets. The component-name and entity-name
identifiers have been previously defined. The archirec-
ture identifier specifies the architectural body name of
the source model and is provided by the user during
program initialization. The symbol X represents the ith
fault number. The compa_rator zse statement (Xi) will
only be present when the z and y of the ith model are
larger than a single bit; that is. when a bit-vector com-
parison is required. Note that a separate reference
model (Ri) is instantiated for each instantiated faulty
model (Fi). This is necessary since, in the general case,
different test vectors are required to detect different
faults and for every unique test vector a unique refer-
ence response is possible.
The component instantiation block contains the port
map and generic map statements required to intercon-
nect the N models, comparators, and sets of test vec-
tors. This section constitutes the bulk of the wiring of
the software breadboard. Output signals not being
compared are left open using the VHDL open keyword.
The test vectors section contains the signal assignment
statements which transfer the values of the test vectors
to the good and faulty model input signals.
The bit comparators are single statements of the form:
Ci < = zi xor yi; . The TBG creates a bit c?mparison
statement fo_r the ith model if and only if y, and, by
implication z, are single bits. A given simulation may
contain both bit-vector comparisons and single-bit
comparisons.

The Comparator Model

The TBG outputs a VHDL behavioral-level description of
an N-bit comparator for use in comparing signals of type
bit-vector. The comparator model is analyzed and model
generated along with-the good and faulty models whenever
one or more of the y faulty model outputs is a bit-vector.
The use of the comparator is transparent to the user. The
VHDL for the comparator is as follows:

entity COMP is
port (A, B : IN BIT-VECTOR; C : OUT BIT);

end COMP;

architecture BEHAVIOR of COMP is
begin

process(A,B)
variable TEMP: BIT;

begin
TEMP := ‘0’;
for I in A’Range loop

TEMP := TEMP or (A(1) xor B(1));
end loop;

Paper 35.2
591

C < = TEMP;
end process;

end BEHAVIOR;

The Fault Simulation Test Bench

At the users’ request, the TBG will produce a fault simu-
lation test bench. The purpose of the fault simulation test
bench is to display the response of a VHDL model to a set
of arbitrary input vectors. The conceptual difference be-
tween the validation test bench and the fault simulation test
bench is that the test vectors of Figure 2 are replaced by
input vectors since no testing_functlon is implied. Further,
there is no requirement that y be specified. The response
of the faulty model is displayed in a simulation report. The
simulation report provides a trace of the faulty model output
signals (Y) and, for comparison, a trace of the reference
model output (X).

The fault simulation test bench is similar to the ATPG vali-
dation test bench with the output comparison functions de-
leted. The specific differences between the two test benches
are as follows:

1. The N-bit comparator is not declared or instantiated in
the fault simulation test bench;

2. The bit comparators at the end of the validation test
bench are omitted in the fault simulation test bench;

3. The component instantiations in the fault simulation
test bench differ slightly from those in the validation test
bench since no outputs in the fault simulation test
bench are left open.

Results

The Behavioral Fault Mapper and Test Bench Generator
have been used in performing behavioral fault simulation for
a number of SSI and MSI device models. The models have
included 8-bit registers and I/O ports (e.g. Intel 8212), con-
trollable counters, decoders, and experimental models in-
corporating reconvergent fan-out.

The following analysis derived from our experience thus far
suggests the utility of the BFM and TBG in performing be-
havioral fault simulation. If S is the size of the VHDL
source model and N is the number of faults to be injected,
an approximate lower bound on the disk space required to
store the results of this mapping operation is [(N + I)S] bytes.
If we assume a modest VHDL source file size of S =2K
bytes and N = 150 faults, the resulting disk space required for
this mapping operation is approximately 302 Kbytes. The
reader should be aware that 2K is roughly the size of an
MS1 behavioral-level part description. Thus, for LSI/VLSI
parts, S and N will be much larger and significantly more
disk space will be required for a given N.

The size of the Test Bench produced for the same S and N
is much more difficult to predict. The Test Bench size is
primarily a function of the number of primary inputs, I, the
length of the fault list, N, and the average number of time
steps, T, required to test a given fault. For MS1 parts, the
size of the resulting Test Bench may be estimated as 1SSN.
(The Simulation Support Files do not contribute significantly
to the size of the file suite and are thus ignored.) In total,
N + 1 models, a single, large Test Bench file and various

simulation support files occupying approximately
[(N + 1)s + 1.5SN] = (2.5N+ 1)s bytes are produced. It
is evident that manually generating the files required for be-
havioral fault simulation would be prohibitively time con-
suming and error prone. Thus, the BFM and TBG make
the behavioral fault simulation of realistic models and large
N practical.

Conczusion

Two tools for VHDL fault simulation have been presented:
the Behavioral Fault Mapper and the Test Bench Genera-
tor. The Behavioral Fault Mapper is an effective tool for the
automatic creation of faulty VHDL models from a source
model and a fault list. Eight behavioral fault classes were
presented and the effects of their mappings discussed. The
extensive size of the typical fault simuiation testbench gave
rise to the Test Bench Generator. This algorithm provides
an effective, easy-to-use means of producing the fault simu-
lation test bench and related simulation support files. To-
gether, the Behavioral Fault Mapper and the Test Bench
Generator reduce the time and sophistication required to
perform behavioral fault simulation in VHDL.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Fugiwara, H. and S. Toida, “The Complexity of Fault
Detection Problems for Combinational Logic
Circuits,” IEEE Trans. on Computers, Vol. C-31, No.
6, June 1982, pp. 555-560.
IEEE Standard VHDL Language Reference Manual,
IEEE, Inc., NY, March 1988.
Armstrong, J.R., Chip Level Modeling with VHDL,
Prentice-Hall, Englewood Cliffs, New Jersey, 1989.
O’Neill, M.D., D.D. Jani, C.H. Cho and J.R.
Armstrong, “BTG: A Behavioral Test Generator”,
CHDL 1989, Elsevier Science Publishing Co., New
York, New York, June 1989, pp. 347-361.
Barclay, D.S., and J.R. Armstro:ng, “A Heuristic
Chip-level Test Generation Algorithm”, 23rd Design
Automation Conf., June 1986, pp. 2.57-262.
Goel, P. and P.R. Moorby, “Fault-Simulation Tech-
niques for VLSI Circuits,” VLSI Design, July 1984, pp.
22-26.
Armstrong, D.B., “A Deductive Method for Simulating
Faults in Logic Circuits,” IEEE Trans. on Computers,
Vol. C-21, No. 5, May 1972, pp. 464-471.
Ulrich, E.G. and T. Baker, “The Concurrent Simu-
lation of Nearly Identical Digital Networks,” Proc.
10th Design Automation Workshop, IEEE and ACM,
New York, June 1973, pp. 145-150.
Renous, R., G. M. Silberman, and I. Spillinger,
“Whistle: A Workbench for Test Developement of
Library-Based Designs,” Computer, Vol. 22, No. 4,
1989, pp. 27-41.
User’s Manual for the Standard VHDL 1076 Support
Environment (DRAFT), USAF Document No.
lR-MD-103-3, Intermetrics, Inc., Bethesda, Maryland,
August 1988.
C. H. Cho, “A Chip Level Fault Coverage
Experiment,” Research Report, Chip Level Modeling
Group, E.E. Dept., Virginia Polytechnic Institute and
State University, August 1986.

Paper 35.2

592

IFol

--/
Figure 1. ATPG Validation System

Test Generation
Algorithm

WW

Fault

I

Test
List Vectors
{f,,fi,...,f,} it I t...d@I)

-
Behavioral Fault Test Bench

Mapper Generator

Test
Bench L

[SW

U-01

(Fol I- Files Required for Simulation

,

[To,Fo,F 1,..3,,WFll

t

VHDL Simulation
(batch mode)

Fault Simulation
Report

Test
Vectors

/ ’
X

Reference
Model

CR)

fsz

z2i
CM)

j;GY

.
Comparator

I C
Figure 2. Basic Validation Scheme

Paper 35.2
593

