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Abstract— With the device scaling up to nano-level, the 
integrated circuits are expected to face high computing error 
rates. This increased rate is the outcome of random and dynamic 
noise injected in the circuit which becomes more vulnerable due 
to low supply voltages and extremely small transistor 
dimensions. Markov Random Field (MRF) modelling is one 
approach to achieve noise-tolerance in integrated circuit design. 
As a general overview of fault-tolerance, we start with comparing 
on-going techniques for fault-tolerant design. Later, we explain 
the two basic terminologies of MRF i.e. Joint and Marginal 
Probability followed by their computation for M3 module of 
C432 Interrupt Controller (as our test circuit). The contribution 
of this paper is the derivation of circuit design rules based on the 
conclusions obtained by these two probability analyses. 

Keywords: Probabilistic computation, markov random field, 
joint probability, marginal probability, belief propagation 
algorithm. 

I. INTRODUCTION 
Nanoscale electronic circuits are suffering from both 

manufacturing defects and transient faults. Designing reliable 
system based on these devices is becoming harder. Hence, the 
need for defect- or fault-tolerant architecture is gaining 
importance amongst researchers. Several techniques, both 
practical and theoretical, to implement such architectures were 
investigated including the three major approaches discussed 
below.  

Redundancy is the basic approach to design a fault-tolerant 
circuit model [1]. The idea of this technique is to introduce 
redundancy for each gate in the circuit (or for that portion of 
the circuit probable of being in error) and then taking the 
output from the majority output decision of the original and 
copied gates so that if one gate in the redundant combination is 
faulty, the output is not affected. This technique is further 
divided into Triple Modular Redundancy (TMR), Cascaded 
Triple Modular Redundancy (CTMR) and Triple Interwoven 
Redundancy (TIR). 

The other significant approach is probabilistic computation 
[1], [2].  Here, we treat the logic levels between ‘0’ and ‘1’ to 
be attainable just like these two conventional levels and design 
our circuits such that the intermediate levels have minimum 
probability of occurrence. It is a mathematical approach in 
contrast to the direct hardware-based application model (i.e. 
redundancy). To name a few, this technique is further 

classified into Markov Random Field (MRF), Bayesian and 
Ensemble Dependent Matrix models. 

Reconfiguration [1], [3] is another important approach 
widely in use. Again it is a direct hardware-based approach. 
Defect-tolerance is achieved through detection of faulty 
components during an initial defect map phase (defect 
mapping is the process of finding defective locations in the 
nanofabric) and excluding them during actual configuration. 

Redundancy can be a possible approach to avoid 
manufacturing errors but it does not have robust error recovery 
mechanisms [1]. Similarly, reconfigurable architectures can 
deal with manufacturing defects but they also cannot provide 
tolerance for the transient faults. For transient error-tolerance, 
probabilistic computation is a suitable approach as the nature 
of noise injected in the circuit is random (or probabilistic). 
From its subdivisions we discussed earlier, our focus is on 
using MRF [2], [4]. Before starting our analysis, we briefly 
explain the joint and marginal probability concepts of MRF 
theory as understanding these terms is essential to understand 
the derivation of circuit design rules. 

A. Joint Probability 
The joint probability of a logic network, according to 

Hammersley-Clifford Theorem [5] can be written as, 
 

                      (1) 

where ‘X’ is the set of all nodes in the neighborhood, ‘C’ is the 
set of cliques and ‘Uc’ is the clique energy function. The term 
‘Z’ is called normalization constant which is required to 
normalize the probability function to [0, 1]. The term ‘kT’ is 
the thermal energy which controls the shape of the joint and 
marginal probability distribution graphs.  

The system represented by MRF (as a dependence graph) 
can be decomposed into cliques. Since these cliques are 
independent of each other, we can compute joint probability of 
each separately. At the end, we multiply all these values to get 
the joint probability of the whole system. According to [6], the 
‘correct logic states’ are those that maximize the joint 
probability of the overall network. (Correct logic states 
indicate to logic states achieved in a circuit without error). In 
our paper, we have provided a step by step procedure to 
compute and thus maximize the joint probability which will 
later be used to determine the correct logic states. 



B. Marginal Probability 
In calculating marginal probability, we fix the value of one 

or more variables and sum it over non-fixed variables. For 
discrete random variables, the marginal probability function 
[7] can be written as shown below (2). 

 

   (2) 

where P(X=x,Y=y) is the joint distribution of X and Y, while 
P(X=x|Y=y) is the conditional distribution of X given Y.  

The use of this statistical term is in determining the 
probability of achieving different logic states at each node. 
From this information, we can determine the most probable 
logic state for any node in the network. Since the inputs of the 
logic circuit have defined probabilities of being in logic state 
‘0’ or ‘1’, the intermediate and output nodes have the 
probabilities, we have to calculate. For this purpose, we use 
Pearl’s belief propagation algorithm [8]. This algorithm 
computes the marginal probabilities of intermediate and output 
nodes by marginalizing each node step by step unless we reach 
the desired node. Another use of marginal probability plots is 
that they help us to observe the variation of any logic state’s 
probability (between 0 and 1) with temperature variation.  

II. COMPUTING JOINT PROBABILITY 
In this section, we will see how to compute and maximize 

joint probability. For our analysis, we have taken a test circuit, 
M3 module of C432 Interrupt Controller, from [9]. Fig. 1 
shows its logic diagram, dependence graph and logic 
compatibility function of NAND gate (which will be used later 
in the clique energy function calculation). 

We are using equation (1) for joint probability computation. 
After identifying cliques [{x3,x4}, {x2,x4,x5}, {x0,x1,x5,x6} and 
{x6,x7}], we calculate clique energy function, Uc for each. 
Then we evaluate the exponential in (1) for each clique and 
multiply all of the exponentials at the end to get the overall 
joint probability. Here we outline the steps for evaluating Uc 
for NAND gate, as an example. Similarly, the Uc for NOT 
(index 1 and 2 having x3 and x6 as inputs respectively) and 
NOR gates are calculated (with reference to Fig. 1(a)) and 
listed in Table I. 
 

Uc =  -∑ (Valid minterms (f=1) in the Logic Compatibility 
Function (Fig 1(c))) 

      = - [ x₀'x₁'x₅'x₆ + x₀'x₁'x₅x₆ + x₀'x₁x₅'x₆ + x₀'x₁x₅x₆ + 
x₀x₁'x₅'x₆ + x₀x₁'x₅x₆ + x₀x₁x₅'x₆ + x₀x₁x₅x₆' ] 

= - [ x₀'x₁'x₆ (x₅ + x₅') + x₀'x₁x₆ (x₅ + x₅') + x₀x₁'x₆ (x₅ + x₅') 
+ x₀x₁x₅'x₆ + x₀x₁x₅x₆' ] 

= - [ x₀'x₁'x₆ + x₀'x₁x₆ + x₀x₁'x₆ + x₀x₁x₅'x₆ + x₀x₁x₅x₆' ] 
= - [ x₀'x₆ (x₁' + x₁) + x₀x₁'x₆ + x₀x₁ (x₅'x₆ + x₅x₆') ] 
= - [ (1-x₀)x₆ + x₀x₆(1-x₁) + x₀x₁(x₆(1-x₅) + x₅(1-x₆)) ] 
= - [ x₆ + x₀x₁x₅ - 2x₀x₁x₅x₆ ] 
= 2x₀x₁x₅x₆ - x₀x₁x₅ - x₆ 

 
TABLE I 

CLIQUE ENERGY FUNCTIONS FOR NOT AND NOR GATES 
NOT 1 Uc = 2x₃x₄ - x₃ - x₄ 
NOR Uc = x₂x₄ + 2x₄x₅ + 2x₂x₅ – 2x₂x₄x₅ – x₂ – x₄ -x₅ 
NOT 2 Uc = 2x₆x7 – x₆ - x7 

 
(a) 

 
(b) 

x₀ x₁ x₅ x₆ f 
0 0 0 1 1 
0 0 0 0 0 
0 0 1 1 1 
0 0 1 0 0 
0 1 0 1 1 
0 1 0 0 0 
0 1 1 1 1 
0 1 1 0 0 
1 0 0 1 1 
1 0 0 0 0 
1 0 1 1 1 
1 0 1 0 0 
1 1 0 1 1 
1 1 0 0 0 
1 1 1 0 1 
1 1 1 1 0 

 

(c) 
 

Fig. 1   (a) A sample logic circuit (b) Its Dependence Graph 
(c) Logic Compatibility Function for NAND 

 
Now, computing joint probability, 
P (x₀,x₁,x₂,x₃,x₄,x₅,x₆,x7) =  (1/Z). (e-Uc(NOT 1)/ kT. e-Uc(NAND)/ kT.    

e-Uc(NOR)/ kT. e-Uc(NOT 2)/ kT ) 
= (1/Z).exp [( x₂ + x₃ + 2x₄ + x₅ + 

2x₆ + x7 - x₂x₄ - 2x₂x₅ - 2x₃x₄ - 
2x₄x₅ - 2x₆x7+ x₀x₁x₅ + 2x₂x₄x₅ - 

2x₀x₁x₅x₆ )/ kT] 
 
Following the joint probability calculation, we need to 

determine the node label combinations that maximize its value. 
The simplified form of P(x0,x1,….,x7) shows that its value 
would be maximum when the power of the exponential will be 
maximum. i.e. for maximum value of numerator of the power ( 
x₂ + x₃ + 2x₄ + x₅ + 2x₆ + x7 - x₂x₄ - 2x₂x₅ - 2x₃x₄ - 2x₄x₅ - 
2x₆x7+ x₀x₁x₅ + 2x₂x₄x₅ - 2x₀x₁x₅x₆ ). 

We used MATLAB to determine the value of this power’s 
numerator for its 256 (=28) possible node combinations. We 
have observed that the maximum value of the numerator is ‘4’ 
and it exists for 16 combinations of node labels shown in Table 
II. These combinations are the same as the 16 combinations of 
this circuit’s truth table, which shows that the joint probability 
is maximum only for correct logic combinations. For the rest 
of the combinations, its value is always lower. 



TABLE II 
NODE COMBINATIONS HAVING MAXIMUM JOINT PROBABILITY 

x₀ x₁ x₂ x₃ x₄ x₅ x₆ x7 
0 0 1 1 0 0 1 0 
0 1 1 1 0 0 1 0 
1 0 1 1 0 0 1 0 
1 1 1 1 0 0 1 0 
0 0 0 0 1 0 1 0 
0 1 0 0 1 0 1 0 
1 0 0 0 1 0 1 0 
1 1 0 0 1 0 1 0 
0 0 1 0 1 0 1 0 
0 1 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 
1 1 1 0 1 0 1 0 
0 0 0 1 0 1 1 0 
0 1 0 1 0 1 1 0 
1 0 0 1 0 1 1 0 
1 1 0 1 0 1 0 1 

A. Design Principle of Joint Probability 
From the joint probability analysis, we have concluded that 

for the perfect logic operation of a circuit i.e. with no errors at 
any nodes of the circuit; we need to design our circuit, as such 
to ensure at all times, that the joint probability of the circuit 
remains maximum. 

III. COMPUTING MARGINAL PROBABILITY 
We will do this analysis on the same test circuit that we used 

for joint probability case. We assume that all the inputs are 
equally likely to be in logic state ‘0’ or ‘1’. For computing the 
probability of the hidden (intermediate and output) nodes, we 
use belief propagation algorithm (outline provided in [10]). We 
would show the steps of this algorithm with implementation on 
our test circuit. 

The first step is to assign Probability Distribution Functions 
(PDF) to all inputs and cliques as shown in Table III. In the 
process of computing marginal probability of output (x7), we 
will be calculating the probabilities of all the intermediate 
nodes too (x4, x5 and x6). (Note: Initially p(x7) = f0 f1 f2 f3 f4 f5 
f6 f7). We will start from eliminating inputs followed by 
intermediate nodes until we reach the output node. In 
eliminating one node, two of the functions of that node 
eliminate and one new function forms. So, for each step, one 
function from p(x7) decreases unless we are left with only one 
function which would be dependent only on x7. All the 
normalization constants (Zn) are selected as to keep the value 
of the marginal probability between ‘0’ and ‘1’. Re-using the 
clique energy functions calculated in section II, we have 
shown the algorithm steps in Table IV. 

 
TABLE III 

PDF FOR I/PS AND CLIQUES 
Input PDF Clique PDF 

x0 f0 (s0) {x3,x4} f4 (x3,x4) 
x1 f1 (s1) {x2,x4,x5} f5 (x2,x4,x5) 
x2 f2 (s2) {x0,x1,x5,x6} f6 (x0,x1,x5,x6) 
x3 f3 (s3) {x6,x7} f7 (x6,x7) 

TABLE IV 
BELIEF PROPAGATION ALGORITHM STEPS 

 
Step 1: Eliminate x3 
 
Eliminated: f3 (s3), f4 (x3, x4) 
New: f8 (x4) 
 
p(x4) =∑ (1/Z1) e-Uc (NOT 1)/ kT

                              
           x3 Є (0,1)   
 

=(1/Z1)(ex4/kT+e(1-x4) /kT) 
= f8 (x4) 

 p(x7) = f0 f1 f2 f5 f6 f7 f8 
 

 
Step 2: Eliminate x2 
 
Eliminated: f2 (s2),  
                    f5 (x2.x4,x5) 
New: f9 (x4,x5) 
 
p(x5|x4)=∑(1/Z2) e-Uc (NOR) / kT 
                   x2 Є (0,1)     
 

= (1/Z2)(e(x4+x5-2x4x5) /kT      
+ e(1-x5) /kT) 

= f9 (x4,x5) 
  p(x7) = f0 f1f6 f7 f8 f9 

 
 
Step 3: Eliminate x4 
 
Eliminated: f8 (x4), f9 (x4,x5) 
New: f10 (x5) 
 
p(x5)=∑(1/Z3)[p(x5|x4)* p(x4)] 
            x4 Є (0,1)     
 
         =(1/Z3)(ex5 /kT+3e(1-x5) /kT                           

+ e(1+x5) /kT  + 3e(2-x5) /kT) 
= f10 (x5)  

 p(x7) = f0 f1f6 f7 f10 
 

 
Step 4: Eliminate x0 
 
Eliminated: f0 (s0),  

f6 (x0,x1,x5,x6) 
New: f11 (x1,x5,x6) 
 
p(x6|x1,x5) =∑(1/Z4) e-Uc (NAND) 

/kT 
                      x0 Є (0,1)     
 

 = (1/Z4) (e(x6)/ kT + 

e(x6+x1x5-2x1x5x6)/ kT) 
= f11 (x1,x5,x6) 

     p(x7) = f1f7 f10 f11 
 

 
Step 5: Eliminate x1 
 
Eliminated: f1 (s1),  
                    f11 (x1,x5,x6) 
New: f12 (x5,x6) 
 
p(x6|x5)=∑(1/Z5)f11 (x1,x5,x6) 
                   x1 Є (0,1)     
 

=(1/Z5)(e(x5+x6-2x5x6)/kT       
+ 3e(x6) /kT) 

= f12 (x5,x6) 
  p(x7) = f7 f10 f12 
 

 
Step 6: Eliminate x5 
 
Eliminated: f10 (x5),  

f12 (x5,x6) 
New: f13 (x6) 
 
p(x6)=∑(1/Z6)[p(x6|x5)*p(x5)] 
             x5 Є (0,1)     
 

= (1/Z6) (28e(1+x6) /kT + 
13e(x6) /kT +15e(2+x6) /kT 
+ 3e(1-x6) /kT +4e(2-x6)/kT 
+ e(3-x6) /kT) 
= f13 (x6) 

  p(x7) = f7 f13 
 

 
Step 7: Eliminate x6 
 
Eliminated: f7 (x6,x7), f13 (x6) 
New: f14 (x7) 
 
p(x7) = ∑ (1/Z7) [ p(x7 | x6) * p(x6) ] 
                  x6 Є (0,1)     

= (1/Z7)(31e(1+x7)/kT +19e(2+x7) /kT+e(3+x7)/kT + 3e(1-x7)/kT 
+17e(2-x7) /kT + 29e(3-x7) /kT+15e(4-x7) /kT) 
= f14 (x7) 

  p(x7) = f14 
 

 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2 Marginal probability graphs for (a) x4 (b) x5 (c) x6 (d) x7 
 

In Fig. 2, we have shown probability graphs for all the 
hidden and output nodes. The p(x4) graph shows that there is 
an equal probability of getting either logic state ‘0’ or ‘1’ 
whereas the p(x7) graph shows that the probability of achieving 
logic ‘0’ at this node is almost sixteen times the probability for 
logic ‘1’. The probability of getting intermediate states 
between ‘0’ and ‘1’ is negligible. By this analysis, we can 
determine at any point in the network that whether it is more 
probable of being at logic state ‘0’ or ‘1’. In Fig. 3, we can 
observe that, by increasing temperature, the graph moves 
upward and the probability of intermediate logic states start 
increasing thus making logic circuit more probable of 
achieving these states. And since in ideal case, the probability  

 

 
Fig. 3 Marginal probability variation for x7 

 

of intermediate states should be zero, the probability of error 
increases in nano-computation. 

A. Design Principle of Marginal Probability 
The key to design a fault-tolerant circuit is to ensure a good 

heat removal system for the integrated circuit which would 
make the probability of intermediate states between ‘0’ and 
‘1’ close to zero and maintain sufficient noise margin as well. 

CONCLUSIONS AND FUTURE WORK 
MRF is a design technique for nanoscale circuits that make 

them work in highly noisy conditions provided the design 
principles of joint and marginal Probability are followed. In 
future, we will show how to use these principles for digital 
hardware design. 
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