
Fault Simulation Basics

Zycad Corporation
1380 Willow Road

Menlo Park, CA 94025
(415) 688 - 7400

ABSTRACT

Fault simulation is a powerful yet not well understood
tool for generating test vectors. This tutorial describes
the principles of fault simulation, fault modeling
techniques and the economic benefits of fault simulation.
The section on principles of fault simulation includes
serial, parallel, and concurrent fault simulation
algorithms along with descriptions of digital faults, fault
coverage, and fault mechanisms typically found in
digital circuits. The modeling technique section presents
the trade-offs of fault placement, fault collapsing
algorithms, and the ability to discover different physical
defects through fault simulation. Economic benefits are
shown through empirical examples and through
correlating fault coverage to average defect levels
resulting after manufacturing test.

FAULT SIMULATION OVERVIEW
The primary types of simulation used in Computer
Aided Engineering (CAE) are logic and fault simu-
lation. Logic simulation uses computer models of
an electronic design to imitate the behavior of a
physical system. It allows the engineer to know if
the design will work the way it is supposed to work
before the product is manufactured. Logic simula-
tion is the only practical alternative to the time-
consuming and costly practice of actually building
and debugging physical prototypes. Once a design
has been properly logic simulated, fault simulation
is the next critical step.

bad parts. In fact, it is not unusual for yields to
average between 30% and 50% for integrated cir-
cuits. As Figure 1 shows, it is up to the test process
to screen out these bad parts so they do not get to
your customer.

Fault simulation helps you screen out bad parts.
I t is a tool that defines how well the test vectors used
to verify a finished product will catch manufacturing
defects. A perfect test vector set would be able to
detect any defect in the physical chip.

When you have verified a circuit and fully com-
pleted its logic simulation, you have a full description
of how a defect-free version of the circuit operates.
However, n4l you be able to know when a part is

All manufacturing processes create good and

CH1234-5/89/0000-T5-1 l$Ol.OO 0 1989 IEEE
T5-1.1

Manufacturing
Test Process

Shipped To
C u s f o rn e r

Figure 1. T h e Problem: How to screen out ail bad parts?

defective? As Figure 2 shows, fault simulation uses
a good version of the circuit as a reference, and
systematically inserts faults into an identical copy
of the circuit to check whether the test stimulus can
detect differences between the two circuits' output.

Figure 2. The Fault Detection Process

The ratio between the number of faults detected
by the test vectors and the total number of faults
is called Fault Coverage Percentage. As this number
approaches loo%, the potential for defective circuits
to pass manufacturing tests approaches zero. Thus,
a set of test vectors that catches less than 100% of
the possible manufacturing faults allows for defec-
tive parts to pass through the testing cycle and
potentially create expensive consequences when
failures occur in the field.

cycle in-house, including I.C., board, and system
There are usually several stages of the testing

test. Each successive stage provides an additional
screen to catch defective parts. The better the test
vectors, the earlier a defective part will be discovered,
and as Figure 3 shows, the less costly it will be.

TcrrSrrgeIn-House

IO (/
* 90"; coverage = > 3% defect lcvel - 99% coverage = >. 1% deftcr level n

- Field

L

Source curtomrrdara

Cusrorner

Syrrern

3,001 GOOD PARTS

Fault Coverage

Total Par ts Defect Defective Repair Cost Total
ShiDDed Level Par ts Per Part c o s t

10,000 5% 500 $800 $400,000
10,000 1% 100 $800 $80,000
10,000 0.1% 10 $800 $8,000
10,000 0.01% 1 $800 $800

Table 1 Estimated Field-Repair Costs for Selected defect level
Percentages

In this example each 1% improvement in defect
level results in an $80,000 savings. This illustrates
the significant savings which can result from reduc-
ing the number of defects which reach your cus-
tomers. The question is, how does increased fault
coverage affect field defect levels?

Corporation' shows that 50% fault coverage (the
norm for good hand-generated tests) resulted in a
defect level of 7'70, that 96% fault coverage yielded
a 3% defect level, and that it took a full 99.9% fault
coverage to achieve 0.01% defect level. Figure 4,
taken from the Motorola/Delco paper, shows these
relationships graphically.

A joint study done by Motorola and Delco

Figure 4 . The Relationship of Fault Coverage to Defect Level

Figure 5 shows the results of an experiment
used to determine the correlation between fault
coverage and defect level. In this experiment, 10,000
parts were tested from a process with a 30% yield.
In the first case, only part of the test vector corres-
ponding to a 50% fault coverage was run. Of the
7,000 bad parts, 6,773 were detected. The remaining
227 undetected defective parts yielded a 7% defect
level for the 3,227 parts actually shipped. The
experiment was repeated for 90%,99%, and 99.9%
fault coverage. These results agree with the Delco/
Motorola results-a 0.1% defect level corresponds
to 99% fault coverage, and a 0.01% defect level
corresponds to 99.9% fault coverage.

10.000
UNSCREENED

PARTS
U%

TEST
VE-R

SET
F
A
U

T
L XI!?

c 90%
0
v
E
R

(305 Yicldl

A
G
E 99 9% j 1 l,L 001* s I 6 5 9 DEFECTIVE PARTS

Although it is desirable to achieve the highest
possible fault coverage on your designs, optimally
loo%, the costs and time associated with this type
of analysis are often prohibitive. It is not unusual
for a serial fault simulator running on a LMIP main-
frame to take months to fault simulate a 10,000
gate circuit. Today, with advanced algorithms and
specialized hardware, months can be reduced to days
or even hours.

T5-1.2

FAULT SIMULATION IN THE DESIGN
AUTOMATION PROCESS
There are several uses of fault simulation in the
design automation process. Three are listed below:

Fault simulation can be used as an accurate
testability metric early in the design process.
Assuming comprehensive test patterns,
“grading” the design verification patterns can
provide a useful insight into the testability of
the circuit.
The most common use for fault simulation,
the one described in this handbook, is using
fault simulation to define how well your test
vectors will catch manufacturing defects.
Another use of fault simulation is to “grade”
a vendors test suite. For example, a 99% detec-
tion rate, could justify less rigorous incoming
inspection on the parts.

FAULT ALGORITHMS
There are three common algorithms used for fault
simulation- serial, parallel, and concurrent.
Serial Fault Simulation
Serial fault simulation, illustrated in Figure 6,
is the simplest technique for fault simulation. Two
complete copies of the circuit are stored in memory.
A single fault is then inserted into one circuit,
both circuits are simulated, and their output results
are compared. If the output results differ (which
is what we want) then the test vectors are said to
have “detected” that fault. A fault is considered
“undetected” if none of the test vectors create a
difference in output response between the good and
faulty circuits. Upon detection, the fault is categor-
ized, a new fault is chosen, and the process above
is repeated. Serial fault simulation is a very simple
but slow method of fault simulation. Even with a
hardware accelerator, runtimes for circuits with
greater than 10,000 primitives can be prohibitive.

Figure 6. Serial Fault Simulation

Parallel Fault Simulation
Parallel fault simulation is used by many software-
based fault simulators. Figure 7 shows how parallel
fault simulation uses several complete copies of the
circuit. One copy is the good machine and each of

the other copies is a particular faulty machine. Each
faulty machine is simply a complete copy of the good
circuit with one unique fault placed in it. The
number of parallel machines is usually small, for
example 4 to 16 machines, depending on the word
size of the computer, and the required accuracy in
modeling state and strengths. This algorithm is
typically faster than serial faulting because multiple
faults are run at the same time. However, the par-
allel algorithm must continue the simulation until
every parallel fault is detected; whereas, the serial
algorithm can stop each fault simulation as soon as
the fault is detected. * inpurs

Figure 7. Parallel Fault Simulation

Concurrent Fault Simulation
Concurrent fault simulation is the most powerful
of the three algorithms. It is based on the concept
that a particular fault placed in a circuit does not
affect the behavior of the majority of the rest of the
circuit. Thus, multiple copies of a complete circuit
need not be placed into memory at one time. Instead,
memory is allocated on an “as needed” basis. This
allows hundreds or thousands of faults to be simu-
lated at once.

The concurrent algorithm simulates the circuit
for the good machine and, when the inserted faults
make the results of the good machine and the faulty
machines differ, it diverges (copies) those devices
and simulates them separately. Figure 8 shows an
illustration of the concurrent fault algorithm. The
small solid squares shown inside each of the faulty
machines, F1...Floo indicate that only that portion of
the faulty machine behaves differently from the
good machine. For example, if a fault were inserted
near the end of a chain of inverters, only the last
few inverters would behave differently from the
good machine, and consequently only those affected
inverters would be diverged and simulated separately
from the good machine.

The concurrent algorithm presents a very
complex bookkeeping problem that fortunately is
well suited to a special-purpose computer. It’s great
advantage is that it is a very fast method for fault

T5-1.3

+--d+-- inputs

Figure 8. Concurrent Fault Simulation

simulation, and requires less memory than either the
serial or parallel algorithms. Figure 9 provides an
illustration of the relative memory and runtime
requirements for these three methods.

collapsing. Efficiency tools for fault simulation, are
discussed, as well as defining how to interpret fault
simulation results.

Circuit Dejects
Circuit defects in integrated circuits are commonly
caused by missing implants, oxide defects, metal
shorts and opens, junction defects, and lithographic
defects. As Figure 10 shows these defects are physi-
cal in nature. Trying to test the actual physical
defects would be too complex a procedure. Empirical
evidence has shown that an effective way to test
circuits is to observe the circuit's behavior and test
the physical character using a logic model of the
circuit's performance.

(Iirhographic) devic t

Figure 9. Memory and Runtime Requirements for Fault
Simulations by Algorithm Type

The concurrent algorithm is the most efficient
way of running fault simulations. This algorithm
can be embedded into hardware creating an unbeat-
able combination. Hardware simulation accelerators
run hundreds of times faster than software running
on a general-purpose computer. Even running
against a workstation rated at 10-MIPS, a fault simu-
lation might run for 2 days versus only 3 hours on
a hardware accelerator. This speed improvement is
especially important because fault simulation is an
iterative process. and quick turn-around time is
essential for maximizing engineering productivity.

putations that general-purpose computers excel at,
like mathematical operations or floating point
processes. Instead, it is more of a data manipulation
problem that needs large memory resources and
high data bandwidth. Simulation is easily adapted to
parallelism and thus is a great candidate to accelerate
with specialized hardware.

FAULT SIMULATION IN-DEPTH
This section contains more details than the first.
It is intended to provide an overview of the finer
points of fault simulation by defining often-used
terms and algorithms. It describes different method-
ologies for fault modeling, fault seeding, and fault

Simulations do not require the traditional com-

An erarnplr of missing cunrdcc An exampic oiluncrion defeci

Figure 10. Sources of Circuit Defects'

In short, the key to fault modeling is not
whether the model matches a particular physical
failure. but that there is a high correlation between
detecting defects with fault simulation and the
actual test applied to the parts. Central to fault
modeling is the concept of stuck-at faults.

Stuck-At Modeling
Most fault simulators use the logic stuck-at-0 and
the stuck-at-1 model to represent physical defects.
These faults can be independently placed on every
input. output, or node in a system. and then simu-
lated with a test vector as input to determine if thei,
effect on the behavior of the circuit is observable
at the designated test points. Other models exist.
including the stuck-open and stuck-short models.
However, these models are very compute intensive
and studies have shown that there is little marginal
gain from their use. Figure 11 depicts the standard
stuck-at faults.

T5-1.4

Figure 11. Standard Stuck-at Faults

Model N a m e

Fixed

Rail

Strength

The stuck-at models for input and node faults are
simple. An input fault sticks the input pin to a logic
onc or logic zero but has no other effect on the node
(a node is also called a signal on a net). A node fault
sticks the whole node and each input i t drives, but
the outputs it is driven by have no effect on it.

There is no general agreement on how output
faults should hehave. There are several possible
drive strengths available. which we shall call-
Fixed, Rail. and Strength. These are summarized in
Table 2. For a Fixed output fault model, the nodes
will be driven with a fixed strength value. This type
of output fault can fight with other outputs driving
the same node. For the Rail output fault model, the
output behaves as if it were shorted to power or
ground. Like node faults, other outputs driving this
node will have no effect. For the Strength fault
model, the node will be driven with a strength value
derived from the gate. For example. if the gate can
pull up with a resistive strength, and pull down with
an active strength, the output s@l value would be
“resistive-I” and the output s@O value would be
“active-0:’ In either case, the output fault can fight
with other outputs driving the same node.

Node Behavior Result

Nodes are driven
with a fixed strength
value.
Nodes behave as if Other outputs
shorted to power or driving the node
ground. have n o effect.

Nodes are driven Outputs driving the
with a strength same node can fight.
value derived from
the gate type drive
strength.

Outputs driving the
same node can fight.

Table 2 Output Fault Models

Ideally, faults should be placed at the lowest
level where there is doubt that the physical imple-
mentation of the device is perfect. In practical terms,
the lowest level faults could be placed in a circuit
is at the switch level. Faulting at the package level
would be appropriate with printed circuit boards
assuming that the packages have been thoroughly
screened. Faulting at the gate level would be appro-
priate for gate arrays, or where the exact switch-
level implementation of a gate was unknown. This
is the level that most vendors require their customers
to fault simulate at before accepting a design for
fabrication. However, faulting at high level cells or
macros can yield overly optimistic fault coverage
numbers. Vectors that provide a 95% hard detection
rate at the macro level might only provide a 50%
detection rate at the switch level. Therefore, faults
should be placed at the level where you expect to
have failures.

to easily define the level that faults are seeded within
a design.

FAULT COLLAPSING
Fault collapsing is an automatic feature provided
by many fault simulators. Faults seeded at different
points in a circuit may pioduce identical behavior.
These faults are said to be equivalent to each other.
(There also exists a class of dominant faults that
aren’t equivalent.) To save simulation time, equiva-
lent faults are collapsed together, and only one fault
from each equivalence group is actually simulated.

There are two methods of identifying equiva-
lent faults-gate collapsing and node collapsing.
Gate collapsing defines when an input fault can be
collapsed to an output fault on the same gate. Node
collapsing governs when faults on the same node
can collapse together. In other words, node collapsing
determines when an output fault can collapse to a
node fault, or a node fault can collapse to an input
fault. Figure 12 shows two buffers and how the
input, output, and node faults can collapse together.

In any case, a fault simulator should allow you

Levels of F a d i n g

For any given design, there can be many levels of
logic simulation including architectural, behavioral,
functional, gate, and switch. For fault simulation,
it only makes sense to fault structural implernen-
tations of a circuit, since faults are actually models
of structural, or physical, defects within a system.
For mixed-level simulations, faults can be placed
at the boundaries of a behavioral model, but not
usual ly inside one.

--+---l---
Gate Collapsing Node Collapsing

Figure 12. Gate and Node Collapsing

Gate Collapsing
Gate collapsing is based on the IogicaI nature of
particular gates. For example, Figure 13(a) shows a
two-input AND gate that has 6 possible stuck-at
faults-s@0, sa l on each input, and s@O, s @ l on

T5-1.5

the output. Since a 0 on any AND-gate input forces
the output to a 0, the s@O input faults are said to
be equivalent to the s a 0 output fault. In other
words, the AND gate behaves the same whether an
input is s@O, or the output is s@O, so there is no
need to simulate the input faults. The two s a 0
input faults shown in Figure 13(a) can be collapsed
to the output s@Q fault, which results in the 4 faults
shown in 13(b).

a b
Figure 13. Gate Collapsing. (a) An AND gate with six
stuck-at faults. (b) T h e four equivalent faults.

In this example, fault collapsing decreases the
number of faults to be simulated by 33% (6 faults
have been reduced to 4) . Each primitive gate has its
own rules for fault collapsing. Although collapsing
on a single primitive only slightly decreases the
number of faults, total savings from collapsing all
primitives can significantly reduce run times.

Node Collapsing
Node collapsing is governed by rules of how a fault
will affect other faults on the same node. Figure 14
shows two simple cases. In Figure 14(a), the output
fault of the left buffer can collapse with the node
fault, which in turn can collapse with the input fault
of the right buffer. In Figure 14(b), the output fault
of the left buffer can collapse with the node fault,
but the node fault cannot collapse with the two
input faults.

a b

Figure 14. Node Collapsing. (a) T h e output and node faults
can collapse to the input fault. (b) T h e output fault can
collapse to the node fault only.

Node collapsing is controlled by the fan-in/fan-out
of each node. In general, a single fan-in node will
allow the single output fault to collapse to the node
fault, and single fan-out nodes will allow the node
fault to collapse to the single input fault.

Strength Sensitivity
Device drive strengths also become a consideration
in fault collapsing when designing with transistors,

and when more than one device drives a node.
Figure 15 shows a buffer driving a transistor. Since
the transistor output depends on its input strength
value, the strength of the output stuck-at at point
B. or the node stuck-at at point C could have an
effect on the circuit behavior. For example, the
transistor output might fight with other transistor
outputs. The strength of the transistor output will
determine how the contention is resolved, and thus
the final output value. If the faults at B or C have
different strengths they cannot be collapsed together.
Moreover, the input fault at A cannot be collapsed
with B unless the output fault has the same strength
as the normal gate output.

Figure 15. Fault Collapsing and Strength Sensitive Devices

The complete rules for collapsing are a function
of the gate types involved, the fan-idfan-out at each
node, the output fault type, and strength sensitivities.

For the circuit in Figure 16 the following
rules apply: inputs collapse to outputs. outputs col-
lapse to nodes, and nodes collapse to inputs. How-
ever. not all circuits are as simple as this. Besides
a one-to-one (13) fan-in/fan-out, there may also be
a one-to-multiple (l:M), a multiple-to-one (M:l).
or a multiple-to-multiple (M:M) fan-in/fan-out.

Figure 16 illustrates these possibilities and each of
the points at which a fault origin can be placed.

hl I 1 1 I hl

Figure 16. Possible Circuit Fan-In/Fan-Out Combinations

Accurate fault collapsing requires consider-
ation of circuit topology and output fault type. If the
output fault type (discussed earlier in this section)
is Rail then an output fault can collapse with a node
fault regardless of the fan-in/fan-out of the node.
If the output fault type is Strength then an input
fault can always collapse to the output regardless of
the fan-in/fan-out of the node. Finally. if the output
fault type is Fixed then an input fault can only col-
lapse to the output if there is a single fan-in. The

T5-1.6

number of faults that collapse can depend on the
output fault type.

De terntinistic Versus Pro ba ba listic
Fault Sintulatioit
Deterministic fault simulation uses the process
described earlier in this handbook. Each node in a
circuit has faults placed on it, test vectors are applied
against the good circuit and the faulty circuit, and
test points are observed to determine if there are
differences in the output. Next, each fault is cate-
gorized as being detected or not. If unhappy with the
coverage, the user writes additional test vectors
specifically targeted towards undetected faults, then
reruns the fault sirnulation in an effort to increase
the hard detection rate. Deterministic fault simu-
lation provides the tools to systematically improve
fault coverage. Its drawback is that it is a very
compute-intensive task.

Probabalistic fault simulation takes an indirect
approach to defining fault coverage. Instead of
placing faults on each possible node in a circuit, and
then simulating, certain types of analysis are per-
tormed on the circuit instead. Probabalistic fault
simulation runs faster than deterministic and works
well for rough estimates of coverage. The drawbacks
are that if the user needs to know exactlv what faults
are undetected, or how to compress and optimize
the test suite, it cannot be done. This algorithm also
breaks down at higher fault coverages. The variance
in a probabalistic fault result will make the effort
to extend coverage to 99% meaningless.

Eficiency Tools for Fault Simulation
Reducing the time it takes to do fault simulation
on a circuit is important. Fault simulations, even
using hardware acceleration, can take days to com-
plete, and must be run multiple times to refine the
vector set. Fault collapsing, described above, is one
means to compress the simulation time. Other time
saving tools can also be used, as discussed below.

Fault Simulation using StutzdicalSam.le
Statistical fault simulation is ail alternative to a full
simulation run that exhaustively simulates every
fault origin in a circuit. Using statistical simulation,
one can simulate a small random sample of faults
for a circuit and extrapolate the results. This assumes
that faults are chosen randomly and that there is a
uniform fault density.

Toggle Test
A toggle test applies the set of vectors to the circuit
and watches for nodal activity. If there are nodes
that do not change state doring the simulation run,

they are placed on a separate list. These unactive
nodes should be addressed before starting a fault
simulation.

Observability and Controllability
Observability is the ability to observe a circuit’s
behavior from the primary outputs. Controllability
is the ability to control a circuit’s behavior from
primary inputs. These attributes have a significant
affect on how hard or easy it is to develop test vectors
that result in good fault coverage. If a given node
is unobservable, there is no point in simulating faults
on that node because they will never be detected.

I I

Figure 17. A n Example of Non-Observable and
Non-Controllable Nodes

For example, device 2 in Figure 17 is not
observable because its output does not connect to
any primary output. Any faults on device 2 are
impossible to detect. Node c in Figure 17 is also not
observable because the other A N D gate input is
always 0. Nodes a and b are not controllable to 1,
since they will always be 0. Therefore there is no
point in simulating a stuck-at-0 fault at a or b
because the faulty machine and the good machine
would always have identical behavior, only stuck-at-1
faults are interesting at those nodes.

Unobservable nodes are common in many
circuits. For example, circuits often use only one of
the Q or Qbar outputs from a D flip-flop. One
output may be unused and should not be faulted.
Faults which are not observable or controllable
should be eliminated from the list of faults. This
increases fault simulation speed, plus gives a more
meaningful fault coverage result.

Incremental Simulation
Building a good test vector set takes several fault
simulations. It is a process of iteratively fault simu-
lating, adding vectors, fault simulating, adding more
vectors, fault simulating, and so forth. To build
efficiency into this process it is advantageous to
reuse previous fault simulation results, and only
run certain classes of fault results (like previously
undetected faults), or certain portions of the circuit.
This reduces the fault simulation task to an incre-

mental process of testing for only those faults not
previously detected.

FAULT RESULTS
The results of a fault simulation tell if a faulty
machine propagated a different output result than
the good machine. A fault simulation generates one of
seven possible fault detection results for each fault:

Definite for bard) detect. This means that the fault
was detected during the simulation-the faulty
machine had the opposite logic value at an output
pad as compared to the good machine.
Possible forpotential) detect. This means that the
fault may have been detected. At some point in the
simulation the logic level for the good machine
was a 0 or 1 and the logic level for the faulty
machine was an unknown (X) . Since an X repre-
sents a 0 or a 1 it is not clear if the fault was really
detected or not.
Soft detect. This is a form of possible detect, in
which the good machine had both a 0 and 1 logic
level while the faulty machine was unknown (X) .
The implication is that on a tester, a real part with
that fault would likely be found.

Undetected This means that the fault was not
detected during the simulation.

O ~ i h t o g ~ . This means that introducing the fault
caused the faulty machine to oscillate. The fault
is neither detected nor undetected, but rather
marked as a problem area to be addressed separ-
ately from the other fault results.
Hyperactive. This means that the fault diverged
more than a specified percentage of the circuit.
This type of result typically occurs when an X gets
on to some global control line like a clock line
and causes large portions of the circuit to have Xs.
Thus the fault is no longer worth simulating
because it would take too long and further simu-
lation is probably uninteresting. Like the oscil-
latory result, hyperactive implies that the fault
is neither detected nor undetected, but rather a
problem area to be addressed separately from the
other fault results.
Impossible fault. This means that the fault cannot
be detected. For example, it is impossible to detect
a stuck-at-0 fault on a grounded input pin or an
unconnected output of a logic element. This type
of result comes from a static analysis of the circuit,
and is not strictly the result of a fault simulation.

Fault Dictionaries
Fault dictionaries are a valuable tool for locating
defective portions of a product. especially for tech-
nologies that allow repair to a defective part, such
as printed circuit boards. They are also useful for
failure analysis of ASIC's and Full-custom IC's.
A fault dictionary is generated after a fault simula-
tion is complete. It is a listing of every detected fault
in ascending order of the time it was detected, along
with its expected and actual testpoint outputs. This
dictionary can become quite voluminous.

Besides their bulkiness, the effectiveness of
fault dictionaries is limited by the models used.
The stuck-at model is used not because it exactly
represents physical reality. but because it directly
correlates with locating failures in a system. A fault
dictionary, therefore, cannot contain a list of all the
possible defects that could occur within a printed
circuit board or integrated circuit. It should, how-
ever, be able to localize where a problem with the
circuit may be.

Fault Simulation Process
There are many valid fault simulation methodol-
ogies. One recommended top-down approach is
described below.

The first step in any fault simulation is to be
sure that the logic simulation is successfully
completed. Examine the logic simulation
results. or run a toggle test, to make sure all
nodes in your circuit were active at least some
time during the simulation. If not, these nodes
are undetectable.
Follow this with a statistical run. Since fault
simulations usually take several passes, and
since faults are seeded randomly per pass. a
statistical test could simply comprise of moni-
toring the results of the first few passes of a
full deterministic run. If unhappy with the
results. stop the simulation and add more
vectors. If satisfied, let the full run continue.
If the circuit is large (X 4 , O O O primitives
depending on the circuit) the circuit and the
test suite should be partitioned. By seeding only
one section of the circuit at a time and directing
a set of test vectors specifically targeted for that
section, the sum total of fault simulating all
the sections will be a lot less than if the whole
circuit was simulated at once.

T5-1.8

A full deterministic fault simulation run could
start by seeding node faults, unless accuracy is
important, then input and output faults should
be seeded. Once the run is complete, move on
to step 5 i f the coverage results are acceptable,
i f not, look at the potential and undetected lists
and write vectors specifically targeted to detect
those faults. (This is the hard part, and where
test engineers really earn their pay.) Rerun
the faul t simulation with this larger test suite
against the potential and undetected faults from
the previous run. Continue with this cycle until
the percentage of definitely detected faults is
at your specified target level.
Optimize your test vectors. Histograms will
plot out the number of faults found per test
vector. If there are groups of vectors that do
not detect any faults and are not setting up the
circuit to a particular state, then they can be
eliminated. This will save time on the manu-
facturing floor during functional testing.
Empirical evidence has shown that some test
suites can be reduced by as much as 50% with-
out affecting fault coverage. If there are several
test suites, there are programs available to
define their optimal order for functional test-
ing, this again will save time in manufacturing
during testing.

Autonutic Test Pattern Generation (ATPG)
Automatic Test Generation (ATG) is the computer
driven synthesis of the test vectors used to screen
out the defective parts created during the manu-
facturing process. Manual test vector generation
by a test engineer is difficult, time-consuming and
tedious. There has been a great deal of interest in
the prospect of automating this step. Unfortunately,
there have been several roadblocks delaying the
acceptance of ATG systems.

When the first ATG packages were developed,
designs were typically very small and simple. These
early attempts at automation ran very poorly when
designs grew and became more complex. Test gener-
ators were ineffective with most designs because
they could not traverse through the time-layers of
sequential logic and soon fell out of favor.

More recently. new approaches for test gener-
ation have been developed to handle larger designs
with sequential logic. These fall into two categories;
those that require changes to the design struc-
ture (SCAN-SET) and those employing new ATG
algorithms.

SCAN-SET implementation effectively reduces
complex sequential structures to combinational
planes of logic. This requires additional logic and
can cause some speed contraints but this technique
has been reasonably successful.

The most significant changes to the ATG algo-
rithms come from the research done at Westinghouse
Electric, in the mid 1970's. This new approach
effectively handles layers of deep sequential logic
by a clever technique that works backwards through
the design, setting up the needed sequential states
as they are required.

The addition of hardware simulation acceler-
ators to the ATG process further enhanced these
techniques. Vector generation and fault simulation,
performed quickly in a closed iterative loop, combine
to produce more efficient test vectors in a much
shorter time.

'"Logic Fault Verification of LSI: How It Benefits the User," Richard
A. Harrison, Ronald W. Holzwarth, and Philip R. Motz of Delco
Electronics Division, General Motors Corporation; and R. Gary Daniels,
James S. Thomas, and Warren H. Wiemann of MOS IC Division,
Motorola, Inc., Proceedrngs of rbe WESCON Profes~ronal Program
(September, 1380).

'"Defect Analysis and Fault Modeling in MOS Technology,"
R. Chandrarnouli and H. Sucar, Internafional Tesf Conference
Proceedings (November, 1985).

T5-1.9

