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Abstract 

This paper presents two tools which facilitate the fault sim- 
ulation of behavioral models described using VHDL. The 
first tool is the Behavioral Fault Mapper (BFM). The BFM 
algorithm accepts a fault-free VHDL model and a fault list 
of N faults from which it produces N faulty models. The 
process of mapping the faults in the fault list onto copies of 
the original VHDL model is automated. The N faulty 
models are immediately suitable for fault simulation. The 
second tool presented is the Test Bench Generator (TBG). 
The TBG algorithm creates the VHDL TestBench and all 
other files necessary to complete a batch-mode fault simu- 
lation of the N faulty models. 

Zntroduction 

For small applications, including some early LSI devices. the 
gate-level view is a viable approach to test generation and 
fault simulation. However, the fact that the problem is 
NP-complete (11 dictates that for very large combinational 
circuits the problem will quickly become intractable. 

In functional testing, the magnitudes of the fault testing and 
fault simulation problems are reduced by collapsing the ef- 
fects of individual faults and sets of faults into single func- 
tional faults. At this level of abstraction, the circuit models 
are typically described in Hardware Description Languages 
(HDLs) such as the VHSIC HDL (VHDL) (2-31 employed 
in this research. Automatic test-pattern generation (ATPG) 
techniques at this level have been developed [4-51 which are 
high level variations on the classical D-algorithm, The pre- 
ferred method of validating a proposed VHDL-based 
ATPG algorithm is fault simulation. However, the VHDL 
model may be entirely behavioral; suggesting no structure 
and, therefore, no specific gate-level representation. 

Traditional fault simulation algorithms 16-81 are ill equipped 
to simulate models which are behavioral in nature. This is 
due to the requirement that the circuit description input to 
these simulators must be resolvable into a predefined set of 
primitives. The Whistle system described in [9] 
provides a partial solution to simulation at various levels of 
abstraction. However, while the interconnections of the 
functional blocks of this system may be described in VHDL, 
the functional blocks themselves (as they exist in the design 
library) must be gate-level implementation descriptions. 

System Overview 

The Behavioral Fault Mapper (BFM) and Test Bench 
Generator (TBG) algorithms were designed to provide 
maximum utilty in the VHDL-based ATPG/Fault Simu- 
lation environment under development at Virginia Tech. 
This section discusses the use of the BFM and TBG in both 
the ATPG Validation and standard fault simulation envi- 
ronments. 

ATPG Validation 

Figure 1 shows the relationship of the BFM and TBG tools 
to the other components of the VHDL-based ATPG/Fault 
Simulation environment. The notation used in the figure is 
as follows: Curly braces ((,}) indicate a single file. Thus, 
(C,,C,j would indicate a single file composed of the two 
components C, and C1. The components may be any 
amount of ASCII text, including none. Square brackets ([,I) 
indicate a collection of related files. Thus, [FI,F2,F3] would 
indicate a collection of three related files, F1, FZ, and Fs. 
The names of software modules are printed in boldface type. 

The important elements of the figure are as follows: 

0 The VHDL source file, (F,), is any fault free VHDL 
part description (both Entity and Architecture) written 
in a subset of VHDL acceptable to afl of the software 
modules. 

0 The Preprocessor selects and numbers the lines of the 
source file which will be the sites of behavioral faults. 
The Preprocessor also constructs any necessary 
internal representation (e.g. Prolog predicates) required 
by the Test Generation Algorithm and appends this 
representation to the text of the source file. The file 
output by the Preprocessor is denoted as (F’,). 

0 The Test Generation Algorithm is considered to be the 
Unit Under Test (UUT) in this system, since the effec- 
tiveness of the ATPG is that which is to be determined. 
The expected output of the Test Generation Algorithm 
is a file containing the fault list and a file containing the 
test vectors. The Test Generation Algorithm block is 
actually composed of separate modules for fault list 
extraction and for further processing of the internal 
representation in addition to the actual ATPG algo- 
rithm. 

l The Behavioral Fault Mapper (BFM) accepts the pre- 
processed source file, {F’,), from the preprocessor and 
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the fault list, {f f 1, 2 ,..., fN), from the Test Generation 
Algorithm and produces the N faulty source files, 
FI,F~,..., FN). Any line numbering introduced into { 
F’,,) by the Preprocessor is removed from the 
FI,Fs,..., FN] files by the BFM. 

l The Test Bench Generator (TBG) accepts as input a 
copy of the source file, (F,], and the test vectors, 
(1 t 1, 2r...rtN), from which it produces the Test Bench file, 
{To}, and the collection of Simulation Support Files 
@SF]). The Test Bench is the top-level design unit re- 
quired by the simulation facility. The Simulation Sup- 
port Files are those tiles required for simulation in 
addition to the VHDL source file, the N faulty files and 
the Test Bench. The SSF will always include one or 
more files related to generating the simulation report. 
Optionally, the SSF include a command file which au- 
tomates the fault simulation procedure. Other files are 
present as needed. 

a The Files Required for Simulation block typically re- 
presents a sub-directory on the host machine. The out- 
put of this block consists of all of the files necessary to 
perform the fault simulation. The grouping of the 
simulation tiles, [To,FO,F1 ,..., F,,[SSF]], into a sub- 
directory is required if batch processing will be per- 
formed using the SSF batch control file supplied by the 
Test Bench Generator. 

a The VHDL Simulation block represents all of the pro- 
cedures necessary for executing the Intermetrics VHDL 
1076 Support Environment. The software includes the 
VHDL Library System (VLS), the Analyzer, and the 
Simulator. The functions of the components of the 
Intermetrics VHDL 1076 Support Environment are 
fully described in [lo]. 

The result of simulation is the Fault Simulation Report. If 
the simulation is run using the Simulation Support Files, 
then the fault coverage achieved by the ATPG for a partic- 
ular run may be determined by inspection of the fault simu- 
lation report(s). Thus, a software facility for developing and 
evaluating ATPG algorithms is made availabie. 

Fault Simulation 

The BFM and TBG tools are not restricted to operation 
within the ATPG validation system described in the previous 
section. Both tools are eminently useful in standard fault 
simulation. For example, the BFM requires only a num- 
bered VHDL source model and a fault list to create the N 
faulty models. (A numbered source model is simply a model 
in which those statements or language constructs that are to 
be altered by the BFM have been preceded by a unique in- 
teger followed by a colon.) Furthermore, the ATPG soft- 
ware will typically include a separate Fault List Extractor 
(FLE) module which may be used to automatically generate 
the fault list. The FLE typically requires the same numbered 
source tile as does the BFM. In the absence of an FLE, the 
fault list may be generated manually. 

To perform its function, the TBG requires the entity decla- 
ration portion of the source model and a test set. The test 
set is a file containing collections of input vectors. There 
will be one test set tile per fault simulation, and one col- 
lection of input vectors per faulty model within the file. The 
output of the TBG is a TestBench and the set of Simulation 
Support Files previously discussed. The fault simulation 
may be performed in batch-mode using the batch control file 
provided by the TBG. 

Behavioral Fault Mapper 

The purpose of the Behavioral Fault Mapper (BFM) is to 
automate the mapping of faults from a fault list onto aopies 
of a VHDL sourc:e model. Each faulty model generated by 
the BFM will contain a single behavioral level fault. The 
faulty models will be immediately suitabte for fault simu- 
lation. 

Fault Classes 

The behavioral level faults mapped by the BFM are divided 
into eight categories known as fault classes. These eight 
fault classes constitute the fault model used in this research. 
This behavioral fault model is based on a form of model 
perturbation [4] which has been shown to provide good 
equivalent gate-level coverage [ll]. The eight fault classes 
are: 

:: 
Stuck-Then 
Stuck-Else 

3. Assignment Control 
4. Dead Process 
5. Dead Clause 

76: 
Micro-operation 
Local Stuck-data 

8. Global Stuck-data 

Fault Mappings 

Discussion of each of the fault mappings will include the type 
of failure represented and how the failure is mapped into a 
device description. A criterion which greatly influenced the 
selection of the mappings for each of the faults was that the 
source code be minimally altered. Given a set of valid 
source code modifications, the one chosen will always be the 
one which modifies the source model the l.east while achiev- 
ing the desired faulting effect. 

Stuck- Tken 

The Stuck-Then fault represents a failure of the if-then-else 
construct to ever execute the else statements. In the follow- 
ing example the signal A will always be assigned the value 
‘1’ in the presence of a Stuck-Then fault, regardless of the 
value of logical-expression. 

Example: 
if (logical-expression) then 

A < = ‘1’; else 
A < = ‘0’; end if; 

The Stuck-Then fault is mapped by replacing the logical 
expression between the if and then k.eywords with the 
Boolean value TRUE. (TRUE and FALSE are defined in 
Package STANDARD [2].) The BFM would alter the if 
statement in the previous example to read: 

if (TRUE ) then 
A <= ‘1’; else 
A < = ‘0’; end ifi 

This modification insures that the rhen portion of the if-then 
statement will always be selected. 
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Stuck- Etse signed a value by any activity within the source model. The 
BFM would modify the previous example to read: 

The Stuck-Else fault represents a failure of the if-then-else 
construct to ever execute the then statements. It is the dual 
of the Stuck-Then fault and is mapped by replacing the log- 
ical expression between the if and then keywords with the 
Boolean value FALSE. 

process( STATIC-BIT ) 
begin 

statement I 
statement12 

statement-n 

Assignment Control end process; 

The Assignment Control fault represents a failure of the 
VHDL assignment operator to assign a new value to a sig- 
nal. In the following example the value of the signal A would 
never be altered if an Assignment Control fault were associ- 
ated with this statement. 

Example: 
A <= new-value-expression; 

The Assignment Control fault is mapped by replacing the 
expression to the right of the assignment operator, the 
new-value-expression, with the signal name to the left of the 
operator unless the signal is of type out. Signals of type out 
can not be read, that is, they can not appear on the right 
hand side of an assignment statement or in an expression. 
Therefore, the assignment control fault for out signals is 
mapped by placing the comment symbol (,,-“) in front of the 
assignment statement. This has the desired effect of pre- 
venting the output signal from being altered by this state- 
ment. The BFM would modify the statement in the previous 
example to read: 

A<=A; 

If signal A was of type out, the mapping would be: 

-A<= new-value-expression; 

Dead Process 

The Dead Process fault is a failure of the statements within 
a process construct to execute. In the following example, the 
statements within the process would never be executed in the 
presence of a Dead Process fault. 

Dead Clause 

The Dead Clause fault is a faiiure of the VHDL CASE 
construct to execute one of the alternative sequences of 
statements (clauses). In the following example, none of the 
statements in the third of the four alternative sequences 
would be executed in the presence of a deadclause fault 
specified as: S, DEADCLAUSE, sn, bv, 10. where S is the 
fault serial number, DEADCLAUSE is the fault class, sn is 
the statement number of the CASE construct within the 
numbered source file, bv is a keyword indicating that the 
quantity which follows should be interpreted as a bit-vector, 
and 10 is the length two bit-vector which denotes the faulted 
clause. In the example, CON is a bit-vector of length two. 

Example: 
case CON is 

&n “go” => 
CON!XG <= "1000"s 
ENIT <= ‘O’s 

&n “Ol*’ => 
CONSIG <= "01OO"j 
ENIT <= ‘0’1 

w&n “10” => 
CONSIG <= "0OlO"j 
ENIT <= '1'1 

&n "11" => 
CONSIG <= "0001") 
ENIT -z= ‘1’) 

when others => 
null, 

and casei 

The BFM maps the dead clause fault by requesting the As- 
signment Control fault for all assignment statements within 
the specified clause. Thus, the BFM would modify the when 

Example: 
process(A,B,C) 

begin 
statement I 
statement12 

” 

statement-n 
end process; 

The Dead Process fault is mapped by replacing the sensitiv- 
ity iist of the process statement with the reserved signal 
STATIC-BIT. The signal value of STATIC-BIT never 
changes. Consequently, if STATIC-BIT is the only signal in 
the sensitivity list of the process statement, the process will 
never be triggered. (The sensitivity list is the list of signals 
which trigger evaluation of the statements within the proc- 
ess() construct.) In the preceding example, the sensitivity list 
is composed of the three signals A,B, and C. The mapping 
algorithm declares the signal STATIC-BIT in the architec- 
ture portion of the device model and uses it to replace A,B, 
and C. The signal name STATIC-BIT is reserved by the 
BFM for mapping Dead Process faults and must not be as- 

10” clause in the previous example to read: 

&n “10” => 
CONSIG <= CONSIGj 
ENIT <= ENIT, 

The Assignment Control fault mappings requested following 
witen “IO” = > prevent the assignment of values to any of the 
signal objects within the clause. 

Micro-operation 

A Micro-operation fault is the failure of an operator to per- 
form its intended function. The operator may fail to any 
other operator in its class. For example, in the assignment 
statement A < = B XOR C; the XOR may fail to any 
operator in the logical operator class (and, or, nand, nor, 
xor). Other operator classes in use are relational (= , / = , 
c, < =), and miscellaneous ( not ). Additionally, the bit- 
vector functions ADD and SUB are recognized as a class 
of interchangeable operators even though they are not op- 

Paper 35.2 
589 



erators by definition. The ADD and SUB functions are 
implemented in VHDL as subprograms. 

The micro-operation fault is mapped by replacing the target 
operator with the replacement operator. The replacement 
operator is expected to be supplied in the fault description. 

Example: 
Fault: BITAND + BITOR 
ENBLD < = DSl and not NDSZ; --good 
ENBLD < = DSl or not NDSZ; --faulty 

Local Stuck-data 

The Local Stuck-data fault is the failure of a signal or vari- 
able object to have the correct value. The local stuck-data 
fault is restricted to the expression into which it is mapped. 
That is, a signal or object, A, will only be “stuck” in one 
expression of the device model. All other occurences of A 
in the model will retain their expected values. An example 
of a physical defect modeled by this fault is an open circuit 
at the input to a TTL gate. Assume the input signal is A and 
that A is normally connected to pin D of the TTL gate. The 
open circuit between A and pin D will cause pin D to 
“float” to a logical 1 (or possibly become indeterminate.) 
However, the signal A is unaffected in the remainder of the 
circuit since pin D does not drive signal A. 

Example: 
Fault: stuckdata, bit, 0; 
if (STRB = ‘1’) then --good 
if (STRB = ‘0’) then --faulty 

Global Stuck-data 

The Global Stuck-data fault is the failure of a signal or var- 
iable to change value within the device model. The global 
stuck-data fault is similar to the local stuck-data fault except 
that a global stuck-data fault is not restricted to faulting a 
single line of the device model. The global stuck-data fault 
will inhibit transitions on a given signal or variable caused 
by statements within a specified range of the source model. 
The range over which the signal or variable is stuck is spec- 
ified in the fault description. The range may vary from a 
single numbered line of the device description to all num- 
bered lines of the device description. An example of a 
physical defect modeled by this fault is a stuck-at fault on a 
primary circuit input. 

In the following example, no statements would be allowed 
to modify signal DO in the presence of a global stuck-data 
fault specified as: S, GSTUCKDATA, sl, ~7, DO. where 
S is the fault serial number, sl and s7 are the beginning and 
ending line numbers (inclusive) over which the fault is to be 
mapped, and DO is the target. (Note that the signal DO 
appears on the left-hand side of assignment statements at 
numbered statements 6 and 7.) 

Example: 
entity REGISTER is 

port (DI : in BIT-VECTORt 1 to 8 13 
STRB, ENBLD : in BIT3 
DO : out BIT-VECTORI 1 to 8 3 33 

end REGISTER, 

architecture BEHAVIOR of REGISTER is 
signal DID: BIT-VECTORt 1 to 8 33 

begin 
1: procasd STRB 1 

begin 
2: if (STRB ='l') then 
3: DID ‘:= DI3 

end if3 
end process ; 

4: procesd CtID,EEIBLD) 
begin 

5: if (ENBLD ='1'3 then 
6: DO c= DID) 

else 
7: DO C= "11111111"3 

end if3 
end process3 
end BEHAVIOR3 

The BFM maps the global stuck-data fault by requesting the 
Assignment Control fault at all numbered lines within the 
specified range which contain the target. The BFM would 
modify the previous statements 6 and 7 in the example to 
read: 

if (ENBLD ='l') then 
DO <= DO, 

else 
DO <= DO3 

end if3 

Test Bench Generator 

The purpose of the Test Bench Generator (TBG) is to au- 
tomate generation of the files required to perform fault sim- 
ulation within the lntermetrics VHDL 1076 Support 
Environment [lo]. The test bench is the top-level design unit 
required to perform simulation in the Support Environment. 
Conceptually, the test bench is a software implemented 
breadboard. As with traditional breadbords, circuit com- 
ponents are wired together, stimuli applied and response 
data collected. All of the flexibility of the traditional 
breadboard is present. The two types of test benches 
produced by the TBG are the ATPG Validation test bench 
and the Fault Simulation test bench. 

The ATPG Validation Test Bench 

The ATPG validation test bench is desig,ned to check the 
validity of a set of test vectors generated by a behavioral- 
level ATPG algorithm. Figure 2 shows the simple config- 
uration used to determine whether or n’ot the set of test 
vectors (X) is a test for the fault in the faulty model (M). 
Let Y be the set of all output bits of the faulty model and Z 
be the corresponding output bits of the reference model. 
Further, let y represent the subset of faulty model output bits 
that are expected to differ from the corresponding subset of 
good yodel output bits (~1. If X_covers the fault in M, then 
zi xor yi= 1 for some i 3 z! E Z, yi E Y . The TBG requires 
the ATPG to indicate which faulty model output signal(s) 
are to cont.ra_dict the referen_ce model; that is, the ATPG 
must spe$fy y . The bits in y are compared with the corre- 
sponding z bits. 411 other output bits are ignored. The re- 
quirement that y be specified prevents ATPG coverage 
statistics from being inflated by false hits. A false hit occurs 
when the applied test vector causes an unexpected subset of 
the faulty modet output bits to be direrent from those of the 
reference model. The test still is said to cover the fault; 
however, the algorithm which generated the vector is prob- 
ably not functioning correctly. Confidence in the algorithm 

Paper 35.2 
590 



is not warranted since similar behavioral faults in other 
models may or may not be found. 

The configuration of Figure 2 is repeated N times within a 
single test bench in order to apply the N different test vectors 
to their respective good model/faulty model pairs. The N 
tests run during a simulation of the test bench have separate 
signal spaces. Thus, no dependencies exist between the tests. 

Shown below is the form of a validation test bench generated 
by the TBG. The portions of the test bench which vary from 
simulation to simulation are shown in italics. 

entity TEST-BENCH is 
end TEST BENCH; 
use WORl?.all; 
architecture entity-name-TEST of TEST-BENCH is 

-- Signal used to begin test process 
signal INIT: BIT; 
-- Comparator output signals 
signal CI,C2,...,CN : BIT; 
-- Good model output signals 
signal 21 ,ZZ,...,ZN : type-declaration; 
-- Faulty model I/O signals 
signal numbered port declaration signals 
-- Component declarations 
component componenr-name 

port declaration 
end component; 
component COMP 

port (A, B: IN BIT-VECTOR, C: OUT BIT): 
end component; 
-- Use statements 
for Ri: component-name 
use entity work.entity-name(archirecture); 

for F,: component-name 
use entity work.entiry namefi(architecture); 

for Xi: COMP use ensty work.COMP(BEHAVIOR); 
begin 

-- component instantiation 
INIT < = ‘1’; 
process(INIT) 
begin 

-- test vectors 
end process; 
-- bit comparators 

end entity-name-TEST; 

The elements of the test bench are interpreted as follows: 

The entity-name identifier provides a device name for 
the model. For example, an S-bit register might have 
an entity-name of REGISTER or REG8. This identi- 
fier is supplied by the user during program initializa- 
tion. 
The Comparator output signals convey the results of the 
individual comparison operations. The signals are all 
of type bit. The integer following the letter C is the fault 
number. In general, the fault numbers will not be se- 
quential as implied by the figure. 
The Good model output signals transfer the g bits of the 
reference output to the comparator. 
The Faulty model l/O signals apply the test vecto_ts to 
both the faulty and good models, and transfer the y bits 
of the faulty model to the comparator. The faulty 
model I/O signal declarations are created by appending 
“faulmumber” to each of the signals in the port dec- 
laration for each of the faults in the fault list. This op- 
eration creates the N required sets of distinct 
interconnect signals. 

The Component declarations section declares the inter- 
face to the source model and, optionally, the interface 
to the bit-vector comparator. The component-name 
identifier in the source model interface is set equal to 
the entity-name identifier previously described. The 
port declaration part of the source model interface is a 
copy of the interface specification provided in the entity 
declaration of the VHDL source model. The 
comparator module, COM-P, is declared for use when- 
ever one or more z and y subsets are larger than a 
single bit. The COMP component declaration is absent 
otherwise. 
The Use statements associate binding information with 
the component labels representing specific instances of 
a given component. The figure shows the ith set of use 
statements. A simulation involving N models will re- 
quire N sets. The component-name and entity-name 
identifiers have been previously defined. The archirec- 
ture identifier specifies the architectural body name of 
the source model and is provided by the user during 
program initialization. The symbol X represents the ith 
fault number. The compa_rator zse statement (Xi) will 
only be present when the z and y of the ith model are 
larger than a single bit; that is. when a bit-vector com- 
parison is required. Note that a separate reference 
model (Ri) is instantiated for each instantiated faulty 
model (Fi). This is necessary since, in the general case, 
different test vectors are required to detect different 
faults and for every unique test vector a unique refer- 
ence response is possible. 
The component instantiation block contains the port 
map and generic map statements required to intercon- 
nect the N models, comparators, and sets of test vec- 
tors. This section constitutes the bulk of the wiring of 
the software breadboard. Output signals not being 
compared are left open using the VHDL open keyword. 
The test vectors section contains the signal assignment 
statements which transfer the values of the test vectors 
to the good and faulty model input signals. 
The bit comparators are single statements of the form: 
Ci < = zi xor yi; . The TBG creates a bit c?mparison 
statement fo_r the ith model if and only if y, and, by 
implication z, are single bits. A given simulation may 
contain both bit-vector comparisons and single-bit 
comparisons. 

The Comparator Model 

The TBG outputs a VHDL behavioral-level description of 
an N-bit comparator for use in comparing signals of type 
bit-vector. The comparator model is analyzed and model 
generated along with-the good and faulty models whenever 
one or more of the y faulty model outputs is a bit-vector. 
The use of the comparator is transparent to the user. The 
VHDL for the comparator is as follows: 

entity COMP is 
port (A, B : IN BIT-VECTOR; C : OUT BIT); 

end COMP; 

architecture BEHAVIOR of COMP is 
begin 

process(A,B) 
variable TEMP: BIT; 

begin 
TEMP := ‘0’; 
for I in A’Range loop 

TEMP := TEMP or (A(1) xor B(1)); 
end loop; 
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C < = TEMP; 
end process; 

end BEHAVIOR; 

The Fault Simulation Test Bench 

At the users’ request, the TBG will produce a fault simu- 
lation test bench. The purpose of the fault simulation test 
bench is to display the response of a VHDL model to a set 
of arbitrary input vectors. The conceptual difference be- 
tween the validation test bench and the fault simulation test 
bench is that the test vectors of Figure 2 are replaced by 
input vectors since no testing_functlon is implied. Further, 
there is no requirement that y be specified. The response 
of the faulty model is displayed in a simulation report. The 
simulation report provides a trace of the faulty model output 
signals (Y) and, for comparison, a trace of the reference 
model output (X). 

The fault simulation test bench is similar to the ATPG vali- 
dation test bench with the output comparison functions de- 
leted. The specific differences between the two test benches 
are as follows: 

1. The N-bit comparator is not declared or instantiated in 
the fault simulation test bench; 

2. The bit comparators at the end of the validation test 
bench are omitted in the fault simulation test bench; 

3. The component instantiations in the fault simulation 
test bench differ slightly from those in the validation test 
bench since no outputs in the fault simulation test 
bench are left open. 

Results 

The Behavioral Fault Mapper and Test Bench Generator 
have been used in performing behavioral fault simulation for 
a number of SSI and MSI device models. The models have 
included 8-bit registers and I/O ports (e.g. Intel 8212), con- 
trollable counters, decoders, and experimental models in- 
corporating reconvergent fan-out. 

The following analysis derived from our experience thus far 
suggests the utility of the BFM and TBG in performing be- 
havioral fault simulation. If S is the size of the VHDL 
source model and N is the number of faults to be injected, 
an approximate lower bound on the disk space required to 
store the results of this mapping operation is [(N + I)S] bytes. 
If we assume a modest VHDL source file size of S =2K 
bytes and N = 150 faults, the resulting disk space required for 
this mapping operation is approximately 302 Kbytes. The 
reader should be aware that 2K is roughly the size of an 
MS1 behavioral-level part description. Thus, for LSI/VLSI 
parts, S and N will be much larger and significantly more 
disk space will be required for a given N. 

The size of the Test Bench produced for the same S and N 
is much more difficult to predict. The Test Bench size is 
primarily a function of the number of primary inputs, I, the 
length of the fault list, N, and the average number of time 
steps, T, required to test a given fault. For MS1 parts, the 
size of the resulting Test Bench may be estimated as 1SSN. 
(The Simulation Support Files do not contribute significantly 
to the size of the file suite and are thus ignored.) In total, 
N + 1 models, a single, large Test Bench file and various 

simulation support files occupying approximately 
[(N + 1)s + 1.5SN] = (2.5N+ 1)s bytes are produced. It 
is evident that manually generating the files required for be- 
havioral fault simulation would be prohibitively time con- 
suming and error prone. Thus, the BFM and TBG make 
the behavioral fault simulation of realistic models and large 
N practical. 

Conczusion 

Two tools for VHDL fault simulation have been presented: 
the Behavioral Fault Mapper and the Test Bench Genera- 
tor. The Behavioral Fault Mapper is an effective tool for the 
automatic creation of faulty VHDL models from a source 
model and a fault list. Eight behavioral fault classes were 
presented and the effects of their mappings discussed. The 
extensive size of the typical fault simuiation testbench gave 
rise to the Test Bench Generator. This algorithm provides 
an effective, easy-to-use means of producing the fault simu- 
lation test bench and related simulation support files. To- 
gether, the Behavioral Fault Mapper and the Test Bench 
Generator reduce the time and sophistication required to 
perform behavioral fault simulation in VHDL. 
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