
Joint and Marginal Probability Analyses Of Markov
Random Field Networks for Digital Logic Circuits

Jahanzeb Anwer, Usman Khalid, Narinderjit Singh, Nor H. Hamid and Vijanth S. Asirvadam
Electrical & Electronics Engineering Department

Universiti Teknologi PETRONAS
Bander Seri Iskander, Tronoh, Perak, Malaysia

Contact No: +60136057683
jahanzebanwer.utp@gmail.com

Abstract— With the device scaling up to nano-level, the
integrated circuits are expected to face high computing error
rates. This increased rate is the outcome of random and dynamic
noise injected in the circuit which becomes more vulnerable due
to low supply voltages and extremely small transistor
dimensions. Markov Random Field (MRF) modelling is one
approach to achieve noise-tolerance in integrated circuit design.
As a general overview of fault-tolerance, we start with comparing
on-going techniques for fault-tolerant design. Later, we explain
the two basic terminologies of MRF i.e. Joint and Marginal
Probability followed by their computation for M3 module of
C432 Interrupt Controller (as our test circuit). The contribution
of this paper is the derivation of circuit design rules based on the
conclusions obtained by these two probability analyses.

Keywords: Probabilistic computation, markov random field,
joint probability, marginal probability, belief propagation
algorithm.

I. INTRODUCTION
Nanoscale electronic circuits are suffering from both

manufacturing defects and transient faults. Designing reliable
system based on these devices is becoming harder. Hence, the
need for defect- or fault-tolerant architecture is gaining
importance amongst researchers. Several techniques, both
practical and theoretical, to implement such architectures were
investigated including the three major approaches discussed
below.

Redundancy is the basic approach to design a fault-tolerant
circuit model [1]. The idea of this technique is to introduce
redundancy for each gate in the circuit (or for that portion of
the circuit probable of being in error) and then taking the
output from the majority output decision of the original and
copied gates so that if one gate in the redundant combination is
faulty, the output is not affected. This technique is further
divided into Triple Modular Redundancy (TMR), Cascaded
Triple Modular Redundancy (CTMR) and Triple Interwoven
Redundancy (TIR).

The other significant approach is probabilistic computation
[1], [2]. Here, we treat the logic levels between ‘0’ and ‘1’ to
be attainable just like these two conventional levels and design
our circuits such that the intermediate levels have minimum
probability of occurrence. It is a mathematical approach in
contrast to the direct hardware-based application model (i.e.
redundancy). To name a few, this technique is further

classified into Markov Random Field (MRF), Bayesian and
Ensemble Dependent Matrix models.

Reconfiguration [1], [3] is another important approach
widely in use. Again it is a direct hardware-based approach.
Defect-tolerance is achieved through detection of faulty
components during an initial defect map phase (defect
mapping is the process of finding defective locations in the
nanofabric) and excluding them during actual configuration.

Redundancy can be a possible approach to avoid
manufacturing errors but it does not have robust error recovery
mechanisms [1]. Similarly, reconfigurable architectures can
deal with manufacturing defects but they also cannot provide
tolerance for the transient faults. For transient error-tolerance,
probabilistic computation is a suitable approach as the nature
of noise injected in the circuit is random (or probabilistic).
From its subdivisions we discussed earlier, our focus is on
using MRF [2], [4]. Before starting our analysis, we briefly
explain the joint and marginal probability concepts of MRF
theory as understanding these terms is essential to understand
the derivation of circuit design rules.

A. Joint Probability
The joint probability of a logic network, according to

Hammersley-Clifford Theorem [5] can be written as,

 (1)

where ‘X’ is the set of all nodes in the neighborhood, ‘C’ is the
set of cliques and ‘Uc’ is the clique energy function. The term
‘Z’ is called normalization constant which is required to
normalize the probability function to [0, 1]. The term ‘kT’ is
the thermal energy which controls the shape of the joint and
marginal probability distribution graphs.

The system represented by MRF (as a dependence graph)
can be decomposed into cliques. Since these cliques are
independent of each other, we can compute joint probability of
each separately. At the end, we multiply all these values to get
the joint probability of the whole system. According to [6], the
‘correct logic states’ are those that maximize the joint
probability of the overall network. (Correct logic states
indicate to logic states achieved in a circuit without error). In
our paper, we have provided a step by step procedure to
compute and thus maximize the joint probability which will
later be used to determine the correct logic states.

B. Marginal Probability
In calculating marginal probability, we fix the value of one

or more variables and sum it over non-fixed variables. For
discrete random variables, the marginal probability function
[7] can be written as shown below (2).

 (2)

where P(X=x,Y=y) is the joint distribution of X and Y, while
P(X=x|Y=y) is the conditional distribution of X given Y.

The use of this statistical term is in determining the
probability of achieving different logic states at each node.
From this information, we can determine the most probable
logic state for any node in the network. Since the inputs of the
logic circuit have defined probabilities of being in logic state
‘0’ or ‘1’, the intermediate and output nodes have the
probabilities, we have to calculate. For this purpose, we use
Pearl’s belief propagation algorithm [8]. This algorithm
computes the marginal probabilities of intermediate and output
nodes by marginalizing each node step by step unless we reach
the desired node. Another use of marginal probability plots is
that they help us to observe the variation of any logic state’s
probability (between 0 and 1) with temperature variation.

II. COMPUTING JOINT PROBABILITY
In this section, we will see how to compute and maximize

joint probability. For our analysis, we have taken a test circuit,
M3 module of C432 Interrupt Controller, from [9]. Fig. 1
shows its logic diagram, dependence graph and logic
compatibility function of NAND gate (which will be used later
in the clique energy function calculation).

We are using equation (1) for joint probability computation.
After identifying cliques [{x3,x4}, {x2,x4,x5}, {x0,x1,x5,x6} and
{x6,x7}], we calculate clique energy function, Uc for each.
Then we evaluate the exponential in (1) for each clique and
multiply all of the exponentials at the end to get the overall
joint probability. Here we outline the steps for evaluating Uc
for NAND gate, as an example. Similarly, the Uc for NOT
(index 1 and 2 having x3 and x6 as inputs respectively) and
NOR gates are calculated (with reference to Fig. 1(a)) and
listed in Table I.

Uc = -∑ (Valid minterms (f=1) in the Logic Compatibility
Function (Fig 1(c)))

 = - [x₀'x₁'x₅'x₆ + x₀'x₁'x₅x₆ + x₀'x₁x₅'x₆ + x₀'x₁x₅x₆ +
x₀x₁'x₅'x₆ + x₀x₁'x₅x₆ + x₀x₁x₅'x₆ + x₀x₁x₅x₆']

= - [x₀'x₁'x₆ (x₅ + x₅') + x₀'x₁x₆ (x₅ + x₅') + x₀x₁'x₆ (x₅ + x₅')
+ x₀x₁x₅'x₆ + x₀x₁x₅x₆']

= - [x₀'x₁'x₆ + x₀'x₁x₆ + x₀x₁'x₆ + x₀x₁x₅'x₆ + x₀x₁x₅x₆']
= - [x₀'x₆ (x₁' + x₁) + x₀x₁'x₆ + x₀x₁ (x₅'x₆ + x₅x₆')]
= - [(1-x₀)x₆ + x₀x₆(1-x₁) + x₀x₁(x₆(1-x₅) + x₅(1-x₆))]
= - [x₆ + x₀x₁x₅ - 2x₀x₁x₅x₆]
= 2x₀x₁x₅x₆ - x₀x₁x₅ - x₆

TABLE I

CLIQUE ENERGY FUNCTIONS FOR NOT AND NOR GATES
NOT 1 Uc = 2x₃x₄ - x₃ - x₄
NOR Uc = x₂x₄ + 2x₄x₅ + 2x₂x₅ – 2x₂x₄x₅ – x₂ – x₄ -x₅
NOT 2 Uc = 2x₆x7 – x₆ - x7

(a)

(b)

x₀ x₁ x₅ x₆ f
0 0 0 1 1
0 0 0 0 0
0 0 1 1 1
0 0 1 0 0
0 1 0 1 1
0 1 0 0 0
0 1 1 1 1
0 1 1 0 0
1 0 0 1 1
1 0 0 0 0
1 0 1 1 1
1 0 1 0 0
1 1 0 1 1
1 1 0 0 0
1 1 1 0 1
1 1 1 1 0

(c)

Fig. 1 (a) A sample logic circuit (b) Its Dependence Graph
(c) Logic Compatibility Function for NAND

Now, computing joint probability,
P (x₀,x₁,x₂,x₃,x₄,x₅,x₆,x7) = (1/Z). (e-Uc(NOT 1)/ kT. e-Uc(NAND)/ kT.

e-Uc(NOR)/ kT. e-Uc(NOT 2)/ kT)
= (1/Z).exp [(x₂ + x₃ + 2x₄ + x₅ +

2x₆ + x7 - x₂x₄ - 2x₂x₅ - 2x₃x₄ -
2x₄x₅ - 2x₆x7+ x₀x₁x₅ + 2x₂x₄x₅ -

2x₀x₁x₅x₆)/ kT]

Following the joint probability calculation, we need to

determine the node label combinations that maximize its value.
The simplified form of P(x0,x1,….,x7) shows that its value
would be maximum when the power of the exponential will be
maximum. i.e. for maximum value of numerator of the power (
x₂ + x₃ + 2x₄ + x₅ + 2x₆ + x7 - x₂x₄ - 2x₂x₅ - 2x₃x₄ - 2x₄x₅ -
2x₆x7+ x₀x₁x₅ + 2x₂x₄x₅ - 2x₀x₁x₅x₆).

We used MATLAB to determine the value of this power’s
numerator for its 256 (=28) possible node combinations. We
have observed that the maximum value of the numerator is ‘4’
and it exists for 16 combinations of node labels shown in Table
II. These combinations are the same as the 16 combinations of
this circuit’s truth table, which shows that the joint probability
is maximum only for correct logic combinations. For the rest
of the combinations, its value is always lower.

TABLE II
NODE COMBINATIONS HAVING MAXIMUM JOINT PROBABILITY

x₀ x₁ x₂ x₃ x₄ x₅ x₆ x7
0 0 1 1 0 0 1 0
0 1 1 1 0 0 1 0
1 0 1 1 0 0 1 0
1 1 1 1 0 0 1 0
0 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0
1 0 0 0 1 0 1 0
1 1 0 0 1 0 1 0
0 0 1 0 1 0 1 0
0 1 1 0 1 0 1 0
1 0 1 0 1 0 1 0
1 1 1 0 1 0 1 0
0 0 0 1 0 1 1 0
0 1 0 1 0 1 1 0
1 0 0 1 0 1 1 0
1 1 0 1 0 1 0 1

A. Design Principle of Joint Probability
From the joint probability analysis, we have concluded that

for the perfect logic operation of a circuit i.e. with no errors at
any nodes of the circuit; we need to design our circuit, as such
to ensure at all times, that the joint probability of the circuit
remains maximum.

III. COMPUTING MARGINAL PROBABILITY
We will do this analysis on the same test circuit that we used

for joint probability case. We assume that all the inputs are
equally likely to be in logic state ‘0’ or ‘1’. For computing the
probability of the hidden (intermediate and output) nodes, we
use belief propagation algorithm (outline provided in [10]). We
would show the steps of this algorithm with implementation on
our test circuit.

The first step is to assign Probability Distribution Functions
(PDF) to all inputs and cliques as shown in Table III. In the
process of computing marginal probability of output (x7), we
will be calculating the probabilities of all the intermediate
nodes too (x4, x5 and x6). (Note: Initially p(x7) = f0 f1 f2 f3 f4 f5
f6 f7). We will start from eliminating inputs followed by
intermediate nodes until we reach the output node. In
eliminating one node, two of the functions of that node
eliminate and one new function forms. So, for each step, one
function from p(x7) decreases unless we are left with only one
function which would be dependent only on x7. All the
normalization constants (Zn) are selected as to keep the value
of the marginal probability between ‘0’ and ‘1’. Re-using the
clique energy functions calculated in section II, we have
shown the algorithm steps in Table IV.

TABLE III

PDF FOR I/PS AND CLIQUES
Input PDF Clique PDF

x0 f0 (s0) {x3,x4} f4 (x3,x4)
x1 f1 (s1) {x2,x4,x5} f5 (x2,x4,x5)
x2 f2 (s2) {x0,x1,x5,x6} f6 (x0,x1,x5,x6)
x3 f3 (s3) {x6,x7} f7 (x6,x7)

TABLE IV
BELIEF PROPAGATION ALGORITHM STEPS

Step 1: Eliminate x3

Eliminated: f3 (s3), f4 (x3, x4)
New: f8 (x4)

p(x4) =∑ (1/Z1) e-Uc (NOT 1)/ kT

 x3 Є (0,1)

=(1/Z1)(ex4/kT+e(1-x4) /kT)
= f8 (x4)

 p(x7) = f0 f1 f2 f5 f6 f7 f8

Step 2: Eliminate x2

Eliminated: f2 (s2),
 f5 (x2.x4,x5)
New: f9 (x4,x5)

p(x5|x4)=∑(1/Z2) e-Uc (NOR) / kT
 x2 Є (0,1)

= (1/Z2)(e(x4+x5-2x4x5) /kT
+ e(1-x5) /kT)

= f9 (x4,x5)
 p(x7) = f0 f1f6 f7 f8 f9

Step 3: Eliminate x4

Eliminated: f8 (x4), f9 (x4,x5)
New: f10 (x5)

p(x5)=∑(1/Z3)[p(x5|x4)* p(x4)]
 x4 Є (0,1)

 =(1/Z3)(ex5 /kT+3e(1-x5) /kT

+ e(1+x5) /kT + 3e(2-x5) /kT)
= f10 (x5)

 p(x7) = f0 f1f6 f7 f10

Step 4: Eliminate x0

Eliminated: f0 (s0),

f6 (x0,x1,x5,x6)
New: f11 (x1,x5,x6)

p(x6|x1,x5) =∑(1/Z4) e-Uc (NAND)

/kT
 x0 Є (0,1)

 = (1/Z4) (e(x6)/ kT +

e(x6+x1x5-2x1x5x6)/ kT)
= f11 (x1,x5,x6)

 p(x7) = f1f7 f10 f11

Step 5: Eliminate x1

Eliminated: f1 (s1),
 f11 (x1,x5,x6)
New: f12 (x5,x6)

p(x6|x5)=∑(1/Z5)f11 (x1,x5,x6)
 x1 Є (0,1)

=(1/Z5)(e(x5+x6-2x5x6)/kT
+ 3e(x6) /kT)

= f12 (x5,x6)
 p(x7) = f7 f10 f12

Step 6: Eliminate x5

Eliminated: f10 (x5),

f12 (x5,x6)
New: f13 (x6)

p(x6)=∑(1/Z6)[p(x6|x5)*p(x5)]
 x5 Є (0,1)

= (1/Z6) (28e(1+x6) /kT +
13e(x6) /kT +15e(2+x6) /kT
+ 3e(1-x6) /kT +4e(2-x6)/kT
+ e(3-x6) /kT)
= f13 (x6)

 p(x7) = f7 f13

Step 7: Eliminate x6

Eliminated: f7 (x6,x7), f13 (x6)
New: f14 (x7)

p(x7) = ∑ (1/Z7) [p(x7 | x6) * p(x6)]
 x6 Є (0,1)

= (1/Z7)(31e(1+x7)/kT +19e(2+x7) /kT+e(3+x7)/kT + 3e(1-x7)/kT
+17e(2-x7) /kT + 29e(3-x7) /kT+15e(4-x7) /kT)
= f14 (x7)

 p(x7) = f14

(a)

(b)

(c)

(d)

Fig. 2 Marginal probability graphs for (a) x4 (b) x5 (c) x6 (d) x7

In Fig. 2, we have shown probability graphs for all the
hidden and output nodes. The p(x4) graph shows that there is
an equal probability of getting either logic state ‘0’ or ‘1’
whereas the p(x7) graph shows that the probability of achieving
logic ‘0’ at this node is almost sixteen times the probability for
logic ‘1’. The probability of getting intermediate states
between ‘0’ and ‘1’ is negligible. By this analysis, we can
determine at any point in the network that whether it is more
probable of being at logic state ‘0’ or ‘1’. In Fig. 3, we can
observe that, by increasing temperature, the graph moves
upward and the probability of intermediate logic states start
increasing thus making logic circuit more probable of
achieving these states. And since in ideal case, the probability

Fig. 3 Marginal probability variation for x7

of intermediate states should be zero, the probability of error
increases in nano-computation.

A. Design Principle of Marginal Probability
The key to design a fault-tolerant circuit is to ensure a good

heat removal system for the integrated circuit which would
make the probability of intermediate states between ‘0’ and
‘1’ close to zero and maintain sufficient noise margin as well.

CONCLUSIONS AND FUTURE WORK
MRF is a design technique for nanoscale circuits that make

them work in highly noisy conditions provided the design
principles of joint and marginal Probability are followed. In
future, we will show how to use these principles for digital
hardware design.

REFERENCES
[1] Sumit Ahuja, Gaurav Singh, Debayan Bhaduri and Sandeep K. Shukla,

“Fault and Defect Tolerant Architectures for Nano-computing,” in Bio-
Inspired and Nanoscale Integrated Computing, Mary Eshaghian-Wilner,
Wiley, 2009.

[2] R. I. Bahar, J. Chen and J. Mundy, “A Probabilistic-Based Design for
Nanoscale Computation,” in Nano, Quantum and Molecular Computing:
Implications to High Level Design and Validation, Sandeep K. Shukla
and R.I. Bahar, Springer, 2004.

[3] Debayan Bhaduri and Sandeep Shukla, “Reliability Analysis of Fault-
Tolerant Reconfigurable Architectures,” FERMAT, Tech.rep. 2004-15,
2004.

[4] S. Z. Li, Markov Random Field Modeling in Computer Vision. Berlin:
Springer -Verlag, 1995.

[5] J. Besag, “Spatial interaction and the statistical analysis of lattice
systems,” Journal of the Royal Statistical Society, series B, vol. 36, No.
2, pp. 192-236, 1974.

[6] K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson and A. Zaslavsky,
“Designing Nanoscale Logic Circuits Based on Markov Random
Fields,” Journal of Electronic Testing: Theory and Applications, vol 23,
pp. 255–266, Jun 2007.

[7] “A ‘layman’s explanation of Marginal Distribution,” 2008. [Online]
Available: http://en.wikipedia.org/wiki/Marginal_probability.
[Accessed: Jun, 2009].

[8] J Yedidia, W. Freeman, and Y.Weiss, “Understanding belief
propagation and its generalizations,” in Exploring Artificial Intelligence
in the New Millennium, G. Lakemeyer and B. Nebel, Morgan
Kaufmann, 2003.

[9] I-Chyn Wey, You-Gang Chen, Changhong Yu, Jie Chen and An-Yeu
Wu, "A 0.13µm Hardware-Efficient Probabilistic-Based Noise-Tolerant
Circuit Design and Implementation with 24.5dB Noise-Immunity
Improvement," in Proc. IEEE Asian Solid-State Circuits Conf. (A-
SSCC-2007), Jeju, Korea, pp. 295-298, Nov 2007.

[10] Kundan Nepal, “Markov Random Field,” in Designing Reliable
Nanoscale Circuits Using Principles of Markov Random Fields, PhD
dissertation, Brown University, RI 02912, US, 2007.

