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ABSTRACT 

Fault simulation is a powerful yet not well understood 
tool for  generating test vectors. This tutorial describes 
the principles of fault simulation, fault modeling 
techniques and the economic benefits of fault simulation. 
The section on principles of fault simulation includes 
serial, parallel, and concurrent fault simulation 
algorithms along with descriptions of digital faults, fault 
coverage, and fault mechanisms typically found in 
digital circuits. The modeling technique section presents 
the trade-offs of fault placement, fault collapsing 
algorithms, and the ability to discover different physical 
defects through fault simulation. Economic benefits are 
shown through empirical examples and through 
correlating fault coverage to average defect levels 
resulting after manufacturing test. 

FAULT SIMULATION OVERVIEW 
The primary types of simulation used in Computer 
Aided Engineering (CAE) are logic and fault simu- 
lation. Logic simulation uses computer models of 
an electronic design to imitate the behavior of a 
physical system. It allows the engineer to know if 
the design will work the way it is supposed to work 
before the product is manufactured. Logic simula- 
tion is the only practical alternative to the time- 
consuming and costly practice of actually building 
and debugging physical prototypes. Once a design 
has been properly logic simulated, fault simulation 
is the next critical step. 

bad parts. In fact, it is not unusual for yields to 
average between 30% and 50% for integrated cir- 
cuits. As Figure 1 shows, it is up to the test process 
to screen out these bad parts so they do not get to 
your customer. 

Fault simulation helps you screen out bad parts. 
I t  is a tool that defines how well the test vectors used 
to verify a finished product will catch manufacturing 
defects. A perfect test vector set would be able to 
detect any defect in the physical chip. 

When you have verified a circuit and fully com- 
pleted its logic simulation, you have a full description 
of how a defect-free version of the circuit operates. 
However, n4l  you be able to know when a part is 

All manufacturing processes create good and 
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Figure 1. T h e  Problem: How to screen out ail bad parts? 

defective? As Figure 2 shows, fault simulation uses 
a good version of the circuit as a reference, and 
systematically inserts faults into an identical copy 
of the circuit to check whether the test stimulus can 
detect differences between the two circuits' output. 

Figure 2. The Fault Detection Process 

The ratio between the number of faults detected 
by the test vectors and the total number of faults 
is called Fault Coverage Percentage. As this number 
approaches loo%, the potential for defective circuits 
to pass manufacturing tests approaches zero. Thus, 
a set of test vectors that catches less than 100% of 
the possible manufacturing faults allows for defec- 
tive parts to pass through the testing cycle and 
potentially create expensive consequences when 
failures occur in the field. 

cycle in-house, including I.C., board, and system 
There are usually several stages of the testing 



test. Each successive stage provides an additional 
screen to catch defective parts. The better the test 
vectors, the earlier a defective part will be discovered, 
and as Figure 3 shows, the less costly it will be. 
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Total Par ts  Defect Defective Repair  Cost Total 
ShiDDed Level Par ts  Per Part  c o s t  

10,000 5% 500 $800 $400,000 
10,000 1% 100 $800 $80,000 
10,000 0.1% 10 $800 $8,000 
10,000 0.01% 1 $800 $800 

Table 1 Estimated Field-Repair Costs for Selected defect level 
Percentages 

In this example each 1% improvement in defect 
level results in an $80,000 savings. This illustrates 
the significant savings which can result from reduc- 
ing the number of defects which reach your cus- 
tomers. The  question is, how does increased fault 
coverage affect field defect levels? 

Corporation' shows that 50% fault coverage (the 
norm for good hand-generated tests) resulted in a 
defect level of 7'70, that 96% fault coverage yielded 
a 3% defect level, and that it took a full 99.9% fault 
coverage to achieve 0.01% defect level. Figure 4,  
taken from the Motorola/Delco paper, shows these 
relationships graphically. 

A joint study done by Motorola and Delco 

Figure 4 .  The  Relationship of Fault Coverage to Defect Level 

Figure 5 shows the results of an experiment 
used to determine the correlation between fault 
coverage and defect level. In this experiment, 10,000 
parts were tested from a process with a 30% yield. 
In the first case, only part of the test vector corres- 
ponding to a 50% fault coverage was run. Of the 
7,000 bad parts, 6,773 were detected. The remaining 
227 undetected defective parts yielded a 7% defect 
level for the 3,227 parts actually shipped. The  
experiment was repeated for 90%,99%, and 99.9% 
fault coverage. These results agree with the Delco/ 
Motorola results-a 0.1% defect level corresponds 
to 99% fault coverage, and a 0.01% defect level 
corresponds to 99.9% fault coverage. 
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Although it is desirable to achieve the highest 
possible fault coverage on your designs, optimally 
loo%, the costs and time associated with this type 
of analysis are often prohibitive. It is not unusual 
for a serial fault simulator running on a LMIP main- 
frame to take months to fault simulate a 10,000 
gate circuit. Today, with advanced algorithms and 
specialized hardware, months can be reduced to days 
or even hours. 
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FAULT SIMULATION IN THE DESIGN 
AUTOMATION PROCESS 
There are several uses of fault simulation in the 
design automation process. Three are listed below: 

Fault simulation can be used as an accurate 
testability metric early in the design process. 
Assuming comprehensive test patterns, 
“grading” the design verification patterns can 
provide a useful insight into the testability of 
the circuit. 
The most common use for fault simulation, 
the one described in this handbook, is using 
fault simulation to define how well your test 
vectors will catch manufacturing defects. 
Another use of fault simulation is to “grade” 
a vendors test suite. For example, a 99% detec- 
tion rate, could justify less rigorous incoming 
inspection on the parts. 

FAULT ALGORITHMS 
There are three common algorithms used for fault 
simulation- serial, parallel, and concurrent. 
Serial Fault Simulation 
Serial fault simulation, illustrated in Figure 6, 
is the simplest technique for fault simulation. Two 
complete copies of the circuit are stored in memory. 
A single fault is then inserted into one circuit, 
both circuits are simulated, and their output results 
are compared. If the output results differ (which 
is what we want) then the test vectors are said to 
have “detected” that fault. A fault is considered 
“undetected” if none of the test vectors create a 
difference in output response between the good and 
faulty circuits. Upon detection, the fault is categor- 
ized, a new fault is chosen, and the process above 
is repeated. Serial fault simulation is a very simple 
but slow method of fault simulation. Even with a 
hardware accelerator, runtimes for circuits with 
greater than 10,000 primitives can be prohibitive. 

Figure 6. Serial Fault Simulation 

Parallel Fault Simulation 
Parallel fault simulation is used by many software- 
based fault simulators. Figure 7 shows how parallel 
fault simulation uses several complete copies of the 
circuit. One copy is the good machine and each of 

the other copies is a particular faulty machine. Each 
faulty machine is simply a complete copy of the good 
circuit with one unique fault placed in it. The 
number of parallel machines is usually small, for 
example 4 to 16 machines, depending on the word 
size of the computer, and the required accuracy in 
modeling state and strengths. This algorithm is 
typically faster than serial faulting because multiple 
faults are run at the same time. However, the par- 
allel algorithm must continue the simulation until 
every parallel fault is detected; whereas, the serial 
algorithm can stop each fault simulation as soon as 
the fault is detected. * inpurs 

Figure 7. Parallel Fault Simulation 

Concurrent Fault Simulation 
Concurrent fault simulation is the most powerful 
of the three algorithms. It is based on the concept 
that a particular fault placed in a circuit does not 
affect the behavior of the majority of the rest of the 
circuit. Thus, multiple copies of a complete circuit 
need not be placed into memory at one time. Instead, 
memory is allocated on an “as needed” basis. This 
allows hundreds or thousands of faults to be simu- 
lated at once. 

The  concurrent algorithm simulates the circuit 
for the good machine and, when the inserted faults 
make the results of the good machine and the faulty 
machines differ, it diverges (copies) those devices 
and simulates them separately. Figure 8 shows an 
illustration of the concurrent fault algorithm. The  
small solid squares shown inside each of the faulty 
machines, F1...Floo indicate that only that portion of 
the faulty machine behaves differently from the 
good machine. For example, if a fault were inserted 
near the end of a chain of inverters, only the last 
few inverters would behave differently from the 
good machine, and consequently only those affected 
inverters would be diverged and simulated separately 
from the good machine. 

The concurrent algorithm presents a very 
complex bookkeeping problem that fortunately is 
well suited to a special-purpose computer. It’s great 
advantage is that it is a very fast method for fault 
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Figure 8. Concurrent Fault Simulation 

simulation, and requires less memory than either the 
serial or parallel algorithms. Figure 9 provides an 
illustration of the relative memory and runtime 
requirements for these three methods. 

collapsing. Efficiency tools for fault simulation, are 
discussed, as well as defining how to interpret fault 
simulation results. 

Circuit Dejects 
Circuit defects in integrated circuits are commonly 
caused by missing implants, oxide defects, metal 
shorts and opens, junction defects, and lithographic 
defects. As Figure 10 shows these defects are physi- 
cal in nature. Trying to test the actual physical 
defects would be too complex a procedure. Empirical 
evidence has shown that an effective way to test 
circuits is to observe the circuit's behavior and test 
the physical character using a logic model of the 
circuit's performance. 

(Iirhographic) devic t  

Figure 9. Memory and Runtime Requirements for Fault 
Simulations by Algorithm Type 

The concurrent algorithm is the most efficient 
way of running fault simulations. This algorithm 
can be embedded into hardware creating an unbeat- 
able combination. Hardware simulation accelerators 
run hundreds of times faster than software running 
on a general-purpose computer. Even running 
against a workstation rated at 10-MIPS, a fault simu- 
lation might run for 2 days versus only 3 hours on 
a hardware accelerator. This speed improvement is 
especially important because fault simulation is an 
iterative process. and quick turn-around time is 
essential for maximizing engineering productivity. 

putations that general-purpose computers excel at, 
like mathematical operations or floating point 
processes. Instead, it is more of a data manipulation 
problem that needs large memory resources and 
high data bandwidth. Simulation is easily adapted to 
parallelism and thus is a great candidate to accelerate 
with specialized hardware. 

FAULT SIMULATION IN-DEPTH 
This section contains more details than the first. 
It is intended to provide an overview of the finer 
points of fault simulation by defining often-used 
terms and algorithms. It describes different method- 
ologies for fault modeling, fault seeding, and fault 

Simulations do not require the traditional com- 
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Figure 10. Sources of Circuit Defects' 

In short, the key to fault modeling is not 
whether the model matches a particular physical 
failure. but that there is a high correlation between 
detecting defects with fault simulation and the 
actual test applied to the parts. Central to fault 
modeling is the concept of stuck-at faults. 

Stuck-At Modeling 
Most fault simulators use the logic stuck-at-0 and 
the stuck-at-1 model to represent physical defects. 
These faults can be independently placed on every 
input. output, or node in a system. and then simu- 
lated with a test vector as input to determine if thei, 
effect on the behavior of the circuit is observable 
at the designated test points. Other models exist. 
including the stuck-open and stuck-short models. 
However, these models are very compute intensive 
and studies have shown that there is little marginal 
gain from their use. Figure 11 depicts the standard 
stuck-at faults. 
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Figure 11. Standard Stuck-at Faults 

Model N a m e  

Fixed 

Rail 

Strength 

The stuck-at models for input and node faults are 
simple. An input fault sticks the input pin to a logic 
onc or logic zero but has no other effect on the node 
( a  node is also called a signal on a net ). A node fault 
sticks the whole node and each input i t  drives, but 
the outputs it is driven by have no effect on it. 

There is no general agreement on how output 
faults should hehave. There are several possible 
drive strengths available. which we shall call- 
Fixed, Rail. and Strength. These are summarized in 
Table 2. For a Fixed output fault model, the nodes 
will be driven with a fixed strength value. This type 
of output fault can fight with other outputs driving 
the same node. For the Rail output fault model, the 
output behaves as if it were shorted to power or 
ground. Like node faults, other outputs driving this 
node will have no effect. For the Strength fault 
model, the node will be driven with a strength value 
derived from the gate. For example. if the gate can 
pull up with a resistive strength, and pull down with 
an active strength, the output s@l  value would be 
“resistive-I” and the output s@O value would be 
“active-0:’ In either case, the output fault can fight 
with other outputs driving the same node. 

Node  Behavior Result  

Nodes are driven 
with a fixed strength 
value. 
Nodes behave as if Other  outputs 
shorted to power or driving the node 
ground. have n o  effect. 

Nodes are driven Outputs driving the 
with a strength same node can fight. 
value derived from 
the gate type drive 
strength. 

Outputs driving the 
same node can fight. 

Table 2 Output Fault Models 

Ideally, faults should be placed at the lowest 
level where there is doubt that the physical imple- 
mentation of the device is perfect. In practical terms, 
the lowest level faults could be placed in a circuit 
is at the switch level. Faulting at the package level 
would be appropriate with printed circuit boards 
assuming that the packages have been thoroughly 
screened. Faulting at the gate level would be appro- 
priate for gate arrays, or where the exact switch- 
level implementation of a gate was unknown. This 
is the level that most vendors require their customers 
to fault simulate at before accepting a design for 
fabrication. However, faulting at high level cells or 
macros can yield overly optimistic fault coverage 
numbers. Vectors that provide a 95% hard detection 
rate at the macro level might only provide a 50% 
detection rate at the switch level. Therefore, faults 
should be placed at the level where you expect to 
have failures. 

to easily define the level that faults are seeded within 
a design. 

FAULT COLLAPSING 
Fault collapsing is an automatic feature provided 
by many fault simulators. Faults seeded at different 
points in a circuit may pioduce identical behavior. 
These faults are said to be equivalent to each other. 
(There also exists a class of dominant faults that 
aren’t equivalent.) To save simulation time, equiva- 
lent faults are collapsed together, and only one fault 
from each equivalence group is actually simulated. 

There are two methods of identifying equiva- 
lent faults-gate collapsing and node collapsing. 
Gate collapsing defines when an input fault can be 
collapsed to an output fault on the same gate. Node 
collapsing governs when faults on the same node 
can collapse together. In other words, node collapsing 
determines when an output fault can collapse to a 
node fault, or a node fault can collapse to an input 
fault. Figure 12 shows two buffers and how the 
input, output, and node faults can collapse together. 

In any case, a fault simulator should allow you 

Levels of F a d i n g  

For any given design, there can be many levels of 
logic simulation including architectural, behavioral, 
functional, gate, and switch. For fault simulation, 
it only makes sense to fault structural implernen- 
tations of a circuit, since faults are actually models 
of structural, or physical, defects within a system. 
For mixed-level simulations, faults can be placed 
at the boundaries of a behavioral model, but not 
usual ly inside one. 

--+---l--- 
Gate Collapsing Node Collapsing 

Figure 12. Gate and Node Collapsing 

Gate Collapsing 
Gate collapsing is based on the IogicaI nature of 
particular gates. For example, Figure 13( a )  shows a 
two-input AND gate that has 6 possible stuck-at 
faults-s@0, sa l  on each input, and s@O, s @ l  on 
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the output. Since a 0 on any AND-gate input forces 
the output to a 0, the s@O input faults are said to 
be equivalent to the s a 0  output fault. In other 
words, the AND gate behaves the same whether an 
input is s@O, or the output is s@O, so there is no 
need to simulate the input faults. The two s a 0  
input faults shown in Figure 13( a )  can be collapsed 
to the output s@Q fault, which results in the 4 faults 
shown in 13( b). 

a b 
Figure 13. Gate Collapsing. ( a )  An AND gate with six 
stuck-at faults. ( b )  T h e  four equivalent faults. 

In this example, fault collapsing decreases the 
number of faults to be simulated by 33% ( 6  faults 
have been reduced to 4 ) .  Each primitive gate has its 
own rules for fault collapsing. Although collapsing 
on a single primitive only slightly decreases the 
number of faults, total savings from collapsing all 
primitives can significantly reduce run times. 

Node Collapsing 
Node collapsing is governed by rules of how a fault 
will affect other faults on the same node. Figure 14 
shows two simple cases. In Figure 14( a), the output 
fault of the left buffer can collapse with the node 
fault, which in turn can collapse with the input fault 
of the right buffer. In Figure 14( b), the output fault 
of the left buffer can collapse with the node fault, 
but the node fault cannot collapse with the two 
input faults. 

a b 

Figure 14. Node Collapsing. ( a )  T h e  output and node faults 
can collapse to the  input fault. ( b )  T h e  output fault can 
collapse to the node fault only. 

Node collapsing is controlled by the fan-in/fan-out 
of each node. In general, a single fan-in node will 
allow the single output fault to collapse to the node 
fault, and single fan-out nodes will allow the node 
fault to collapse to the single input fault. 

Strength Sensitivity 
Device drive strengths also become a consideration 
in fault collapsing when designing with transistors, 

and when more than one device drives a node. 
Figure 15 shows a buffer driving a transistor. Since 
the transistor output depends on its input strength 
value, the strength of the output stuck-at at point 
B. or the node stuck-at at point C could have an 
effect on the circuit behavior. For example, the 
transistor output might fight with other transistor 
outputs. The strength of the transistor output will 
determine how the contention is resolved, and thus 
the final output value. If the faults at B or C have 
different strengths they cannot be collapsed together. 
Moreover, the input fault at A cannot be collapsed 
with B unless the output fault has the same strength 
as the normal gate output. 

Figure 15. Fault Collapsing and Strength Sensitive Devices 

The  complete rules for collapsing are a function 
of the gate types involved, the fan-idfan-out at each 
node, the output fault type, and strength sensitivities. 

For the circuit in Figure 16 the following 
rules apply: inputs collapse to outputs. outputs col- 
lapse to nodes, and nodes collapse to inputs. How- 
ever. not all circuits are as simple as this. Besides 
a one-to-one (13) fan-in/fan-out, there may also be 
a one-to-multiple (l:M), a multiple-to-one (M:l). 
or a multiple-to-multiple (M:M) fan-in/fan-out. 

Figure 16 illustrates these possibilities and each of 
the points at which a fault origin can be placed. 

hl I 1 1  I hl 

Figure 16. Possible Circuit Fan-In/Fan-Out Combinations 

Accurate fault collapsing requires consider- 
ation of circuit topology and output fault type. If the 
output fault type (discussed earlier in this section) 
is Rail then an output fault can collapse with a node 
fault regardless of the fan-in/fan-out of the node. 
If the output fault type is Strength then an input 
fault can always collapse to the output regardless of 
the fan-in/fan-out of the node. Finally. if  the output 
fault type is Fixed then an input fault can only col- 
lapse to the output if there is a single fan-in. The 
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number of faults that collapse can depend on the 
output fault type. 

De terntinistic Versus Pro ba ba listic 
Fault Sintulatioit 
Deterministic fault simulation uses the process 
described earlier in this handbook. Each node in a 
circuit has faults placed on it,  test vectors are applied 
against the good circuit and the faulty circuit, and 
test points are observed to determine if there are 
differences in the output. Next, each fault is cate- 
gorized as being detected or not. If unhappy with the 
coverage, the user writes additional test vectors 
specifically targeted towards undetected faults, then 
reruns the fault sirnulation in an effort to increase 
the hard detection rate. Deterministic fault simu- 
lation provides the tools to systematically improve 
fault coverage. Its drawback is that it is a very 
compute-intensive task. 

Probabalistic fault simulation takes an indirect 
approach to defining fault coverage. Instead of 
placing faults on each possible node in a circuit, and 
then simulating, certain types of analysis are per- 
tormed on the circuit instead. Probabalistic fault 
simulation runs faster than deterministic and works 
well for rough estimates of coverage. The  drawbacks 
are that if the user needs to know exactlv what faults 
are undetected, or how to compress and optimize 
the test suite, it cannot be done. This algorithm also 
breaks down at higher fault coverages. The variance 
in a probabalistic fault result will make the effort 
to extend coverage to 99% meaningless. 

Eficiency Tools for Fault Simulation 
Reducing the time it takes to do fault simulation 
on a circuit is important. Fault simulations, even 
using hardware acceleration, can take days to com- 
plete, and must be run multiple times to refine the 
vector set. Fault collapsing, described above, is one 
means to compress the simulation time. Other time 
saving tools can also be used, as discussed below. 

Fault Simulation using StutzdicalSam.le 
Statistical fault simulation is ail alternative to a full 
simulation run that exhaustively simulates every 
fault origin in a circuit. Using statistical simulation, 
one can simulate a small random sample of faults 
for a circuit and extrapolate the results. This assumes 
that faults are chosen randomly and that there is a 
uniform fault density. 

Toggle Test 
A toggle test applies the set of vectors to the circuit 
and watches for nodal activity. If there are nodes 
that do not change state doring the simulation run, 

they are placed on a separate list. These unactive 
nodes should be addressed before starting a fault 
simulation. 

Observability and Controllability 
Observability is the ability to observe a circuit’s 
behavior from the primary outputs. Controllability 
is the ability to control a circuit’s behavior from 
primary inputs. These attributes have a significant 
affect on how hard or easy it is to develop test vectors 
that result in good fault coverage. If a given node 
is unobservable, there is no point in simulating faults 
on that node because they will never be detected. 

I I 

Figure 17. A n  Example of Non-Observable and 
Non-Controllable Nodes 

For example, device 2 in Figure 17 is not 
observable because its output does not connect to 
any primary output. Any faults on device 2 are 
impossible to detect. Node c in Figure 17 is also not 
observable because the other A N D  gate input is 
always 0. Nodes a and b are not controllable to 1, 
since they will always be 0. Therefore there is no 
point in simulating a stuck-at-0 fault at a or b 
because the faulty machine and the good machine 
would always have identical behavior, only stuck-at-1 
faults are interesting at those nodes. 

Unobservable nodes are common in many 
circuits. For example, circuits often use only one of 
the Q or Qbar outputs from a D flip-flop. One 
output may be unused and should not be faulted. 
Faults which are not observable or controllable 
should be eliminated from the list of faults. This 
increases fault simulation speed, plus gives a more 
meaningful fault coverage result. 

Incremental Simulation 
Building a good test vector set takes several fault 
simulations. It is a process of iteratively fault simu- 
lating, adding vectors, fault simulating, adding more 
vectors, fault simulating, and so forth. To build 
efficiency into this process it is advantageous to 
reuse previous fault simulation results, and only 
run certain classes of fault results (like previously 
undetected faults), or certain portions of the circuit. 
This reduces the fault simulation task to an incre- 



mental process of testing for only those faults not 
previously detected. 

FAULT RESULTS 
The results of a fault simulation tell if a faulty 
machine propagated a different output result than 
the good machine. A fault simulation generates one of 
seven possible fault detection results for each fault: 

Definite for bard) detect. This means that the fault 
was detected during the simulation-the faulty 
machine had the opposite logic value at an output 
pad as compared to the good machine. 
Possible forpotential) detect. This means that the 
fault may have been detected. At some point in the 
simulation the logic level for the good machine 
was a 0 or 1 and the logic level for the faulty 
machine was an unknown ( X ) .  Since an X repre- 
sents a 0 or a 1 it is not clear if the fault was really 
detected or not. 
Soft detect. This is a form of possible detect, in 
which the good machine had both a 0 and 1 logic 
level while the faulty machine was unknown (X) .  
The implication is that on a tester, a real part with 
that fault would likely be found. 

Undetected This means that the fault was not 
detected during the simulation. 

O ~ i h t o g ~ .  This means that introducing the fault 
caused the faulty machine to oscillate. The  fault 
is neither detected nor undetected, but rather 
marked as a problem area to be addressed separ- 
ately from the other fault results. 
Hyperactive. This means that the fault diverged 
more than a specified percentage of the circuit. 
This type of result typically occurs when an X gets 
on to some global control line like a clock line 
and causes large portions of the circuit to have Xs. 
Thus the fault is no longer worth simulating 
because it would take too long and further simu- 
lation is probably uninteresting. Like the oscil- 
latory result, hyperactive implies that the fault 
is neither detected nor undetected, but rather a 
problem area to be addressed separately from the 
other fault results. 
Impossible fault. This means that the fault cannot 
be detected. For example, it is impossible to detect 
a stuck-at-0 fault on a grounded input pin or an 
unconnected output of a logic element. This type 
of result comes from a static analysis of the circuit, 
and is not strictly the result of a fault simulation. 

Fault Dictionaries 
Fault dictionaries are a valuable tool for locating 
defective portions of a product. especially for tech- 
nologies that allow repair to a defective part, such 
as printed circuit boards. They are also useful for 
failure analysis of ASIC's and Full-custom IC's. 
A fault dictionary is generated after a fault simula- 
tion is complete. It is a listing of every detected fault 
in ascending order of the time it was detected, along 
with its expected and actual testpoint outputs. This 
dictionary can become quite voluminous. 

Besides their bulkiness, the effectiveness of 
fault dictionaries is limited by the models used. 
The stuck-at model is used not because it exactly 
represents physical reality. but because it directly 
correlates with locating failures in a system. A fault 
dictionary, therefore, cannot contain a list of all the 
possible defects that could occur within a printed 
circuit board or integrated circuit. It should, how- 
ever, be able to localize where a problem with the 
circuit may be. 

Fault Simulation Process 
There are many valid fault simulation methodol- 
ogies. One recommended top-down approach is 
described below. 

The first step in any fault simulation is to be 
sure that the logic simulation is successfully 
completed. Examine the logic simulation 
results. or run a toggle test, to make sure all 
nodes in your circuit were active at least some 
time during the simulation. If not, these nodes 
are undetectable. 
Follow this with a statistical run. Since fault 
simulations usually take several passes, and 
since faults are seeded randomly per pass. a 
statistical test could simply comprise of moni- 
toring the results of the first few passes of a 
full deterministic run. If unhappy with the 
results. stop the simulation and add more 
vectors. If satisfied, let the full run continue. 
If the circuit is large ( X 4 , O O O  primitives 
depending on the circuit) the circuit and the 
test suite should be partitioned. By seeding only 
one section of the circuit at a time and directing 
a set of test vectors specifically targeted for that 
section, the sum total of fault simulating all 
the sections will be a lot less than if the whole 
circuit was simulated at once. 
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A full deterministic fault simulation run could 
start by seeding node faults, unless accuracy is 
important, then input and output faults should 
be seeded. Once the run is complete, move on 
to step 5 i f  the coverage results are acceptable, 
i f  not, look at the potential and undetected lists 
and write vectors specifically targeted to detect 
those faults. (This is the hard part, and where 
test engineers really earn their pay.) Rerun 
the faul t  simulation with this larger test suite 
against the potential and undetected faults from 
the previous run. Continue with this cycle until 
the percentage of definitely detected faults is 
at your specified target level. 
Optimize your test vectors. Histograms will 
plot out the number of faults found per test 
vector. If there are groups of vectors that do 
not detect any faults and are not setting up the 
circuit to a particular state, then they can be 
eliminated. This will save time on the manu- 
facturing floor during functional testing. 
Empirical evidence has shown that some test 
suites can be reduced by as much as 50% with- 
out affecting fault coverage. If there are several 
test suites, there are programs available to 
define their optimal order for functional test- 
ing, this again will save time in manufacturing 
during testing. 

Autonutic Test Pattern Generation (ATPG) 
Automatic Test Generation (ATG) is the computer 
driven synthesis of the test vectors used to screen 
out the defective parts created during the manu- 
facturing process. Manual test vector generation 
by a test engineer is difficult, time-consuming and 
tedious. There has been a great deal of interest in 
the prospect of automating this step. Unfortunately, 
there have been several roadblocks delaying the 
acceptance of ATG systems. 

When the first ATG packages were developed, 
designs were typically very small and simple. These 
early attempts at automation ran very poorly when 
designs grew and became more complex. Test gener- 
ators were ineffective with most designs because 
they could not traverse through the time-layers of 
sequential logic and soon fell out of favor. 

More recently. new approaches for test gener- 
ation have been developed to handle larger designs 
with sequential logic. These fall into two categories; 
those that require changes to the design struc- 
ture (SCAN-SET) and those employing new ATG 
algorithms. 

SCAN-SET implementation effectively reduces 
complex sequential structures to combinational 
planes of logic. This requires additional logic and 
can cause some speed contraints but this technique 
has been reasonably successful. 

The most significant changes to the ATG algo- 
rithms come from the research done at Westinghouse 
Electric, in the mid 1970's. This new approach 
effectively handles layers of deep sequential logic 
by a clever technique that works backwards through 
the design, setting up the needed sequential states 
as they are required. 

The addition of hardware simulation acceler- 
ators to the ATG process further enhanced these 
techniques. Vector generation and fault simulation, 
performed quickly in a closed iterative loop, combine 
to produce more efficient test vectors in a much 
shorter time. 

'"Logic Fault Verification of LSI: How It Benefits the User," Richard 
A. Harrison, Ronald W. Holzwarth, and Philip R. Motz of Delco 
Electronics Division, General Motors Corporation; and R. Gary Daniels, 
James S. Thomas, and Warren H. Wiemann of MOS IC Division, 
Motorola, Inc., Proceedrngs of rbe WESCON Profes~ronal  Program 
(September, 1380). 

'"Defect Analysis and Fault Modeling in MOS Technology," 
R. Chandrarnouli and H. Sucar, Internafional Tesf Conference 
Proceedings (November, 1985). 
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