Fuzzy Control

Kevin M. Passino

Department of Electrical Engineering
The Ohio State University

Stephen Yurkovich

Department of Electrical Engineering
The Ohio State University

A
vy ADDISON-WESLEY

An Imprint of Addison-Wesley Longman, Inc.

Menlo Park, California ® Reading, Massachusetts ® Harlow, England ® Berkeley, California
Don Mills, Ontaria ® Sydney ® Bonn ® Amsterdam ® Mexico City

Assistant Editor: Laura Cheu

Editorial Assistant: Royden Tonomura
Senior Production Editor: Teri Hyde
Marketing Manager: Rob Merino
Manufacturing Supervisor: Janet Weaver
Art and Design Manager: Kevin Berry
Cover Design: Yvo Riezebos (technical drawing by K. Passino)
Text Design: Peter Vacek

Design Macro Writer: William Erik Bazter
Copyeditor: Brian Jones

Proofreader: Holly McLean-Aldis

Copyright © 1998 Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, or stored in a database
or retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the pub-
lisher. Printed in the United States of America. Printed simultaneously in Canada.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley was aware of a trademark claim, the designations have been printed in initial caps
or in all caps.

MATLAB is a registered trademark of The MathWorks, Inc.

Library of Congress Cataloging-in-Publication Data

Passino, Kevin M.

Fuzzy control / Kevin M. Passino and Stephen Yurkovich.

p. cm.

Includes bibliographical references and index.

ISBN 0-201-18074-X

1. Automatic control. 2. Control theory. 3. Fuzzy systems.

I. Yurkovich, Stephen. II. Title.

TJ213.P317 1997 97-14003
629.8’9--DC21 CIP

Instructional Material Disclaimer: The programs presented in this book have been
included for their instructional value. They have been tested with care but are not guaran-
teed for any particular purpose. Neither the publisher or the authors offer any warranties
or representations, nor do they accept any liabilities with respect to the programs.

About the Cover: An explanation of the technical drawing is given in Chapter 2 on
page 50.

ISBN 0-201-18074-X
123456789 10—CRW-—01 00 99 98 97

Addison Wesley Longman, Inc., 2725 Sand Hill Road, Menlo Park, California 94025

To Annie and Juliana (K.M.P)

To Tricia, B.J., and James

(S.Y.)

vi

Preface

Fuzzy control is a practical alternative for a variety of challenging control applica-
tions since it provides a convenient method for constructing nonlinear controllers
via the use of heuristic information. Such heuristic information may come from
an operator who has acted as a “human-in-the-loop” controller for a process. In
the fuzzy control design methodology, we ask this operator to write down a set of
rules on how to control the process, then we incorporate these into a fuzzy con-
troller that emulates the decision-making process of the human. In other cases, the
heuristic information may come from a control engineer who has performed exten-
sive mathematical modeling, analysis, and development of control algorithms for a
particular process. Again, such expertise is loaded into the fuzzy controller to au-
tomate the reasoning processes and actions of the expert. Regardless of where the
heuristic control knowledge comes from, fuzzy control provides a user-friendly for-
malism for representing and implementing the ideas we have about how to achieve
high-performance control.

In this book we provide a control-engineering perspective on fuzzy control.
We are concerned with both the construction of nonlinear controllers for challeng-
ing real-world applications and with gaining a fundamental understanding of the
dynamics of fuzzy control systems so that we can mathematically verify their prop-
erties (e.g., stability) before implementation. We emphasize engineering evaluations
of performance and comparative analysis with conventional control methods. We
introduce adaptive methods for identification, estimation, and control. We exam-
ine numerous examples, applications, and design and implementation case studies
throughout the text. Moreover, we provide introductions to neural networks, ge-
netic algorithms, expert and planning systems, and intelligent autonomous control,
and explain how these topics relate to fuzzy control.

Overall, we take a pragmatic engineering approach to the design, analysis,
performance evaluation, and implementation of fuzzy control systems. We are not
concerned with whether the fuzzy controller is “artificially intelligent” or with in-
vestigating the mathematics of fuzzy sets (although some of the exercises do), but

vii

viii

rather with whether the fuzzy control methodology can help solve challenging real-
world problems.

Overview of the Book

The book is basically broken into three parts. In Chapters 1-4 we cover the basics of
“direct” fuzzy control (i.e., the nonadaptive case). In Chapters 5-7 we cover adap-
tive fuzzy systems for estimation, identification, and control. Finally, in Chapter 8
we briefly cover the main areas of intelligent control and highlight how the topics
covered in this book relate to these areas. Overall, we largely focus on what one
could call the “heuristic approach to fuzzy control” as opposed to the more recent
mathematical focus on fuzzy control where stability analysis is a major theme.

In Chapter 1 we provide an overview of the general methodology for conven-
tional control system design. Then we summarize the fuzzy control system design
process and contrast the two. Next, we explain what this book is about via a simple
motivating example. In Chapter 2 we first provide a tutorial introduction to fuzzy
control via a two-input, one-output fuzzy control design example. Following this
we introduce a general mathematical characterization of fuzzy systems and study
their fundamental properties. We use a simple inverted pendulum example to illus-
trate some of the most widely used approaches to fuzzy control system design. We
explain how to write a computer program to simulate a fuzzy control system, using
either a high-level language or Matlab!. In the web and ftp pages for the book we
provide such code in C and Matlab. In Chapter 3 we use several case studies to
show how to design, simulate, and implement a variety of fuzzy control systems.
In these case studies we pay particular attention to comparative analysis with con-
ventional approaches. In Chapter 4 we show how to perform stability analysis of
fuzzy control systems using Lyapunov methods and frequency domain-based sta-
bility criteria. We introduce nonlinear analysis methods that can be used to predict
and eliminate steady-state tracking error and limit cycles. We then show how to
use the analysis approaches in fuzzy control system design. The overall focus for
these nonlinear analysis methods is on understanding fundamental problems that
can be encountered in the design of fuzzy control systems and how to avoid them.

In Chapter 5 we introduce the basic “function approximation problem” and
show how identification, estimation, prediction, and some control design problems
are a special case of it. We show how to incorporate heuristic information into the
function approximator. We show how to form rules for fuzzy systems from data pairs
and show how to train fuzzy systems from input-output data with least squares,
gradient, and clustering methods. And we show how one clustering method from
fuzzy pattern recognition can be used in conjunction with least squares methods to
construct a fuzzy model from input-output data. Moreover, we discuss hybrid ap-
proaches that involve a combination of two or more of these methods. In Chapter 6
we introduce adaptive fuzzy control. First, we introduce several methods for auto-
matically synthesizing and tuning a fuzzy controller, and then we illustrate their
application via several design and implementation case studies. We also show how

1. MATLAB is a registered trademark of The MathWorks, Inc.

to tune a fuzzy model of the plant and use the parameters of such a model in the
on-line design of a controller. In Chapter 7 we introduce fuzzy supervisory control.
We explain how fuzzy systems can be used to automatically tune proportional-
integral-derivative (PID) controllers, how fuzzy systems provide a methodology
for constructing and implementing gain schedulers, and how fuzzy systems can be
used to coordinate the application and tuning of conventional controllers. Follow-
ing this, we show how fuzzy systems can be used to tune direct and adaptive fuzzy
controllers. We provide case studies in the design and implementation of fuzzy
supervisory control.

In Chapter 8 we summarize our control engineering perspective on fuzzy control,
provide an overview of the other areas of the field of “intelligent control,” and
explain how these other areas relate to fuzzy control. In particular, we briefly cover
neural networks, genetic algorithms, knowledge-based control (expert systems and
planning systems), and hierarchical intelligent autonomous control.

Examples, Applications, and Design and Implementation Case Studies

We provide several design and implementation case studies for a variety of appli-
cations, and many examples are used throughout the text. The basic goals of these
case studies and examples are as follows:

® To help illustrate the theory.
® To show how to apply the techniques.
® To help illustrate design procedures in a concrete way.

® To show what practical issues are encountered in the development and implemen-
tation of a fuzzy control system.

Some of the more detailed applications that are studied in the chapters and their
accompanying homework problems are the following:

® Direct fuzzy control: Translational inverted pendulum, fuzzy decision-making sys-
tems, two-link flexible robot, rotational inverted pendulum, and machine schedul-
ing (Chapters 2 and 3 homework problems: translational inverted pendulum, au-
tomobile cruise control, magnetic ball suspension system, automated highway sys-
tem, single-link flexible robot, rotational inverted pendulum, machine scheduling,
motor control, cargo ship steering, base braking control system, rocket velocity
control, acrobot, and fuzzy decision-making systems).

® Nonlinear analysis: Inverted pendulum, temperature control, hydrofoil controller,
underwater vehicle control, and tape drive servo (Chapter 4 homework problems:
inverted pendulum, magnetic ball suspension system, temperature control, and
hydrofoil controller design).

® [uzzy identification and estimation: Engine intake manifold failure estimation,
and failure detection and identification for internal combustion engine calibra-
tion faults (Chapter 5 homework problems: tank identification, engine friction
estimation, and cargo ship failures estimation).

® Adaptive fuzzy control: Two-link flexible robot, cargo ship steering, fault toler-
ant aircraft control, magnetically levitated ball, rotational inverted pendulum,
machine scheduling, and level control in a tank (Chapter 6 homework problems:
tanker and cargo ship steering, liquid level control in a tank, rocket velocity con-
trol, base braking control system, magnetic ball suspension system, rotational
inverted pendulum, and machine scheduling).

® Supervisory fuzzy control: Two-link flexible robot, and fault-tolerant aircraft con-
trol (Chapter 7 homework problems: liquid level control, and cargo and tanker
ship steering).

Some of the applications and examples are dedicated to illustrating one idea from
the theory or one technique. Others are used in several places throughout the text
to show how techniques build on one another and compare to each other. Many of
the applications show how fuzzy control techniques compare to conventional control
methodologies.

World Wide Web Site and FTP Site: Computer Code Available
The following information is available electronically:

® Various versions of C and Matlab code for simulation of fuzzy controllers, fuzzy
control systems, adaptive fuzzy identification and estimation methods, and adap-
tive fuzzy control systems (e.g., for some examples and homework problems in
the text).

® Other special notes of interest, including an errata sheet if necessary.

You can access this information via the web site:
http://www.awl.com/cseng/titles/0-201-18074-X
or you can access the information directly via anonymous ftp to
ftp://ftp.aw.com/cseng/authors/passino/fc
For anonymous ftp, log into the above machine with a username “anonymous” and

use your e-mail address as a password.

Organization, Prerequisites, and Usage

Each chapter includes an overview, a summary, and a section “For Further Study”
that explains how the reader can continue study in the topical area of the chapter.
At the end of each chapter overview, we explain how the chapter is related to the

others. This includes an outline of what must be covered to be able to understand
the later chapters and what may be skipped on a first reading. The summaries at
the end of each chapter provide a list of all major topics covered in that chapter so
that it is clear what should be learned in each chapter.

Each chapter also includes a set of exercises or design problems and often both.
Exercises or design problems that are particularly challenging (considering how far
along you are in the text) or that require you to help define part of the problem are
designated with a star (“x”) after the title of the problem. In addition to helping
to solidify the concepts discussed in the chapters, the problems at the ends of
the chapters are sometimes used to introduce new topics. We require the use of
computer-aided design (CAD) for fuzzy controllers in many of the design problems
at the ends of the chapters (e.g., via the use of Matlab or some high-level language).

The necessary background for the book includes courses on differential equa-
tions and classical control (root locus, Bode plots, Nyquist theory, lead-lag com-
pensation, and state feedback concepts including linear quadratic regulator design).
Courses on nonlinear stability theory and adaptive control would be helpful but
are not necessary. Hence, much of the material can be covered in an undergraduate
course. For instance, one could easily cover Chapters 1-3 in an undergraduate course
as they require very little background besides a basic understanding of signals and
systems including Laplace and z-transform theory (one application in Chapter 3
does, however, require a cursory knowledge of the linear quadratic regulator). Also,
many parts of Chapters 5-7 can be covered once a student has taken a first course
in control (a course in nonlinear control would be helpful for Chapter 4 but is not
necessary). One could cover the basics of fuzzy control by adding parts of Chapter 2
to the end of a standard undergraduate or graduate course on control. Basically,
however, we view the book as appropriate for a first-level graduate course in fuzzy
control.

We have used the book for a portion (six weeks) of a graduate-level course on
intelligent control and for undergraduate independent studies and design projects.
In addition, portions of the text have been used for short courses and workshops on
fuzzy control where the focus has been directed at practicing engineers in industry.

Alternatively, the text could be used for a course on intelligent control. In this
case, the instructor could cover the material in Chapter 8 on neural networks and
genetic algorithms after Chapter 2 or 3, then explain their role in the topics covered
in Chapters 5, 6, and 7 while these chapters are covered. For instance, in Chapter 5
the instructor would explain how gradient and least squares methods can be used
to train neural networks. In Chapter 6 the instructor could draw analogies between
neural control via the radial basis function neural network and the fuzzy model
reference learning controller. Also, for indirect adaptive control, the instructor could
explain how, for instance, the multilayer perceptron or radial basis function neural
networks can be used as the nonlinearity that is trained to act like the plant. In
Chapter 7 the instructor could explain how neural networks can be trained to serve
as gain schedulers. After Chapter 7 the instructor could then cover the material on
expert control, planning systems, and intelligent autonomous control in Chapter 8.
Many more details on strategies for teaching the material in a fuzzy or intelligent

Xi

Xil

control course are given in the instructor’s manual, which is described below.

Engineers and scientists working in industry will find that the book will serve
nicely as a “handbook” for the development of fuzzy control systems, and that the
design, simulation, and implementation case studies will provide very good insights
into how to construct fuzzy controllers for specific applications. Researchers in
academia and elsewhere will find that this book will provide an up-to-date view
of the field, show the major approaches, provide good references for further study,
and provide a nice outlook for thinking about future research directions.

Instructor’'s Manual

An Instructor’s Manual to accompany this textbook is available (to instructors only)
from Addison Wesley Longman. The Instructor’s Manual contains the following:

Strategies for teaching the material.

Solutions to end-of-chapter exercises and design problems.

A description of a laboratory course that has been taught several times at The
Ohio State University which can be run in parallel with a lecture course that is
taught out of this book.

An electronic appendix containing the computer code (e.g., C and Matlab code)
for solving many exercises and design problems.

Sales Specialists at Addison Wesley Longman will make the instructor’s manual
available to qualified instructors. To find out who your Addison Wesley Longman
Sales Specialist is please see the web site:

http://www.aw.com/cseng/
or send an email to:

cseng@aw.com

Feedback on the Book

It is our hope that we will get the opportunity to correct any errors in this book;
hence, we encourage you to provide a precise description of any errors you may
find. We are also open to your suggestions on how to improve the textbook. For
this, please use either e-mail (passino@ee.eng.ohio-state.edu) or regular mail to the
first author: Kevin M. Passino, Dept. of Electrical Engineering, The Ohio State
University, 2015 Neil Ave., Columbus, OH 43210-1272.

Acknowledgments

No book is written in a vacuum, and this is especially true for this one. We must
emphasize that portions of the book appeared in earlier forms as conference pa-
pers, journal papers, theses, or project reports with our students here at Ohio

State. Due to this fact, these parts of the text are sometimes a combination of our
words and those of our students (which are very difficult to separate at times).
In every case where we use such material, the individuals have given us permis-
sion to use it, and we provide the reader with a reference to the original source
since this will typically provide more details than what are covered here. While
we always make it clear where the material is taken from, it is our pleasure to
highlight these students’ contributions here as well. In particular, we drew heavily
from work with the following students and papers written with them (in alpha-
betical order): Anthony Angsana [4], Scott C. Brown [27], David L. Jenkins [83],
Waihon Andrew Kwong [103, 104, 144], Eric G. Laukonen [107, 104], Jeffrey R.
Layne [110, 113, 112, 114, 111], William K. Lennon [118], Sashonda R. Morris
[143], Vivek G. Moudgal [145, 144], Jeffrey T. Spooner [200, 196], and Moeljono
Widjaja [235, 244]. These students, and Mehmet Akar, Mustafa K. Guven, Min-
Hsiung Hung, Brian Klinehoffer, Duane Marhefka, Matt Moore, Hazem Nounou,
Jeff Palte, and Jerry Troyer helped by providing solutions to several of the exer-
cises and design problems and these are contained in the instructor’s manual for this
book. Manfredi Maggiore helped by proofreading the manuscript. Scott C. Brown
and Raul Ordoénez assisted in the development of the associated laboratory course
at OSU.

We would like to gratefully acknowledge the following publishers for giving us
permission to use figures that appeared in some of our past publications: The In-
stitute of Electrical and Electronic Engineers (IEEE), John Wiley and Sons, Hemi-
sphere Publishing Corp., and Kluwer Academic Publishers. In each case where we
use a figure from a past publication, we give the full reference to the original pa-
per, and indicate in the caption of the figure that the copyright belongs to the
appropriate publisher (via, e.g., “© IEEE”).

We have benefited from many technical discussions with many colleagues who
work in conventional and intelligent control (too many to list here); most of these
persons are mentioned by referencing their work in the bibliography at the end of
the book. We would, however, especially like to thank Zhigiang Gao and Oscar R.
Gonzélez for class-testing this book. Moreover, thanks go to the following persons
who reviewed various earlier versions of the manuscript: D. Aaronson, M.A. Abidj,
S.P. Colombano, Z. Gao, O. Gonzélez, A.S. Hodel, R. Langari, M.S. Stachowicz,
and G. Vachtsevanos.

We would like to acknowledge the financial support of National Science Foun-
dation grants IRI-9210332 and EEC-9315257, the second of which was for the de-
velopment of a course and laboratory for intelligent control. Moreover, we had
additional financial support from a variety of other sponsors during the course of
the development of this textbook, some of whom gave us the opportunity to apply
some of the methods in this text to challenging real-world applications, and others
where one or both of us gave a course on the topics covered in this book. These
sponsors include Air Products and Chemicals Inc., Amoco Research Center, Bat-
telle Memorial Institute, Delphi Chassis Division of General Motors, Ford Motor
Company, General Electric Aircraft Engines, The Center for Automotive Research
(CAR) at The Ohio State University, The Center for Intelligent Transportation

xiii

Xiv

Research (CITR) at The Ohio State University, and The Ohio Aerospace Institute
(in a teamed arrangement with Rockwell International Science Center and Wright
Laboratories).

We would like to thank Tim Cox, Laura Cheu, Royden Tonomura, Teri Hyde,
Rob Merino, Janet Weaver, Kevin Berry, Yvo Riezebos, Peter Vacek, William Erik
Baxter, Brian Jones, and Holly McLean-Aldis for all their help in the production
and editing of this book. Finally, we would most like to thank our wives, who have
helped set up wonderful supportive home environments that we value immensely.

Kevin Passino
Steve Yurkovich
Columbus, Ohio
July 1997

Contents

PREFACE vii

CHAPTER 1 / Introduction 1
1.1 Overview 1

1.2 Conventional Control System Design 3

1.2.1 Mathematical Modeling 3

1.2.2 Performance Objectives and Design Constraints 5
1.2.3 Controller Design 7

1.2.4 Performance Evaluation 8

1.3 Fuzzy Control System Design 10

1.3.1 Modeling Issues and Performance Objectives 12
1.3.2 Fuzzy Controller Design 12

1.3.3 Performance Evaluation 13

1.3.4 Application Areas 14

1.4 What This Book Is About 14

1.4.1 What the Techniques Are Good For: An Example 15
1.4.2 Objectives of This Book 17

1.5 Summary 18
1.6 For Further Study 19
1.7 Exercises 19

CHAPTER 2 / Fuzzy Control: The Basics 23
2.1 Overview 23

2.2 Fuzzy Control: A Tutorial Introduction 24

2.2.1 Choosing Fuzzy Controller Inputs and Outputs 26
2.2.2 Putting Control Knowledge into Rule-Bases 27

XV

xvi CONTENTS

2.3

2.4

25

2.6

2.7
2.8
2.9
2.10

2.2.3 Fuzzy Quantification of Knowledge 32

2.2.4 Matching: Determining Which Rules to Use 37
2.2.5 Inference Step: Determining Conclusions 42

2.2.6 Converting Decisions into Actions 44

2.2.7 Graphical Depiction of Fuzzy Decision Making 49
2.2.8 Visualizing the Fuzzy Controller's Dynamical Operation
General Fuzzy Systems 51

2.3.1 Linguistic Variables, Values, and Rules 52

2.3.2 Fuzzy Sets, Fuzzy Logic, and the Rule-Base 55
2.3.3 Fuzzification 61

2.3.4 The Inference Mechanism 62

2.3.5 Defuzzification 65

2.3.6 Mathematical Representations of Fuzzy Systems 69
2.3.7 Takagi-Sugeno Fuzzy Systems 73

2.3.8 Fuzzy Systems Are Universal Approximators 77
Simple Design Example: The Inverted Pendulum 77

2.4.1 Tuning via Scaling Universes of Discourse 78
2.4.2 Tuning Membership Functions 83

2.4.3 The Nonlinear Surface for the Fuzzy Controller 87
2.4.4 Summary: Basic Design Guidelines 89

Simulation of Fuzzy Control Systems 91

2.5.1 Simulation of Nonlinear Systems 91

2.5.2 Fuzzy Controller Arrays and Subroutines 94

2.5.3 Fuzzy Controller Pseudocode 95

Real-Time Implementation Issues 97

2.6.1 Computation Time 97

2.6.2 Memory Requirements 98

Summary 99

For Further Study 101

Exercises 101

Design Problems 110

CHAPTER 3 / Case Studies in Design and Implementation 119

3.1
3.2
3.3

3.4

Overview 119

Design Methodology 122

Vibration Damping for a Flexible Robot 124
3.3.1 The Two-Link Flexible Robot 125
3.3.2 Uncoupled Direct Fuzzy Control 129
3.3.3 Coupled Direct Fuzzy Control 134
Balancing a Rotational Inverted Pendulum 142
3.4.1 The Rotational Inverted Pendulum 142

50

35

3.6

3.7
3.8
3.9
3.10

CONTENTS

3.4.2 A Conventional Approach to Balancing Control 144
3.4.3 Fuzzy Control for Balancing 145

Machine Scheduling 152

3.5.1 Conventional Scheduling Policies 153
3.5.2 Fuzzy Scheduler for a Single Machine 156
3.5.3 Fuzzy Versus Conventional Schedulers 158

Fuzzy Decision-Making Systems 161

3.6.1 Infectious Disease Warning System 162
3.6.2 Failure Warning System for an Aircraft 166

Summary 168
For Further Study 169
Exercises 170
Design Problems 172

CHAPTER 4 / Nonlinear Analysis 187

4.1
4.2

43

4.4

4.5

4.6

4.7
4.8
4.9
4.10

Overview 187

Parameterized Fuzzy Controllers 189

4.2.1 Proportional Fuzzy Controller 190

4.2.2 Proportional-Derivative Fuzzy Controller 191
Lyapunov Stability Analysis 193

4.3.1 Mathematical Preliminaries 193

4.3.2 Lyapunov's Direct Method 195

4.3.3 Lyapunov's Indirect Method 196

4.3.4 Example: Inverted Pendulum 197

4.3.5 Example: The Parallel Distributed Compensator 200
Absolute Stability and the Circle Criterion 204

4.4.1 Analysis of Absolute Stability 204

4.42 Example: Temperature Control 208

Analysis of Steady-State Tracking Error 210

4.5.1 Theory of Tracking Error for Nonlinear Systems 211
4.5.2 Example: Hydrofoil Controller Design 213
Describing Function Analysis 214

4.6.1 Predicting the Existence and Stability of Limit Cycles 214
4.6.2 SISO Example: Underwater Vehicle Control System 218
4.6.3 MISO Example: Tape Drive Servo 219

Limitations of the Theory 220
Summary 222

For Further Study 223
Exercises 225

XVil

XViii

CONTENTS

4.11

Design Problems 228

CHAPTER 5 / Fuzzy ldentification and Estimation 233

5.1
5.2

5.3

5.4

55

5.6

57
5.8

5.9

5.10
5.11
5.12

Overview 233

Fitting Functions to Data 235

5.2.1 The Function Approximation Problem 235

5.2.2 Relation to Identification, Estimation, and Prediction 238
5.2.3 Choosing the Data Set 240

5.2.4 Incorporating Linguistic Information 241

5.2.5 Case Study: Engine Failure Data Sets 243

Least Squares Methods 248

5.3.1 Batch Least Squares 248

5.3.2 Recursive Least Squares 252

5.3.3 Tuning Fuzzy Systems 255

5.3.4 Example: Batch Least Squares Training of Fuzzy Systems 257
5.3.5 Example: Recursive Least Squares Training of Fuzzy Systems 259
Gradient Methods 260

5.4.1 Training Standard Fuzzy Systems 260

5.4.2 Implementation Issues and Example 264

5.4.3 Training Takagi-Sugeno Fuzzy Systems 266

5.4.4 Momentum Term and Step Size 269

5.45 Newton and Gauss-Newton Methods 270

Clustering Methods 273

5.5.1 Clustering with Optimal Output Predefuzzification 274
5.5.2 Nearest Neighborhood Clustering 279

Extracting Rules from Data 282

5.6.1 Learning from Examples (LFE) 282

5.6.2 Modified Learning from Examples (MLFE) 285

Hybrid Methods 291

Case Study: FDI for an Engine 292

5.8.1 Experimental Engine and Testing Conditions 293
5.8.2 Fuzzy Estimator Construction and Results 294
5.8.3 Failure Detection and Identification (FDI) Strategy 297

Summary 301
For Further Study 302
Exercises 303
Design Problems 311

CONTENTS

CHAPTER 6 / Adaptive Fuzzy Control 317

6.1
6.2

6.3

6.4

6.5

6.6

6.7
6.8
6.9
6.10

Overview 317

Fuzzy Model Reference Learning Control (FMRLC) 319
6.2.1 The Fuzzy Controller 320

6.2.2 The Reference Model 324

6.2.3 The Learning Mechanism 325

6.2.4 Alternative Knowledge-Base Modifiers 329

6.2.5 Design Guidelines for the Fuzzy Inverse Model 330
FMRLC: Design and Implementation Case Studies 333
6.3.1 Cargo Ship Steering 333

6.3.2 Fault-Tolerant Aircraft Control 347

6.3.3 Vibration Damping for a Flexible Robot 357
Dynamically Focused Learning (DFL) 364

6.4.1 Magnetic Ball Suspension System: Motivation for DFL 365
6.4.2 Auto-Tuning Mechanism 377

6.4.3 Auto-Attentive Mechanism 379

6.4.4 Auto-Attentive Mechanism with Memory 384
DFL: Design and Implementation Case Studies 388

6.5.1 Rotational Inverted Pendulum 388

6.5.2 Adaptive Machine Scheduling 390

Indirect Adaptive Fuzzy Control 394

6.6.1 On-Line Identification Methods 394

6.6.2 Adaptive Control for Feedback Linearizable Systems 395
6.6.3 Adaptive Parallel Distributed Compensation 397
6.6.4 Example: Level Control in a Surge Tank 398
Summary 402

For Further Study 405

Exercises 406

Design Problems 407

CHAPTER 7 / Fuzzy Supervisory Control 413

7.1
7.2

7.3

Overview 413

Supervision of Conventional Controllers 415

7.2.1 Fuzzy Tuning of PID Controllers 415

7.2.2 Fuzzy Gain Scheduling 417

7.2.3 Fuzzy Supervision of Conventional Controllers 421
Supervision of Fuzzy Controllers 422

7.3.1 Rule-Base Supervision 422

7.3.2 Case Study: Vibration Damping for a Flexible Robot 423
7.3.3 Supervised Fuzzy Learning Control 427

XiX

xx CONTENTS

7.4
7.5
7.6

7.3.4 Case Study: Fault-Tolerant Aircraft Control 429
Summary 435

For Further Study 436

Design Problems 437

CHAPTER 8 / Perspectives on Fuzzy Control 439

8.1
8.2

8.3

8.4

8.5

8.6

8.7

8.8
8.9

Overview 439

Fuzzy Versus Conventional Control 440

8.2.1 Modeling Issues and Design Methodology 440

8.2.2 Stability and Performance Analysis 442

8.2.3 Implementation and General Issues 443

Neural Networks 444

8.3.1 Multilayer Perceptrons 444

8.3.2 Radial Basis Function Neural Networks 447

8.3.3 Relationships Between Fuzzy Systems and Neural Networks 449
Genetic Algorithms 451

8.4.1 Genetic Algorithms: A Tutorial 451

8.4.2 Genetic Algorithms for Fuzzy System Design and Tuning 458
Knowledge-Based Systems 461

8.5.1 Expert Control 461

8.5.2 Planning Systems for Control 462

Intelligent and Autonomous Control 463

8.6.1 What Is "Intelligent Control”? 464

8.6.2 Architecture and Characteristics 465

8.6.3 Autonomy 467

8.6.4 Example: Intelligent Vehicle and Highway Systems 468

Summary 471
For Further Study 472

Exercises 472

BIBLIOGRAPHY 477

INDEX 495

C HHEAP=TE R—7="

Introduction

It is not only old and early impressions
that deceive us; the charms of novelty
have the same power.

—Blaise Pascal

1.1 Overview

When confronted with a control problem for a complicated physical process, a
control engineer generally follows a relatively systematic design procedure. A simple
example of a control problem is an automobile “cruise control” that provides the
automobile with the capability of regulating its own speed at a driver-specified
set-point (e.g., 55 mph). One solution to the automotive cruise control problem
involves adding an electronic controller that can sense the speed of the vehicle via
the speedometer and actuate the throttle position so as to regulate the vehicle speed
as close as possible to the driver-specified value (the design objective). Such speed
regulation must be accurate even if there are road grade changes, head winds, or
variations in the number of passengers or amount of cargo in the automobile.

After gaining an intuitive understanding of the plant’s dynamics and establish-
ing the design objectives, the control engineer typically solves the cruise control
problem by doing the following:

1. Developing a model of the automobile dynamics (which may model vehicle and
power train dynamics, tire and suspension dynamics, the effect of road grade
variations, etc.).

2. Using the mathematical model, or a simplified version of it, to design a con-
troller (e.g., via a linear model, develop a linear controller with techniques from
classical control).

2 Chapter 1 / Introduction

3. Using the mathematical model of the closed-loop system and mathematical
or simulation-based analysis to study its performance (possibly leading to re-
design).

4. Implementing the controller via, for example, a microprocessor, and evaluating
the performance of the closed-loop system (again, possibly leading to redesign).

This procedure is concluded when the engineer has demonstrated that the con-
trol objectives have been met, and the controller (the “product”) is approved for
manufacturing and distribution.

In this book we show how the fuzzy control design methodology can be used
to construct fuzzy controllers for challenging real-world applications. As opposed
to “conventional” control approaches (e.g., proportional-integral-derivative (PID),
lead-lag, and state feedback control) where the focus is on modeling and the use of
this model to construct a controller that is described by differential equations, in
fuzzy control we focus on gaining an intuitive understanding of how to best control
the process, then we load this information directly into the fuzzy controller.

For instance, in the cruise control example we may gather rules about how to
regulate the vehicle’s speed from a human driver. One simple rule that a human
driver may provide is “If speed is lower than the set-point, then press down fur-
ther on the accelerator pedal.” Other rules may depend on the rate of the speed
error increase or decrease, or may provide ways to adapt the rules when there are
significant plant parameter variations (e.g., if there is a significant increase in the
mass of the vehicle, tune the rules to press harder on the accelerator pedal). For
more challenging applications, control engineers typically have to gain a very good
understanding of the plant to specify complex rules that dictate how the controller
should react to the plant outputs and reference inputs.

Basically, while differential equations are the language of conventional control,
heuristics and “rules” about how to control the plant are the language of fuzzy
control. This is not to say that differential equations are not needed in the fuzzy
control methodology. Indeed, one of the main focuses of this book will be on how
“conventional” the fuzzy control methodology really is and how many ideas from
conventional control can be quite useful in the analysis of this new class of control
systems.

In this chapter we first provide an overview of the standard approach to con-
structing a control system and identify a wide variety of relevant conventional con-
trol ideas and techniques (see Section 1.2). We assume that the reader has at least
some familiarity with conventional control. Our focus in this book is not only on
introducing a variety of approaches to fuzzy control but also on comparing these to
conventional control approaches to determine when fuzzy control offers advantages
over conventional methods. Hence, to fully understand this book you need to un-
derstand several ideas from conventional control (e.g., classical control, state-space
based design, the linear quadratic regulator, stability analysis, feedback lineariza-
tion, adaptive control, etc.). The reader not familiar with conventional control to
this extent will still find the book quite useful. In fact, we expect to whet the

1.2 Conventional Control System Design

appetite of such readers so that they become interested in learning more about
conventional control. At the end of this chapter we will provide a list of books that
can serve to teach such readers about these areas.

Following our overview of conventional control, in Section 1.3 we outline a
“philosophy” of fuzzy control where we explain the design methodology for fuzzy
controllers, relate this to the conventional control design methodology, and highlight
the importance of analysis and verification of the behavior of closed-loop fuzzy
control systems.

We highly recommend that you take the time to study this chapter (even if you
already understand conventional control or even the basics of fuzzy control) as it
will set the tone for the remainder of the book and provide a sound methodology
for approaching the sometimes “overhyped” field of fuzzy control. Moreover, in
Section 1.4 we provide a more detailed overview of this book than we provided in
the Preface, and you will find this useful in deciding what topics to study closely
and which ones you may want to skip over on a first reading.

1.2 Conventional Control System Design

A Dbasic control system is shown in Figure 1.1. The process (or “plant”) is the
object to be controlled. Its inputs are u(t), its outputs are y(t), and the reference
input is 7(¢). In the cruise control problem, w(t) is the throttle input, y(t) is the
speed of the vehicle, and r(t) is the desired speed that is specified by the driver.
The plant is the vehicle itself. The controller is the computer in the vehicle that
actuates the throttle based on the speed of the vehicle and the desired speed that
was specified. In this section we provide an overview of the steps taken to design
the controller shown in Figure 1.1. Basically, these are modeling, controller design,
and performance evaluation.

FIGURE 1.1 Control system.

1.2.1 Mathematical Modeling

When a control engineer is given a control problem, often one of the first tasks that
she or he undertakes is the development of a mathematical model of the process to
be controlled, in order to gain a clear understanding of the problem. Basically, there
are only a few ways to actually generate the model. We can use first principles of

3

4 Chapter 1 / Introduction

physics (e.g., F' = ma) to write down a model. Another way is to perform “system
identification” via the use of real plant data to produce a model of the system.
Sometimes a combined approach is used where we use physics to write down a
general differential equation that we believe represents the plant behavior, and
then we perform experiments on the plant to determine certain model parameters
or functions.

Often, more than one mathematical model is produced. A “truth model” is one
that is developed to be as accurate as possible so that it can be used in simulation-
based evaluations of control systems. It must be understood, however, that there
is never a perfect mathematical model for the plant. The mathematical model is
an abstraction and hence cannot perfectly represent all possible dynamics of any
physical process (e.g., certain noise characteristics or failure conditions). This is
not to say that we cannot produce models that are “accurate enough” to closely
represent the behavior of a physical system. Usually, control engineers keep in mind
that for control design they only need to use a model that is accurate enough to
be able to design a controller that will work. Then, they often also need a very
accurate model to test the controller in simulation (e.g., the truth model) before
it is tested in an experimental setting. Hence, lower-order “design models” are
also often developed that may satisfy certain assumptions (e.g., linearity or the
inclusion of only certain forms of nonlinearities) yet still capture the essential plant
behavior. Indeed, it is quite an art (and science) to produce good low-order models
that satisfy these constraints. We emphasize that the reason we often need simpler
models is that the synthesis techniques for controllers often require that the model
of the plant satisfy certain assumptions (e.g., linearity) or these methods generally
cannot be used.

Linear models such as the one in Equation (1.1) have been used extensively in
the past and the control theory for linear systems is quite mature.

& = Ax + Bu (1.1)
y=Cz+ Du
In this case v is the m-dimensional input; = is the n-dimensional state (& = dg;(tt));

y is the p dimensional output; and A, B, C, and D are matrices of appropriate
dimension. Such models, or transfer functions (G(s) = C(sI — A)~'B + D where
s is the Laplace variable), are appropriate for use with frequency domain design
techniques (e.g., Bode plots and Nyquist plots), the root-locus method, state-space
methods, and so on. Sometimes it is assumed that the parameters of the linear
model are constant but unknown, or can be perturbed from their nominal values
(then techniques for “robust control” or adaptive control are developed).

Much of the current focus in control is on the development of controllers using
nonlinear models of the plant of the form

= f(z,u) (1.2)

1.2 Conventional Control System Design

where the variables are defined as for the linear model and f and g are nonlinear
functions of their arguments. One form of the nonlinear model that has received
significant attention is

&= f(x) + g(x)u (1.3)

since it is possible to exploit the structure of this model to construct nonlinear con-
trollers (e.g., in feedback linearization or nonlinear adaptive control). Of particular
interest with both of the above nonlinear models is the case where f and g are not
completely known and subsequent research focuses on robust control of nonlinear
systems.

Discrete time versions of the above models are also used, and stochastic effects
are often taken into account via the addition of a random input or other stochastic
effects. Under certain assumptions you can linearize the nonlinear model in Equa-
tion (1.2) to obtain a linear one. In this case we sometimes think of the nonlinear
model as the truth model, and the linear models that are generated from it as con-
trol design models. We will have occasion to work with all of the above models in
this book.

There are certain properties of the plant that the control engineer often seeks
to identify early in the design process. For instance, the stability of the plant may
be analyzed (e.g., to see if certain variables remain bounded). The effects of certain
nonlinearities are also studied. The engineer may want to determine if the plant
is “controllable” to see, for example, if the control inputs will be able to properly
affect the plant; and “observable” to see, for example, if the chosen sensors will allow
the controller to observe the critical plant behavior so that it can be compensated
for, or if it is “nonminimum phase.” These properties will have a fundamental
impact on our ability to design effective controllers for the system. In addition,
the engineer will try to make a general assessment of how the plant behaves under
various conditions, how the plant dynamics may change over time, and what random
effects are present. Overall, this analysis of the plant’s behavior gives the control
engineer a fundamental understanding of the plant dynamics. This will be very
valuable when it comes time to synthesize a controller.

1.2.2 Performance Objectives and Design Constraints

Controller design entails constructing a controller to meet the specifications. Often
the first issue to address is whether to use open- or closed-loop control. If you
can achieve your objectives with open-loop control, why turn to feedback control?
Often, you need to pay for a sensor for the feedback information and there needs
to be justification for this cost. Moreover, feedback can destabilize the system. Do
not develop a feedback controller just because you are used to developing feedback
controllers; you may want to consider an open-loop controller since it may provide
adequate performance.

Assuming you use feedback control, the closed-loop specifications (or “perfor-
mance objectives”) can involve the following factors:

5

6 Chapter 1 / Introduction

Disturbance rejection properties (e.g., for the cruise control problem, that the
control system will be able to dampen out the effects of winds or road grade vari-
ations). Basically, the need for disturbance rejection creates the need for feedback
control over open-loop control; for many systems it is simply impossible to achieve
the specifications without feedback (e.g., for the cruise control problem, if you
had no measurement of vehicle velocity, how well could you regulate the velocity
to the driver’s set-point?).

Insensitivity to plant parameter variations (e.g., for the cruise control problem,
that the control system will be able to compensate for changes in the total mass
of the vehicle that may result from varying the numbers of passengers or the
amount of cargo).

Stability (e.g., in the cruise control problem, to guarantee that on a level road the
actual speed will converge to the desired set-point).

Rise-time (e.g., in the cruise control problem, a measure of how long it takes for
the actual speed to get close to the desired speed when there is a step change in
the set-point speed).

Overshoot (e.g., in the cruise control problem, when there is a step change in the
set-point, how much the speed will increase above the set-point).

Settling time (e.g., in the cruise control problem, how much time it takes for the
speed to reach to within 1% of the set-point).

Steady-state error (e.g., in the cruise control problem, if you have a level road,
can the error between the set-point and actual speed actually go to zero; or if
there is a long positive road grade, can the cruise controller eventually achieve
the set-point).

While these factors are used to characterize the technical conditions that indi-

cate whether or not a control system is performing properly, there are other issues
that must be considered that are often of equal or greater importance. These include
the following:

Cost: How much money will it take to implement the controller, or how much
time will it take to develop the controller?

Computational complexity: How much processor power and memory will it take
to implement the controller?

Manufacturability: Does your controller have any extraordinary requirements with
regard to manufacturing the hardware that is to implement it?

Reliability: Will the controller always perform properly? What is its “mean time
between failures?”

1.2 Conventional Control System Design

® Maintainability: Will it be easy to perform maintenance and routine adjustments
to the controller?

o Adaptability: Can the same design be adapted to other similar applications so
that the cost of later designs can be reduced? In other words, will it be easy to
modify the cruise controller to fit on different vehicles so that the development
can be done just once?

® Understandability: Will the right people be able to understand the approach to
control? For example, will the people that implement it or test it be able to fully
understand it?

® Politics: Is your boss biased against your approach? Can you sell your approach
to your colleagues? Is your approach too novel and does it thereby depart too
much from standard company practice?

Most often not only must a particular approach to control satisfy the basic
technical conditions for meeting the performance objectives, but the above issues
must also be taken into consideration — and these can often force the control
engineer to make some very practical decisions that can significantly affect how, for
example, the ultimate cruise controller is designed. It is important then that the
engineer has these issues in mind early in the design process.

1.2.3 Controller Design

Conventional control has provided numerous methods for constructing controllers
for dynamic systems. Some of these are listed below, and we provide a list of ref-
erences at the end of this chapter for the reader who is interested in learning more
about any one of these topics.

® Proportional-integral-derivative (PID) control: Over 90% of the controllers in op-
eration today are PID controllers (or at least some form of PID controller like a P
or PI controller). This approach is often viewed as simple, reliable, and easy to un-
derstand. Often, like fuzzy controllers, heuristics are used to tune PID controllers
(e.g., the Zeigler-Nichols tuning rules).

® (lassical control: Lead-lag compensation, Bode and Nyquist methods, root-locus
design, and so on.

® State-space methods: State feedback, observers, and so on.

® Optimal control: Linear quadratic regulator, use of Pontryagin’s minimum prin-
ciple or dynamic programming, and so on.

® Robust control: Hy or H, methods, quantitative feedback theory, loop shaping,
and so on.

7

8 Chapter 1 / Introduction

® Nonlinear methods: Feedback linearization, Lyapunov redesign, sliding mode con-
trol, backstepping, and so on.

® Adaptive control: Model reference adaptive control, self-tuning regulators, non-
linear adaptive control, and so on.

® Stochastic control: Minimum variance control, linear quadratic gaussian (LQG)
control, stochastic adaptive control, and so on.

® Discrete event systems: Petri nets, supervisory control, infinitesimal perturbation
analysis, and so on.

Basically, these conventional approaches to control system design offer a variety
of ways to utilize information from mathematical models on how to do good control.
Sometimes they do not take into account certain heuristic information early in the
design process, but use heuristics when the controller is implemented to tune it
(tuning is invariably needed since the model used for the controller development is
not perfectly accurate). Unfortunately, when using some approaches to conventional
control, some engineers become somewhat removed from the control problem (e.g.,
when they do not fully understand the plant and just take the mathematical model
as given), and sometimes this leads to the development of unrealistic control laws.
Sometimes in conventional control, useful heuristics are ignored because they do
not fit into the proper mathematical framework, and this can cause problems.

1.2.4 Performance Evaluation

The next step in the design process is to perform analysis and performance evalua-
tion. Basically, we need performance evaluation to test that the control system that
we design does in fact meet the closed-loop specifications (e.g., for “commissioning”
the control system). This can be particularly important in safety-critical applica-
tions such as a nuclear power plant control or in aircraft control. However, in some
consumer applications such as the control of a washing machine or an electric shaver,
it may not be as important in the sense that failures will not imply the loss of life
(just the possible embarrassment of the company and cost of warranty expenses),
so some of the rigorous evaluation methods can sometimes be ignored. Basically,
there are three general ways to verify that a control system is operating properly:
(1) mathematical analysis based on the use of formal models, (2) simulation-based
analysis that most often uses formal models, and (3) experimental investigations
on the real system.

Mathematical Analysis

In mathematical analysis you may seek to prove that the system is stable (e.g.,
stable in the sense of Lyapunov, asymptotically stable, or bounded-input bounded-
output (BIBO) stable), that it is controllable, or that other closed-loop specifica-
tions such as disturbance rejection, rise-time, overshoot, settling time, and steady-
state errors have been met. Clearly, however, there are several limitations to mathe-

1.2 Conventional Control System Design

matical analysis. First, it always relies on the accuracy of the mathematical model,
which is never a perfect representation of the plant, so the conclusions that are
reached from the analysis are in a sense only as accurate as the model that they
were developed from (the reader should never forget that mathematical analysis
proves that properties hold for the mathematical model, not for the real physical
system). And, second, there is a need for the development of analysis techniques for
even more sophisticated nonlinear systems since existing theory is somewhat lack-
ing for the analysis of complex nonlinear (e.g., fuzzy) control systems, particularly
when there are significant nonlinearities, a large number of inputs and outputs, and
stochastic effects. These limitations do not make mathematical analysis useless for
all applications, however. Often it can be viewed as one more method to enhance
our confidence that the closed-loop system will behave properly, and sometimes it
helps to uncover fundamental problems with a control design.

Simulation-Based Analysis

In simulation-based analysis we seek to develop a simulation model of the physical
system. This can entail using physics to develop a mathematical model and perhaps
real data can be used to specify some of the parameters of the model (e.g., via system
identification or direct parameter measurement). The simulation model can often
be made quite accurate, and you can even include the effects of implementation
considerations such as finite word length restrictions. As discussed above, often
the simulation model (“truth model”) will be more complex than the model that
is used for control design because this “design model” needs to satisfy certain
assumptions for the control design methodology to apply (e.g., linearity or linearity
in the controls). Often, simulations are developed on digital computers, but there
are occasions where an analog computer is still quite useful (particularly for real-
time simulation of complex systems or in certain laboratory settings).

Regardless of the approach used to develop the simulation, there are always
limitations on what can be achieved in simulation-based analysis. First, as with the
mathematical analysis, the model that is developed will never be perfectly accurate.
Also, some properties simply cannot be fully verified via simulation studies. For
instance, it is impossible to verify the asymptotic stability of an ordinary differential
equation via simulations since a simulation can only run for a finite amount of
time and only a finite number of initial conditions can be tested for these finite-
length trajectories. Basically, however, simulation-based studies can enhance our
confidence that properties of the closed-loop system hold, and can offer valuable
insights into how to redesign the control system before you spend time implementing
the control system.

Experimental Investigations

To conduct an experimental investigation of the performance of a control system,
you implement the control system for the plant and test it under various condi-
tions. Clearly, implementation can require significant resources (e.g., time, hard-
ware), and for some plants you would not even consider doing an implementation

9

10 Chapter 1 / Introduction

until extensive mathematical and simulation-based investigations have been per-
formed. However, the experimental evaluation does shed some light on some other
issues involved in control system design such as cost of implementation, reliability,
and perhaps maintainability. The limitations of experimental evaluations are, first,
problems with the repeatability of experiments, and second, variations in physical
components, which make the verification only approximate for other plants that
are manufactured at other times. On the other hand, experimental studies can go a
long way toward enhancing our confidence that the system will actually work since
if you can get the control system to operate, you will see one real example of how
it can perform.

Regardless of whether you choose to use one or all three of the above approaches
to performance evaluation, it is important to keep in mind that there are two basic
reasons we do such analysis. First, we seek to verify that the designed control system
will perform properly. Second, if it does not perform properly, then we hope that
the analysis will suggest a way to improve the performance so that the controller
can be redesigned and the closed-loop specifications met.

1.3 Fuzzy Control System Design

What, then, is the motivation for turning to fuzzy control? Basically, the difficult
task of modeling and simulating complex real-world systems for control systems
development, especially when implementation issues are considered, is well docu-
mented. Even if a relatively accurate model of a dynamic system can be developed,
it is often too complex to use in controller development, especially for many conven-
tional control design procedures that require restrictive assumptions for the plant
(e.g., linearity). It is for this reason that in practice conventional controllers are
often developed via simple models of the plant behavior that satisfy the necessary
assumptions, and via the ad hoc tuning of relatively simple linear or nonlinear
controllers. Regardless, it is well understood (although sometimes forgotten) that
heuristics enter the conventional control design process as long as you are concerned
with the actual implementation of the control system. It must be acknowledged,
moreover, that conventional control engineering approaches that use appropriate
heuristics to tune the design have been relatively successful. You may ask the fol-
lowing questions: How much of the success can be attributed to the use of the math-
ematical model and conventional control design approach, and how much should
be attributed to the clever heuristic tuning that the control engineer uses upon
implementation? And if we exploit the use of heuristic information throughout the
entire design process, can we obtain higher performance control systems?

Fuzzy control provides a formal methodology for representing, manipulating,
and implementing a human’s heuristic knowledge about how to control a system.
In this section we seek to provide a philosophy of how to approach the design of
fuzzy controllers. This will lead us to provide a motivation for, and overview of, the
entire book.

The fuzzy controller block diagram is given in Figure 1.2, where we show a
fuzzy controller embedded in a closed-loop control system. The plant outputs are

1.3 Fuzzy Control System Design

denoted by y(t), its inputs are denoted by u(t), and the reference input to the fuzzy
controller is denoted by r(¢).

Fuzzy controller

Inference =
Reference input § | mechanism fpl -S Inputs Outputs
g 8) 1)
k= i] > Process >
= o)

Rule-base

FIGURE 1.2 Fuzzy controller architecture.

The fuzzy controller has four main components: (1) The “rule-base” holds the
knowledge, in the form of a set of rules, of how best to control the system. (2)
The inference mechanism evaluates which control rules are relevant at the current
time and then decides what the input to the plant should be. (3) The fuzzification
interface simply modifies the inputs so that they can be interpreted and compared
to the rules in the rule-base. And (4) the defuzzification interface converts the
conclusions reached by the inference mechanism into the inputs to the plant.

Basically, you should view the fuzzy controller as an artificial decision maker
that operates in a closed-loop system in real time. It gathers plant output data y(t),
compares it to the reference input r(¢), and then decides what the plant input wu(t)
should be to ensure that the performance objectives will be met.

To design the fuzzy controller, the control engineer must gather information on
how the artificial decision maker should act in the closed-loop system. Sometimes
this information can come from a human decision maker who performs the control
task, while at other times the control engineer can come to understand the plant
dynamics and write down a set of rules about how to control the system without
outside help. These “rules” basically say, “If the plant output and reference input
are behaving in a certain manner, then the plant input should be some value.”
A whole set of such “If-Then” rules is loaded into the rule-base, and an inference
strategy is chosen, then the system is ready to be tested to see if the closed-loop
specifications are met.

This brief description provides a very high-level overview of how to design a
fuzzy control system. Below we will expand on these basic ideas and provide more
details on this procedure and its relationship to the conventional control design
procedure.

11

12 Chapter 1 / Introduction

1.3.1 Modeling Issues and Performance Objectives

People working in fuzzy control often say that “a model is not needed to develop
a fuzzy controller, and this is the main advantage of the approach.” However, will
a proper understanding of the plant dynamics be obtained without trying to use
first principles of physics to develop a mathematical model? And will a proper
understanding of how to control the plant be obtained without simulation-based
evaluations that also need a model? We always know roughly what process we
are controlling (e.g., we know whether it is a vehicle or a nuclear reactor), and it
is often possible to produce at least an approximate model, so why not do this?
For a safety-critical application, if you do not use a formal model, then it is not
possible to perform mathematical analysis or simulation-based evaluations. Is it
wise to ignore these analytical approaches for such applications? Clearly, there will
be some applications where you can simply “hack” together a controller (fuzzy or
conventional) and go directly to implementation. In such a situation there is no need
for a formal model of the process; however, is this type of control problem really so
challenging that fuzzy control is even needed? Could a conventional approach (such
as PID control) or a “table look-up” scheme work just as well or better, especially
considering implementation complexity?

Overall, when you carefully consider the possibility of ignoring the information
that is frequently available in a mathematical model, it is clear that it will often be
unwise to do so. Basically, then, the role of modeling in fuzzy control design is quite
similar to its role in conventional control system design. In fuzzy control there is a
more significant emphasis on the use of heuristics, but in many control approaches
(e.g., PID control for process control) there is a similar emphasis. Basically, in fuzzy
control there is a focus on the use of rules to represent how to control the plant
rather than ordinary differential equations (ODE). This approach can offer some
advantages in that the representation of knowledge in rules seems more lucid and
natural to some people. For others, though, the use of differential equations is more
clear and natural. Basically, there is simply a “language difference” between fuzzy
and conventional control: ODEs are the language of conventional control, and rules
are the language of fuzzy control.

The performance objectives and design constraints are the same as the ones
for conventional control that we summarized above, since we still want to meet
the same types of closed-loop specifications. The fundamental limitations that the
plant provides affect our ability to achieve high-performance control, and these are
still present just as they were for conventional control (e.g., nonminimum phase or
unstable behavior still presents challenges for fuzzy control).

1.3.2 Fuzzy Controller Design

Fuzzy control system design essentially amounts to (1) choosing the fuzzy controller
inputs and outputs, (2) choosing the preprocessing that is needed for the controller
inputs and possibly postprocessing that is needed for the outputs, and (3) designing
each of the four components of the fuzzy controller shown in Figure 1.2. As you
will see in the next chapter, there are standard choices for the fuzzification and

1.3 Fuzzy Control System Design

defuzzification interfaces. Moreover, most often the designer settles on an inference
mechanism and may use this for many different processes. Hence, the main part of
the fuzzy controller that we focus on for design is the rule-base.

The rule-base is constructed so that it represents a human expert “in-the-loop.”
Hence, the information that we load into the rules in the rule-base may come from
an actual human expert who has spent a long time learning how best to control the
process. In other situations there is no such human expert, and the control engineer
will simply study the plant dynamics (perhaps using modeling and simulation) and
write down a set of control rules that makes sense. As an example, in the cruise
control problem discussed above it is clear that anyone who has experience driving
a car can practice regulating the speed about a desired set-point and load this
information into a rule-base. For instance, one rule that a human driver may use is
“If the speed is lower than the set-point, then press down further on the accelerator
pedal.” A rule that would represent even more detailed information about how to
regulate the speed would be “If the speed is lower than the set-point AND the
speed is approaching the set-point very fast, then release the accelerator pedal by
a small amount.” This second rule characterizes our knowledge about how to make
sure that we do not overshoot our desired goal (the set-point speed). Generally
speaking, if we load very detailed expertise into the rule-base, we enhance our
chances of obtaining better performance.

1.3.3 Performance Evaluation

Each and every idea presented in Section 1.2.4 on performance evaluation for con-
ventional controllers applies here as well. The basic reason for this is that a fuzzy
controller is a nonlinear controller — so many conventional modeling, analysis (via
mathematics, simulation, or experimentation), and design ideas apply directly.

Since fuzzy control is a relatively new technology, it is often quite important to
determine what value it has relative to conventional methods. Unfortunately, few
have performed detailed comparative analyses between conventional and intelligent
control that have taken into account a wide array of available conventional methods
(linear, nonlinear, adaptive, etc.); fuzzy control methods (direct, adaptive, super-
visory); theoretical, simulation, and experimental analyses; computational issues;
and so on.

Moreover, most work in fuzzy control to date has focused only on its advantages
and has not taken a critical look at what possible disadvantages there could be
to using it (hence the reader should be cautioned about this when reading the
literature). For example, the following questions are cause for concern when you
employ a strategy of gathering heuristic control knowledge:

e Will the behaviors that are observed by a human expert and used to construct the
fuzzy controller include all situations that can occur due to disturbances, noise,
or plant parameter variations?

® Can the human expert realistically and reliably foresee problems that could arise
from closed-loop system instabilities or limit cycles?

13

14 Chapter 1 / Introduction

e Will the human expert be able to effectively incorporate stability criteria and
performance objectives (e.g., rise-time, overshoot, and tracking specifications)
into a rule-base to ensure that reliable operation can be obtained?

These questions may seem even more troublesome (1) if the control problem in-
volves a safety-critical environment where the failure of the control system to meet
performance objectives could lead to loss of human life or an environmental dis-
aster, or (2) if the human expert’s knowledge implemented in the fuzzy controller
is somewhat inferior to that of the very experienced specialist we would expect to
design the control system (different designers have different levels of expertise).
Clearly, then, for some applications there is a need for a methodology to develop,
implement, and evaluate fuzzy controllers to ensure that they are reliable in meeting
their performance specifications. This is the basic theme and focus of this book.

1.3.4 Application Areas

Fuzzy systems have been used in a wide variety of applications in engineering,
science, business, medicine, psychology, and other fields. For instance, in engineering
some potential application areas include the following:

o Aircraft/spacecraft: Flight control, engine control, avionic systems, failure diag-
nosis, navigation, and satellite attitude control.

o Automated highway systems: Automatic steering, braking, and throttle control
for vehicles.

® Automobiles: Brakes, transmission, suspension, and engine control.

e Autonomous vehicles: Ground and underwater.

® Manufacturing systems: Scheduling and deposition process control.

e Power industry: Motor control, power control/distribution, and load estimation.

® Process control: Temperature, pressure, and level control, failure diagnosis, dis-
tillation column control, and desalination processes.

® Robotics: Position control and path planning.

This list is only representative of the range of possible applications for the methods
of this book. Others have already been studied, while still others are yet to be
identified.

1.4 What This Book Is About

In this section we will provide an overview of the techniques of this book by using
an automotive cruise control problem as a motivational example. Moreover, we will
state the basic objectives of the book.

1.4 What This Book Is About

1.4.1 What the Techniques Are Good For: An Example

In Chapter 2 we will introduce the basics of fuzzy control by explaining how the
fuzzy controller processes its inputs to produce its outputs. In doing this, we explain
all the details of rule-base construction, inference mechanism design, fuzzification,
and defuzzification methods. This will show, for example, how for the cruise control
application you can implement a set of rules about how to regulate vehicle speed.
In Chapter 2 we also discuss the basics of fuzzy control system design and provide
several design guidelines that have been found to be useful for practical applications
such as cruise controller development. Moreover, we will show, by providing psue-
docode, how to simulate a fuzzy control system, and will discuss issues that you
encounter when seeking to implement a fuzzy control system. This will help you
bridge the gap between theory and application so that you can quickly implement
a fuzzy controller for your own application.

In Chapter 3 we perform several “case studies” in how to design fuzzy control
systems. We pay particular attention to how these perform relative to conventional
controllers and provide actual implementation results for several applications. It
is via Chapter 3 that we solidify the reader’s knowledge about how to design,
simulate, and implement a fuzzy control system. In addition, we show examples of
how fuzzy systems can be used as more general decision-making systems, not just
in closed-loop feedback control.

In Chapter 4 we will show how conventional nonlinear analysis can be used to
study, for example, the stability of a fuzzy control system. This sort of analysis is
useful, for instance, to show that the cruise control system will always achieve the
desired speed. For example, we will show how to verify that no matter what the
actual vehicle speed is when the driver sets a desired speed, and no matter what
terrain the vehicle is traveling over, the actual vehicle speed will stay close to the
desired speed. We will also show that the actual speed will converge to the desired
speed and not oscillate around it. While this analysis is important to help verify
that the cruise controller is operating properly, it also helps to show the problems
that can be encountered if you are not careful in the design of the fuzzy controller’s
rule-base.

Building on the basic fuzzy control approach that is covered in Chapters 2—4, in
the remaining chapters of the book we show how fuzzy systems can be used for more
advanced control and signal processing methods, sometimes via the implementation
of more sophisticated intelligent reasoning strategies.

First, in Chapter 5 we show how to construct a fuzzy system from plant data
so that it can serve as a model of the plant. Using the same techniques, we show
how to construct fuzzy systems that are parameter estimators. In the cruise control
problem such a “fuzzy estimator” could estimate the current combined mass of
the vehicle and its occupants so that this parameter could be used by a control
algorithm to achieve high-performance control even if there are significant mass
changes (if the mass is increased, rules may be tuned to provide increased throttle
levels). Other times, we can use these “fuzzy identification” techniques to construct
(or design) a fuzzy controller from data we have gathered about how a human

15

16 Chapter 1 / Introduction

expert (or some other system) performs a control problem. Chapter 5 also includes
several case studies to show how to construct fuzzy systems from system data.

In Chapter 6 we further build on these ideas by showing how to construct
“adaptive fuzzy controllers” that can automatically synthesize and, if necessary,
tune a fuzzy controller using data from the plant. Such an adaptive fuzzy controller
can be quite useful for plants where it is difficult to generate detailed a priori
knowledge on how to control a plant, or for plants where there will be significant
changes in its dynamics that result in inadequate performance if only a fixed fuzzy
controller were used. For the cruise control example, an adaptive fuzzy controller
may be particularly useful if there are failures in the engine that result in somewhat
degraded engine performance. In this case, the adaptation mechanism would try to
tune the rules of the fuzzy controller so that if, for example, the speed was lower
than the set-point, the controller would open the throttle even more than it would
with a nondegraded engine. If the engine failure is intermittent, however, and the
engine stops performing poorly, then the adaptation mechanism would tune the
rules so that the controller would react in the same way as normal. In Chapter 6
we introduce several approaches for adaptive fuzzy control and provide several case
studies that help explain how to design, simulate, and implement adaptive fuzzy
control systems.

In Chapter 7 we study another approach to specifying adaptive fuzzy controllers
for the case where there is a priori heuristic knowledge available about how a fuzzy
or conventional controller should be tuned. We will load such knowledge about
how to supervise the fuzzy controller into what we will call a “fuzzy supervisory
controller.” For the cruise control example, suppose that we have an additional
input to the system that allows the driver to specify how the vehicle is to respond
to speed set-point changes. This input will allow the driver to specify if he or she
wants the cruise controller to be very aggressive (i.e., act like a sports car) or very
conservative (i.e., more like a family car). This information could be an input to
a fuzzy supervisor that would tune the rules used for regulating the speed so that
they would result in either fast or slow responses (or anything in between) to set-
point changes. In Chapter 7 we will show several approaches to fuzzy supervisory
control where we supervise either conventional or fuzzy controllers. Moreover, we
provide several case studies to help show how to design, simulate, and implement
fuzzy supervisory controllers.

In the final chapter of this book we highlight the issues involved in choosing
fuzzy versus conventional controllers that were brought up throughout the book
and provide a brief overview of other “intelligent control” methods that offer dif-
ferent perspectives on fuzzy control. These other methods include neural networks,
genetic algorithms, expert systems, planning systems, and hierarchical intelligent
autonomous controllers. We will introduce the multilayer perceptron and radial
basis function neural network, explain their relationships to fuzzy systems, and ex-
plain how techniques from neural networks and fuzzy systems can cross-fertilize the
two fields. We explain the basics of genetic algorithms, with a special focus on how
these can be used in the design and tuning of fuzzy systems. We will explain how
“expert controllers” can be viewed as a general type of fuzzy controller. We high-

1.4 What This Book Is About

light the additional functionalities often used in planning systems to reason about
control, and discuss the possibility of using these in fuzzy control. Finally, we offer
a broad view of the whole area of intelligent control by providing a functional ar-
chitecture for an intelligent autonomous controller. We provide a brief description
of the operation of the autonomous controller and explain how fuzzy control can fit
into this architecture.

1.4.2 Objectives of This Book
Overall, the goals of this book are the following:

1. To introduce a variety of fuzzy control methods (fixed, adaptive, and super-
visory) and show how they can utilize a wide diversity of heuristic knowledge
about how to achieve good control.

2. To compare fuzzy control methods with conventional ones to try to determine
the advantages and disadvantages of each.

3. To show how techniques and ideas from conventional control are quite useful in
fuzzy control (e.g., methods for verifying that the closed-loop system performs
according to the specifications and provides for stable operation).

4. To show how a fuzzy system is a tunable nonlinearity, various methods for
tuning fuzzy systems, and how such approaches can be used in system identi-
fication, estimation, prediction, and adaptive and supervisory control.

5. To illustrate each of the fuzzy control approaches on a variety of challenging
applications, to draw clear connections between the theory and application of
fuzzy control (in this way we hope that you will be able to quickly apply the
techniques described in this book to your own control problems).

6. To illustrate how to construct general fuzzy decision-making systems that can
be used in a variety of applications.

7. To show clear connections between the field of fuzzy control and the other
areas in intelligent control, including neural networks, genetic algorithms, ex-
pert systems, planning systems, and general hierarchical intelligent autonomous
control.

The book includes many examples, applications, and case studies; and it is our
hope that these will serve to show both how to develop fuzzy control systems and
how they perform relative to conventional approaches. The problems at the ends
of the chapters provide exercises and a variety of interesting (and sometimes chal-
lenging) design problems, and are sometimes used to introduce additional topics.

17

18 Chapter 1 / Introduction

1.5 Summary

In this chapter we have provided an overview of the approaches to conventional
and fuzzy control system design and have showed how they are quite similar in
many respects. In this book our focus will be not only on introducing the basics
of fuzzy control, but also on performance evaluation of the resulting closed-loop
systems. Moreover, we will pay particular attention to the problem of assessing what
advantages fuzzy control methods have over conventional methods. Generally, this
must be done by careful comparative analyses involving modeling, mathematical
analysis, simulation, implementation, and a full engineering cost-benefit analysis
(which involves issues of cost, reliability, maintainability, flexibility, lead-time to
production, etc.). Some of our comparisons will involve many of these dimensions
while others will necessarily be more cursory.

Although it is not covered in this book, we would expect the reader to have as
prerequisite knowledge a good understanding of the basic ideas in conventional con-
trol (at least, those typically covered in a first course on control). Upon completing
this chapter, the reader should then understand the following:

® The distinction between a “truth model” and a “design model.”
e The basic definitions of performance objectives (e.g., stability and overshoot).

® The general procedure used for the design of conventional and fuzzy control sys-
tems, which often involves modeling, analysis, and performance evaluation.

® The importance of using modeling information in the design of fuzzy controllers
and when such information can be ignored.

® The idea that mathematical analysis provides proofs about the properties of the
mathematical model and not the physical control system.

® The importance, roles, and limitations of mathematical analysis, simulation-based
analysis, and experimental evaluations of performance for conventional and fuzzy
control systems.

® The basic components of the fuzzy controller and fuzzy control system.

® The need to incorporate more sophisticated reasoning strategies in controllers
and the subsequent motivation for adaptive and supervisory fuzzy control.

Essentially, this is a checklist for the major topics of this chapter. The reader
should be sure to understand each of the above concepts before proceeding to later
chapters, where the techniques of fuzzy control are introduced. We find that if you
have a solid high-level view of the design process and philosophical issues involved,
you will be more effective in developing control systems.

1.6 For Further Study

1.6 For Further Study

The more that you understand about conventional control, the more you will be
able to appreciate some of the finer details of the operation of fuzzy control systems.
We realize that all readers may not be familiar with all areas of control, so next
we provide a list of books from which the major topics can be learned. There are
many good texts on classical control [54, 102, 55, 45, 41, 10]. State-space methods
and optimal and multivariable control can be studied in several of these texts and
also in [56, 31, 3, 12, 132]. Robust control is treated in [46, 249]. Nonlinear control
is covered in [90, 223, 13, 189, 217, 80]; stability analysis in [141, 140]; and adaptive
control in [77, 99, 180, 11, 60, 149]. System identification is treated in [127] (and
in the adaptive control texts), and optimal estimation and stochastic control are
covered in [101, 123, 122, 63]. A relatively complete treatment of the field of control
is in [121].

For more recent work in all these areas, see the proceedings of the IEEE
Conference on Decision and Control, the American Control Conference, the Eu-
ropean Control Conference, the International Federation on Automatic Control
World Congress, and certain conferences in chemical, aeronautical, and mechani-
cal engineering. Major journals to keep an eye on include the IEEE Transactions
on Automatic Control, IEEE Transactions on Control Systems Technology, IEEE
Control Systems Magazine, Systems and Control Letters, Automatica, Control En-
gineering Practice, International Journal of Control, and many others. Extensive
lists of references for fuzzy and intelligent control are provided at the ends of Chap-
ters 2-8.

1.7 Exercises

Exercise 1.1 (Modeling): This problem focuses on issues in modeling dynamic
systems.

(a) What do we mean by model complexity and representation accuracy? List
model features that affect the complexity of a model.

(b) What issues are of concern when determining how complex of a model to
develop for a plant that is to be controlled?

(¢) Are stochastic effects always present in physical systems? Explain.
(d) Why do we use discrete-time models?

(e) What are the advantages and disadvantages of representing a system with
a linear model?

(f) Is alinear model of a physical system perfectly accurate? A nonlinear model?
Explain.

Exercise 1.2 (Control System Properties): In this problem you will define
the basic properties of systems that are used to quantify plant and closed-loop
system dynamics and hence some performance specifications.

19

20 Chapter 1 / Introduction

(a) Define, in words, bounded-input bounded-output (BIBO) stability, stability
in the sense of Lyapunov, asymptotic stability, controllability, observabil-
ity, rise-time, overshoot, and steady-state error (see [54, 31, 90] if you are
unfamiliar with some of these concepts).

(b) Give examples of the properties in (a) for the following systems: cruise con-
trol for an automobile, aircraft altitude control, and temperature control in
a house.

(¢) Explain what disturbance rejection and sensitivity to plant parameter varia-
tions are, and identify disturbances and plant parameter variations for each
of the systems in (b) (to do this you should describe the process, draw the
control system for the process, show where the disturbance or plant param-
eter variation enters the system, and describe its effects on the closed-loop
system). (See, for example, [45] if you are unfamiliar with these concepts.)

Exercise 1.3 (Fuzzy Control Design Philosophy): In this problem we will
focus on the fuzzy control system design methodology.

(a) Is a model used in fuzzy control system design? If it is, when is it used, and
what type of model is it? Should a model be used? Why? Why not?

(b) Explain the roles of knowledge acquisition, modeling, analysis, and past
control designs in the construction of fuzzy control systems.

(¢) What role does nonlinear analysis of stability play in fuzzy control system
design?

Exercise 1.4 (Analysis): In this problem we will focus on performance analysis
of control systems.

(a) Why are control engineers concerned with verifying that a control system
will meet its performance specifications?

(b) How do they make sure that they are met? Is there any way to be 100%
certain that the performance specifications can be met?

(¢) What are the limitations of mathematical analysis, simulation-based analy-
sis, and experimental analysis? What are the advantages of each of these?

Exercise 1.5 (Control Engineering Cost-Benefit Analysis): In this prob-
lem we will focus on engineering cost-benefit analysis for control systems.

(a) List all of the issues that must be considered in deciding what is the best
approach to use for the control of a system (include in your list such issues
as cost, marketing, etc.).

(b) Which of these issues is most important and why? In what situations? Rank
the issues that must be considered in the order of priority for consideration,
and justify your order.

1.7 Exercises 21

Exercise 1.6 (Relations to Biological Intelligent Systems)*:! In this prob-
lem you will be asked to relate systems and control concepts to intelligent bio-
logical systems.

(a) The fuzzy controller represents, very crudely, the human deductive process.
What features of the human deductive process seem to be ignored? Are these
important for controller emulation? How could they be incorporated?

(b) Define the human brain as a dynamic system with inputs and outputs (what
are they?). Define controllability, observability, and stability for both neu-
rological (bioelectrical) activity and cognitive activities (i.e., the hardware
and software of our brain).

(¢) Do you think that it is possible to implement artificial intelligence in a cur-
rent microcomputer and hence achieve intelligent control? On any computer
or at any time in the future?

1. Reminder: Exercises or design problems that are particularly challenging (sometimes simply
considering how far along you are in the text) or that require you to help define part of the
problem are designated with a star (“x”).

22 Chapter 1 / Introduction

C HHEAPTE R—=

Fuzzy Control:
The Basics

A few strong instincts and a few plain rules suffice
us.
—Ralph Waldo Emerson

2.1 Overview

The primary goal of control engineering is to distill and apply knowledge about
how to control a process so that the resulting control system will reliably and
safely achieve high-performance operation. In this chapter we show how fuzzy logic
provides a methodology for representing and implementing our knowledge about
how best to control a process.

We begin in Section 2.2 with a “gentle” (tutorial) introduction, where we focus
on the construction and basic mechanics of operation of a two-input one-output
fuzzy controller with the most commonly used fuzzy operations. Building on our
understanding of the two-input one-output fuzzy controller, in Section 2.3 we pro-
vide a mathematical characterization of general fuzzy systems with many inputs
and outputs, and general fuzzification, inference, and defuzzification strategies. In
Section 2.4 we illustrate some typical steps in the fuzzy control design process via
a simple inverted pendulum control problem. We explain how to write a computer
program that will simulate the actions of a fuzzy controller in Section 2.5. More-
over, we discuss various issues encountered in implementing fuzzy controllers in
Section 2.6.

Then, in Chapter 3, after providing an overview of some design methodologies
for fuzzy controllers and computer-aided design (CAD) packages for fuzzy system
construction, we present several design case studies for fuzzy control systems. It
is these case studies that the reader will find most useful in learning the finer

23

24 Chapter 2 / Fuzzy Control: The Basics

points about the fuzzy controller’s operation and design. Indeed, the best way to
really learn fuzzy control is to design your own fuzzy controller for one of the
plants studied in this or the next chapter, and simulate the fuzzy control system to
evaluate its performance. Initially, we recommend coding this fuzzy controller in a
high-level language such as C, Matlab, or Fortran. Later, after you have acquired
a firm understanding of the fuzzy controller’s operation, you can take shortcuts by
using a (or designing your own) CAD package for fuzzy control systems.

After completing this chapter, the reader should be able to design and simulate
a fuzzy control system. This will move the reader a long way toward implementation
of fuzzy controllers since we provide pointers on how to overcome certain practical
problems encountered in fuzzy control system design and implementation (e.g.,
coding the fuzzy controller to operate in real-time, even with large rule-bases).

This chapter provides a foundation on which the remainder of the book rests.
After our case studies in direct fuzzy controller design in Chapter 3, we will use
the basic definition of the fuzzy control system and study its fundamental dynamic
properties, including stability, in Chapter 4. We will use the same plants, and
others, to illustrate the techniques for fuzzy identification, fuzzy adaptive control,
and fuzzy supervisory control in Chapters 5, 6, and 7, respectively. It is therefore
important for the reader to have a firm grasp of the concepts in this and the next
chapter before moving on to these more advanced chapters.

Before skipping any sections or chapters of this book, we recommend that the
reader study the chapter summaries at the end of each chapter. In these summaries
we will highlight all the major concepts, approaches, and techniques that are covered
in the chapter. These summaries also serve to remind the reader what should be
learned in each chapter.

2.2 Fuzzy Control: A Tutorial Introduction

A block diagram of a fuzzy control system is shown in Figure 2.1. The fuzzy con-
troller! is composed of the following four elements:

1. A rule-base (a set of If-Then rules), which contains a fuzzy logic quantification
of the expert’s linguistic description of how to achieve good control.

2. An inference mechanism (also called an “inference engine” or “fuzzy inference”
module), which emulates the expert’s decision making in interpreting and ap-
plying knowledge about how best to control the plant.

3. A fuzzification interface, which converts controller inputs into information that
the inference mechanism can easily use to activate and apply rules.

4. A defuzzification interface, which converts the conclusions of the inference
mechanism into actual inputs for the process.

1. Sometimes a fuzzy controller is called a “fuzzy logic controller” (FLC) or even a “fuzzy
linguistic controller” since, as we will see, it uses fuzzy logic in the quantification of linguistic
descriptions. In this book we will avoid these phrases and simply use “fuzzy controller.”

2.2 Fuzzy Control: A Tutorial Introduction 25

Fuzzy controller

. Inference =
Reference input 5 Iyl mechanism |p| -2 Inputs Outputs
= <
g S o (1)

] | g > Process >
N =
2 k5]
= =)

Rule-base

FIGURE 2.1 Fuzzy controller.

We introduce each of the components of the fuzzy controller for a simple prob-
lem of balancing an inverted pendulum on a cart, as shown in Figure 2.2. Here, y
denotes the angle that the pendulum makes with the vertical (in radians), [is the
half-pendulum length (in meters), and wu is the force input that moves the cart (in
Newtons). We will use r to denote the desired angular position of the pendulum.
The goal is to balance the pendulum in the upright position (i.e., » = 0) when
it initially starts with some nonzero angle off the vertical (i.e., y # 0). This is a
very simple and academic nonlinear control problem, and many good techniques
already exist for its solution. Indeed, for this standard configuration, a simple PID
controller works well even in implementation.

In the remainder of this section, we will use the inverted pendulum as a con-
venient problem to illustrate the design and basic mechanics of the operation of a
fuzzy control system. We will also use this problem in Section 2.4 to discuss much
more general issues in fuzzy control system design that the reader will find useful
for more challenging applications (e.g., the ones in the next chapter).

2l

FIGURE 2.2 Inverted pendulum
on a cart.

26 Chapter 2 / Fuzzy Control: The Basics

2.2.1 Choosing Fuzzy Controller Inputs and Outputs

Consider a human-in-the-loop whose responsibility is to control the pendulum, as
shown in Figure 2.3. The fuzzy controller is to be designed to automate how a
human expert who is successful at this task would control the system. First, the
expert tells us (the designers of the fuzzy controller) what information she or he
will use as inputs to the decision-making process. Suppose that for the inverted
pendulum, the expert (this could be you!) says that she or he will use

and

i)

as the variables on which to base decisions. Certainly, there are many other choices
(e.g., the integral of the error e could also be used) but this choice makes good
intuitive sense. Next, we must identify the controlled variable. For the inverted
pendulum, we are allowed to control only the force that moves the cart, so the
choice here is simple.

" " | Inverted Y
3 “71 pendulum

A

Y

FIGURE 2.3 Human controlling an
inverted pendulum on a cart.

For more complex applications, the choice of the inputs to the controller and
outputs of the controller (inputs to the plant) can be more difficult. Essentially, you
want to make sure that the controller will have the proper information available
to be able to make good decisions and have proper control inputs to be able to
steer the system in the directions needed to be able to achieve high-performance
operation. Practically speaking, access to information and the ability to effectively
control the system often cost money. If the designer believes that proper information
is not available for making control decisions, he or she may have to invest in another
sensor that can provide a measurement of another system variable. Alternatively,
the designer may implement some filtering or other processing of the plant outputs.
In addition, if the designer determines that the current actuators will not allow
for the precise control of the process, he or she may need to invest in designing
and implementing an actuator that can properly affect the process. Hence, while in
some academic problems you may be given the plant inputs and outputs, in many
practical situations you may have some flexibility in their choice. These choices

2.2 Fuzzy Control: A Tutorial Introduction

affect what information is available for making on-line decisions about the control
of a process and hence affect how we design a fuzzy controller.

Once the fuzzy controller inputs and outputs are chosen, you must determine
what the reference inputs are. For the inverted pendulum, the choice of the reference
input » = 0 is clear. In some situations, however, you may want to choose r as
some nonzero constant to balance the pendulum in the off-vertical position. To do
this, the controller must maintain the cart at a constant acceleration so that the
pendulum will not fall.

After all the inputs and outputs are defined for the fuzzy controller, we can
specify the fuzzy control system. The fuzzy control system for the inverted pendu-
lum, with our choice of inputs and outputs, is shown in Figure 2.4. Now, within this
framework we seek to obtain a description of how to control the process. We see then
that the choice of the inputs and outputs of the controller places certain constraints
on the remainder of the fuzzy control design process. If the proper information is
not provided to the fuzzy controller, there will be little hope for being able to design
a good rule-base or inference mechanism. Moreover, even if the proper information
is available to make control decisions, this will be of little use if the controller is
not able to properly affect the process variables via the process inputs. It must be
understood that the choice of the controller inputs and outputs is a fundamentally
important part of the control design process. We will revisit this issue several times
throughout the remainder of this chapter (and book).

Fuzzy Inverted

+ e
©
- . controller pendulum
dt

FIGURE 2.4 Fuzzy controller for an inverted pendulum on a cart.

2.2.2 Putting Control Knowledge into Rule-Bases

Suppose that the human expert shown in Figure 2.3 provides a description of how
best to control the plant in some natural language (e.g., English). We seek to take
this “linguistic” description and load it into the fuzzy controller, as indicated by
the arrow in Figure 2.4.

27

28 Chapter 2 / Fuzzy Control: The Basics

Linguistic Descriptions

The linguistic description provided by the expert can generally be broken into
several parts. There will be “linguistic variables” that describe each of the time-
varying fuzzy controller inputs and outputs. For the inverted pendulum,

“error” describes e(t)
“change-in-error” describes <Le(t)
“force” describes u(t)

Note that we use quotes to emphasize that certain words or phrases are linguistic
descriptions, and that we have added the time index to, for example, e(t), to em-
phasize that generally e varies with time. There are many possible choices for the
linguistic descriptions for variables. Some designers like to choose them so that they
are quite descriptive for documentation purposes. However, this can sometimes lead
to long descriptions. Others seek to keep the linguistic descriptions as short as pos-
sible (e.g., using “e(t)” as the linguistic variable for e(t)), yet accurate enough so
that they adequately represent the variables. Regardless, the choice of the linguistic
variable has no impact on the way that the fuzzy controller operates; it is simply
a notation that helps to facilitate the construction of the fuzzy controller via fuzzy
logic.

Just as e(t) takes on a value of, for example, 0.1 at ¢t = 2 (e(2) = 0.1), linguistic
variables assume “linguistic values.” That is, the values that linguistic variables
take on over time change dynamically. Suppose for the pendulum example that
“error,” “change-in-error,” and “force” take on the following values:

“neglarge”
“negsmall”
“zero”
“possmall”
“poslarge”

Note that we are using “negsmall” as an abbreviation for “negative small in size”
and so on for the other variables. Such abbreviations help keep the linguistic de-
scriptions short yet precise. For an even shorter description we could use integers:

“—2” to represent “neglarge”
“—1” to represent “negsmall”
“0” to represent “zero”
“1” to represent “possmall”
“2” to represent “poslarge”

This is a particularly appealing choice for the linguistic values since the descriptions
are short and nicely represent that the variable we are concerned with has a numeric
quality. We are not, for example, associating “—1” with any particular number of
radians of error; the use of the numbers for linguistic descriptions simply quantifies
the sign of the error (in the usual way) and indicates the size in relation to the

2.2 Fuzzy Control: A Tutorial Introduction

other linguistic values. We shall find the use of this type of linguistic value quite
convenient and hence will give it the special name, “linguistic-numeric value.”

The linguistic variables and values provide a language for the expert to express
her or his ideas about the control decision-making process in the context of the
framework established by our choice of fuzzy controller inputs and outputs. Recall
that for the inverted pendulum r = 0 and e = r — y so that

e=—y
and

d d

Le=—_2

dt at?
since ditr = 0. First, we will study how we can quantify certain dynamic behaviors

with linguistics. In the next subsection we will study how to quantify knowledge
about how to control the pendulum using linguistic descriptions.

For the inverted pendulum each of the following statements quantifies a different
configuration of the pendulum (refer back to Figure 2.2 on page 25):

® The statement “error is poslarge” can represent the situation where the pendulum
is at a significant angle to the left of the vertical.

® The statement “error is negsmall” can represent the situation where the pendulum
is just slightly to the right of the vertical, but not too close to the vertical to
justify quantifying it as “zero” and not too far away to justify quantifying it as
“neglarge.”

® The statement “error is zero” can represent the situation where the pendulum is
very near the vertical position (a linguistic quantification is not precise, hence we
are willing to accept any value of the error around e(t) = 0 as being quantified
linguistically by “zero” since this can be considered a better quantification than
“possmall” or “negsmall”).

® The statement “error is poslarge and change-in-error is possmall” can represent
the situation where the pendulum is to the left of the vertical and, since %y < 0,
the pendulum is moving away from the upright position (note that in this case
the pendulum is moving counterclockwise).

® The statement “error is negsmall and change-in-error is possmall” can represent
the situation where the pendulum is slightly to the right of the vertical and, since
%y < 0, the pendulum is moving toward the upright position (note that in this
case the pendulum is also moving counterclockwise).

It is important for the reader to study each of the cases above to understand how the
expert’s linguistics quantify the dynamics of the pendulum (actually, each partially
quantifies the pendulum’s state).

29

30 Chapter 2 / Fuzzy Control: The Basics

Overall, we see that to quantify the dynamics of the process we need to have a
good understanding of the physics of the underlying process we are trying to control.
While for the pendulum problem, the task of coming to a good understanding of
the dynamics is relatively easy, this is not the case for many physical processes.
Quantifying the process dynamics with linguistics is not always easy, and certainly
a better understanding of the process dynamics generally leads to a better linguistic
quantification. Often, this will naturally lead to a better fuzzy controller provided
that you can adequately measure the system dynamics so that the fuzzy controller
can make the right decisions at the proper time.

Rules

Next, we will use the above linguistic quantification to specify a set of rules (a
rule-base) that captures the expert’s knowledge about how to control the plant. In
particular, for the inverted pendulum in the three positions shown in Figure 2.5,
we have the following rules (notice that we drop the quotes since the whole rule is
linguistic):

1. If error is neglarge and change-in-error is neglarge Then force is poslarge

This rule quantifies the situation in Figure 2.5(a) where the pendulum has a
large positive angle and is moving clockwise; hence it is clear that we should
apply a strong positive force (to the right) so that we can try to start the
pendulum moving in the proper direction.

2. If error is zero and change-in-error is possmall Then force is negsmall

This rule quantifies the situation in Figure 2.5(b) where the pendulum has
nearly a zero angle with the vertical (a linguistic quantification of zero does not
imply that e(t) = 0 exactly) and is moving counterclockwise; hence we should
apply a small negative force (to the left) to counteract the movement so that it
moves toward zero (a positive force could result in the pendulum overshooting
the desired position).

3. If error is poslarge and change-in-error is negsmall Then force is negsmall

This rule quantifies the situation in Figure 2.5(c) where the pendulum is far to
the left of the vertical and is moving clockwise; hence we should apply a small
negative force (to the left) to assist the movement, but not a big one since the
pendulum is already moving in the proper direction.

Each of the three rules listed above is a “linguistic rule” since it is formed
solely from linguistic variables and values. Since linguistic values are not precise
representations of the underlying quantities that they describe, linguistic rules are
not precise either. They are simply abstract ideas about how to achieve good control
that could mean somewhat different things to different people. They are, however, at

2.2 Fuzzy Control: A Tutorial Introduction

| | |
| |
I | I
| | |
| |
u u u
(b)

(2) ©

FIGURE 2.5 Inverted pendulum in various positions.

a level of abstraction that humans are often comfortable with in terms of specifying
how to control a process.
The general form of the linguistic rules listed above is

If premise Then consequent

As you can see from the three rules listed above, the premises (which are sometimes
called “antecedents”) are associated with the fuzzy controller inputs and are on
the left-hand-side of the rules. The consequents (sometimes called “actions”) are
associated with the fuzzy controller outputs and are on the right-hand-side of the
rules. Notice that each premise (or consequent) can be composed of the conjunction
of several “terms” (e.g., in rule 3 above “error is poslarge and change-in-error is
negsmall” is a premise that is the conjunction of two terms). The number of fuzzy
controller inputs and outputs places an upper limit on the number of elements
in the premises and consequents. Note that there does not need to be a premise
(consequent) term for each input (output) in each rule, although often there is.

Rule-Bases

Using the above approach, we could continue to write down rules for the pendulum
problem for all possible cases (the reader should do this for practice, at least for
a few more rules). Note that since we only specify a finite number of linguistic
variables and linguistic values, there is only a finite number of possible rules. For
the pendulum problem, with two inputs and five linguistic values for each of these,
there are at most 52 = 25 possible rules (all possible combinations of premise
linguistic values for two inputs).

A convenient way to list all possible rules for the case where there are not too
many inputs to the fuzzy controller (less than or equal to two or three) is to use a
tabular representation. A tabular representation of one possible set of rules for the
inverted pendulum is shown in Table 2.1. Notice that the body of the table lists the
linguistic-numeric consequents of the rules, and the left column and top row of the
table contain the linguistic-numeric premise terms. Then, for instance, the (2, —1)
position (where the “2” represents the row having “2” for a numeric-linguistic value
and the “—1” represents the column having “—1” for a numeric-linguistic value)
has a —1 (“negsmall”) in the body of the table and represents the rule

31

32 Chapter 2 / Fuzzy Control: The Basics

If error is poslarge and change-in-error is negsmall Then force is negsmall

which is rule 3 above. Table 2.1 represents abstract knowledge that the expert has
about how to control the pendulum given the error and its derivative as inputs.

TABLE 2.1 Rule Table for the Inverted Pendulum

“force” “change-in-error” é
u 2] -1] 0172
-2 2 2 2 1 0
“error” | —1 2 2 1 0 -1
e 0 2 1 0 -1 1 -2
1 1 0 -1 -21-2
2 0 -1 -2 -2 -2

The reader should convince him- or herself that the other rules are also valid and
take special note of the pattern of rule consequents that appears in the body of the
table: Notice the diagonal of zeros and viewing the body of the table as a matrix
we see that it has a certain symmetry to it. This symmetry that emerges when
the rules are tabulated is no accident and is actually a representation of abstract
knowledge about how to control the pendulum; it arises due to a symmetry in the
system’s dynamics. We will actually see later that similar patterns will be found
when constructing rule-bases for more challenging applications, and we will show
how to exploit this symmetry in implementing fuzzy controllers.

2.2.3 Fuzzy Quantification of Knowledge

Up to this point we have only quantified, in an abstract way, the knowledge that
the human expert has about how to control the plant. Next, we will show how to
use fuzzy logic to fully quantify the meaning of linguistic descriptions so that we
may automate, in the fuzzy controller, the control rules specified by the expert.

Membership Functions

First, we quantify the meaning of the linguistic values using “membership func-
tions.” Cousider, for example, Figure 2.6. This is a plot of a function p versus e(t)
that takes on special meaning. The function p quantifies the certainty? that e(t)
can be classified linguistically as “possmall.” To understand the way that a mem-
bership function works, it is best to perform a case analysis where we show how to
interpret it for various values of e(t):

2. The reader should not confuse the term “certainty” with “probability” or “likelihood.” The
membership function is not a probability density function, and there is no underlying probability
space. By “certainty” we mean “degree of truth.” The membership function does not quantify
random behavior; it simply makes more accurate (less fuzzy) the meaning of linguistic
descriptions.

2.2 Fuzzy Control: A Tutorial Introduction 33

o Ife(t) = —m/2 then u(—=n/2) = 0, indicating that we are certain that e(t) = —w/2
is not “possmall.”

o If e(t) = 7/8 then u(w/8) = 0.5, indicating that we are halfway certain that
e(t) = w/8 is “possmall” (we are only halfway certain since it could also be
“zero” with some degree of certainty—this value is in a “gray area” in terms of
linguistic interpretation).

o If e(t) = m/4 then u(w/4) = 1.0, indicating that we are absolutely certain that
e(t) = w/4 is what we mean by “possmall.”

e If e(t) = m then u(m) = 0, indicating that we are certain that e(t) = 7 is not
“possmall” (actually, it is “poslarge”).

“possmall”

1.0

0.5
X K e(t), (rad.)
4 2

FIGURE 2.6 Membership function for
linguistic value “possmall.”

The membership function quantifies, in a continuous manner, whether values of
e(t) belong to (are members of) the set of values that are “possmall,” and hence it
quantifies the meaning of the linguistic statement “error is possmall.” This is why it
is called a membership function. It is important to recognize that the membership
function in Figure 2.6 is only one possible definition of the meaning of “error is
possmall”; you could use a bell-shaped function, a trapezoid, or many others.

For instance, consider the membership functions shown in Figure 2.7. For some
application someone may be able to argue that we are absolutely certain that any
value of e(t) near % is still “possmall” and only when you get sufficiently far from
7 do we lose our confidence that it is “possmall.” One way to characterize this un-
derstanding of the meaning of “possmall” is via the trapezoid-shaped membership
function in Figure 2.7(a). For other applications you may think of membership in
the set of “possmall” values as being dictated by the Gaussian-shaped member-
ship function (not to be confused with the Gaussian probability density function)
shown in Figure 2.7(b). For still other applications you may not readily accept
values far away from 7 as being “possmall,” so you may use the membership func-
tion in Figure 2.7(c) to represent this. Finally, while we often think of symmetric
characterizations of the meaning of linguistic values, we are not restricted to these

34 Chapter 2 / Fuzzy Control: The Basics

symmetric representations. For instance, in Figure 2.7(d) we represent that we be-
lieve that as e(t) moves to the left of - we are very quick to reduce our confidence
that it is “possmall,” but if we move to the right of our confidence that e(t) is
“possmall,” diminishes at a slower rate.

u “possmall” u A “possmall”
1.0 1.04
0.5 0.5+
| 'E 2 (1) (rad.) L1 (1), (rad.)
4 2 4 2
a) Trapezoid. (b) Gaussian.
“possmall” M] 0 A “possmall”
054
E e(t), (rad.) x z 3T (1), (rad.)
4 2 4 2
(c) Sharp peak. (d) Skewed triangle.

FIGURE 2.7 A few membership function choices for representing “error is
possmall.”

In summary, we see that depending on the application and the designer (ex-
pert), many different choices of membership functions are possible. We will further
discuss other ways to define membership functions in Section 2.3.2 on page 55. It is
important to note here, however, that for the most part the definition of a member-
ship function is subjective rather than objective. That is, we simply quantify it in
a manner that makes sense to us, but others may quantify it in a different manner.

The set of values that is described by p as being “positive small” is called
a “fuzzy set.” Let A denote this fuzzy set. Notice that from Figure 2.6 we are
absolutely certain that e(t) = 7 is an element of A, but we are less certain that
e(t) = {5 is an element of A. Membership in the set, as specified by the membership
function, is fuzzy; hence we use the term “fuzzy set.” We will give a more precise
description of a fuzzy set in Section 2.3.2 on page 55.

A “crisp” (as contrasted to “fuzzy”) quantification of “possmall” can also be
specified, but via the membership function shown in Figure 2.8. This membership
function is simply an alternative representation for the interval on the real line
7/8 < e(t) < 3w/8, and it indicates that this interval of numbers represents “poss-
mall.” Clearly, this characterization of crisp sets is simply another way to represent
a normal interval (set) of real numbers.

While the vertical axis in Figure 2.6 represents certainty, the horizontal axis is
also given a special name. It is called the “universe of discourse” for the input e(t)
since it provides the range of values of e(t) that can be quantified with linguistics

2.2 Fuzzy Control: A Tutorial Introduction 35

u
1.0
0.5
i X e(1), (rad.)
4 2

FIGURE 2.8 Membership function for a
crisp set.

and fuzzy sets. In conventional terminology, a universe of discourse for an input or
output of a fuzzy system is simply the range of values the inputs and outputs can
take on.

Now that we know how to specify the meaning of a linguistic value via a mem-
bership function (and hence a fuzzy set), we can easily specify the membership
functions for all 15 linguistic values (five for each input and five for the output)
of our inverted pendulum example. See Figure 2.9 for one choice of membership
functions.

Notice that (for our later convenience) we list both the linguistic values and
the linguistic-numeric values associated with each membership function. Hence,
we see that the membership function in Figure 2.6 for “possmall” is embedded
among several others that describe other sizes of values (so that, for instance, the
membership function to the right of the one for “possmall” is the one that represents
“error is poslarge”). Note that other similarly shaped membership functions make
sense (e.g., bell-shaped membership functions). We will discuss the multitude of
choices that are possible for membership functions in Section 2.3.2 on page 55.

The membership functions at the outer edges in Figure 2.9 deserve special
attention. For the inputs e(t) and “e(t) we see that the outermost membership
functions “saturate” at a value of one. This makes intuitive sense as at some point
the human expert would just group all large values together in a linguistic de-
scription such as “poslarge.” The membership functions at the outermost edges
appropriately characterize this phenomenon since they characterize “greater than”
(for the right side) and “less than” (for the left side). Study Figure 2.9 and convince
yourself of this.

For the output u, the membership functions at the outermost edges cannot be
saturated for the fuzzy system to be properly defined (more details on this point
will be provided in Section 2.2.6 on page 44 and Section 2.3.5 on page 65). The basic
reason for this is that in decision-making processes of the type we study, we seek to
take actions that specify an exact value for the process input. We do not generally
indicate to a process actuator, “any value bigger than, say, 10, is acceptable.”

It is important to have a clear picture in your mind of how the values of the
membership functions change as, for example, e(t) changes its value over time.
For instance, as e(t) changes from —7/2 to 7/2 we see that various membership

36 Chapter 2 / Fuzzy Control: The Basics

1 2
“possmall” “poslarge”

-2 -1 0
“neglarge” “negsmall” «

zero’,

D T JT }c ITE >
2 7% 7 L o) (rad)
) 1 0 |)
“neglarge” “negsmall” “possmal]” “poslarge”
4 8 16 8 4 et (rad/sec)
) 1 0 |)
“neglarge” “poslarge”
B0 200 0 20 30 0 N

FIGURE 2.9 Membership functions for an inverted pendulum on
a cart.

functions will take on zero and nonzero values indicating the degree to which the
linguistic value appropriately describes the current value of e(t). For example, at
e(t) = —m/2 we are certain that the error is “neglarge,” and as the value of e(t)
moves toward —m /4 we become less certain that it is “neglarge” and more certain
that it is “negsmall.” We see that the membership functions quantify the meaning
of linguistic statements that describe time-varying signals.

Finally, note that often we will draw all the membership functions for one input
or output variable on one graph; hence, we often omit the label for the vertical
axis with the understanding that the plotted functions are membership functions
describing the meaning of their associated linguistic values. Also, we will use the
notation i, to represent the membership function associated with the linguistic
value “zero” and a similar notation for the others.

The rule-base of the fuzzy controller holds the linguistic variables, linguistic
values, their associated membership functions, and the set of all linguistic rules
(shown in Table 2.1 on page 32), so we have completed the description of the
simple inverted pendulum. Next we describe the fuzzification process.

2.2 Fuzzy Control: A Tutorial Introduction

Fuzzification

It is actually the case that for most fuzzy controllers the fuzzification block in
Figure 2.1 on page 25 can be ignored since this process is so simple. In Section 2.3.3
on page 61 we will explain the exact operations of the fuzzification process and also
explain why it can be simplified and under certain conditions virtually ignored.
For now, the reader should simply think of the fuzzification process as the act of
obtaining a value of an input variable (e.g., e(t)) and finding the numeric values
of the membership function(s) that are defined for that variable. For example, if
e(t) = /4 and %e(t) = m/16, the fuzzification process amounts to finding the
values of the input membership functions for these. In this case

Hpossmall (e(t)) =1

(with all others zero) and

d d
Hzero (Ee(t)> = MUpossmall (Ee(t)> =0.5.

Some think of the membership function values as an “encoding” of the fuzzy con-
troller numeric input values. The encoded information is then used in the fuzzy
inference process that starts with “matching.”

2.2.4 Matching: Determining Which Rules to Use

Next, we seek to explain how the inference mechanism in Figure 2.1 on page 25
operates. The inference process generally involves two steps:

1. The premises of all the rules are compared to the controller inputs to determine
which rules apply to the current situation. This “matching” process involves
determining the certainty that each rule applies, and typically we will more
strongly take into account the recommendations of rules that we are more
certain apply to the current situation.

2. The conclusions (what control actions to take) are determined using the rules
that have been determined to apply at the current time. The conclusions are
characterized with a fuzzy set (or sets) that represents the certainty that the
input to the plant should take on various values.

We will cover step 1 in this subsection and step 2 in the next.

Premise Quantification via Fuzzy Logic

To perform inference we must first quantify each of the rules with fuzzy logic. To do
this we first quantify the meaning of the premises of the rules that are composed of
several terms, each of which involves a fuzzy controller input. Consider Figure 2.10,
where we list two terms from the premise of the rule

If error is zero and change-in-error is possmall Then force is negsmall

37

38 Chapter 2 / Fuzzy Control: The Basics

Above, we had quantified the meaning of the linguistic terms “error is zero” and
“change-in-error is possmall” via the membership functions shown in Figure 2.9.
Now we seek to quantify the linguistic premise “error is zero and change-in-error
is possmall.” Hence, the main item to focus on is how to quantify the logical “and”
operation that combines the meaning of two linguistic terms. While we could use
standard Boolean logic to combine these linguistic terms, since we have quantified
them more precisely with fuzzy sets (i.e., the membership functions), we can use

these.
“error is zero and change-in-error is possmall”
quantified with quantified with

1
“possmall”

Y possmall

e(1), (rad.) L 3 T gt e(1), (rad/sec)

1
ala
ala

FIGURE 2.10 Membership functions of premise terms.
To see how to quantify the “and” operation, begin by supposing that e(t) = 7/8
and %e(t) = 7/32, so that using Figure 2.9 (or Figure 2.10) we see that
Lzero(€(t)) = 0.5

and
d
Hpossmall (Ee(t)> =0.25

What, for these values of e(t) and Ze(t), is the certainty of the statement
“error is zero and change-in-error is possmall”

that is the premise from the above rule? We will denote this certainty by ppremise-
There are actually several ways to define it:

o Minimum: Define pipremise = min{0.5,0.25} = 0.25, that is, using the minimum
of the two membership values.

® Product: Define ppremise = (0.5)(0.25) = 0.125, that is, using the product of the
two membership values.

Do these quantifications make sense? Notice that both ways of quantifying the
“and” operation in the premise indicate that you can be no more certain about

2.2 Fuzzy Control: A Tutorial Introduction

the conjunction of two statements than you are about the individual terms that
make them up (note that 0 < ppremise < 1 for either case). If we are not very cer-
tain about the truth of one statement, how can we be any more certain about the
truth of that statement “and” the other statement? It is important that you con-
vince yourself that the above quantifications make sense. To do so, we recommend
that you consider other examples of “anding” linguistic terms that have associated
membership functions.

While we have simply shown how to quantify the “and” operation for one value
of e(t) and Le(t), if we consider all possible e(t) and “Le(t) values, we will obtain a
multidimensional membership function ppremise (e(t), %e(t)) that is a function of
e(t) and “Le(t) for each rule. For our example, if we choose the minimum operation
to represent the “and” in the premise, then we get the multidimensional membership
function ppremise (e(t), %e(t)) shown in Figure 2.11. Notice that if we pick values for
e(t) and %e(t), the value of the premise certainty fipremise (e(t), %e(t)) represents
how certain we are that the rule

If error is zero and change-in-error is possmall Then force is negsmall

is applicable for specifying the force input to the plant. As e(t) and <e(t) change,
the value of fpremise (€(t), %e(t)) changes according to Figure 2.11, and we become
less or more certain of the applicability of this rule.

A
p'premise
-
R4
d
// T
4
t >
= 4 T), (rad)
16

oo d

Vi
7T
ie(t) (rad/sec)
ar”

FIGURE 2.11 Membership function of the premise for a
single rule.

In general we will have a different premise membership function for each of the
rules in the rule-base, and each of these will be a function of e(t) and “e(t) so that

given specific values of e(t) and Ze(t) we obtain a quantification of the certainty

39

40 Chapter 2 / Fuzzy Control: The Basics

that each rule in the rule-base applies to the current situation. It is important you
picture in your mind the situation where e(t) and %e(t) change dynamically over
time. When this occurs the values of ppremise (e(t), %e(t)) for each rule change,
and hence the applicability of each rule in the rule-base for specifying the force
input to the pendulum, changes with time.

Determining Which Rules Are On

Determining the applicability of each rule is called “matching.” We say that a rule
is “on at time ¢” if its premise membership function fpremise(e(t), d%e(t)) > 0.
Hence, the inference mechanism seeks to determine which rules are on to find out
which rules are relevant to the current situation. In the next step, the inference
mechanism will seek to combine the recommendations of all the rules to come up
with a single conclusion.

Consider, for the inverted pendulum example, how we compute the rules that
are on. Suppose that

e(t) =0
and

Ee(t) =n/8 — /32 (= 0.294)

Figure 2.12 shows the membership functions for the inputs and indicates with thick
black vertical lines the values above for e(t) and “e(t). Notice that fizero(e(t)) =
1 but that the other membership functions for the e(t) input are all “off” (i.e.,
their values are zero). For the d%e(t) input we see that p.ero (%e(t)) = 0.25 and
Hpossmall (%e(t)) = 0.75 and that all the other membership functions are off. This

implies that rules that have the premise terms

“error is zero”
“change-in-error is zero”
“change-in-error is possmall”
are on (all other rules have fyremise (€(t), %e(t)) = 0. So, which rules are these?
Using Table 2.1 on page 32, we find that the rules that are on are the following:

1. If error is zero and change-in-error is zero Then force is zero

2. If error is zero and change-in-error is possmall Then force is negsmall

Note that since for the pendulum example we have at most two membership func-
tions overlapping, we will never have more than four rules on at one time (this
concept, generalizes to many inputs and will be discussed in more detail in Sec-
tions 2.3 and 2.6). Actually, for this system we will either have one, two, or four
rules on at any one time. To get only one rule on choose, for example, e(t) = 0

and “Le(t) = Z so that only rule 2 above is on. What values would you choose for

2.2 Fuzzy Control: A Tutorial Introduction

e(t) and ZLe(t) to get four rules on? Why is it impossible, for this system, to have
exactly three rules on?

-2 -1 0
“neglarge” “negsmall” «

1 2
“possmall” “poslarge”

Zero’)

- T 7 T T >
5 ” 7 > e(t), (rad)
-2 -1 0 1 2
“neglarge” “negsmall” “zero” “possmall” “poslarge”
_% _% 1£6 % % %e(t), (rad/sec)

FIGURE 2.12 Input membership functions with input values.

It is useful to consider pictorially which rules are on. Consider Table 2.2, which
is a copy of Table 2.1 on page 32 with boxes drawn around the consequents of the
rules that are on (notice that these are the same two rules listed above). Notice
that since e(t) = 0 (e(t) is directly in the middle between the membership functions
for “possmall” and “negsmall”) both these membership functions are off. If we
perturbed e(t) slightly positive (negative), then we would have the two rules below
(above) the two highlighted ones on also. With this, you should picture in your

TABLE 2.2 Rule Table for the Inverted Pendulum
with Rules That Are “On” Highlighted.

“force” “change-in-error” é
u 2] -1] 0] 1 2
-2 2 2 2 1
“error” | —1 2 2 1 0 -1
e ol 2] 1 [lo]]][-1]]-2
1 1 0 -1 -2 -2
2 0 -1 1 -2 -2 -2

mind how a region of rules that are on (that involves no more than four cells in
the body of Table 2.2 due to how we define the input membership functions) will
dynamically move around in the table as the values of e(t) and “e(t) change. This
completes our description of the “matching” phase of the inference mechanism.

41

42 Chapter 2 / Fuzzy Control: The Basics

2.2.5 Inference Step: Determining Conclusions

Next, we consider how to determine which conclusions should be reached when
the rules that are on are applied to deciding what the force input to the cart
carrying the inverted pendulum should be. To do this, we will first consider the
recommendations of each rule independently. Then later we will combine all the
recommendations from all the rules to determine the force input to the cart.

Recommendation from One Rule
Consider the conclusion reached by the rule

If error is zero and change-in-error is zero Then force is zero

which for convenience we will refer to as “rule (1).” Using the minimum to represent
the premise, we have

Hpremisey = min{0.25, 1} =0.25

(the notation fpremise (1) Tepresents Lpremise for rule (1)) so that we are 0.25 certain
that this rule applies to the current situation. The rule indicates that if its premise
is true then the action indicated by its consequent should be taken. For rule (1) the
consequent is “force is zero” (this makes sense, for here the pendulum is balanced,
so we should not apply any force since this would tend to move the pendulum
away from the vertical). The membership function for this consequent is shown in
Figure 2.13(a). The membership function for the conclusion reached by rule (1),
which we denote by (1), is shown in Figure 2.13(b) and is given by

pe1y(u) = min{0.25, pero(u) }

This membership function defines the “implied fuzzy set”? for rule (1) (i.e., it is the
conclusion that is implied by rule (1)). The justification for the use of the minimum
operator to represent the implication is that we can be no more certain about our
consequent than our premise. You should convince yourself that we could use the
product operation to represent the implication also (in Section 2.2.6 we will do an
example where we use the product).

Notice that the membership function ju(;)(u) is a function of v and that the
minimum operation will generally “chop off the top” of the p.ero(u) membership
function to produce p1y(u). For different values of e(t) and “e(t) there will be
different values of the premise certainty fpremise, (e(t), Le(t)) for rule (1) and
hence different functions ju(1)(u) obtained (i.e., it will chop off the top at different
points).

3. This term has been used in the literature for a long time; however, there is no standard
terminology for this fuzzy set. Others have called it, for example, a “consequent fuzzy set” or an
“output fuzzy set” (which can be confused with the fuzzy sets that quantify the consequents of
the rules). We use “implied fuzzy set” so that there is no ambiguity and to help to distinguish it
from the “overall implied fuzzy set” that is introduced in Section 2.3.

2.2 Fuzzy Control: A Tutorial Introduction

We see that f(1)(u) is in general a time-varying function that quantifies how
certain rule (1) is that the force input u should take on certain values. It is most
certain that the force input should lie in a region around zero (see Figure 2.13(b)),
and it indicates that it is certain that the force input should not be too large in either
the positive or negative direction—this makes sense if you consider the linguistic
meaning of the rule. The membership function p1y(u) quantifies the conclusion
reached by only rule (1) and only for the current e(t) and Ze(¢). It is important
that the reader be able to picture how the shape of the implied fuzzy set changes
as the rule’s premise certainty changes over time.

0 * 0
‘zero” A‘zero”
/[N
.

A

-10 | 10 u(t), (N)
(a) (b)

10 u(t),(N)

FIGURE 2.13 (a) Consequent membership function and (b)
implied fuzzy set with membership function p(qy(u) for rule (1).
Recall that the units for u(t) are Newtons (N).

Recommendation from Another Rule
Next, consider the conclusion reached by the other rule that is on,

If error is zero and change-in-error is possmall Then force is negsmall

which for convenience we will refer to as “rule (2).” Using the minimum to represent
the premise, we have

Hpremisey, = min{0.75, 1} = 0.75

so that we are 0.75 certain that this rule applies to the current situation. Notice
that we are much more certain that rule (2) applies to the current situation than
rule (1). For rule (2) the consequent is “force is negsmall” (this makes sense, for here
the pendulum is perfectly balanced but is moving in the counterclockwise direction
with a small velocity). The membership function for this consequent is shown in
Figure 2.14(a). The membership function for the conclusion reached by rule (2),
which we denote by i), is shown in Figure 2.14(b) (the shaded region) and is
given by

H(2) (u) = mln{075, ,unegsmall(u)}

This membership function defines the implied fuzzy set for rule (2) (i.e., it is the
conclusion that is reached by rule (2)). Once again, for different values of e(t)

43

44 Chapter 2 / Fuzzy Control: The Basics

and 2e(t) there will be different values of Ppremise s (e(t), Le(t)) for rule (2) and
hence different functions pi2)(u) obtained. The reader should carefully consider the
meaning of the implied fuzzy set ji(2)(u). Rule (2) is quite certain that the control
output (process input) should be a small negative value. This makes sense since if
the pendulum has some counterclockwise velocity then we would want to apply a
negative force (i.e., one to the left). As rule (2) has a premise membership function
that has higher certainty than for rule (1), we see that we are more certain of the
conclusion reached by rule (2).

-1 -1
“negsmall” “negsmall”
’

u(t), (N)
(@) (b)

FIGURE 2.14 (a) Consequent membership function and (b)
implied fuzzy set with membership function p (s (u) for rule (2).

This completes the operations of the inference mechanism in Figure 2.1 on
page 25. While the input to the inference process is the set of rules that are on, its
output is the set of implied fuzzy sets that represent the conclusions reached by all
the rules that are on. For our example, there are at most four conclusions reached
since there are at most four rules on at any one time. (In fact, you could say that
there are always four conclusions reached for our example, but that the implied
fuzzy sets for some of the rules may have implied membership functions that are
zero for all values.)

2.2.6 Converting Decisions into Actions

Next, we consider the defuzzification operation, which is the final component of
the fuzzy controller shown in Figure 2.1 on page 25. Defuzzification operates on
the implied fuzzy sets produced by the inference mechanism and combines their
effects to provide the “most certain” controller output (plant input). Some think of
defuzzification as “decoding” the fuzzy set information produced by the inference
process (i.e., the implied fuzzy sets) into numeric fuzzy controller outputs.

To understand defuzzification, it is best to first draw all the implied fuzzy sets
on one axis as shown in Figure 2.15. We want to find the one output, which we
denote by “u°"*P.” that best represents the conclusions of the fuzzy controller that
are represented with the implied fuzzy sets. There are actually many approaches
to defuzzification. We will consider two here and several others in Section 2.3.5 on
page 65.

2.2 Fuzzy Control: A Tutorial Introduction

-1
“negsmall”
'/!

1 ! h -

10 20 30 u(t), (N)

FIGURE 2.15 Implied fuzzy sets.

Combining Recommendations

Due to its popularity, we will first consider the “center of gravity” (COG) defuzzi-
fication method for combining the recommendations represented by the implied
fuzzy sets from all the rules. Let b; denote the center of the membership function
(i.e., where it reaches its peak for our example) of the consequent of rule (7). For
our example we have

b1 = 0.0
and

by = —10

/ (i)

denote the area under the membership function p(;). The COG method computes
u°TP to be

as shown in Figure 2.15. Let

ucm'sp _ Z’L bl f H(i)
i [ma
This is the classical formula for computing the center of gravity. In this case it is

for computing the center of gravity of the implied fuzzy sets. Three items about
Equation (2.1) are important to note:

(2.1)

1. Practically, we cannot have output membership functions that have infinite
area since even though they may be “chopped off” in the minimum operation
for the implication (or scaled for the product operation) they can still end up
with infinite area. This is the reason we do not allow infinite area membership
functions for the linguistic values for the controller output (e.g., we did not
allow the saturated membership functions at the outermost edges as we had
for the inputs shown in Figure 2.9 on page 36).

45

46 Chapter 2 / Fuzzy Control: The Basics

2. You must be careful to define the input and output membership functions so
that the sum in the denominator of Equation (2.1) is not equal to zero no
matter what the inputs to the fuzzy controller are. Essentially, this means that
we must have some sort of conclusion for all possible control situations we may
encounter.

3. While at first glance it may not appear so, [ji(;) is easy to compute for our
example. For the case where we have symmetric triangular output membership
functions that peak at one and have a base width of w, simple geometry can
be used to show that the area under a triangle “chopped off” at a height of h
(such as the ones in Figures 2.13 and 2.14) is equal to

(-5)

Given this, the computations needed to compute u°"**P are not too significant.

We see that the property of membership functions being symmetric for the
output is important since in this case no matter whether the minimum or product
is used to represent the implication, it will be the case that the center of the implied
fuzzy set will be the same as the center of the consequent fuzzy set from which it
is computed. If the output membership functions are not symmetric, then their
centers, which are needed in the computation of the COG, will change depending
on the membership value of the premise. This will result in the need to recompute
the center at each time instant.

Using Equation (2.1) with Figure 2.15 we have

- (0)(4.375) + (—10)(9.375)
crisp _ — —6.81
v 4.375+ 9.375 68

as the input to the pendulum for the given e(t) and Le(t).

Does this value for a force input (i.e., 6.81 Newtons to the left) make sense?
Consider Figure 2.16, where we have taken the implied fuzzy sets from Figure 2.15
and simply added an indication of what number COG defuzzification says is the
best representation of the conclusions reached by the rules that are on. Notice that
the value of u°"**P is roughly in the middle of where the implied fuzzy sets say they
are most certain about the value for the force input. In fact, recall that we had

e(t) =0
and

d
Jelt) = /8 = /32 (= 0.294)

so the pendulum is in the inverted position but is moving counterclockwise with a
small velocity; hence it makes sense to pull on the cart, and the fuzzy controller

2.2 Fuzzy Control: A Tutorial Introduction

does this.

-1
“negsmall”
e

0
“zero”
’ / ‘

1 ! h -

30 20 -10T | 020 30,

7P _ 6 81

FIGURE 2.16 Implied fuzzy sets.

It is interesting to note that for our example it will be the case that
—20 < uP < 20

To see this, consider Figure 2.17, where we have drawn the output membership
functions. Notice that even though we have extended the membership functions at
the outermost edges past —20 and +20 (see the shaded regions), the COG method
will never compute a value outside this range.

-2 -1 0 1 2

“neglarge” “negsmall” sero” “possmall” “poslarge”
z

h -
>

30
u(t), (N)

<
< T T T T

-30 -20 -10 10 20

FIGURE 2.17 Output membership functions.

The reason for this comes directly from the definition of the COG method in
Equation (2.1). The center of gravity for these shapes simply cannot extend beyond
—20 and +20. Practically speaking, this ability to limit the range of inputs to the
plant is useful; it may be the case that applying a force of greater than 20 Newtons
is impossible for this plant. Thus we see that in defining the membership functions
for the fuzzy controller, we must take into account what method is going to be used
for defuzzification.

47

48 Chapter 2 / Fuzzy Control: The Basics

Other Ways to Compute and Combine Recommendations
As another example, it is interesting to consider how to compute, by hand, the
operations that the fuzzy controller takes when we use the product to represent the
implication or the “center-average” defuzzification method.

First, consider the use of the product. Consider Figure 2.18, where we have
drawn the output membership functions for “negsmall” and “zero” as dotted lines.
The implied fuzzy set from rule (1) is given by the membership function

p(1y (w) = 0.25p1z¢r0(w)

shown in Figure 2.18 as the shaded triangle; and the implied fuzzy set for rule (2)
is given by the membership function

B(2) (U) = 0-75,unegsmall(u)

shown in Figure 2.18 as the dark triangle. Notice that computation of the COG is
easy since we can use %wh as the area for a triangle with base width w and height
h. When we use product to represent the implication, we obtain

T 25+ 75

=-7.5

which also makes sense.

-1

l h -

30 (), (N

FIGURE 2.18 Implied fuzzy sets when the product is used to
represent the implication.

Next, as another example of how to combine recommendations, we will intro-
duce the “center-average” method for defuzzification. For this method we let

ucrisp _ Zl bi,upremise(i)

(2.2)
Zi ,upremise(i)

where to compute Upremise () We use, for example, minimum. We call it the “center-
average” method since Equation (2.2) is a weighted average of the center values
of the output membership function centers. Basically, the center-average method
replaces the areas of the implied fuzzy sets that are used in COG with the values
of Ppremise ;- This is a valid replacement since the area of the implied fuzzy set

2.2 Fuzzy Control: A Tutorial Introduction

is generally proportional to Ppremise s, since Ppremise s, is used to chop the top off
(minimum) or scale (product) the triangular output membership function when
COG is used for our example. For the above example, we have

ueTiP (0)(0.25) 4 (—10)(0.75) s
N 0.25+0.75 -

which just happens to be the same value as above. Some like the center-average
defuzzification method because the computations needed are simpler than for COG
and because the output membership functions are easy to store since the only
relevant information they provide is their center values (b;) (i.e., their shape does
not matter, just their center value).

Notice that while both values computed for the different inference and defuzzi-
fication methods provide reasonable command inputs to the plant, it is difficult to
say which is best without further investigations (e.g., simulations or implementa-
tion). This ambiguity about how to define the fuzzy controller actually extends to
the general case and also arises in the specification of all the other fuzzy controller
components, as we discuss below. Some would call this “ambiguity” a design flexibil-
ity, but unfortunately there are not too many guidelines on how best to choose the
inference strategy and defuzzification method, so such flexibility is of questionable
value.

2.2.7 Graphical Depiction of Fuzzy Decision Making

For convenience, we summarize the procedure that the fuzzy controller uses to com-
pute its outputs given its inputs in Figure 2.19. Here, we use the minimum operator
to represent the “and” in the premise and the implication and COG defuzzification.
The reader is advised to study each step in this diagram to gain a fuller understand-
ing of the operation of the fuzzy controller. To do this, develop a similar diagram for
the case where the product operator is used to represent the “and” in the premise
and the implication, and choose values of e(t) and < ¢(¢) that will result in four rules
being on. Then, repeat the process when center-average defuzzification is used with
either minimum or product used for the premise. Also, learn how to picture in your
mind how the parameters of this graphical representation of the fuzzy controller
operations change as the fuzzy controller inputs change.

This completes the description of the operation of a simple fuzzy controller.
You will find that while we will treat the fully general fuzzy controller in the next
section, there will be little that is conceptually different from this simple example.
We simply show how to handle the case where there are more inputs and outputs
and show a fuller range of choices that you can make for the various components
of the fuzzy controller.

As evidenced by the different values obtained by using the minimum, product,
and defuzzification operations, there are many ways to choose the parameters of
the fuzzy controller that make sense. This presents a problem since it is almost
always difficult to know how to first design a fuzzy controller. Basically, the choice
of all the components for the fuzzy controller is somewhat ad hoc. What are the

49

50 Chapter 2 / Fuzzy Control: The Basics

10~ w(t),(N)

|
=la
p—
[E]
.y
=

laT

- a '_dem u(), (N)
't

I I
s] " e(t) |

=

If error is zero and change-in-error is possmall Then force is negsmall

10.u(1), (N)

7P = 6,81

FIGURE 2.19 Graphical representation of fuzzy controller operations.

best membership functions? How many linguistic values and rules should there be?
Should the minimum or product be used to represent the “and” in the premise—and
which should be used to represent the implication? What defuzzification method
should be chosen? These are all questions that must be addressed if you want to
design a fuzzy controller.

We will show how to answer some of these questions by going through a design
procedure for the inverted pendulum in Section 2.4 on page 77. After this, we will
discuss how to write a computer program to simulate a fuzzy control system and
how to do a real-time implementation of the fuzzy controller. Ultimately, however,
the answers to the above questions are best found by studying how to design fuzzy
controllers for a wide range of applications that present more challenging charac-
teristics than the inverted pendulum. This is what we do in the case studies in
Chapter 3.

2.2.8 \Visualizing the Fuzzy Controller’s Dynamical Operation

The figure on the cover of the book can serve as a nice visual depiction of how a fuzzy
system operates dynamically over time. The figure represents a fuzzy system with
two inputs, for example, e, and é, and one output. There are triangular membership

2.3 General Fuzzy Systems

functions on the two input universes of discourse, and minimum is used to represent
the conjunction in the premise. The blue pyramids represent the premise certainties
of the rules in a rule-base with 49 rules. Note that for simplicity of the graphic,
the outermost membership functions do not saturate in this fuzzy controller; hence
if e or é goes outside the range it appears that there will be no rules on, so the
defuzzification will fail. Actually, the pyramids should be viewed as part of a rule-
base with many more rules, and only the central ones for the rule-base are shown
for simplicity.

The shading from blue, to red, to yellow, on the pyramids indicates progression
in time of rules that were (are) on (i.e., the pyramids describing their premises had
nonzero certainties) and the two in the middle that are fully shaded in yellow are
the two rules that are on now. The pyramids with some blue on them, and some
red, are ones that were on some time ago. The ones with red, and some yellow, were
on more recently, while the ones that have a little less red shading and more yellow
were on even more recently. The pyramids that are entirely blue, either were never
turned on, or they were on a long time ago. Hence, the path of color (blue to red
to yellow) could have traveled all over a large landscape of blue pyramids. At this
time the path has come very near the e = 0, é = 0 location in the rule-base and
this is normally where you want it to be (for a tracking problem where e = r — gy
where r is the reference input and y is the plant output we want e = 0 if y is to
track r).

The colored vertical beam holds the four numbers that are the premise cer-
tainties for the four rules that are on now. Note that two of the rules that are on,
are on with a certainty of zero, so really they are off and this is why they go to
the output universe of discourse (top horizontal axis) at the zero level of certainty
(see the top figure with the tan-colored output membership functions). The colored
vertical beam contains only green and orange since these represent the values of
the premise certainties from the two rules that are on. The beam does not have
any purple or pink in it as these colors represent the zero values of the premises of
the two rules that are off (we have constructed the rule-base so that there are at
most four rules on at any time). The green and orange values chop the tops off two
triangular output membership functions that then become the implied fuzzy sets
(i.e., we use minimum to represent the implication). The defuzzified value is shown
as the arrow at the top (it looks like a COG defuzzification).

2.3 General Fuzzy Systems

In the previous section we provided an intuitive overview of fuzzy control via a
simple example. In this section we will take a step back and examine the more
general fuzzy system to show the range of possibilities that can be used in defining
a fuzzy system and to solidify your understanding of fuzzy systems.? In particular,

4. Note that we limit our range of definition of the general fuzzy system (controller) to those
that have found some degree of use in practical control applications. The reader interested in
studying the more general mathematics of fuzzy sets, fuzzy logic, and fuzzy systems should
consult [95, 250].

51

52 Chapter 2 / Fuzzy Control: The Basics

we will consider the case where there are many fuzzy controller inputs and outputs
and where there are more general membership functions, fuzzification procedures,
inference strategies, and defuzzification methods. Moreover, we introduce a class
of “functional fuzzy systems” that have been found to be useful in some applica-
tions and characterize the general capabilities of fuzzy systems via the “universal
approximation property.”

This section is written to build on the previous one in the sense that we rely
on our intuitive explanations for many of the concepts and provide a more mathe-
matical and complete exposition on the details of the operation of fuzzy systems.
The astute reader will actually see intuitively how to extend the basic fuzzy con-
troller to the case where there are more than two inputs. While an understanding
of how to define other types of membership functions (Section 2.3.2) is important
since they are often used in practical applications, the remainder of the material
in Sections 2.3.2— 2.3.5 and 2.3.8 can simply be viewed as a precise mathematical
characterization and generalization of what you have already learned in Section 2.2.
Section 2.3.6, and hence much of this section, is needed if you want to understand
Chapter 5. Section 2.3.7 on page 73 is important to cover if you wish to understand
all of Section 4.3 in Chapter 4, Chapter 5 (except Section 5.6), all of Section 7.2.2
in Chapter 7, and other ideas in the literature. In fact, Section 2.3.7, particularly
the “Takagi-Sugeno fuzzy system,” is one of the most important new concepts in
this section.

Hence, if you are only concerned with gaining a basic understanding of fuzzy
control you can skim the part in Section 2.3.2 on membership functions, teach
yourself Section 2.3.7, and skip the remainder of this section on a first reading and
come back to it later to deepen your understanding of fuzzy systems and the wide
variety of ways that their basic components can be defined.

2.3.1 Linguistic Variables, Values, and Rules

A fuzzy system is a static nonlinear mapping between its inputs and outputs (i.e.,
it is not a dynamic system).® It is assumed that the fuzzy system has inputs u; € U;
where ¢ = 1,2,...,n and outputs y; € V; where i = 1,2,...,m, as shown in Fig-
ure 2.20. The inputs and outputs are “crisp”’—that is, they are real numbers, not
fuzzy sets. The fuzzification block converts the crisp inputs to fuzzy sets, the infer-
ence mechanism uses the fuzzy rules in the rule-base to produce fuzzy conclusions
(e.g., the implied fuzzy sets), and the defuzzification block converts these fuzzy
conclusions into the crisp outputs.

Universes of Discourse

The ordinary (“crisp”) sets U; and); are called the “universes of discourse” for
u; and y;, respectively (in other words, they are their domains). In practical ap-

5. Some people include the preprocessing of the inputs to the fuzzy system (e.g., differentiators
or integrators) in the definition of the fuzzy system and thereby obtain a “fuzzy system” that is
dynamic. Here, we adopt the convention that such preprocessing is not part of the fuzzy system,
and hence the fuzzy system will always be a memoryless nonlinear map.

2.3 General Fuzzy Systems

plications, most often the universes of discourse are simply the set of real numbers
or some interval or subset of real numbers. Note that sometimes for convenience
we will refer to an “effective” universe of discourse [«, 5] where « and [are the
points at which the outermost membership functions saturate for input universes
of discourse, or the points beyond which the outputs will not move for the output
universe of discourse. For example, for the e(t) universe of discourse in Figure 2.12

on page 41 we have a = —% and # = 7; or for the u(t) universe of discourse in
Figure 2.17 on page 47, we have a = —20 and [= 20. However, the actual universe

of discourse for both the input and output membership functions for the inverted
pendulum is the set of all real numbers. When we refer to effective universes of
discourse, we will say that the “width” of the universe of discourse is |5 — «.

Crisp Fuzzified Fuzzy Crisp
inputs inp’uts conc\lusions outputs
u 1 Y,
> l I l{ IH
uy nference = »
—>||g mechanism)
e = | :
. S 2 -
u ¥ Rule-base A y,
5 $

FIGURE 2.20 Fuzzy system (controller).

Linguistic Variables

To specify rules for the rule-base, the expert will use a “linguistic description”;
hence, linguistic expressions are needed for the inputs and outputs and the char-
acteristics of the inputs and outputs. We will use “linguistic variables” (constant
symbolic descriptions of what are in general time-varying quantities) to describe
fuzzy system inputs and outputs. For our fuzzy system, linguistic variables denoted
by u; are used to describe the inputs u;. Similarly, linguistic variables denoted by
y; are used to describe outputs y;. For instance, an input to the fuzzy system may
be described as u; =“position error” or us =“velocity error,” and an output from
the fuzzy system may be y; =“voltage in.”

Linguistic Values

Just as u; and y; take on values over each universe of discourse U; and);, respec-
tively, linguistic variables %; and g; take on “linguistic values” that are used to
describe characteristics of the variables. Let flf denote the j** linguistic value of
the linguistic variable u; defined over the universe of discourse U;. If we assume
that there exist many linguistic values defined over U;, then the linguistic variable
u; takes on the elements from the set of linguistic values denoted by

Ay ={Al:j=1,2,...,N;}

53

54 Chapter 2 / Fuzzy Control: The Basics

(sometimes for convenience we will let the j indices take on negative integer values,
as in the inverted pendulum example where we used the linguistic-numeric values).
Similarly, let B/ denote the ;" linguistic value of the linguistic variable g; defined
over the universe of discourse);. The linguistic variable g; takes on elements from
the set of linguistic values denoted by

B;={B’:p=1,2,...,M;}

(sometimes for convenience we will let the p indices take on negative integer values).
Linguistic values are generally descriptive terms such as “positive large,” “zero,”
and “negative big” (i.e., adjectives). For example, if we assume that @; denotes the
linguistic variable “speed,” then we may assign Al = “slow,” A2 = “medium,” and
A3 = “fast” so that 1 has a value from A, = {Al, A3, A3}

Linguistic Rules

The mapping of the inputs to the outputs for a fuzzy system is in part characterized
by a set of condition — action rules, or in modus ponens (If-Then) form,

If premise Then consequent. (2.3)

Usually, the inputs of the fuzzy system are associated with the premise, and the
outputs are associated with the consequent. These If-Then rules can be represented
in many forms. Two standard forms, multi-input multi-output (MIMO) and multi-
input single-output (MISO), are considered here. The MISO form of a linguistic
rule is

If @ is A7 and i is A% and,...,and u, is Al Then Yg 18 BP 2.4
1 2 n q q

It is an entire set of linguistic rules of this form that the expert specifies on how
to control the system. Note that if u; =“velocity error” and fl{ =“positive large,”
then “u, is fl{,” a single term in the premise of the rule, means “velocity error is
positive large.” It can be easily shown that the MIMO form for a rule (i.e., one with
consequents that have terms associated with each of the fuzzy controller outputs)
can be decomposed into a number of MISO rules using simple rules from logic. For
instance, the MIMO rule with n inputs and m = 2 outputs

If 4y is A and 4y is A and, ..., and @, is A}, Then 7, is B and 7, is B
is linguistically (logically) equivalent to the two rules

If @, is A7 and i is A% and, ..., and @, is A}, Then 7, is B}

If 4 is A and 4y is A} and, ..., and 4, is A, Then g, is Bj

2.3 General Fuzzy Systems

This is the case since the logical “and” in the consequent of the MIMO rule is still
represented in the two MISO rules since we still assert that both the first “and”
second rule are valid. For implementation, we would specify two fuzzy systems, one
with output y; and the other with output y2. The logical “and” in the consequent
of the MIMO rule is still represented in the MISO case since by implementing two
fuzzy systems we are asserting that ones set of rules is true “and” another is true.

We assume that there are a total of R rules in the rule-base numbered 1,2, ..., R,
and we naturally assume that the rules in the rule-base are distinct (i.e., there are
no two rules with exactly the same premises and consequents); however, this does
not in general need to be the case. For simplicity we will use tuples

(jaka"'al;paq)i

to denote the i*" MISO rule of the form given in Equation (2.4). Any of the terms
associated with any of the inputs for any MISO rule can be included or omitted.
For instance, suppose a fuzzy system has two inputs and one output with u; =
“position,” 4y = “velocity,” and g; = “force.” Moreover, suppose each input is
characterized by two linguistic values A} = “small” and A7 = “large” for i = 1,2.
Suppose further that the output is characterized by two linguistic values B =
“negative” and B2 = “positive.” A valid If-Then rule could be

If position is large Then force is positive

even though it does not follow the format of a MISO rule given above. In this case,
one premise term (linguistic variable) has been omitted from the If-Then rule. We
see that we allow for the case where the expert does not use all the linguistic terms
(and hence the fuzzy sets that characterize them) to state some rules.%

Finally, we note that if all the premise terms are used in every rule and a rule
is formed for each possible combination of premise elements, then there are

ﬁNi:Nl'NQ'...'Nn

=1

rules in the rule-base. For example, if n = 2 inputs and we have N; = 11 membership
functions on each universe of discourse, then there are 11 x 11 = 121 possible rules.
Clearly, in this case the number of rules increases exponentially with an increase in
the number of fuzzy controller inputs or membership functions.

2.3.2 Fuzzy Sets, Fuzzy Logic, and the Rule-Base

Fuzzy sets and fuzzy logic are used to heuristically quantify the meaning of linguistic
variables, linguistic values, and linguistic rules that are specified by the expert. The
concept of a fuzzy set is introduced by first defining a “membership function.”

6. Note, however, that we could require the rules to each have every premise term. Then we can
choose a special membership function that is unity over the entire universe of discourse and
associate it with any premise term that we want to omit. This achieves the same objective as
simply ignoring a premise term. Why?

55

56 Chapter 2 / Fuzzy Control: The Basics

Membership Functions

Let U; denote a universe of discourse and flf c fli denote a specific linguistic value
for the linguistic variable @;. The function u(u;) associated with A7 that maps U;
to [0, 1] is called a “membership function.” This membership function describes the
“certainty” that an element of U;, denoted u;, with a linguistic description @;, may
be classified linguistically as A7. Membership functions are subjectively specified in
an ad hoc (heuristic) manner from experience or intuition. _

For instance, if U; = [—150,150], 4; =“velocity error,” and flf =“positive
large,” then u(u;) may be a bell-shaped curve that peaks at one at u; = 75 and
is near zero when u; < 50 or u; > 100. Then if u; = 75, u(75) = 1, so we are
absolutely certain that u; is “positive large.” If u; = —25 then pu(—25) is very near
zero, which represents that we are very certain that wu; is not “positive large.”

Clearly, many other choices for the shape of the membership function are possi-
ble (e.g., triangular and trapezoidal shapes), and these will each provide a different
meaning for the linguistic values that they quantify. See Figure 2.21 for a graph-
ical illustration of a variety of membership functions and Tables 2.3 and 2.4 for
a mathematical characterization of the triangular and Gaussian membership func-
tions (other membership functions can be characterized with mathematics using
a similar approach).” For practice, you should sketch the membership functions
that are described in Tables 2.3 and 2.4. Notice that for Table 2.3 ¢’ specifies the
“saturation point” and w’ specifies the slope of the nonunity and nonzero part of
pk. Similarly, for pff. For u¢ notice that ¢ is the center of the triangle and w is
the base-width. Analogous definitions are used for the parameters in Table 2.4. In
Table 2.4, for the “centers” case note that this is the traditional definition for the
Gaussian membership function. This definition is clearly different from a standard
Gaussian probability density function, in both the meaning of ¢ and o, and in the
scaling of the exponential function. Recall that it is possible that a Gaussian prob-
ability density function has a maximum value achieved at a value other than one;
the standard Gaussian membership function always has its peak value at one.

|

FIGURE 2.21 Some typical membership functions.

7. The reader should not fall into the trap of calling a membership function a “probability
density function.” There is nothing stochastic about the fuzzy system, and membership
functions are not restricted to obey the laws of probability (consider, for example, the
membership functions in Figure 2.21).

2.3 General Fuzzy Systems

TABLE 2.3 Mathematical Characterization of
Triangular Membership Functions

| || Triangular membership functions

- 1 if u < cr
Left e (u) = max {O, 1+ SLE;;Z } otherwise
O 1 u—c f <

Contors Mc(u) _) max0, + 05w if u < C

max {0,1+ £=% otherwise
R

u—c 3 < R

Right SR () = max {O, 1+ 5w } ifu<e
1 otherwise

TABLE 2.4 Mathematical Characterization of
Gaussian Membership Functions

| || Gaussian membership functions

1 if u<c”
I _ 2
Left wo(u) = exp (_% (u;zL) > otherwise
Centers p(u) = exp _% (%)2)
_;(u—cR)2 if u < cB
Right /_LR(U) _ exp P P IITu s c
1 otherwise

Fuzzy Sets
Given a linguistic variable u; with a linguistic value flf defined on the universe of
discourse U;, and membership function p ,;(u;) (membership function associated

with the fuzzy set A7) that maps U; to [0,1], a “fuzzy set” denoted with A7 is
defined as

Al = {(uis pgs (wi)) = wi € Ui} (2.5)

(notice that a fuzzy set is simply a crisp set of pairings of elements of the universe of
discourse coupled with their associated membership values). For example, suppose
we assign a linguistic variable @; = “temperature” and the linguistic value A! =
“hot,” then A is a fuzzy set whose membership function describes the degree of
certainty that the numeric value of the temperature, u; € U, possesses the property
characterized by fl% (see the pendulum example in the previous section for other
examples of fuzzy sets).

Additional concepts related to membership functions and fuzzy sets are cov-
ered in Exercise 2.5 on page 104 and Exercise 2.6 on page 105. These include the
following:

57

58 Chapter 2 / Fuzzy Control: The Basics

“Support of a fuzzy set”: The set of points on the universe of discourse where the
membership function value is greater than zero.

® “a-cut”: The set of points on the universe of discourse where the membership
function value is greater than a.

e “Height” of a fuzzy set or membership function: The peak value reached by the
membership function.

® “Normal” fuzzy sets: Ones with membership functions that reach one for at least
one point on the universe of discourse.

o “Conver fuzzy sets”: Ones that satisfy a certain type of convexity condition that
is given in Equation (2.29) on page 104,

® “Linguistic hedges”: Mathematical operations on membership functions of fuzzy
sets that can be used to change the meaning of the underlying linguistics.

o “Extension principle”: If you are given a function that maps some domain into
some range and you have membership functions defined on the domain, the ex-
tension principle shows how to map the membership functions on the domain to
the range.

Fuzzy Logic

Next, we specify some set-theoretic and logical operations on fuzzy sets. The reader
should first understand the conventional counterparts to each of these; the fuzzy
versions will then be easier to grasp as they are but extensions of the corresponding
conventional notions. Also, we recommend that the reader sketch the fuzzy sets
that result from the following operations.

Fuzzy Subset: Given fuzzy sets A} and A? associated with the universe of dis-
course U; (N; = 2), with membership functions denoted 1141 (u;) and a2 (u;), re-
spectively, A}l is defined to be a “fuzzy subset” of A?, denoted by Al C A?, if
A (u;) < Ha2 (u;) for all u; € U;.

Fuzzy Complement: The complement (“not”) of a fuzzy set A} with a mem-
bership function 1141 (u;) has a membership function given by 1 — 141 (u;).

Fuzzy Intersection (AND): The intersection of fuzzy sets A} and A%, which

77
are defined on the universe of discourse U;, is a fuzzy set denoted by A} N A?, with
a membership function defined by either of the following two methods:

1. Minimum: Here, we find the minimum of the membership values as in

trarnaz =min{pn (us), paz (ui) « us € Ui} (2.6)

2.3 General Fuzzy Systems

2. Algebraic Product: Here, we find the product of the membership values as in
trarnaz = {par(ui)paz (wi) = ui € U} (2.7)

Other methods can be used to represent intersection (and) [95, 250], such as the
ones given in Exercise 2.7 on page 105, but the two listed above are the most
commonly used. Suppose that we use the notation x * y = min{z, y}, or at other
times we will use it to denote the product x x y = zy (* is sometimes called
the “triangular norm”). Then p 41 (u;) * pyg2 (u;) is a general representation for the
intersection of two fuzzy sets. Intfuzzy 1ogic, intersection is used to represent the
“and” operation. For example, if we use minimum to represent the “and” operation,
then the shaded membership function in Figure 2.22 is p AInAZ, which is formed
from the two others (41 (u;) and py2(w;)). This quantification of “and” provides
the fundamental justiﬁcattion for our fepresentation of the “and” in the premise of
the rule.

“blueu “green”

-
el

. . color
“blue and green

FIGURE 2.22 A membership function for
the “and” of two membership functions.

Fuzzy Union (OR): The union of fuzzy sets A} and A%, which are defined on

77
the universe of discourse U, is a fuzzy set denoted by A} U A2, with a membership
function defined by either one of the following methods:

1. Mazimum: Here, we find the maximum of the membership values as in
taroaz (ui) = max{par (us), paz(uq) : u; € Ui}t (2.8)
2. Algebraic Sum: Here, we find the algebraic sum of the membership values as in
paruaz(uwi) = {par (wi) + paz (wi) — par (ui)paz (wi) = w; € Ui} (2.9)
Other methods can be used to represent union (or) [95, 250], such as the ones given
in Exercise 2.7 on page 105, but the two listed above are the most commonly used.

Suppose that we use the notation z @y = max{z, y}, or at other times we will use
it to denote x @y = x + y — zy (P is sometimes called the “triangular co-norm”).

59

60 Chapter 2 / Fuzzy Control: The Basics

Then g 1 (u;) ® paz (u;) is a general representation for the union of two fuzzy sets.
In fuzzy iogic, union is used to represent the “or” operation. For example, if we use
maximum to represent the “or” operation, then the shaded membership function in
Figure 2.23, is pu 41 42, which is formed from the two others (p41(ui) and 142 (us)).
This quantification of “or” provides the fundamental Juﬁtlﬁcatlon for the “or” that
inherently lies between the rules in the rule-base (note that we interpret the list
of rules in the rule-base as “If premise-1 Then consequent-1” or “If premise-2
Then consequent-2,” or so on). Note that in the case where we form the “overall
implied fuzzy set” (to be defined more carefully below) this “or” between the rules
is quantified directly with “@®” as it is described above. If we use only the implied
fuzzy sets (as we did for the inverted pendulum problem in the last section), then
the “or” between the rules is actually quantified with the way the defuzzification
operation works (consider the way that the COG defuzzification method combines
the effects of all the individual implied fuzzy sets).

“blueu “green”

color

“blue or green”

FIGURE 2.23 A membership function for
the “or” of two membership functions.

Fuzzy Cartesian Product: The intersection and union above are both defined
for fuzzy sets that lie on the same universe of discourse. The fuzzy Cartesian product
is used to quantify operations on many universes of discourse. If A7, A5 ... Al are
fuzzy sets defined on the universes of discourse U, Us, ..., U,, respectively, their
Cartesian product is a fuzzy set (sometimes called a “fuzzy relation”), denoted by
A} x A5 x -+ x AL with a membership function defined by

/LA{XA’QCX...XAZH(UMUJ?’ .- 'aun) = :uA{ (ul) * /LA’QC(UQ) Kok Al (un)

The reader may wonder why the “x” operation is used here. Basically, it arises
from our interpretation of a standard Cartesian product, which is formed by taking
an element from the first element of the product “and” the second element of the
product “and” so on. Clearly, in light of this interpretation, the use of “x” and hence
“and” makes sense. Note that the “ands” used in the Cartesian product actually
represent the “ands” used in the rule premises since normally each of the terms in
a premise comes from a different universe of discourse.

2.3 General Fuzzy Systems

Fuzzy Quantification of Rules: Fuzzy Implications

Next, we show how to quantify the linguistic elements in the premise and consequent
of the linguistic If-Then rule with fuzzy sets. For example, suppose we are given
the If-Then rule in MISO form in Equation (2.4). We can define the fuzzy sets as
follows:

Al = {(ur, pps () s ua € Un'}
A5 = {(ua, pax (us)) < ug € Us}
: (2.10)
Aﬁz = {(umﬂAln(un)) U € Up}
BY = {(Yq 117 (Yq)) : yg € Vg}

These fuzzy sets quantify the terms in the premise and the consequent of the given
If-Then rule, to make a “fuzzy implication” (which is a fuzzy relation)

If AJ and A% and, ..., and 4!, Then B (2.11)

where the fuzzy sets A7, A5, ..., AL and BY are defined in Equation (2.10). There-
fore, the fuzzy set A} is associated with, and quantifies the meaning of the linguistic
statement “u; is fl{,” and B! quantifies the meaning of “g, is Bg .7 Each rule in
the rule-base, which we denote by (4, k,...,5;p,9);, i = 1,2,..., R, is represented
with such a fuzzy implication (a fuzzy quantification of the linguistic rule).

There are two general properties of fuzzy logic rule-bases that are sometimes
studied. These are “completeness” (i.e., whether there are conclusions for every
possible fuzzy controller input) and “consistency” (i.e., whether the conclusions
that rules make conflict with other rules’ conclusions). These two properties are
covered in Exercise 2.8 on page 106.

2.3.3 Fuzzification

Fuzzy sets are used to quantify the information in the rule-base, and the inference
mechanism operates on fuzzy sets to produce fuzzy sets; hence, we must specify
how the fuzzy system will convert its numeric inputs u; € U; into fuzzy sets (a
process called “fuzzification”) so that they can be used by the fuzzy system.

Let U; denote the set of all possible fuzzy sets that can be defined on U;. Given
u; € U;, fuzzification transforms u; to a fuzzy set denoted by® Afuz defined on
the universe of discourse U;. This transformation is produced by the fuzzification
operator F defined by

F:ly—-U

8. In this section, as we introduce various fuzzy sets we will always use a hat over any fuzzy set
whose membership function changes dynamically over time as the u; change.

61

62 Chapter 2 / Fuzzy Control: The Basics

where
Fluy) = Al

Quite often “singleton fuzzification” is used, which produces a fuzzy set Afuz eur
with a membership function defined by

1 z=u
H afuz (z) = { 0 otherwise
Any fuzzy set with this form for its membership function is called a “singleton.”
For a picture of a singleton membership function, see the single vertical line shown
in Figure 2.21 on page 56. Note that the discrete impulse function can be used to
represent the singleton membership function.

Basically, the reader should simply think of the singleton fuzzy set as a dif-
ferent representation for the number wu;. Singleton fuzzification is generally used
in implementations since, without the presence of noise, we are absolutely certain
that u; takes on its measured value (and no other value), and since it provides
certain savings in the computations needed to implement a fuzzy system (relative
to, for example, “Gaussian fuzzification,” which would involve forming bell-shaped
membership functions about input points, or triangular fuzzification, which would
use triangles).

Since most practical work in fuzzy control uses singleton fuzzification, we will
also use it throughout the remainder of this book. The reasons other fuzzification
methods have not been used very much are (1) they add computational complexity
to the inference process and (2) the need for them has not been that well justified.
This is partly due to the fact that very good functional capabilities can be achieved
with the fuzzy system when only singleton fuzzification is used.

2.3.4 The Inference Mechanism

The inference mechanism has two basic tasks: (1) determining the extent to which
each rule is relevant to the current situation as characterized by the inputs u;,
1 =1,2,...,n (we call this task “matching”); and (2) drawing conclusions using
the current inputs u; and the information in the rule-base (we call this task an
“inference step”). For matching note that A} x A5 x ... x Al is the fuzzy set
representing the premise of the i*” rule (4, k,...,l;p,q); (there may be more than
one such rule with this premise).

Matching
Suppose that at some time we get inputs u;, ¢ = 1,2, ..., n, and fuzzification pro-
duces

At g g

the fuzzy sets representing the inputs. There are then two basic steps to matching.

2.3 General Fuzzy Systems

Step 1: Combine Inputs with Rule Premises: The first step in matching
involves finding fuzzy sets A7, A5, ..., AL with membership functions

,uAjl (ul) = :uAJl (ul) * :uAfuz (ul)
1

H Ak (u2) = Hak (u2) * H ifuz (u2)
2

tr (un) = prar (Un) * [t 4y (un)

(for all j,k,...,1) that combine the fuzzy sets from fuzzification with the fuzzy
sets used in each of the terms in the premises of the rules. If singleton fuzzification
is used, then each of these fuzzy sets is a singleton that is scaled by the premise
membership function (e.g., 14 (1) = Fai (1) for 43 = u; and 14 (a1) = 0 for
@y # uy). That is, with singleton fuzzification we have 1 sfuz, (u;) = 1 for all i =

1,2,...,n for the given u; inputs so that

pzi (ur) = py; (wa)
fax (u2) = pag (uz)

AL (un) = Hat (un)

We see that when singleton fuzzification is used, combining the fuzzy sets that were
created by the fuzzification process to represent the inputs with the premise mem-
bership functions for the rules is particularly simple. It simply reduces to computing
the membership values of the input fuzzy sets for the given inputs wuy,us, ..., uy
(as we had indicated at the end of Section 2.2.3 for the inverted pendulum).

Step 2: Determine Which Rules Are On: In the second step, we form mem-
bership values i;(u1, uz, . . ., uy,) for the it rule’s premise (what we called fipremise
in the last section on the inverted pendulum) that represent the certainty that each
rule premise holds for the given inputs. Define

wi(ug, g, ..y uy) = ,LLA{(ul) * NA’;(UZ) ek g (un) (2.12)

which is simply a function of the inputs u;. When singleton fuzzification is used (as
it is throughout this entire book), we have

pi (U, Ua, .o, Uy) = uA{(ul) # pugn (uz) %ok pan (un) (2.13)

We use p;(u1,us,...,u,) to represent the certainty that the premise of rule i

matches the input information when we use singleton fuzzification. This p; (w1, ua, . . .

is simply a multidimensional certainty surface, a generalization of the surface shown

Up)

63

64 Chapter 2 / Fuzzy Control: The Basics

in Figure 2.11 on page 39 for the inverted pendulum example. It represents the cer-
tainty of a premise of a rule and thereby represents the degree to which a particular
rule holds for a given set of inputs.

Finally, we would remark that sometimes an additional “rule certainty” is mul-
tiplied by ;. Such a certainty could represent our a priori confidence in each rule’s
applicability and would normally be a number between zero and one. If for rule 4
its certainty is 0.1, we are not very confident in the knowledge that it represents;
while if for some rule j we let its certainty be 0.99, we are quite certain that the
knowledge it represents is true. In this book we will not use such rule certainty
factors.

This concludes the process of matching input information with the premises of
the rules.

Inference Step

There are two standard alternatives to performing the inference step, one that
involves the use of implied fuzzy sets (as we did for the pendulum earlier) and the
other that uses the overall implied fuzzy set.

Alternative 1: Determine Implied Fuzzy Sets: Next, the inference step is
taken by computing, for the i*" rule (j,%,...,1;p,q);, the “implied fuzzy set” B,
with membership function

1 (Yg) = piur, ua, - un) * iz (Yg) (2.14)

The implied fuzzy set Bé specifies the certainty level that the output should be a
specific crisp output y, within the universe of discourse Y, taking into consideration
only rule i. Note that since p;(u1,us, ..., u,) will vary with time, so will the shape
of the membership functions p Bi (yq) for each rule. An example of an implied fuzzy

set can be seen in Figure 2.13(b) on page 43 for the inverted pendulum example.

Alternative 2: Determine the Overall Implied Fuzzy Set: Alternatively,
the inference mechanism could, in addition, compute the “overall implied fuzzy set”
B, with membership function

tp,Wa) = kpi(Ye) Hpz(ye) © - @ ppr(yy) (2.15)

that represents the conclusion reached considering all the rules in the rule-base
at the same time (notice that determining Bq can, in general, require significant
computational resources). Notice that we did not consider this possibility for the
inverted pendulum example for reasons that will become clearer in the next sub-
section. Instead, our COG or center-average defuzzification method performed the
aggregation of the conclusions of all the rules that are represented by the implied
fuzzy sets.

2.3 General Fuzzy Systems

Discussion: Compositional Rule of Inference Using the mathematical ter-
minology of fuzzy sets, the computation of yuz5 (yq) is said to be produced by a “sup-
star compositional rule of inference.” The “sup” in this terminology corresponds
to the @ operation, and the “star” corresponds to *. “Zadeh’s compositional rule
of inference” [245, 246, 95] is the special case of the sup-star compositional rule
of inference when maximum is used for & and minimum is used for *. The overall
justification for using the above operations to represent the inference step lies in
the fact that we can be no more certain about our conclusions than we are about
our premises. The operations performed in taking an inference step adhere to this
principle. To see this, you should study Equation (2.14) and note that the scaling
from po;(u1,us, ..., u,) that is produced by the premise matching process will al-
ways ensure that sup,, {“Bé (Yg)} < piui, ug, ..., uy,). The fact that we are no more
certain of our consequents than our premises is shown graphically in Figure 2.19
on page 50 where the heights of the implied fuzzy sets are always less than the
certainty values for all the premise terms.

Up to this point, we have used fuzzy logic to quantify the rules in the rule-
base, fuzzification to produce fuzzy sets characterizing the inputs, and the inference
mechanism to produce fuzzy sets representing the conclusions that it reaches after
considering the current inputs and the information in the rule-base. Next, we look
at how to convert this fuzzy set quantification of the conclusions to a numeric value
that can be input to the plant.

2.3.5 Defuzzification
A number of defuzzification strategies exist, and it is not hard to invent more. Each

provides a means to choose a single output (which we denote with ySnSp) based
on either the implied fuzzy sets or the overall implied fuzzy set (depending on the
type of inference strategy chosen, “Alternative 1 or 2,” respectively, in the previous
section).

Defuzzification: Implied Fuzzy Sets

As they are more common, we first specify typical defuzzification techniques for the
implied fuzzy sets Bj:

e (Center of gravity (COG): A crisp output ySnSp is chosen using the center of area
and area of each implied fuzzy set, and is given by

R q N
crisp _ 21 b fyq 3 (Yq)dyq
g B R
2ie1 fyq Ki (Yq)dyq

where R is the number of rules, b7 is the center of area of the membership function
of BP associated with the implied fuzzy set B for the i" rule (j,k,...,l;p, q):,

65

66 Chapter 2 / Fuzzy Control: The Basics

and
/ Hpi (Yq)dyg
Vg 4

denotes the area under p Bi (yq)- Notice that COG can be easy to compute since
it is often easy to find closed-form expressions for fyq Hpi (yq)dyq, which is the
area under a membership function (see the pendulum example in Section 2.2.6
on page 44 where this amounts to finding the area of a triangle or a triangle with
its top chopped off). Notice that the area under each implied fuzzy set must be
computable, so the area under each of the output membership functions (that
are used in the consequent of a rule) must be finite (this is why we cannot “sat-
urate” the membership functions at the outermost edges of the output universe
of discourse). Also, notice that the fuzzy system must be defined so that

R
Z/ 1pi (Yg)dyq # 0
i—17/Y

for all u; or ySnSp will not be properly defined. This value will be nonzero if there

is a rule that is on for every possible combination of the fuzzy system inputs and

the consequent fuzzy sets all have nonzero area.

e (Center-average: A crisp output ySnSp is chosen using the centers of each of the
output membership functions and the maximum certainty of each of the conclu-
sions represented with the implied fuzzy sets, and is given by

iy bf supy, {hp: (ya)}

R
2ict SUPy, {,UB;‘I (yq)}

crisp _
yq p -

where “sup” denotes the “supremum” (i.e., the least upper bound which can often
be thought of as the maximum value). Hence, sup,{x(z)} can simply be thought
of as the highest value of u(x) (e.g., sup, {p1)(u)} = 0.25 for y1(1) when product
is used to represent the implication, as shown in Figure 2.18 on page 48). Also, b}
is the center of area of the membership function of BY associated with the implied
fuzzy set Bé for the i*" rule (4, k,...,I;p, q);. Notice that the fuzzy system must
be defined so that

R
Zszlp{ugé(yq)} #0
i=1 “4

for all u;. Also, note that sup, {up: (yq)} is often very easy to compute since if
q
ppr(yq) = 1 for at least one y, (which is the normal way to define consequent

2.3 General Fuzzy Systems

membership functions), then for many inference strategies, using Equation (2.14),
we have

sup{ppi (o)} = pi(ur, uz, ... un)
Yq

which has already been computed in the matching process. Moreover, the formula
for defuzzification is then given by

R
crisp _ Doicy bipi(ur, ug, - . up)

Y
! Zilm(ul,u%...,un)

(2.16)

where we must ensure that Zil wi(u1, ug, ..., u,) # 0 for all u;. Also note that
this implies that the shape of the membership functions for the output fuzzy sets
does not matter; hence, you can simply use singletons centered at the appropriate
positions. Convince yourself of this.

Defuzzification: The Overall Implied Fuzzy Set

Next, we present typical defuzzification techniques for the overall implied fuzzy set
By:

® Max criterion: A crisp output ygnsp
of discourse), for which the overall implied fuzzy set B, achieves a maximum-—
that is,

is chosen as the point on the output universe

YIS ¢ {arg sup {,qu (yq)}}
Vq

Here, “argsup,{p(x)}” returns the value of x that results in the supremum of the
function u(x) being achieved. For example, suppose that poyerqn (u) denotes the
membership function for the overall implied fuzzy set that is obtained by taking
the maximum of the certainty values of p1) and p(2) over all u in Figure 2.18
on page 48 (i.e., ploverau (w) = maxy, {p(1)(u), pe2)(uw)} per Equation (2.15)). In
this case, arg sup,,{ttoveran (4)} = —10, which is the defuzzified value via the max
criterion.

Sometimes the supremum can occur at more than one point in Y, (e.g.,
consider the use of the max criterion for the case where minimum is used to
represent the implication, and triangular membership functions are used on the
output universe of discourse, such as in Figure 2.19 on page 50). In this case you

also need to specify a strategy on how to pick only one point for ygnsp (e.g.,
choosing the smallest value). Often this defuzzification strategy is avoided due to
this ambiguity; however, the next defuzzification method does offer a way around
it.

67

68 Chapter 2 / Fuzzy Control: The Basics

) . crisp .
® Mean of mazimum: A crisp output yq P is chosen to represent the mean value
of all elements whose membership in B, is a maximum. We define "% as the
supremum of the membership function of B, over the universe of discourse).

Moreover, we define a fuzzy set B;‘ € Y, with a membership function defined as

) _)1 g (v)
Fa; (va) = { 0 otherwise

_ jmax
= bq

then a crisp output, using the mean of maximum method, is defined as

risD _ Jy, Yattz; (o) 8q
‘ Iy, 15 (Wa)dyq

(2.17)

where the fuzzy system must be defined so that fyq Fp (yq)dyq # 0 for all wu,.
As an example, suppose that for Figure 2.19 on page 50 the two implied fuzzy
sets are used to form an overall implied fuzzy set by taking the maximum of the
two certainty values over all of u (i.e., poveran(u) = maxy,{j(1)(u), pe2)(u)} per
Equation (2.15)). In this case there is an interval of u values around —10 where
the overall implied fuzzy set is at its maximum value, and hence there is an
ambiguity about which is the best defuzzified value. The mean of the maximum
method would pick the value in the middle of the interval as the defuzzified value,
so it would choose —10.

Note that the integrals in Equation (2.17) must be computed at each time
instant since they depend on Bq, which changes with time. This can require exces-
sive computational resources for continuous universes of discourse. For some types
of membership functions, simple ideas from geometry can be used to simplify the
calculations; however, for some choices of membership functions, there may be
many subintervals spread across the universe of discourse where the maximum is
achieved. In these cases it can be quite difficult to compute the defuzzified value
unless the membership functions are discretized. Complications such as these
often cause designers to choose other defuzzification methods.

e Center of area (COA): A crisp output ySnSp is chosen as the center of area for
the membership function of the overall implied fuzzy set B,. For a continuous
output universe of discourse), the center of area output is denoted by

crisp _ fyq Yok s, (Yq)dyq
! Iy, 15, Wa)dyq

The fuzzy system must be defined so that fyq g, (yq)dyq # 0 for all u;. Note that,
similar to the mean of the maximum method, this defuzzification approach can
be computationally expensive. For instance, we leave it to the reader to compute
the area of the overall implied fuzzy set pioveran(u) = maxy {1y (w), p(2)(u)} for

2.3 General Fuzzy Systems

Figure 2.19 on page 50. Notice that in this case the computation is not as easy as
just adding the areas of the two chopped-off triangles that represent the implied
fuzzy sets. Computation of the area of the overall implied fuzzy set does not count
the area that the implied fuzzy sets overlap twice; hence, the area of the overall
implied fuzzy set can in general be much more difficult to compute in real time.

It is important to note that each of the above equations for defuzzification actually
provides a mathematical quantification of the operation of the entire fuzzy system
provided that each of the terms in the descriptions are fully defined. We discuss
this in more detail in the next section.

Overall, we see that using the overall implied fuzzy set in defuzzification is often
undesirable for two reasons: (1) the overall implied fuzzy set B, is itself difficult
to compute in general, and (2) the defuzzification techniques based on an inference
mechanism that provides B, are also difficult to compute. It is for this reason that
most existing fuzzy controllers (including the ones in this book) use defuzzification
techniques based on the implied fuzzy sets, such as center-average or COG.

2.3.6 Mathematical Representations of Fuzzy Systems

Notice that each formula for defuzzification in the previous section provides a math-
ematical description of a fuzzy system. There are many ways to represent the oper-
ations of a fuzzy system with mathematical formulas. Next, we clarify how to con-
struct and interpret such mathematical formulas for the case where center-average
defuzzification is used for MISO fuzzy systems. Similar ideas apply for some of the
other defuzzification strategies, MIMO fuzzy systems, and the Takagi-Sugeno fuzzy
systems that we discuss in the next section.

Assume that we use center-average defuzzification so that the formula describ-
ing how to compute the output is

R

y= St 219
Dz Hi

Notice that we removed the “crisp” superscript and “g” subscript from y (compare

to Equation (2.16)). Also, we removed the “¢” superscript from b;. The ¢ index

is no longer needed in both cases since we are considering MISO systems, so that

while there can be many inputs, there is only one output.

To be more explicit in Equation (2.18), we need to first define the premise mem-
bership functions p; in terms of the individual membership functions that describe
each of the premise terms. Suppose that we use product to represent the conjunc-
tions in the premise of each rule. Suppose that we use the triangular membership
functions in Table 2.3 on page 57 where we suppose that ,uJL (uy) (uf(uj)) is the
“left-" (“right-") most membership function on the j** input universe of discourse.
In addition, let 11" (u;) be the i*" “center” membership function for the ;' input
universe of discourse. In this case, to define ,uJL (uj) we simply add a “;” subscript
to the parameters of the “left” membership function from Table 2.3. In particular,

69

70 Chapter 2 / Fuzzy Control: The Basics

we use ¢f and w} to denote the j* values of these parameters. We take a similar
approach for the pff(u;), j =1,2,...,n. For ,ujc (uj) we use ¢; (w}) to denote the
it" triangle center (triangle base width) on the j* input universe of discourse.

Suppose that we use all possible combinations of input membership functions
to form the rules, and that each premise has a term associated with each and every
input universe of discourse. A more detailed description of the fuzzy system in
Equation (2.18) is given by

b Ty () + b (ud) T g i () + - -
[Ty ek (ug) 4 8 (ua) Ty () + -
The first term in the numerator is by in Equation (2.18). Here, we have called

the “first rule” the one that has premise terms all described by the membership
functions ,uJL (uj), 7 =1,2,...,n. The second term in the numerator is bops and it

Y

uses ,ulcl (u1) on the first universe of discourse and the leftmost ones on the other
universes of discourse (i.e., j = 2,3, ..., n). Continuing in a similar manner, the sum
in the numerator (and denominator) extends to include all possible combinations
of products of the input membership functions, and this fully defines the u; in
Equation (2.18).

Overall, we see that because we need to define rules resulting from all possible
combinations of given input membership functions, of which there are three kinds
(left, center, right), the explicit mathematical representation of the fuzzy system is
somewhat complicated. To avoid some of the complications, we first specify a single
function that represents all three types of input membership functions. Suppose that
on the j** input universe of discourse we number the input membership functions
from left to right as 1,2,..., N;, where IN; is the number of input membership
functions on the 5" input universe of discourse. A single membership function that
represents all three in Table 2.3 is

e 1 . N;
1 1fuJ§cj0ruJch

pi(uj) = { max {0, 14 } if uj < ¢ and (u; > ¢ and u; < c;-vj)
-5wj

max {O, 14 2 } if uj > ¢ and (u; > ¢j and u; < c;-vj)
Sw;

A similar approach can be used for the Gaussian membership functions in Table 2.4.
Recall that we had used

(jaka-"al;paq)i

to denote the i*" rule. In this notation the indices in (the “tuple”) (j,k,...,1)
range over 1 < j < N;, 1 <k < N,, ..., 1< < N,, and specify which linguistic
value is used on each input universe of discourse. Correspondingly, each index in the
tuple (4, k, .. ., 1) also specifies the linguistic-numeric value of the input membership
function used on each input universe of discourse.

2.3 General Fuzzy Systems

Let

plokselipsa)

denote the output membership function (a singleton) center for the i** rule (of
course, ¢ = 1 in our MISO case). Note that we use “i” in the notation (4, k, ..., 1; p,)
simply as a label for each rule (i.e., we number the rules in the rule-base, and i is
this number). Hence, when we are given ¢, we know the values of j, k, ..., [, p, and
q. Because of this, an explicit description of the fuzzy system in Equation (2.18) is
given by

R ; . o j
S, A 7. SRR

—
Doy pph el

y= (2.19)

This formula clearly shows the use of the product to represent the premise. Notice
that since we use all possible combinations of input membership functions to form
the rules there are

R:
J

N;
1

n

rules, and hence it takes

> oNi+ [N (2.20)
j=1 j=1

parameters to describe the fuzzy system since there are two parameters for each
input membership function and R output membership function centers. For some
applications, however, all the output membership functions are not distinct. For
example, consider the pendulum example where five output membership function
centers are defined, and there are R = 25 rules. To define the center positions
bk lip:@)i g0 that they take on only a fixed number of given values, that is less
than R, one approach is to specify them as a function of the indices of the input
membership functions. What is this function for the pendulum example?

A different approach to avoiding some of the complications encountered in
specifying a fuzzy system mathematically is to use a different notation, and hence
a different definition for the fuzzy system. For this alternative approach, for the
sake of variety, we will use Gaussian input membership functions. In particular, for
simplicity, suppose that for the input universes of discourse we only use membership
functions of the “center” Gaussian form shown in Table 2.4. For the i*" rule, suppose
that the input membership function is

71

72 Chapter 2 / Fuzzy Control: The Basics

for the j*" input universe of discourse. Hence, even though we use the same notation
for the membership function, these centers cz- are different from those used above,
both because we are using Gaussian membership functions here, and because the “7”
in ¢} is the index for the rules, not the membership function on the j** input universe
of discourse. Similar comments can be made about the cr;'-, i=1,2,...,R, j =
1,2,...,n. If welet b;, i = 1,2,..., R, denote the center of the output membership
function for the i*" rule, use center-average defuzzification, and product to represent
the conjunctions in the premise, then

i\ 2
R 1 Uj—C;
Dim1 bi H?:l exp (_5 (]o;l]) >
T2
R 1 U;—C.
Diet H?:l exp (_5 (%) >

is an explicit representation of a fuzzy system. Note that we do not use the “left”
and “right” versions of the Gaussian membership functions in Table 2.4 as this
complicates the notation (how?). There are nR input membership function centers,
nR input membership function spreads, and R output membership function centers.
Hence, we need a total of

(2.21)

y:

R(2n+1)

parameters to describe this fuzzy system.

Now, while the fuzzy systems in Equations (2.19) and (2.21) are in general
different, it is interesting to compare the number of parameters needed to describe
a fuzzy system using each approach. In practical situations, we often have N; > 3
for each j = 1,2,...,n, and sometimes the number of membership functions on
each input universe of discourse can be quite large. From Equation (2.20) we can
clearly see that large values of n will result in a fuzzy system with many parameters
(there is an exponential increase in the number of rules). On the other hand, using
the fuzzy system in Equation (2.21) the user specifies the number of rules and this,
coupled with the number of inputs n, specifies the total number of parameters.
There is not an exponential growth in the number of parameters in Equation (2.21)
in the same way as there is in the fuzzy system in Equation (2.19) so you may be
tempted to view the definition in Equation (2.21) as a better one. Such a conclusion,
can, however be erroneous for several reasons.

First, the type of fuzzy system defined by Equation (2.19) is sometimes more
natural in control design when you use triangular membership functions since you
often need to make sure that there will be no point on any input universe of discourse
where there is no membership function with a nonzero value (why?). Of course, if
you are careful, you can avoid this problem with the fuzzy system represented by
Equation (2.21) also. Second, suppose that the number of rules for Equation (2.21)
is the same as that for Equation (2.19). In this case, the number of parameters

2.3 General Fuzzy Systems

needed to describe the fuzzy system in Equation (2.21) is

I~] @nt1)
j=1

Now, comparing this to Equation (2.20) you see that for many values of Nj,
7 = 1,2,...,n, and number of inputs n, it is possible that the fuzzy system in
Equation (2.21) will require many more parameters to specify it than the fuzzy
system in Equation (2.19). Hence, the inefficiency in the representation in Equa-
tion (2.19) lies in having all possible combinations of output membership function
centers, which results in exponential growth in the number of parameters needed to
specify the fuzzy system. The inefficiency in the representation in Equation (2.21)
lies in the fact that, in a sense, membership functions on the input universes of
discourse are not re-used by each rule. There are new input membership functions
for every rule.

Generally, it is difficult to know which is the best fuzzy system for a particular
problem. In this book, we will sometimes (e.g., in Chapter 5) use the mathematical
representation in Equation (2.21) because it is somewhat simpler, and possesses
some properties that we will exploit. At other times we will be implicitly using the
representation in Equation (2.19) because it will lend to the development of certain
techniques (e.g., in Chapter 6). In every case, however, that we use Equation (2.21)
(Equation (2.19)) you may want to consider how the concepts, approaches, and
results change (or do not change) if the form of the fuzzy system in Equation (2.19)
(Equation (2.21)) is used.

Finally, we would like to recommend that you practice creating mathematical
representations of fuzzy systems. For instance, it is good practice to create a math-
ematical representation of the fuzzy controller for the inverted pendulum of the
form of Equation (2.19), then also use Equation (2.21) to specify the same fuzzy
system. Comparing these two approaches, and resolving the issues in specifying the
output centers for the Equation (2.19) case, will help clarify the issues discussed in
this section.

2.3.7 Takagi-Sugeno Fuzzy Systems
The fuzzy system defined in the previous sections will be referred to as a “standard
fuzzy system.” In this section we will define a “functional fuzzy system,” of which
the Takagi-Sugeno fuzzy system [207] is a special case.

For the functional fuzzy system, we use singleton fuzzification, and the 7*"
MISO rule has the form

If 4y is 121{ and s is fl’; and,...,and 4, is flﬁl Then b; = g;(+)

where “” simply represents the argument of the function g; and the b; are not
output membership function centers. The premise of this rule is defined the same as

it is for the MISO rule for the standard fuzzy system in Equation (2.4) on page 54.

73

74 Chapter 2 / Fuzzy Control: The Basics

The consequents of the rules are different, however. Instead of a linguistic term
with an associated membership function, in the consequent we use a function b; =
9i(+) (hence the name “functional fuzzy system”) that does not have an associated
membership function. Notice that often the argument of g; contains the terms
u;, 1 =1,2,...,n, but other variables may also be used. The choice of the function
depends on the application being considered. Below, we will discuss linear and affine
functions but many others are possible. For instance, you may want to choose

bi =¢i() =ai0+ ai,l(ul)z + -+ ai,n(un)z

or
bi = gi(-) = exp [a;18in(u1) + - - - + @i psin(uy,)]

Virtually any function can be used (e.g., a neural network mapping or another fuzzy
system), which makes the functional fuzzy system very general.

For the functional fuzzy system we can use an appropriate operation for rep-
resenting the premise (e.g., minimum or product), and defuzzification may be ob-
tained using

R
y = 721;1 bitts (2.22)
Dim1 M

where p; is defined in Equation (2.13). It is assumed that the functional fuzzy
system is defined so that no matter what its inputs are, we have Zil i # 0. One
way to view the functional fuzzy system is as a nonlinear interpolator between the
mappings that are defined by the functions in the consequents of the rules.

An Interpolator Between Linear Mappings
In the case where

bi = gi(-) = as0 + aiiur + -+ ajpuy

(where the a;; are real numbers) the functional fuzzy system is referred to as
a “Takagi-Sugeno fuzzy system.” If a;o = 0, then the g¢;(-) mapping is a linear
mapping and if a; o # 0, then the mapping is called “affine.” Often, however, as is
standard, we will refer to the affine mapping as a linear mapping for convenience.
Overall, we see that the Takagi-Sugeno fuzzy system essentially performs a nonlinear
interpolation between linear mappings.

As an example, suppose that n = 1, R = 2, and that we have rules

If 4 is 121% Then b; =2 + u;

If 4 is 121% Then by =1+ u;

2.3 General Fuzzy Systems

with the universe of discourse for u; given in Figure 2.24 so that u; represents Al
and o represents A2. We have

_ b1 + bapio

=bypu1+0b
[+ i 1M1 2142

We see that for uy > 1, uy =0, so y = 1 + w1, which is a line. If uy < —1, puy =0,
S0 y = 2+ uy, which is a different line. In between —1 < wuy < 1, the output y is an
interpolation between the two lines. Plot y versus u; to show how this interpolation
is achieved.

Yy L)

FIGURE 2.24 Membership
functions for Takagi-Sugeno fuzzy
system example.

Finally, it is interesting to note that if we pick
gi = @0

(i.e., a;; = 0 for j > 0), then the Takagi-Sugeno fuzzy system is equivalent to
a standard fuzzy system that uses center-average defuzzification with singleton
output membership functions at a; ¢. It is in this sense that the Takagi-Sugeno fuzzy
system—or, more generally, the functional fuzzy system—is sometimes referred to
as a “general fuzzy system.”

An Interpolator Between Linear Systems

It is important to note that a Takagi-Sugeno fuzzy system may have any linear
mapping (affine mapping) as its output function, which also contributes to its gen-
erality. One mapping that has proven to be particularly useful is to have a linear
dynamic system as the output function so that the i*" rule has the form

If 7, is A and %, is A} and, ..., and 2, is zzli, Then 7' (t) = A;x(t) + Byu(t)

Here, z(t) = [x1(t), x2(t), . .., 2, (t)] " is the n-dimensional state (now n is not neces-
sarily the number of inputs); u(t) = [uy(t), ua(t), ..., um(t)] " is the m-dimensional
model input; A; and B;, i =1,2,..., R are the state and input matrices of appro-
priate dimension; and z(t) = [21(t), 22(t), . .., 2,(t)] | is the p-dimensional input to

the fuzzy system. This fuzzy system can be thought of as a nonlinear interpolator

75

76 Chapter 2 / Fuzzy Control: The Basics

between R linear systems. It takes the input z(¢) and has an output

S (A (t) + Biu(t) pi(2(t)

() =

Sty ma(=(t)
or
R R
(1) = (Z A@-(z(t))) #(t) + (Z B@-(z(t») u(t) (2.23)
where
1
¢ = [&1,...,¢&R] = lm] [B1s .-, pR)

If R =1, we get a standard linear system. Generally, for R > 1 and a given
value of z(t), only certain rules will turn on and contribute to the output. Many
choices are possible for z(t). For instance, we often choose z(t) = x(t), or sometimes
2(t) = [zT(t),u" ()]

As an example, suppose that 2(t) = z(t), p=n =m = 1, and R = 2 with rules

If ; is A} Then i' = —x; + 2u,

If z; is fl% Then 12 = —221 + u;.

Suppose that we use p1 and po from Figure 2.24 as the membership functions for
A}l and A2, respectively (i.e., we relabel the horizontal axis of Figure 2.24 with z1).
In this case Equation (2.23) becomes

#1(t) = (—p1 — 2p2) 21(t) + (201 + p2) ua (t)

If 21(t) > 1, then py = 0 and po = 1, so the behavior of the nonlinear system
is governed by

$'1(t) = —2%1@) + ul(t)

which is the linear system specified by the second rule above. However, if x1(t) <
—1, then py = 1 and pge = 0, so the behavior of the nonlinear system is governed
by

$'1(t) = —$1(t) + 21,L1(t)

which is the linear system specified by the first rule above. For —1 < z1(¢) < 1, the
Takagi-Sugeno fuzzy system interpolates between the two linear systems. We see
that for changing values of 21 (¢), the two linear systems that are in the consequents
of the rules contribute different amounts.

2.4 Simple Design Example: The Inverted Pendulum

We think of one linear system being valid on a region of the state space that
is quantified via p; and another on the region quantified by uo (with a “fuzzy
boundary” in between). For the higher-dimensional case, we have premise member-
ship functions for each rule quantify whether the linear system in the consequent is
valid for a specific region on the state space. As the state evolves, different rules turn
on, indicating that other combinations of linear models should be used. Overall, we
find that the Takagi-Sugeno fuzzy system provides a very intuitive representation
of a nonlinear system as a nonlinear interpolation between R linear models.

2.3.8 Fuzzy Systems Are Universal Approximators

Fuzzy systems have very strong functional capabilities. That is, if properly con-
structed, they can perform very complex operations (e.g., much more complex than
those performed by a linear mapping). Actually, many fuzzy systems are known to
satisfy the “universal approximation property” [227].

For example, suppose that we use center-average defuzzification, product for
the premise and implication, and Gaussian membership functions. Name this fuzzy
system f(u). Then, for any real continuous function ¢ (u) defined on a closed and
bounded set and an arbitrary € > 0, there exists a fuzzy system f(u) such that

sup |f(u) —¥(u)| <e.

Note, however, that all this “universal approximation property” does is guar-
antee that there exists a way to define the fuzzy system f(u) (e.g., by picking the
membership function parameters). It does not say how to find the fuzzy system,
which can, in general, be very difficult. Furthermore, for arbitrary accuracy you
may need an arbitrarily large number of rules.

The value of the universal approximation property for fuzzy systems is simply
that it shows that if you work hard enough at tuning, you should be able to make the
fuzzy system do what you are trying to get done. For control, practically speaking,
it means that there is great flexibility in tuning the nonlinear function implemented
by the fuzzy controller. Generally, however, there are no guarantees that you will
be able to meet your stability and performance specifications by properly tuning
a given fuzzy controller. You also have to choose the appropriate controller inputs
and outputs, and there will be fundamental limitations imposed by the plant that
may prohibit achieving certain control objectives no matter how you tune the fuzzy
controller (e.g., a nonminimum phase system may provide certain limits on the
quality of the performance that can be achieved).

2.4 Simple Design Example: The Inverted
Pendulum

As there is no general systematic procedure for the design of fuzzy controllers that
will definitely produce a high-performance fuzzy control system for a wide variety
of applications, it is necessary to learn about fuzzy controller design via examples.

77

78 Chapter 2 / Fuzzy Control: The Basics

Here, we continue with the inverted pendulum example to provide an introduction
to the typical procedures used in the design (and redesign) of a fuzzy controller.
After reading the next section, on simulation of fuzzy control systems, the reader
can follow this section more carefully by fully reproducing our design steps. For a
first reading, however, we recommend that you not worry about how the simulations
were produced; rather, focus on their general characteristics as they are related to
design.

To simulate the fuzzy control system shown in Figure 2.4 on page 27 it is nec-
essary to specify a mathematical model of the inverted pendulum. Note that we
did not need the model for the initial design of the fuzzy controller in Section 2.2.1;
but to accurately assess the quality of a design, we need either a model for mathe-
matical analysis or simulation-based studies, or an experimental test bed in which
to evaluate the design. Here, we will study simulation-based evaluations for design,
while in Chapter 4 we will study the use of mathematical analysis to verify the
quality of a design (and to assist in redesign). Throughout the book we will also
show actual implementation results that are used to assess the performance of fuzzy
controllers.

One model for the inverted pendulum shown in Figure 2.2 on page 25 is given
by

~ 9.8sin(y) + cos(y) [%g?m(y)} (2.24)
Y= .
0.5 [% — Lcos2(y)]

@ = —100% + 100u.

The first order filter on u to produce @ represents an actuator. Given this and
the fuzzy controller developed in Section 2.2.1 (the one that uses the minimum
operator to represent both the “and” in the premise and the implication and COG
defuzzification), we can simulate the fuzzy control system shown in Figure 2.4 on
page 27. We let the initial condition be y(0) = 0.1 radians (= 5.73 deg.), y(0) = 0,
and the initial condition for the actuator state is zero. The results are shown in
Figure 2.25, where we see in the upper plot that the output appropriately moves
toward the inverted position, and the force input in the lower plot that moves back
and forth to achieve this.”

2.4.1 Tuning via Scaling Universes of Discourse

Suppose that the rate at which the pendulum balances in Figure 2.25 is consid-
ered to be unacceptably slow and that there is too much control action. To solve
these problems, we use standard ideas from control engineering to conclude that
we ought to try to tune the “derivative gain.” To do this we introduce gains on the

9. If you attempt to reproduce these results, you should be cautioned that, as always, inaccurate
results can be obtained if a small enough integration step size is not chosen for numerical
simulation. For all the simulation results of this section, we use the fourth-order Runge-Kutta
method and an integration step size of 0.001. The plots of this subsection were produced by
Scott C. Brown.

2.4 Simple Design Example: The Inverted Pendulum

o

g 0.1
=
£ [
20.09
o
E T
5008
< I
0 0.5 1 1.5 2 25 3
3
25
Z
N
é 2
5
g
=15 —
| D ——— |
| R ——
|
| R ——— |
| ——
1

0 0.5 1 1.5 2 25 3
Time (sec)

FIGURE 2.25 Fuzzy controller balancing an
inverted pendulum, first design.

proportional and derivative terms, as shown in Figure 2.26, and at the same time
we also put a gain h between the fuzzy controller and the inverted pendulum.

u y

o -
- Fuzzy controller ~) p:,::'ur]im
> P

FIGURE 2.26 Fuzzy controller for inverted pendulum with
scaling gains go, g1, and h.

Choose go = 1, g1 = 0.1, and h = 1. To see the effect of this gain change, see
Figure 2.27, where we see that the output angle reacts much faster and the control
input is smoother.

If we still find the response of the pendulum rather slow, we may decide, using
standard ideas from control engineering, that the proportional gain should be in-
creased (often raising the “loop-gain” can speed up the system). Suppose next that
we choose gg = 2, g1 = 0.1, and h = 1—that is, we double the proportional gain.
Figure 2.28 shows the resulting behavior of the fuzzy control system, where we see
that the response is made significantly faster than in Figure 2.27. Actually, a similar
effect to increasing the proportional gain can be achieved by increasing the output
gain h. Choose go = 2, g1 = 0.1, and h = 5, and see Figure 2.29, where we see that
the response is made even faster than in Figure 2.28. Indeed, as this is just a simu-
lation study, we can increase h further and get even faster balancing provided that

79

80 Chapter 2 / Fuzzy Control: The Basics

0.15

0.1

0.05

Angular position (rad)

-0.05
0

o

Input force (N)

\

“o 05 1 15 2 25 3
Time (sec)

FIGURE 2.27 Fuzzy controller balancing an
inverted pendulum with go =1, g1 = 0.1, and h = 1.

we simulate the system properly by having a small enough integration step size.
However, the reader must be cautioned that this may stretch the simulation model
beyond its range of validity. For instance, further increases in h will generally result
in faster balancing at the expense of a large control input, and for a big enough
h the input may be larger than what is allowed in the physical system. At that
point the simulation would not reflect reality since if the controller were actually
implemented, the plant input would saturate and the proper balancing behavior
may not be achieved.

0.15

0.1

0.05

Angular position (rad)

-0.05
0

S~ v W A

Input force (N)

D=

0 0.5 1 15 2 25 3
Time (sec)

FIGURE 2.28 Fuzzy controller balancing an
inverted pendulum with go =2, g1 = 0.1, and h = 1.

2.4 Simple Design Example: The Inverted Pendulum

0.15

0.1

0.05

Angular position (rad)

Input force (N)

0 0.5 1 15 2 25 3
Time (sec)

FIGURE 2.29 Fuzzy controller balancing an
inverted pendulum with go = 2, g1 = 0.1, and h = 5.

We see that the change in the scaling gains at the input and output of the
fuzzy controller can have a significant impact on the performance of the resulting
fuzzy control system, and hence they are often a convenient parameter for tuning.
Because they are frequently used for tuning fuzzy controllers, it is important to
study exactly what happens when these scaling gains are tuned.

Input Scaling Gains

First, consider the effect of the input scaling gains gy and g;. Notice that we can
actually achieve the same effect as scaling via g; by simply changing the labeling
of the Ze(t) axis for the membership functions of that input. The case where
go = g1 = h = 1.0 corresponds to our original choice for the membership functions
in Figure 2.9 on page 36. The choice of g1 = 0.1 as a scaling gain for the fuzzy
controller with these membership functions is equivalent to having the membership
functions shown in Figure 2.30 with a scaling gain of g; = 1.

-2 -1 0 1 2
“neglarge” “negsmall” Sero” “possmall” “poslarge”
< ¥ } >
10X -10Z 10Z 10X 4
7 3 3 T a.te(t), (rad/sec)

FIGURE 2.30 Scaled membership functions for Ze(t).

We see that the choice of a scaling gain g; results in scaling the horizontal axis

81

82 Chapter 2 / Fuzzy Control: The Basics

of the membership functions by gil. Generally, the scaling gain g; has the following
effects:

e If gy =1, there is no effect on the membership functions.

e If g3 < 1, the membership functions are uniformly “spread out” by a factor of gil
(notice that multiplication of each number on the horizontal axis of Figure 2.9
on page 36 by 10 produces Figure 2.30).

e If gy > 1, the membership functions are uniformly “contracted” (to see this,
choose g1 = 10 and notice that the numbers on the horizontal axis of the new
membership functions that we would obtain by collapsing the gain into the choice
of the membership functions, would be scaled by 0.1).

The expansion and contraction of the horizontal axes by the input scaling gains is
sometimes described as similar to how an accordion operates, especially for trian-
gular membership functions. Notice that the membership functions for the other
input to the fuzzy controller will be affected in a similar way by the gain gg.

Now that we see how we can either use input scaling gains or simply redefine
the horizontal axis of the membership functions, it is interesting to consider how
the scaling gains actually affect the meaning of the linguistics that form the basis
for the definition of the fuzzy controller. Notice that

® [f g =1, there is no effect on the meaning of the linguistic values.

® [f g3 < 1, since the membership functions are uniformly “spread out,” this changes
the meaning of the linguistics so that, for example, “poslarge” is now characterized
by a membership function that represents larger numbers.

® [f gy > 1, since the membership functions are uniformly “contracted,” this
changes the meaning of the linguistics so that, for example, “poslarge” is now
characterized by a membership function that represents smaller numbers.

Similar statements can be made about all the other membership functions and their
associated linguistic values. Overall, we see that the input scaling factors have an
inverse relationship in terms of their ultimate effect on scaling (larger g; that is
greater than 1 corresponds to changing the meaning of the linguistics so that they
quantify smaller numbers). While such an inverse relationship exists for the input
scaling gains, just the opposite effect is seen for the output scaling gains, as we shall
see next.

Output Scaling Gain

Similar to what you can do to the input gains, you can collapse the output scaling
gain into the definition of the membership functions on the output. In particular,

e If h =1, there is no effect on the output membership functions.

2.4 Simple Design Example: The Inverted Pendulum 83

e [f h < 1, there is the effect of contracting the output membership functions
and hence making the meaning of their associated linguistics quantify smaller
numbers.

® [f h > 1, there is the effect of spreading out the output membership functions and
hence making the meaning of their associated linguistics quantify larger numbers.

There is a proportional effect between the scaling gain i and the output member-
ship functions. As an example, for the inverted pendulum the output membership
functions are scaled by h as shown in Figure 2.31. The reader should verify the
effect of h by considering how the membership functions shown in Figure 2.31 will
move for varying values of h.

-2 -1 0 1 2
“neglarge” “negsmall” o “possmall” “poslarge”

< Zer

A
>

0h
u(t), N)

A

30k 20h -10h 10n 20n 3

FIGURE 2.31 The effect of scaling gain h on the spacing of
the output membership functions.

Overall, the tuning of scaling gains for fuzzy systems is often referred to as
“scaling a fuzzy system.” Notice that if for the pendulum example the effective
universes of discourse for all inputs and outputs are [—1, +1] (i.e., the input (output)
left-most membership function saturates (peaks) at —1 and the right-most input
(output) membership function saturates (peaks) at +1), then we say that the fuzzy
controller is “normalized.” Clearly, scaling gains can be used to normalize the given
fuzzy controllers for the pendulum. What gains go, g1, and h will do this?

2.4.2 Tuning Membership Functions

It is important to realize that the scaling gains are not the only parameters that
can be tuned to improve the performance of the fuzzy control system. Indeed,
sometimes it is the case that for a given rule-base and membership functions you
cannot achieve the desired performance by tuning only the scaling gains. Often,
what is needed is a more careful consideration of how to specify additional rules or
better membership functions.

The problem with this is that there are often too many parameters to tune (e.g.,
membership function shapes, positioning, and number and type of rules) and often
there is not a clear connection between the design objectives (e.g., better rise-time)
and a rationale and method that should be used to tune these parameters. There
are, however, certain methods to overcome this problem, and here we will examine

84 Chapter 2 / Fuzzy Control: The Basics

one of these that has been found to be very useful for real implementations of fuzzy
control systems for challenging applications.

Output Membership Function Tuning

In this method we will tune the positioning of the output membership functions
(assume that they are all symmetric and equal to one only at one point) by char-
acterizing their centers by a function. Suppose that we use ¢t, i = —2, —1,0, 1, 2, to
denote the centers of the output membership functions for the fuzzy controller for
the inverted pendulum, where the indices 4 for the ¢! are the linguistic-numeric val-
ues used for the output membership functions (see Figure 2.9 on page 36). (This is a
different notation from that used for the centers in our discussion on defuzzification
in Section 2.3.5 since there the index referred to the rule.) If h =1 then

¢ =10i

describes the positioning of the centers of the output membership functions shown
in Figure 2.9 on page 36 and if we scale by i then

¢ = 10hi

describes the position centers as shown in Figure 2.31. We see that a linear rela-
tionship in the ¢* equation produces a linear (uniform) spacing of the membership
functions. Suppose that we instead choose

¢ = 5hsign(i)i? (2.25)

(sign(z) returns the sign of the number = and sign(0) = 1), then this will have
the effect of making the output membership function centers near the origin be
more closely spaced than the membership functions farther out on the horizontal
axis. The effect of this is to make the “gain” of the fuzzy controller smaller when
the signals are small and larger as the signals grow larger (up to the point where
there is a saturation, as usual). Hence, the use of Equation (2.25) for the centers
indicates that if the error and change-in-error for the pendulum are near where
they should be, then do not make the force input to the plant too big, but if the
error and change-in-error are large, then the force input should be much bigger
so that it quickly returns the pendulum to near the balanced position (note that
a cubic function ¢! = 5hi® will provide a similar effect as the sign(i)i® term in
Equation (2.25)).

Effect on Performance

At this point the reader should wonder why we would even bother with more com-
plex tuning of the fuzzy controller for the inverted pendulum since the performance
seen in our last design iteration, in Figure 2.29 on page 81, was quite successful.

2.4 Simple Design Example: The Inverted Pendulum

Consider, however, the effect of a disturbance such that during the previous simu-
lation in Figure 2.29 on page 81 we let

u' = u+ 600

for t such that 0.99 < ¢ < 1.01 sec where v’ is now the force input to the pendulum
and u is as before the output of the fuzzy controller (for ¢ < 0.99 and ¢ > 1.01, we
let ' = w). This corresponds to a 600 Newton pulse on the input to the pendulum,
and simulates the effect of someone bumping the cart so that we can study the
ability of the controller to then rebalance the pendulum. The performance of our
best controller up till now, shown in Figure 2.29 on page 81, is shown in Figure 2.32,
where we see that the fuzzy controller fails to rebalance the pendulum when the
cart is bumped.

10

-10 \

-20

Angular position (rad)

-30

50

-50

Input force (N)

-100
0 0.5 1 1.5 2 25 3

Time (sec)

FIGURE 2.32 Effect of a disturbance (a bump to
the cart of the pendulum) on the balancing
capabilities of the fuzzy controller.

Suppose that to overcome this problem we decide that while the design in
Figure 2.29 on page 81 was good for small-angle perturbations, something needs to
be done for larger perturbations. In particular, let us attempt to use the fact that
if there is a large variation from the inverted position there had better be a large
enough input to get the pendulum closer to its inverted position so that it will not
fall. To do this, we will use the above approach and choose

¢ = 5hsign(i)i*

where h = 10.0 (we keep go = 2.0 and g1 = 0.1). If you were to simulate the
resulting fuzzy control system for the case where there is no disturbance, you would
find a performance that is virtually identical to that of the design that resulted in

85

86 Chapter 2 / Fuzzy Control: The Basics

Figure 2.29 on page 81. The reason for this can be explained as follows: Notice that
for Figure 2.29 on page 81 the gains were gp = 2.0 and g; = 0.1 and that we have
the output membership function centers given by

¢t = 5hi

where h = 10. Notice that for both controllers, if i = 0 or ¢ = 1 we get the same
positions of the output membership functions. Hence, if the signals are small, we
will get nearly the same effect from both fuzzy controllers. However, if, for example,
i = 2 then the center resulting from the controller with ¢! = 5hsign(i)i? will have
a membership function that is much farther out, which says that the input to the
plant should be larger. The effect of this will be to have the fuzzy controller provide
very large force inputs when the pendulum is not near its inverted position. To see
this, consider Figure 2.33, where we see that the newly redesigned fuzzy controller
can in fact rebalance the pendulum in the presence of the disturbance (and it
performs similarly to the best previous one, shown in Figure 2.29 on page 81, in
response to smaller perturbations from the inverted position, as is illustrated by
how it recovers from the initial condition). Notice, however, that it used a large
input force to counteract the bump to the pendulum.

o

o
—

.

Angular position (rad)
: S
— |

o
=
o
o
O
in
)
IS}
[
w

100

50

-50 /

-100 }

Input force (N)

-150 /

-200
0 0.5 1 1.5 2 25 3

Time (sec)

FIGURE 2.33 Effect of a disturbance (a bump to
the cart of the pendulum) on the balancing
capabilities of the fuzzy controller.

You may wonder why we did not just increase the gain on the fuzzy controller
depicted in Figure 2.29 on page 81 to the point where it would be able to recover
similarly to this new control system. However, if we did this, we would also raise
the gain of the controller when its input signals are small, which can have adverse
effects of amplifying noise in a real implementation. Besides, our redesign above

2.4 Simple Design Example: The Inverted Pendulum

was used simply to illustrate the design approach. In the applications studied in
Chapter 3, we will use a similar design approach where the need for the nonlinear
spacing of the output membership functions is better motivated due to the fact
that a more challenging application dictates this.

2.4.3 The Nonlinear Surface for the Fuzzy Controller

Ultimately, the goal of tuning is to shape the nonlinearity that is implemented by
the fuzzy controller. This nonlinearity, sometimes called the “control surface,” is
affected by all the main fuzzy controller parameters. Consider, for example, the
control surface for the fuzzy controller that resulted in the response shown in Fig-
ure 2.29 on page 81 (i.e., go = 2.0, g1 = 0.1, and h = 5), which is shown in
Figure 2.34, where the output of the fuzzy controller is now plotted against its two
inputs. Notice that the surface represents in a compact way all the information in
the fuzzy controller (but of course this representation is limited in that if there
are more than two inputs it becomes difficult to visualize the surface). To convince
yourself of this, you should pick a value for e and Ze(t), read the corresponding
fuzzy controller output value off the surface, and determine if the rule-base would
indicate that the controller should behave in this way. Figure 2.34 simply represents
the range of possible defuzzified values for all possible inputs e and Ze(t).

Output, u (N)

d
ar (rad/sec) e (rad)

FIGURE 2.34 Control surface of the fuzzy
controller for go = 2.0, g1 = 0.1, and h = 5.

Note that the control surface for a simple proportional-derivative (PD) con-
troller is a plane in three dimensions. With the proper choice of the PD gains, the
linear PD controller can easily be made to have the same shape as the fuzzy con-
troller near the origin. Hence, in this case the fuzzy controller will behave similarly
to the PD controller provided its inputs are small. However, notice that there is
no way that the linear PD controller can achieve a nonlinear control surface of

87

88 Chapter 2 / Fuzzy Control: The Basics

the shape shown in Figure 2.34 (this is not surprising considering the complexity
difference of the two controllers).

Next, notice changing the gains go and ¢; will rescale the axis, which will change
the slope of the surface. Increasing gy is analogous to increasing the proportional
gain in a PD controller (i.e., it will often make the system respond faster). Increasing
the gain ¢; is analogous to increasing the derivative gain in a PD controller. Notice,
also, that changing h will scale the vertical axis of the controller surface plot. Hence,
for instance, increasing h will make the entire surface have a higher slope and make
the output saturate at higher values.

It is useful to notice that there is a type of interpolation that is performed
by the fuzzy controller that is nicely illustrated in Figure 2.34. If you study the
plot carefully, you will notice that the rippled surface is created by the rules and
membership functions. For instance, if we kept a similar uniform distribution of
membership functions for the input and outputs of the fuzzy system, but increased
the number of membership functions, the ripples would correspondingly increase
in number and the amplitude of the ripple would decrease (indeed, in the limit,
as more and more membership functions are added in this way, the controller can
be made to approximate a plane in a larger and larger region—but this may not
occur for other membership function distributions and rule-base choices). What is
happening is that there is an interpolation between the rules. The output is an
interpolation of the effects of the four rules that are on for the inverted pendulum
fuzzy controller. For more general fuzzy controllers, it is important to keep in mind
that this sort of interpolation is often occurring (but not always—it depends on
your choice of the membership functions).

When we tune the fuzzy controller, it changes the shape of the control surface,
which in turn affects the behavior of the closed-loop control system. Changing the
scaling gains changes the slope of the surface and hence the “gain” of the fuzzy
controller as we discussed above and as we will discuss in Chapter 4 in more detail.
The output membership function centers will also affect the shape of the surface.
For instance, the control surface for the fuzzy controller that had

¢ = 5hsign(i)i?

where h = 10.0, gg = 2.0, and g; = 0.1 is shown in Figure 2.35. You must carefully
compare this surface to the one in Figure 2.34 to assess the effects of using the
nonlinear spacing of the output membership function centers. Notice that near the
center of the plot (i.e., where the inputs are zero) the shape of the two plots is
nearly the same (i.e., as explained above, the two controllers will behave similarly
for small input signals). Notice, however, that the slope of the surface is greater for
larger signals in Figure 2.35 than in Figure 2.34. This further illustrates the effect
of the choice of the nonlinear spacing for the output membership function centers.
This concludes the design process for the fuzzy controller for the pendulum.
Certainly, if you were concerned with the design of a fuzzy controller for an indus-
trial control problem, many other issues besides the ones addressed above would
have to be considered. Here, we simply use the inverted pendulum as a convenient

200

150

100

50

Output, u (N)

FIGURE 2.35

d ¢
dar e (rad/sec)

2.4 Simple Design Example: The Inverted

i

SN

=

Sule

SR

>

s

pO

S
e ue
S
e,
S
N

ot

=

s
\\\\\‘

 —

SN
=

<S>
“
pON

BN

N

%
,/

=
S
R

S

SN

SN

S

R
5]

>
e et
S

/!

0

e (rad)

' Control surface of the fuzzy controller
for ¢ = 5hsign(i)i?, h = 10.0, go = 2.0, and g1 = 0.1.

SRS
AR
e

Pendulum

example to illustrate the design procedures that are often used for fuzzy control
systems. In Chapter 3 we will study several more fuzzy control design problems,
several of which are much more challenging (and interesting) than the inverted
pendulum studied here.

2.4.4 Summary: Basic Design Guidelines

This section summarizes the main features of the design process from the previous
subsection. The goal is to try to provide some basic design guidelines that are
generic to all fuzzy controllers. In this spirit, we list some basic design guidelines

for (nonadaptive) fuzzy controllers:

1.

Begin by trying a simple conventional PID controller. If this is successful, do
not even try a fuzzy controller. The PID is computationally simpler and very
easy to understand.

. Perhaps you should also try some other conventional control approaches (e.g.,

a lead-lag compensator or state feedback) if it seems that these may offer a

good solution.

. For a variety of reasons, you may choose to try a fuzzy controller (for a discus-

sion of these reasons, see Chapter 1). Be careful to choose the proper inputs to
the fuzzy controller. Carefully assess whether you need proportional, integral,
and derivative inputs (using standard control engineering ideas). Consider pro-
cessing plant data into a form that you believe would be most useful for you
to control the system if you were actually a “human-in-the-loop.” Specify your
best guess at as simple a fuzzy controller as possible (do not add inputs, rules,

or membership functions until you know you need them).

89

90 Chapter 2 / Fuzzy Control: The Basics

4. Try tuning the fuzzy controller using the scaling gains, as we discussed in the
previous section.

5. Try adding or modifying rules and membership functions so that you more
accurately characterize the best way to control the plant (this can sometimes
require significant insight into the physics of the plant).

6. Try to incorporate higher-level ideas about how best to control the plant. For
instance, try to shape the nonlinear control surface using a nonlinear function
of the linguistic-numeric values, as explained in the previous section.

7. If there is unsmooth or chattering behavior, you may have a gain set too high
on an input to the fuzzy controller (or perhaps the output gain is too high).
Setting the input gain too high makes it so that the membership functions
saturate for very low values, which can result in oscillations (i.e., limit cycles).

8. Sometimes the addition of more membership functions and rules can help. These
can provide for a “finer” (or “higher-granularity”) control, which can sometimes
reduce chattering or oscillations.

9. Sometimes it is best to first design a linear controller, then choose the scaling
gains, membership functions, and rule-base so that near the origin (i.e., for
small controller inputs) the slope of the control surface will match the slope of
the linear controller. In this way we can incorporate all of the good ideas that
have gone into the design of the linear controller (about an operating point)
into the design of the fuzzy controller. After this, the designer should seek to
shape the nonlinearity for the case where the input signals are not near the
origin using insights about the plant. This design approach will be illustrated
in Chapter 3 when we investigate case studies in fuzzy control system design.

Generally, you do not tune the fuzzy controller by evaluating all possibilities
for representing the “and” in the premise or for the implication (e.g., minimum or
product operations) or by studying different defuzzification strategies. While there
are some methods for tuning fuzzy controllers this way, these methods most often
do not provide insights into how these parameters ultimately affect the performance
that we are trying to achieve (hence it is difficult to know how to tune them to
get the desired performance). We must emphasize that the above guidelines do not
constitute a systematic design procedure. As with conventional control design, a
process of trial and error is generally needed.

Generally, we have found that if you are having trouble coming up with a good
fuzzy controller, you probably need to gain a better understanding of the physics
of the process you are trying to control, and you then need to get the knowledge of
how to properly affect the plant dynamics into the fuzzy controller.

2.5 Simulation of Fuzzy Control Systems

2.5 Simulation of Fuzzy Control Systems

Often, before you implement a fuzzy controller, there is a need to perform a
simulation-based evaluation of its performance. As we saw in Section 2.4, where
we studied the inverted pendulum, these simulation-based investigations can help
to provide insight into how to improve the design of the fuzzy controller and verify
that it will operate properly when it is implemented. To perform a simulation, we
will need a model of the plant and a computer program that will simulate the fuzzy
control system (i.e., a program to simulate a nonlinear dynamic system).

2.5.1 Simulation of Nonlinear Systems

In the next subsection we will explain how to write a subroutine that will simulate a
fuzzy controller. First, however, we will briefly explain how to simulate a nonlinear
system since every fuzzy control system is a nonlinear system (even if the plant is
linear, the fuzzy controller and hence fuzzy control system is nonlinear). Suppose
that we denote the fuzzy controller in Figure 2.4 on page 27 by f(e, ¢). Suppose
that the fuzzy control system in Figure 2.4 can be represented by the ordinary
differential equation

z(t) = F(x(t),r(t)) (2.26)
y =G(z(t),r(t))
where x = [71,22,...,2,]" is a state vector, F = [Fy, Fy,..., F,]" is a vector of

nonlinear functions, G is a nonlinear function that maps the states and reference
input to the output of the system, and x(0) is the initial state. To simulate a
nonlinear system, we will assume that the nonlinear ordinary differential equations
are put into the form in Equation (2.26).

To see how to put a given ordinary differential equation into the form given
in Equation (2.26), consider the inverted pendulum example. For our pendulum
example, define the state

r=[z1, 72,23 = [y,9,7] "

Then, using Equation (2.25) on page 78 we have

$.1 = T2 = F1($,’/’)

9.8 sin(x1) + cos(x1) [15

X = = F s
T2 05 [% — %COSZ({IH)] 2(1: T)

3 = —100xz5 + 100 f(—x1, —x2) = F3(zx,r)

since u = f(e, é),e =r—y,r =0,and é = —y. Also, we have y = G(x,r) = z1. This
puts the fuzzy control system for the nonlinear inverted pendulum in the proper
form for simulation.

91

92 Chapter 2 / Fuzzy Control: The Basics

Now, to simulate Equation (2.26), we could simply use Euler’s method to
approximate the derivative & in Equation (2.26) as
x(kh + h) — xz(kh)
h

= F(x(kh),r(kh), kh) (2.27)
y = G(x(kh),r(kh), kh)

Here, h is a parameter that is referred to as the “integration step size” (not to be
confused with the scaling gain h used earlier). Notice that any element of the vector

x(kh+ h) — xz(kh)
h

is simply an approximation of the slope of the corresponding element in the time
varying vector x(t) at t = kh (i.e., an approximation of the derivative). For small
values of h, the approximation will be accurate provided that all the functions and
variables are continuous. Equation (2.27) can be rewritten as

z(kh + h) = z(kh) + hF (x(kh), r(kh), kh)
y = G(x(kh),r(kh), kh)

for k = 0,1,2,.... The value of the vector z(0) is the initial condition and is
assumed to be given. Simulation of the nonlinear system proceeds recursively by
computing x(h), x(2h), x(3h), and so on, to generate the response of the system
for the input r(kh). For practice the reader should place the pendulum differential
equations developed above into the form for simulation via the Euler method given
in Equation (2.27). Using this, and provided that you pick your integration step
size h small enough, the Euler method can be used to reproduce all the simulation
results of the previous section.

Note that by choosing h small, we are trying to simulate the continuous-time
nonlinear system. If we want to simulate the way that a digital control system would
be implemented on a computer in the laboratory, we can simulate a controller
that only samples its inputs every T seconds (T is not the same as h; it is the
“sampling interval” for the computer in the laboratory) and only updates its control
outputs every T seconds (and it would hold them constant in between). Normally,
you would choose T" = ah where o« > 0 is some positive integer. In this way we
simulate the plant as a continuous-time system that interacts with a controller that
is implemented on a digital computer.

While Euler’s method is easy to understand and implement in code, sometimes
to get good accuracy the value of h must be chosen to be very small. Most often,
to get good simulation accuracy, more sophisticated methods are used, such as the
Runge-Kutta method with adaptive step size or predictor-corrector methods. In
the fourth-order Runge-Kutta method, we begin with Equation (2.26) and a given

2.5 Simulation of Fuzzy Control Systems

2(0) and let
1
x(kh + h) = x(kh) + 6 (k1 + 2k + 2ks + ka) (2.28)

where the four vectors

k1 = hF (x((kh), kh)

h h
(x ,r(kh+§>,kh—|—§>
(x (kh+ h) ,kh+g>

ks = hF (x(kh) +k3, (kh + h), kh+ h)

These extra calculations are used to achieve a better accuracy than the Euler
method. We see that the Runge-Kutta method is very easy to use; it simply in-
volves computing the four vectors k1 to k4, and plugging them into Equation (2.28).
Suppose that you write a computer subroutine to compute the output of a fuzzy
controller given its inputs (in some cases these inputs could include a state of the
closed-loop system). In this case, to calculate the four vectors, k1 to k4, you will
need to use the subroutine four times, once for the calculation of each of the vectors,
and this can increase the computational complexity of the simulation. To simplify
the complexity of the simulation you can simulate the fuzzy controller as if it were
implemented on a digital computer in the laboratory with a sampling interval of
T = h (i.e., a = 1 in our discussion above). Now, you may not be concerned with
implementation of the fuzzy controller on a digital computer in the laboratory, or
your choice of h may not actually correspond to a reasonable choice of a sampling
period in the laboratory; however, using this approach you typically can simplify
computations. The savings come from assuming that over the length of time cor-
responding to an integration step size, you hold the value of the fuzzy controller
output constant. Hence, this approach to simplifying computations is really simply
based on making an approximation to the fuzzy controller output over the amount
of time corresponding to an integration step size.

Generally, if the Runge-Kutta method has a small enough value of h, it is
sufficiently accurate for the simulation of most fuzzy control systems (and if an
adaptive step size method [59, 215] is used, then even more accuracy can be obtained
if it is needed). We invite the reader to code the Runge-Kutta method on the
problems at the end of the chapter.!?

Clearly, the above approaches are complete only if we can compute the fuzzy
controller outputs given its inputs. That is, we need a subroutine to compute u =
f(e, é). This is what we study next.

10. The reader can, however, download the code for a Runge-Kutta algorithm for simulating an
nt" order nonlinear ordinary differential equation from the web site or ftp site listed in the
Preface.

93

94 Chapter 2 / Fuzzy Control: The Basics

2.5.2 Fuzzy Controller Arrays and Subroutines

The fuzzy controller can be programmed in C, Fortran, Matlab, or virtually any
other programming language. There may be some advantage to programming it in
C since it is then sometimes easier to transfer the code directly to an experimen-
tal setting for use in real-time control. At other times it may be advantageous to
program it in Matlab since plotting capabilities and other control computations
may be easier to perform there. Here, rather than discussing the syntax and char-
acteristics of the multitude of languages that we could use to simulate the fuzzy
controller, we will develop a computer program “pseudocode” that will be useful in
developing the computer program in virtually any language. For readers who are
not interested in learning how to write a program to simulate the fuzzy controller,
this section will provide a nice overview of the steps used by the fuzzy controller to
compute its outputs given some inputs.

We will use the inverted pendulum example of the last section to illustrate
the basic concepts on how to program the fuzzy controller, and for that example
we will use the minimum operation to represent both the “and” in the premise
and the implication (it will be obvious how to switch to using, for example, the
product). At first we will make no attempt to code the fuzzy controller so that
it will minimize execution time or minimize the use of memory. However, after
introducing the pseudocode, we will address these issues.

First, suppose that for convenience we use a different set of linguistic-numeric
descriptions for the input and output membership functions than we used up till
now. Rather than numbering them

-2,-1,0,1,2
we will renumber them as
0,1,2,3,4

so that we can use these as indices for arrays in the program (if your language
does not allow for the use of “0” as an index, simply renumber them as 1,2, 3,4, 5).
Suppose that we let the computer variable x1 denote (notice that a different typeface
is used for all computer variables) e(t), which we will call the first input, and x2
denote “Le(t), which we will call the second input. Next, we define the following
arrays and functions:

® Let mf1[i] (mf2[j]) denote the value of the membership function associated
with input 1 (2) and linguistic-numeric value i (j). In the computer program
mf1[i] could be a subroutine that computes the membership value for the i*"
membership function given a numeric value for the first input x1 (note that
in the subroutine we can use simple equations for lines to represent triangular
membership functions). Similarly for mf2[j].

® Let rule[i, j] denote the index of the consequent of the rule that has linguistic-

Wan

numeric value “i” as the first term in its premise and “j” as the second term in

2.5 Simulation of Fuzzy Control Systems 95

its premise. Hence rule[i, j] is essentially a matrix that holds the body of the
rule-base table shown in Table 2.1 with the appropriate changes to the linguistic-
numeric values (i.e., switching from the use of —2,-1,0,1,2 to 0,1,2,3,4). In
particular, for the inverted pendulum we have

rule[i, j] =

[\CRIJURNTENT TN
— N W o
O~ N W
OO = N W
OO O~ N

® Let prem[i, j] denote the certainty of the premise of the rule that has linguistic-
numeric value “i” as the first term in its premise and “j” as the second term in
its premise given the inputs x1 and x2.

o Let center[k] denote the center of the k** output membership function. For the
inverted pendulum k& = 0,1,2,3,4 and the centers are at the points where the
triangles reach their peak.

® Let areaimp[k,h] denote the area under the k** output membership function
(where for the inverted pendulum k = 0, 1,2, 3,4) that has been chopped off at a
height of h by the minimum operator. Hence, we can think of areaimp[k,h] as
a subroutine that is used to compute areas under the membership functions for
the implied fuzzy sets.

® Let imps[i,j] denote the areas under the membership functions for the implied
fuzzy sets for the rule that has linguistic-numeric value “i” as the first term in
its premise, and “j” as the second term in its premise given the inputs x1 and

x2.

2.5.3 Fuzzy Controller Pseudocode

Using these definitions, consider the pseudocode for a simple fuzzy controller that
is used to compute the fuzzy controller output given its two inputs:

1. Obtain x1 and x2 values
(Get inputs to fuzzy controller)

2. Compute mfi1[i] and mf2[j] for all i, j
(Find the values of all membership functions given the values for
x1 and x2)

3. Compute prem[i,jl=min[mf1[i],mf2[j]] for all i, j
(Find the values for the premise membership functions for a given
x1 and x2 using the minimum operation)

96 Chapter 2 / Fuzzy Control: The Basics

4. Compute imps[i,jl=areaimp[ruleli,j],prem[i,j]] for all i, j
(Find the areas under the membership functions for all
possible implied fuzzy sets)

5. Let num=0, den=0
(Initialize the COG numerator and denominator values)

6. For i=0 to 4, For j=0 to 4,
(Cycle through all areas to determine COG)

num=num+imps [i, jl*center[rulel[i, j1]
(Compute numerator for COG)

den=den+imps[i, j]
(Compute denominator for COG)

7. Next i, Next j

8. Output ucrisp=num/den
(Output the value computed by the fuzzy controller)

9. Go to Step 1.

To learn how this code operates, the reader should define each of the functions
and arrays for the inverted pendulum example and show how to compute the fuzzy
controller output for the same (and some different) inputs used in Section 2.4.
Following this, the reader should develop the computer code to simulate the fuzzy
controller for the inverted pendulum and verify that the computations made by the
computer match the ones made by hand.!!

We do not normally recommend that initially you use only the computer-aided
design (CAD) packages for fuzzy systems since these tend to remove you from
understanding the real details behind the operation of the fuzzy controller. However,
after you have developed your own code and fully understand the details of fuzzy
control, we do advise that you use (or develop) the tools you believe are necessary
to automate the process of constructing fuzzy controllers.

Aside from the effort that you must put into writing the code for the fuzzy
controller, there are the additional efforts that you must take to initially type in the
rule-base and membership functions and possibly modify them later (which might
be necessary if you need to perform redesigns of the fuzzy controller). For large
rule-bases, this effort could be considerable, especially for initially typing the rule-
base into the computer. While some CAD packages may help solve this problem, it
is not hard to write a computer program to generate the rule-base, because there
are often certain regular patterns in the rule-base. For example, a very common
pattern found in rule-bases is the “diagonal” one shown in Table 2.1 on page 32.
Here, the linguistic-numeric indices in the row at the top and the column on the

11. One way to start with the coding of the fuzzy controller is to start with the code that is
available for downloading at the web site or ftp site described in the Preface.

2.6 Real-Time Implementation Issues

left are simply added, and the sum is multiplied by minus one and saturated so
that it does not grow beyond the available indices for the consequent membership
functions (i.e., below —2 or above 2).

Also notice that since there is a proportional correspondence between the input
linguistic-numeric values and the values of the inputs, you will often find it easy to
express the input membership functions as a nonlinear function of their linguistic-
numeric values. Another trick that is used to make the adjustment of rule-bases
easier is to make the centers of the output membership functions a function of their
linguistic-numeric indices, as we discussed in Section 2.4.2.

2.6 Real-Time Implementation Issues

When it comes to implementing a fuzzy controller, you often want to try to mini-
mize the amount of memory used and the time that it takes to compute the fuzzy
controller outputs given some inputs. The pseudocode in the last section was not
written to exploit certain characteristics of the fuzzy controller that we had devel-
oped for the inverted pendulum; hence, if we were to actually implement this fuzzy
controller and we had severe implementation constraints, we could try to optimize
the code with respect to memory and computation time.

2.6.1 Computation Time

First, we will focus on reducing the amount of time it takes to compute the outputs
for some given inputs. Notice the following about the pseudocode:

e We compute prem[i,j] for all values of i and j (25 values) when for our fuzzy
controller for the inverted pendulum, since there are never more than two mem-
bership functions overlapping, there will be at most four values of prem[i, j]
needed (the rest will have zero values and hence will have no impact on the
ultimate computation of the output).

® In a similar manner, while we compute imps[i,j] for all i and j, we only need
four of these values.

e If we compute only four values for imps[i, j], we will have at most four values
to sum up in the numerator and denominator of the COG computation (and not
25 for each).

At this point, from the view of computational complexity, the reader may wonder
why we even bothered with the pseudocode of the last section since it appears to
be so inefficient. However, the code is only inefficient for the chosen form for the
fuzzy controller. If we had chosen Gaussian-shaped (i.e., bell-shaped) membership
functions for the input membership functions, then no matter what the input was
to the fuzzy controller, all the rules would be on so all the computations shown in
the pseudocode were necessary and not too much could be done to improve on the
computation time needed. Hence, we see that if you are concerned with real-time

97

98 Chapter 2 / Fuzzy Control: The Basics

implementation of your fuzzy controller, you may want to put constraints on the
type of fuzzy controller (e.g., membership functions) you construct.

It is important to note that the problems with the efficiency of the pseudocode
highlighted above become particularly acute when there are many inputs to the
fuzzy controller and many membership functions for each input, since the number
of rules increases exponentially with an increase in the number of inputs (assuming
all possible rules are used, which is often the case). For example, if you have a
two-input fuzzy controller with 11 membership functions for each input, you will
have 112 = 121 rules, and you can see that if you increase the number of inputs,
this number will quickly increase.

How do we overcome this problem? Assume that you have defined your fuzzy
controller so that at most two input membership functions overlap at any one point,
as we had for the inverted pendulum example. The trick is to modify your code so
that it will compute only four values for the premise membership functions, only
four values for areas of implied fuzzy sets, and hence have only four additions in the
numerator and denominator of the COG computation. There are many ways to do
this. For instance, you can have the program scan mf1[i] beginning at position zero
until a nonzero membership value is obtained. Call the index of the first nonzero
membership value “istar.” Repeat this process for mf2[j] to find a corresponding
“jstar.” The rules that are on are the following:

rule[istar, jstar]
rule[istar, jstar+1]
rule[istar+1, jstar]
rule[istar+1, jstar+1]

provided that the indicated indices are not out of range. If only the rules identified
by the indices of the premises of these rules are used in the computations, then
we will reduce the number of required computations significantly, because we will
not be computing values that will be zero anyway (notice that for the inverted
pendulum example, there will be one, two, or four rules on at any one time, so
there could still be a few wasted computations). Notice that even in the case where
there are many inputs to the fuzzy controller the problem of how to code efficiently
reduces to a problem of how to determine the set of indices for the rules that are on.
So that you may fully understand the issues in coding the controller in an efficient
manner, we challenge you to develop the code for an n-input fuzzy controller that
will exploit the fact that only a hypercubical block of 2™ rules will be on at any one
time (provided that at most two input membership functions overlap at any one
point).

2.6.2 Memory Requirements

Next, we consider methods for reducing memory requirements. Basically, this can
be done by recognizing that it may be possible to compute the rule-base at each
time instant rather than using a stored one. Notice that there is a regular pattern
to the rule-base for the inverted pendulum; since there are at most four rules on

2.7 Summary

at any one time, it would not be hard to write the code so that it would actually
generate the rules while it computes the controller outputs. It may also be possible
to use a memory-saving scheme for the output membership functions. Rather than
storing their positions, there may be a way to specify their spacing with a function
so that it can be computed in real-time. For large rule-bases, these approaches can
bring a huge savings in memory (however, if you are working with adaptive fuzzy
systems where you automatically tune membership functions, then it may not be
possible to use this memory-saving scheme). We are, however, gaining this savings
in memory at the expense of possibly increasing computation time.

Finally, note that while we focus here on the real-time implementation issues
by discussing the optimization of software, you could consider redesigning the hard-
ware to make real-time implementation possible. Implementation prospects could
improve by using a better microprocessor or signal processing chip. An alternative
would be to investigate the advantages and disadvantages of using a “fuzzy pro-
cessor” (i.e., a processor designed specifically for implementing fuzzy controllers).
Of course, many additional issues must be taken into consideration when trying to
decide if a switch in computing technology is needed. Not the least among these
are cost, durability, and reliability.

2.7 Summary

In this chapter we have provided a “tutorial introduction” to direct fuzzy control. In
our tutorial introduction we provided a step-by-step overview of the operations of
the fuzzy controller. We provided an inverted pendulum problem for which we dis-
cussed several basic issues in the design of fuzzy controllers. Moreover, we discussed
simulation and implementation via the use of a pseudocode for a fuzzy controller.
Our introduction is designed to provide the reader with an intuitive understanding
of the mechanics of the operation of the fuzzy controller.

Our mathematical characterization served to show how the fuzzy controller can
handle more inputs and outputs, the range of possibilities for the definition of uni-
verses of discourse, the membership functions, the rules, the inference mechanism,
and defuzzification methods. The reader who studies the mathematical characteri-
zation of fuzzy systems will gain a deeper understanding of fuzzy systems.

The design example for the inverted pendulum problem is meant to be an
introduction to basic design methods for fuzzy controllers. The section on coding
is meant to help the reader bridge the gap between theory and application so that
you can quickly get a fuzzy controller implemented.

Upon completing this chapter, the reader should understand the following top-
ics:

® [ssues in the choice of the inputs and outputs of the fuzzy controller.
e Linguistic variables.

e Linguistic values (and linguistic-numeric values).

99

100 Chapter 2 / Fuzzy Control: The Basics

e Linguistic rules (MISO, MIMO, and ones that do not use all their premise or
consequent terms).

e Membership functions (in terms of how they quantify linguistics and their math-
ematical definition).

e Fuzzy sets (mathematical definition and relation to crisp sets).

e Operations on fuzzy sets (subset, complement, union, intersection, and relations
to representation of the logical “and” and “or”).

® Fuzzy Cartesian product and its use in representation of the premise.

® The multidimensional premise membership function that represents the conjunc-
tion of terms in the premise.

e Fuzzification (singleton and more general forms).

e Inference mechanism (three stages: matching, selection of rules that are on, and
taking the actions specified by the applicable rules).

® Implied fuzzy sets.
e Overall implied fuzzy sets (and the differences from the implied fuzzy sets).
® Sup-star and Zadeh’s compositional rule of inference.

e Defuzzification methods (including those for the implied fuzzy sets and overall
implied fuzzy set).

e The method of providing a graphical explanation of the inference process that
was given at the end of Section 2.2.1.

® Mathematical representations of fuzzy systems, including issues related to the
number of parameters needed to represent a fuzzy system.

e Functional fuzzy systems (and Takagi-Sugeno fuzzy systems).
® The universal approximation property and its implications.

® Basic approaches to the design of the fuzzy controller, including the use of pro-
portional, integral, and derivative terms.

® The value of getting the best knowledge about how to achieve good control into
the rule-base and methods for doing this (e.g., the use of functions mapping the
linguistic-numeric indices to the centers of the output membership functions).

® The manner in which a fuzzy controller implements a nonlinearity and connec-
tions between the choice of controller parameters (e.g., scaling gains) and the
shape of this nonlinearity.

2.8 For Further Study

® How to simulate a nonlinear system.
e How to simulate a fuzzy system and a fuzzy control system.

e Methods to optimize the code that implements a fuzzy controller (with respect
to both time and memory).

Essentially, this is a checklist for the major topics of this chapter. The reader
should be sure to understand each of the above concepts or approaches before
moving on to later chapters.

2.8 For Further Study

There are many conferences and journals that cover issues in fuzzy systems and
control. Some journals to consider include the following: (1) IEEE Transactions
on Fuzzy Systems, (2) IEEE Control Systems Magazine, (3) IEEE Transactions on
Systems, Man, and Cybernetics, and (4) Fuzzy Sets and Systems. The field of fuzzy
sets and logic was first introduced by Lotfi Zadeh [245, 246], and fuzzy control
was first introduced by E. Mamdani [135, 134]. There are many books on the
mathematics of fuzzy sets, fuzzy logic, and fuzzy systems; a few that the reader may
want to study include [95, 94, 250, 48, 87] or the article [138]. There are also several
books that provide introductions to the area of fuzzy control [47, 230, 238, 229, 167].
Other sources for introductory material on fuzzy control are in [165, 115].

An early version of the mathematical introduction to fuzzy control given in this
chapter is given in [107, 110] and a more developed one, that was the precursor to
Section 2.3 is in [165]. While in most applications singleton fuzzification is used,
there have been some successful uses of nonsingleton fuzzification [146]. For more
details on how to simulate nonlinear systems, see [59, 215]. The ball-suspension
system problem at the end of the chapter was taken from [103]. The automated
highway system problem was taken from [200].

2.9 Exercises

Exercise 2.1 (Defining Membership Functions: Single Universe of Dis-
course): In this problem you will study how to represent various concepts and
quantify various relations with membership functions. For each part below, there
is more than one correct answer. Provide one of these and justify your choice in
each case.

(a) Draw a membership function (and hence define a fuzzy set) that quantifies
the set of all people of medium height.

(b) Draw a membership function that quantifies the set of all short people.

o
~

Draw a membership function that quantifies the set of all tall people.

(d) Draw a membership function that quantifies the statement “the number
is near 10.”

101

102 Chapter 2 / Fuzzy Control: The Basics

(e) Draw a membership function that quantifies the statement “the number x
is less than 10.”

(f) Draw a membership function that quantifies the statement “the number x
is greater than 10.”

(g) Repeat (d)—(f) for —5 rather than 10.

Exercise 2.2 (Defining Membership Functions: Multiple Universes of
Discourse): In this problem you will study how to represent various concepts
and quantify various relations with membership functions when there is more
than one universe of discourse. Use minimum to quantify the “and.” For each
part below, there is more than one correct answer. Provide one of these and
justify your choice in each case. Also, in each case draw the three-dimensional
plot of the membership function.

(a) Draw a membership function (and hence define a fuzzy set) that quantifies
the set of all people of medium height who are “tan” in color (i.e., tan and
medium-height people). Think of peoples’ colors being on a spectrum from
white to black.

(b) Draw a membership function (and hence define a fuzzy set) that quantifies
the set of all short people who are “white” in color (i.e., short and white
people).

(¢) Draw a membership function (and hence define a fuzzy set) that quantifies
the set of all tall people who are “black” in color (i.e., tall and black people).

(d) Draw a membership function that quantifies the statement “the number x
is near 10 and the number y is near 2.”

(e) Draw a membership function that quantifies the statement “the number x
is less than 10 and the number y is near 2.”

(f) Draw a membership function that quantifies the statement “the number x
is greater than 10 and the number y is near 2.”

(g) Repeat (d)—(f) for —5 rather than 10 and —1 rather than 2.
(h) Repeat (d)—(f) using product rather than minimum to represent the “and.”

Exercise 2.3 (Inverted Pendulum: Gaussian Membership Functions):
Suppose that for the inverted pendulum example, we use Gaussian membership
functions as defined in Table 2.4 on page 57 rather than the triangular member-
ship functions. To do this, use the same center values as we had for the triangular
membership functions, use the “left” and “right” membership functions shown
in Table 2.4 for the outer edges of the input universes of discourse, and choose
the widths of all the membership functions to get a uniform distribution of the
membership functions and to get adjacent membership functions to cross over
with their neighboring membership functions at a certainty of 0.5.

2.9 Exercises

(a) Draw the membership functions for the input and output universes of dis-
course. Be sure to label all the axes and include both the linguistic values
and the linguistic-numeric values. Explain why this choice of membership
functions also properly represents the linguistic values.

(b) Assuming that we use the same rules as earlier, use a computer program to
plot the membership function for the premise of a rule when you use the
minimum operation to represent the “and” between the two elements in the
premise. For this plot you will have e and d%e on the x and y axes and the
value of the premise membership function on the z axis. Use the rule

If error is zero and change-in-error is possmall Then force is negsmall

as was done when we used triangular membership functions (see its premise
membership function in Figure 2.11 on page 39).

(¢) Repeat (b) for the case where the product operation is used. Compare the
results of (b) and (c).

(d) Suppose that e(t) = 0 and e(t) = 7/8 — m/32 (= 0.294). Which rules are
on? Assume that minimum is used to represent the premise and implication.
Provide a plot of the implied fuzzy sets for the two rules that result in the
highest peak on their implied fuzzy sets (i.e., the two rules that are “on”
the most).

(e) Repeat (d) for the case where e(t) = /4 and “e(t) = 7/8. Assume that
the product is used to represent the implication and minimum is used for
the premise. However, plot only the one implied fuzzy set that reaches the
highest value.

(f) For (d) use COG defuzzification and find the output of the fuzzy controller.
First, compute the output assuming that only the two rules found in (d) are
on. Next, use the implied fuzzy sets from all the rules that are on (note that
more than two rules are on). Note that for computation of the area under a
Gaussian curve, you will need to write a simple numerical integration routine
(e.g., based on a trapezoidal approximation) since there is no closed-form
solution for the area under a Gaussian curve.

(g) Repeat (f) for the case in (e).

(h) Assume that the minimum operation is used to represent the premise and
implication. Plot the control surface for the fuzzy controller.

(i) Repeat (h) for the case where the product operation is used for the premise
and implication. Compare (h) and (i).

Exercise 2.4 (Inverted Pendulum: Rule-Base Modifications): In this prob-
lem we will study the effects of adding rules to the rule-base. Suppose that we use
seven triangular membership functions on each universe of discourse and make
them uniformly distributed in the same manner as how we did in Exercise 2.3. In
particular, make the points at which the outermost input membership functions

103

104 Chapter 2 / Fuzzy Control: The Basics

for e saturate at % and for € at £%. For v make the outermost ones have their
peaks at £20.

(a) Define a rule-base (i.e., membership functions and rules) that uses all pos-

(b)

sible rules, and provide a rule-base table to list all of the rules (make an
appropriate choice of the linguistic-numeric values for the premise terms
and consequents). There should be 49 rules.

Use triangular membership functions and repeat Exercise 2.3 (a), (b), (c),
(d), (e) (but provide the implied fuzzy sets for the four rules that are on),
(f), (g) (but use all four implied fuzzy sets in the COG computation), (h),
and (i).

Exercise 2.5 (Fuzzy Sets): There are many concepts that are used in fuzzy
sets that sometimes become useful when studying fuzzy control. The following
problems introduce some of the more popular fuzzy set concepts that were not
treated earlier in the chapter.

(a)

The “support” of a fuzzy set with membership function p(z) is the (crisp)
set of all points = on the universe of discourse such that p(zr) > 0 and
the “a-cut” is the (crisp) set of all points on the universe of discourse such
that p(x) > «. What is the support and 0.5-cut for the fuzzy set shown in
Figure 2.6 on page 337

The “height” of a fuzzy set with membership function u(x) is the highest
value that u(x) reaches on the universe of discourse on which it is defined.
A fuzzy set is said to be “normal” if its height is equal to one. What is the
height of the fuzzy set shown in Figure 2.6 on page 337 Is it normal? Give
an example of a fuzzy set that is not normal.

A fuzzy set with membership function p(z) where the universe of discourse
is the set of real numbers is said to be “convex” if and only if

pAzy + (1 = N)zg) = min{p(zy), p(wz)} (2.29)

for all z; and 3 and all A € [0,1]. Note that just because a fuzzy set is
said to be convex does not mean that its membership function is a convex
function in the usual sense. Prove that the fuzzy set shown in Figure 2.6
on page 33 is convex. Prove that the Gaussian membership function is not
convex. Give an example (besides the fuzzy set with a Gaussian membership
function) of a fuzzy set that is not convex.

A linguistic “hedge” is a modifier to a linguistic value such as “very” or
“more or less.” When we use linguistic hedges for linguistic values that al-
ready have membership functions, we can simply modify these membership
functions so that they represent the modified linguistic values. Consider
the membership function in Figure 2.6 on page 33. Suppose that we obtain
the membership function for “error is very possmall” from the one for “poss-
mall” by squaring the membership values (i.e., fyerypossmait = (Upossmait)?)-

2.9 Exercises

Sketch the membership function for “error is very possmall.” For “error is

more or less possmall” we could use ftmoreoriesspossmall = +/Ppossmall - Sketch
the membership function for “error is more or less possmall.”

Exercise 2.6 (The Extension Principle): A method for fuzzifying crisp func-
tions is called an “extension principle.” If X is a universe of discourse, let X*
denote the “fuzzy power set” of X, which is the set of all fuzzy sets that can
be defined on X (since there are many ways to define membership functions,
X* is normally a large set—e.g., if X is the set of real numbers, then there is a
continuum number of elements in X*). Suppose that X and Y are two sets. The
“extension principle” states that any function

f: X—=Y
induces two functions,
f: X =YY"
and
oyt ooxe

which are defined by

[f(A)Ny) = sup pa(z)
{zy=1(2)}

for all fuzzy sets A defined on X* that have membership functions denoted by
pa(z) (we use [f(A)](y) to denote the membership function produced by the
mapping f and defined on the range of f) and

1 (B)(@) = ps(f(x)

for all fuzzy sets B defined on Y* that have membership functions denoted by
wup(z) (we use [f~1(B)](z) to denote the membership function produced by the
mapping f~! and defined on the domain of f).

(a) Suppose that X = [0,00), Y = [0,00) and y = f(x) = x3. Find [f(A)](y)-
(b) Repeat (a) for y = f(x) = 2%

Exercise 2.7 (Fuzzy Logic): There are many concepts that are used in fuzzy
logic that sometimes become useful when studying fuzzy control. The following
problems introduce some of the more popular fuzzy logic concepts that were not
treated earlier in the chapter or were treated only briefly.

105

106 Chapter 2 / Fuzzy Control: The Basics

(a)

(b)

The complement (“not”) of a fuzzy set with a membership function p has a
membership function given by ji(x) = 1 — u(x). Sketch the complement of
the fuzzy set shown in Figure 2.6 on page 33.

There are other ways to define the “triangular norm” for representing the
intersection operation (“and”) on fuzzy sets, different from the ones intro-
duced in the chapter. Two more are given by defining “x” as a “bounded
difference” (i.e., x *y = max{0,x+y—1}) and “drastic intersection” (where
x+yis x when y = 1, y when x = 1, and zero otherwise). Consider the mem-
bership functions shown in Figure 2.9 on page 36. Sketch the membership
function for the premise “error is zero and change-in-error is possmall” when
the bounded difference is used to represent this conjunction (premise). Do
the same for the case when we use the drastic intersection. Compare these
to the case where the minimum operation and the product were used (i.e.,
plot these also and compare all four).

There are other ways to define the “triangular co-norm” for representing the
union operation (“or”) on fuzzy sets, different from the ones introduced in
the chapter. Two more are given by defining “@®” as a “bounded sum” (i.e.,
@y =min{l,z+y}) and “drastic union” (where z @y is when y =0, y
when = = 0, and one otherwise). Consider the membership functions shown
in Figure 2.9 on page 36. Sketch the membership function for “error is zero
or change-in-error is possmall” when the bounded sum is used. Do the same
for the case when we use the drastic union. Compare these to the case where
the maximum operation and the algebraic sum were used (i.e., plot these
also and compare all four).

Exercise 2.8 (Rule-Base Completeness and Consistency): A system of
logic is “complete” if everything that is true that can be derived can in fact be
derived. It is “consistent” if only true things can be derived according to the
system of logic. We consider a rule-base to be “complete” if for every possible
combination of inputs to the fuzzy system, the fuzzy system can infer a response
and generate an output. We consider it to be consistent if there are no rules that
have the same premise and different consequents.

(a)

(b)

Is the rule-base for the inverted pendulum example shown in Table 2.1 on
page 32 with membership functions shown in Figure 2.9 on page 36 com-
plete? Consistent?

Suppose that any one rule is removed from the rule-base shown in Table 2.1
on page 32. Is it still complete and consistent? If it s complete and con-
sistent, explain why. If it is not, explain this also. In particular, if it is not
complete, provide the values of the fuzzy controller inputs that will result in
the fuzzy controller failing to provide an output for the rule that you choose
to omit. Also, provide the rule that you choose to omit.

Suppose that you replace the triangular membership functions in the in-
verted pendulum problem with Gaussian ones, as explained in Exercise 2.3.
Repeat parts (a) and (b).

2.9 Exercises

(d) Suppose that for the inverted pendulum problem (with triangular member-
ship functions) we remove the membership functions associated with “zero”
and “possmall” on the e universe of discourse, which are shown in Figure 2.9
on page 36, and all rules that use these two membership functions in their
premises. Show the resulting rule-base table. Is the resulting rule-base com-
plete and consistent? Explain why.

(e) Suppose you designed a slightly different pattern of consequent linguistic-
numeric values than those shown in Table 2.1 on page 32 (but with the same
triangular membership functions and the same number of rules). Further-
more, suppose that we used your rules and the rules shown in Table 2.1
in the new fuzzy controller (i.e., a rule-base that has twice as many rules,
with many of the rules you created inconsistent with the ones in Table 2.1).
Essentially, this scheme will provide an interpolation between your fuzzy
controller design and the one in Table 2.1. Why? Will the fuzzy system
still provide a plant input for every possible combination of fuzzy controller
inputs?

Exercise 2.9 (Normalized Fuzzy Systems): Sometimes when we use the scal-

ing gains for the inputs and outputs of the fuzzy controller, we refer to the re-
sulting fuzzy system, with the gains, as a “scaled fuzzy system.” When a fuzzy
system is scaled so that the left-most membership function saturates (peaks) at
—1 and the right-most one at +1 for both the input and output universes of
discourse, we call this a “normalized fuzzy system.” Often in computer imple-
mentations you will work with a subroutine for a fuzzy system that makes its
computations for a normalized fuzzy system, and scaling factors are then used
outside the subroutine to obtain appropriately scaled universes of discourse (in
this way a single subroutine can be used for many choices of the scaling gains).

(a) For the inverted pendulum problem, what are the scaling factors for the
input and output universes of discourse that will achieve normalization of
the fuzzy controller? (Use the fuzzy controller that is defined via Table 2.1
on page 32 with membership functions in Figure 2.9 on page 36.)

(b) Given that the fuzzy controller for the inverted pendulum was normalized,
what are the scaling gains that should be used to get the universes of dis-
course shown in Figure 2.9 on page 367

(¢) Suppose that you are given the fuzzy controller that is defined via Table 2.1
on page 32 with membership functions in Figure 2.9 on page 36, but that you
would like the universes of discourse to be on a different scale. In particular,
you would like the effective universes of discourse to be [—10, 10] for e, [—5, 5]
for é, and [—2, 2] for u. What are the scaling gains that will achieve this?

Exercise 2.10 (Defuzzification): Suppose that for the inverted pendulum we

107

108 Chapter 2 / Fuzzy Control: The Basics

have
™
t) = —
(t) = 3
and
d s s
aV="53

at some time t. Assume that we use the rule-base shown in Table 2.1 on page 32
and minimum to represent both the premise and implication.
(a) Draw all the implied fuzzy sets on the output universe of discourse.
(b) Draw the overall implied fuzzy set assuming that maximum is used.
(¢) Find the output of the fuzzy controller using center-average defuzzification.
(d)
)

d

(e) For the overall implied fuzzy set, find the output of the fuzzy controller
using the maximum criterion, the mean of the maximum, and the COA
defuzzification techniques.

Find the output of the fuzzy controller using COG defuzzification.

(f) Assume that we use the product to represent both the premise and implica-
tion. Repeat (a)—(e).

(g) Assume that we use the product to represent the premise and minimum to
represent the implication. Repeat (a)—(e).

(h) Assume that we use the minimum to represent the premise and product to
represent the implication. Repeat (a)—(e).

(i) Suppose that rather than using the membership functions shown in Fig-
ure 2.9 on page 36, we make a small change to one membership function
on the output universe of discourse. In particular, we take the right-most
membership function (i.e., the one for “poslarge”) on the output universe of
discourse and make it the same shape as the right-most one on the e universe
of discourse (i.e., to saturate at 20 and remain at a value of one for all values
greater than 20). Suppose that the inputs to the fuzzy controller are

d T
e(t) = —e(t) = —=
(1) = Zelt)
at some time t. Repeat (a)—(e) (use minimum to represent both the premise
and implication). Explain any problems that you encounter.

Exercise 2.11 (Graphical Depiction of Fuzzy Decision Making): Develop

a graphical depiction of the operation of the fuzzy controller for the inverted
pendulum similar to the one given in Figure 2.19 on page 50. For this, choose
e(t) = 3 and de(t) = 15> Which will result in four rules being on. Be sure to
show all parts of the graphical depiction, including an indication of your choices
for e(t) and “Le(t), the implied fuzzy sets, and the final defuzzified value.

2.9 Exercises

(a) Use minimum for the premise and implication and COG defuzzification.

(b) Use product for the premise and implication and center-average defuzzifica-
tion.

Exercise 2.12 (Fuzzy Controllers as Interpolators): Fuzzy controllers act
as interpolators in the sense that they interpolate between the conclusions that
each individual rule of the rule-base reaches. It is possible to derive formulas that
show exactly how this interpolation takes place; this is the focus of this problem.

Suppose that you are given a single-input, single-output fuzzy system with
input « and output y. Suppose that the input universe of discourse has only two
membership functions. The first one is zero from minus infinity to x = —1. Then
it increases linearly to reach a value of unity when x = 1. From = = 1 out to
plus infinity, the value of the membership function is one. Hence, at x = 0 the
membership function’s value is 0.5. The second membership function is a mirror
image of this one about the vertical axis. That is, at minus infinity it starts at
one and stays there up till x = —1. Then it starts decreasing linearly so that it
has a value of zero by © = 1. There are only two output membership functions,
each of which is a singleton, with one of these centered at y = —1 and the other
centered at y = 1. There are two rules, one that has as a premise the first input
membership function and a consequent of the singleton that is centered at y = —1,
and the other that has as a premise the other input membership function and as
a consequent the output membership function centered at y = 1. Notice that this
fuzzy system is so simple that the input membership functions are the same as
the premise membership functions. Use center-average defuzzification.

(a) Sketch the membership functions. Are the computations used to compute
the output y for an input = any different if we use symmetric triangular
output membership functions centered at £17 Why?

(b) Show that for z € [-1,1], y = x. Show that for x € (—oc0,—1], y = —1.
Show that for z € [1,+00), y = 1.

This demonstrates that for this case center-average defuzzification performs a
linear interpolation between the output centers. Other types of fuzzy systems,
such as ones with Gaussian membership functions or COG defuzzification, achieve
different types of interpolations that result in different-shaped functions (e.g., see
the nonlinear control surface in Figure 2.35 on page 89).

Exercise 2.13 (Takagi-Sugeno Fuzzy Systems): In this problem you will
study the way that a Takagi-Sugeno fuzzy system interpolates between linear
mappings. Consider in particular the example from Section 2.3.7 where n = 1,
R = 2, and that we had rules

If 4 is fl% Then b; =2+ u;

If 4 is fl% Then by =1+ u;

109

110 Chapter 2 / Fuzzy Control: The Basics

with the universe of discourse for u; given in Figure 2.24 on page 75 so that p
represents Al and po represents A2. We have y = b1y + bajuis.

(a) Show that the nonlinear mapping induced by this Takagi-Sugeno fuzzy sys-
tem is given by

14 up ifu; > 1
Yy = 0.5u1 +1.5 if —1<u; <1
24w up < —1

(Hint: The Takagi-Sugeno fuzzy system represents three lines, two in the
consequents of the rules and one that interpolates between these two.)

(b) Plot y versus uj over a sufficient range of w; to illustrate the nonlinear
mapping implemented by the Takagi-Sugeno fuzzy system.

Exercise 2.14 (Fuzzy Controller Simulation): In this problem you will de-
velop a computer program that can simulate a fuzzy controller. You may use the
code available at the web site or ftp site listed in the Preface but you must recode
it (and add comments to the code) to be able to meet the specifications given in
part (a).

(a) Using the approach developed in this chapter, develop a subroutine that
will simulate a two-input, one-output fuzzy controller that uses triangular
membership functions (except at the outermost edges), either the minimum
or the product to represent the “and” in the premise or the implication, and
COG or center-average defuzzification.

(b) Use the rule-base from Table 2.1 on page 32 for the inverted pendulum, let
e(t) = 3% and de(t) = 16> and find the output of the fuzzy controller.

2.10 Design Problems

Design Problem 2.1 (Inverted Pendulum: Design and Simulation): In
this problem you will study the simulation of the fuzzy control system for the
inverted pendulum studied in the tutorial introduction to fuzzy control. Use the
model defined in Equation (2.25) on page 78 for the model for the pendulum.
Be sure to use an appropriate numerical simulation technique for the nonlinear
system and a small enough integration step size.

(a) Verify all the simulation results of Section 2.4.1 (i.e., use all the same pa-
rameters as used there and reproduce all the simulation results shown).

(b) Repeat (a) for the case where we use Gaussian membership functions, as
in Exercise 2.3. Use product to represent the premise and implication and
COG defuzzification. This problem demonstrates that changing membership
function shapes and the inference strategy can have a significant impact on
performance. Once you have completed (a) for all its parts, tune the scaling

2.10 Design Problems

gains go, g1, and h to achieve a performance that is at least as good as that
shown in Figure 2.25 on page 79.

(c) Repeat (a) for the case where we use 49 rules, as in Exercise 2.4(b) (use
triangular membership functions).

(d) Compare the performance obtained in each case. Does switching to the use
of Gaussian membership functions and the product improve performance?
Why? Does the addition of more rules improve performance? Why?

Design Problem 2.2 (Fuzzy Cruise Control): In this problem you will de-

velop a fuzzy controller that regulates a vehicle’s speed v(t) to a driver-specified
value vg4(t). The dynamics of the automobile are given by

(—Apv*(t) — d+ f(1))

(=f(t) +u(®))

3=

b(t) =
ft) =

3=

where u is the control input (v > 0 represents a throttle input and u < 0 repre-
sents a brake input), m = 1300 kg is the mass of the vehicle, A, = 0.3 Ns? /m2
is its aerodynamic drag, d = 100 N is a constant frictional force, f is the driv-
ing/braking force, and 7 = 0.2 sec is the engine/brake time constant. Assume
that the input u € [-1000, 1000] (i.e., that u is saturated at 1000 N).

(a) Suppose that we wish to be able to track a step or ramp change in the driver-
specified speed value vg(t) very accurately. Suppose that you choose to use
a “PI fuzzy controller” as shown in Figure 2.36. Why does this choice make
sense for this problem? In Figure 2.36 the fuzzy controller is denoted by @;
9o, g1, and go are scaling gains; and b(t) is the output of the integrator.

Fuzzy controller u(?)) '

L]

FIGURE 2.36 PI fuzzy cruise controller.

Find the differential equation that describes the closed-loop system. Let
the state be x = |11, 29, 23] = [v, f,b]T and find a system of three first-
order ordinary differential equations that can be used by the Runge-Kutta
method in the simulation of the closed-loop system (i.e., find F;(z,vq) for
1 = 1,2,3, in Equation (2.26)). Use ® to represent the fuzzy controller in
the differential equations.

For the reference input we will use three different test signals:

111

112 Chapter 2 / Fuzzy Control: The Basics

1. Test input 1 makes vg(t) = 18 m/sec (40.3 mph) for 0 < ¢t < 10 and
va(t) = 22 m/sec (49.2 mph) for 10 < ¢ < 30.

2. Test input 2 makes v4(t) = 18 m/sec (40.3 mph) for 0 < ¢ < 10 and
vq(t) increases linearly (a ramp) from 18 to 22 m/sec by ¢t = 25 sec, and
then vg(t) = 22 for 25 < ¢t < 30.

3. Test input 3 makes vg(t) = 22 for ¢ > 0 and we use z(0) = 0 as the
initial condition (this represents starting the vehicle at rest and suddenly
commanding a large increase in speed).

Use z(0) = [18,197.2,20] T for test inputs 1 and 2. Why is z(0) = [18,197.2,20] "
a reasonable choice for the initial conditions?

Design the fuzzy controller ® to get less than 2% overshoot, a rise-time
between 5 and 7 sec, and a settling time of less than 8 sec (i.e., reach to
within 2% of the final value within 8 sec) for the jump from 18 to 22 m/sec
in “test input 17 that is defined above. Also, for the ramp input (“test input
2” above) it must have less than 1 mph (0.447 m/sec) steady-state error
(i.e., at the end of the ramp part of the input have less than 1 mph error).
Fully specify your controller (e.g., the membership functions, rule-base de-
fuzzification, etc.) and simulate the closed-loop system to demonstrate that
it performs properly. Provide plots of v(t) and v4(t) on the same axis and
u(t) on a different plot. For test input 3 find the rise-time, overshoot, 2%
settling time, and steady-state error for the closed-loop system for the con-
troller that you designed to meet the specifications for test input 1 and 2. In
your simulations use the Runge-Kutta method and an integration step size
of 0.01.

(b) Next, suppose that you are concerned with tracking a step change in vy(t)
accurately and that you use the PD fuzzy controller shown in Figure 2.37.

To represent the derivative, simply use a backward difference
t)—e(t—nh
PARCURLEL)

where h is the integration step size in your simulation (or it could be your
sampling period in an implementation).

Fuzzy controller u(?)) '

L]

FIGURE 2.37 PD fuzzy cruise controller.

Design a PD fuzzy controller to get less than 2% overshoot, a rise-time
between 7 and 10 sec, and a settling time of less than 10 sec for test input 1

2.10 Design Problems

defined in (a). Also, for the ramp input (test input 2 in (a)) it must have less
than 1 mph steady-state error to the ramp (i.e., at the end of the ramp part
of the input, have less than 1mph error). Fully specify your controller and
simulate the closed-loop system to demonstrate that it performs properly.
Provide plots of v(t) and vg4(t) on the same axis and u(t) on a different plot.
In your simulations use the Runge-Kutta method and an integration step
size of 0.01.

Assume that z(0) = [18,197.2] T for test inputs 1 and 2 (hence we ignore
the derivative input in coming up with the state equations for the closed-
loop system and simply use the approximation for ¢(¢) that is shown above
so that we have a two-state system). As a final test let 2:(0) = 0 and use test
input 3 defined in (a). For this, what is the rise-time, overshoot, 2% settling
time, and steady state error for your controller?

(c¢) Explain the effect of the aerodynamic drag term and how you would redesign
a rule-base to take this effect into account if you used vehicle velocity directly
as an input to the fuzzy controller.

An expanded version of this problem is given in Design Problem 2.4. There, PD
controllers are used, and we show how to turn the cruise control problem into an
automated highway system control problem where the speeds of many vehicles
are regulated so that they can move together as a “platoon.”

Design Problem 2.3 (Fuzzy Control for a Thermal Process): This prob-
lem is used to show how you can get into trouble in fuzzy control design if you
do not understand basic ideas from conventional control or if you do not tune
the controller properly. Suppose that you are given the thermal process shown in
Figure 4.8 on page 209 described in Chapter 4 except that you use the plant

q(s) s+1

(this is a thermal process with slower dynamics than the one in Chapter 4).
Note that ¢(¢t) > 0 corresponds to adding heat while ¢(¢) < 0 corresponds to
cooling. Suppose that we wish to track a unit-step input of desired temperature
difference 74 with zero steady-state tracking error. Using ideas from conventional
control for linear systems, you would normally first choose to put a pole of the
compensator at zero since this would give you zero steady-state tracking error to
a step input (why?). Next, for a linear control system design you might proceed
with the design of a cascaded lead controller (why?).

Now, rather than designing a linear controller, suppose that you decide to try
a fuzzy controller that has as an output ¢(¢) and inputs goe(t) and g1é(¢t) where
e(t) = 7q(t) — 7(t) and go and ¢y are scaling gains (i.e., a PD fuzzy controller).
That is, you are ignoring that you may need an integrator in the loop to effec-
tively eliminate steady-state tracking error. For the PD fuzzy controller, use the
same membership functions as we did in Figure 2.9 on page 36 for the inverted

113

114 Chapter 2 / Fuzzy Control: The Basics

pendulum. Here, however, make the effective universes of discourse for e(t) and
é(t), [-1,1] and [-0.5,0.5], respectively, and the effective universe of discourse
for ¢(t), [—20,20] (i.e., the exact same output membership functions as for the
inverted pendulum in Figure 2.9 on page 36). Use minimum for the premise and
implication and COG defuzzification. For the rule-base we simply modify the one
used in Table 2.1 on page 32 for the inverted pendulum: Specifically, simply mul-
tiply each element of the body of Table 2.1 by —1 and use the resulting rule-base
table as a rule-base for the PD fuzzy controller (this shows one case where you
can reuse rule-bases in a convenient manner). Why is this a reasonable choice for
a rule-base? To explain this, compare it to the pendulum’s rule-base and explain
the meaning of a few of the new rules for the thermal process.

(a) Design a linear controller that will result in zero steady-state tracking error
for the step input, minimize the rise time, achieve less than 5% overshoot,
and try to minimize the settling time (treat the tracking error and rise-time
specifications as your primary objectives, and the overshoot and settling
time as your secondary objectives). Simulate the control system you design,
and provide plots of 7 versus t to verify that you meet the desired objectives.

(b) Simulate the fuzzy control system using the PD fuzzy controller described
above. Plot ¢(t) and 7(¢) and discuss the results. Use the Runge-Kutta
method for simulation with an integration step size of 0.0005 and zero initial
conditions.

(¢) Even though it may be more appropriate to use a PI fuzzy controller, you
can tune the PD fuzzy controller to try to meet the above specifications.
Tune the PD fuzzy controller by changing the scaling gains gy and ¢; to
meet the same objectives as stated in (a). Compare the results from (a) and
(b).

(d) Is it fair to compare the linear and fuzzy controllers? Which uses more
computations? Is nonlinear control (fuzzy control) really needed for this
linear plant?

Design Problem 2.4 (Fuzzy Control for an Automated Highway System)*:!2
Due to increasing traffic congestion, there has been a renewed interest in the de-

velopment of an automated highway system (AHS) in which high traffic flow rates

may be safely achieved. Since many of today’s automobile accidents are caused

by human error, automating the driving process may actually increase safety

on the highway. Vehicles will be driven automatically with on-board lateral and

longitudinal controllers. The lateral controllers will be used to steer the vehicles

around corners, make lane changes, and perform additional steering tasks. The

longitudinal controllers will be used to maintain a steady velocity if a vehicle

is traveling alone (conventional cruise control), follow a lead vehicle at a safe

12. Reminder: Exercises or design problems that are particularly challenging (considering how
far along you are in the text) or that require you to help define part of the problem are
designated with a star (“x”).

2.10 Design Problems

distance, or perform other speed/tracking tasks. For more details on intelligent
vehicle highway systems see [53] and [185, 186].

The dynamics of the car-following system for the i*" vehicle may be described
by the state vector X; = [&;,v;, fi] T, where §; = x; — x;_1 is the intervehicle
spacing between the it” and i — 15¢ vehicles, v; is the i*" vehicle’s velocity, and
fi is the driving/braking force applied to the longitudinal dynamics of the ‘"
vehicle. The i*" vehicle follows vehicle 7 — 1. The longitudinal dynamics may be
expressed as

51' =V; — Vi1 (230)
fi= i_(—fl- + ;) (2.32)

K3

where u; is the control input (if u; > 0, it represents a throttle input, while if u; <
0, it represents a brake input), and m; = 1300 kg is the mass of all the vehicles,
A, =0.3 Ns? /m2 is the aerodynamic drag for all the vehicles, d; = 100 N is a
constant frictional force for all the vehicles, and 7; = 0.2 sec is the engine/brake
time constant for all the vehicles.

The reference input is r(¢) = 0. The plant output is y; = d; +A;v;, and we want
y; — 0 for all 4. This is a “velocity-dependent headway policy.” As the velocity of
the " vehicle increases, the distance between the it and i — 1°¢ vehicles should
increase. A standard good driving rule for humans is to allow an intervehicle
spacing of one vehicle length per 10 mph of velocity (this roughly corresponds to
A = 0.9 for all 7).

Suppose that we wish to design a controller for each vehicle that is to be put
in the AHS that will achieve good tracking with no steady state error. In fact,
our goal is to make the system react as a first-order system with a pole at —1
would to a unit-step input. Suppose that the lead vehicle is commanded to have
a speed of 18 m/sec for 20 sec, then switch to 22 m/sec for 20 sec, then back to
18 m/sec and repeat the alternation between 18 and 22 m/sec for a total of 300
sec.

(a) Assume that there are only two vehicles in the AHS and that you implement
a controller on the following vehicle that will regulate the intervehicle spac-
ing. Design a PD controller that will achieve the indicated specifications.
For your PD controller use

ei(t) =r(t) — vi(t)

and

d
ui(t) = Kp,ei(t) + Kg, %ei(t)

115

116 Chapter 2 / Fuzzy Control: The Basics

(b) Repeat (a) except use a fuzzy controller.
(¢) Repeat (a) except use a sliding-mode controller.

(d) Compare the performance of the controllers and make recommendations on
which one should be used. Be careful to tune each of the controllers as well
as you can so that you will feel confident about your recommendation of
which approach to use.

(e) Repeat (a)—(d) for five vehicles all with different masses, aerodynamic drags,
and engine/brake time constants.

Design Problem 2.5 (Fuzzy Control for a Magnetic Ball Suspension
System)*: See the model of the magnetic ball suspension system shown in
Figure 6.19 on page 366 in Chapter 6.

(a) Use the linear model given in Chapter 6 to design a linear controller that
achieves zero steady-state tracking error and a fast rise-time with as little
overshoot as possible. Demonstrate that the controller works properly for the
linear plant model. Next, investigate how it performs for the nonlinear plant
model (you may need to pick a reference input that is small in magnitude
when you test your system in simulation with the nonlinear plant model).

(b) Repeat (a) but design a conventional nonlinear controller for the nonlinear
model of the system.

(¢) Repeat (b) except use a fuzzy controller.

(d) Compare the performance of the fuzzy and conventional linear and nonlinear
controllers. Be careful to tune each of the controllers as well as you can so
that you will feel confident about your recommendation of which approach
to use.

Design Problem 2.6 (Fuzzy System Design for Basic Math Operations)*:
In a PD controller, the plant input is generated by scaling the error and deriva-
tive of the error and summing these two values. A fuzzy controller that uses the
error and derivative of the error as inputs can be designed to perform a similar
scaling and summing operation (a linear operation), at least locally. For example,
in the inverted pendulum problem we actually achieve such a scaling and sum-
ming operation with the fuzzy controllers that we designed (provided that the
fuzzy controller input signals are small). The scaling is actually achieved by the
scaling gains, and the summing operation is achieved by the rule-base (recall that
the pattern of the consequent linguistic-numeric values in Table 2.1 on page 32
is achieved by adding the linguistic-numeric values associated with each of the
inputs, taking the negative of the result, and saturating their values at +2 or
—2). We see that fuzzy systems are capable of performing basic mathematical
operations, at least on a region of their input space.

2.10 Design Problems

Suppose that there are two inputs to the fuzzy system, x and y, and one
output, z. Define a fuzzy system that can add two numbers that lie within
the regions x € [-2,2] and y € [—1, 1]. Plot the three-dimensional nonlinear
surface induced by the fuzzy system.

Repeat (a) for subtraction.

a) for multiplication.
)
)
)

a) for taking the minimum of two numbers.

Repeat

Repeat (a) for division.

Repeat (a) for taking the maximum of two numbers.

o~ o~ o~ o~

Repeat

117

118 Chapter 2 / Fuzzy Control: The Basics

C A PTF—E R—=

Case Studies
in Design
and Implementation

Example is the school of mankind.
—Edmund Burke

3.1 Overview

As indicated in Chapters 1 and 2, there is no generally applicable systematic
methodology for the construction of fuzzy controllers for challenging control ap-
plications that is guaranteed to result in a high-performance closed-loop control
system. Hence, the best way to learn the basics of how to design fuzzy controllers
is to do so yourself—and for a variety of applications. In this chapter we show how
to design fuzzy controllers for a variety of applications in a series of case studies.
We then include at the end of the chapter a variety of design problems that the
reader can use to gain experience in fuzzy control system design.

Despite the lack of a general systematic design procedure, by reading this chap-
ter you will become convinced that the fuzzy control design methodology does
provide a way to design controllers for a wide variety of applications. Once the
methodology is understood, it tends to provide a “way to get started,” a “way to
at least get a solution,” and often a “way to quickly get a solution” for many types
of control problems. Indeed, we have found that if you focus on one application, a
(somewhat) systematic design methodology for that application seems to emerge
from the fuzzy control approach. While the procedure is typically closely linked
to application-specific concepts and parameters and is therefore not generally ap-
plicable to other plants, it does often provide a very nice framework in which the
designer can think about how to achieve high-performance control.

119

120 Chapter 3 / Case Studies in Design and Implementation

You must keep in mind that the fuzzy controller has significant functional ca-
pabilities (recall the universal approximation property described in Section 2.3.8 on
page 77) and therefore with enough work the designer should be able to achieve just
about anything that is possible in terms of performance (up to the computational
limits of the computer on which the controller is implemented). The problem is that
just because the controller can be tuned does not mean that it is easy to tune, or
that the current framework in which you are tuning will work (e.g., you may not
be using the proper preprocessing of the fuzzy controller inputs or enough rules).
We have found that while for some applications fuzzy control makes it easy to “do
what makes sense” in terms of control, in others high performance is achieved only
after a significant amount of work on the part of the control designer, who must get
the best knowledge on how to control the system into the rule-base, which often
can only occur by understanding the physics of the process very well.

Ultimately, the reader should always remember that the fuzzy control design
process is nothing more than a heuristic technique for the synthesis of nonlinear
controllers (there is nothing mystical about a fuzzy controller). For each of the case
studies and design problems, the reader should keep in mind that an underlying
nonlinearity is being shaped in the design of a fuzzy controller (recall that we showed
the nonlinear surface that results from a fuzzy controller in Figure 2.35 on page 89).
The shape of this nonlinearity is what determines the behavior of the closed-loop
system, and it is the task of the designer to get the proper control knowledge into
the rule-base so that this nonlinearity is properly shaped.

Conventional control provides a different approach to the construction of non-
linear controllers (e.g., via feedback-linearization or sliding-mode control). When
you have a reasonably good model of the plant, which satisfies the necessary
assumptions—and even sometimes when it does not (e.g., for some PID controllers
that we design with no model or a very poor one)—then conventional control can
offer quite a viable solution to a control problem. Indeed, conventional control is
more widely used than fuzzy control (it is said that more than 90% of all controllers
in operation are PID controllers), and for a variety of reasons may be a more viable
approach (see Chapters 1 and 8 for more discussion on the relative merits of fuzzy
versus conventional control). Due to the success of conventional control, we place
a particular emphasis in this book on comparative analysis of fuzzy versus conven-
tional control; the reader will see this emphasis winding its way through the case
studies and design problems in this chapter. We believe that it is unwise to ignore
past successes in control in the excitement over trying fuzzy control.

In this chapter we begin, in Section 3.2, by providing an overview of a gen-
eral methodology for fuzzy controller design (including issues in computer-aided
design) and then show how to design fuzzy controllers for a variety of challenging
applications: a two-link flexible robot, a rotational inverted pendulum, a machine
scheduling problem, and fuzzy decision-making systems. In each case study we have
a specific objective in mind:

1. Vibration damping for a flexible-link robot (Section 3.3): Here, we illustrate
the basic strength of the fuzzy control methodology, which is to use heuristic

3.1 Overview

information about how to achieve high-performance control. We explain in a
series of steps how to quantify control knowledge in a fuzzy controller and
show how performance can be subsequently improved. Moreover, we provide
experimental results in each case and especially highlight the importance of
understanding the physics of the underlying control problem so that appropriate
control rules can be designed. In Chapters 6 and 7 we will study adaptive and
supervisory fuzzy control techniques for this problem, and achieve even better
performance than in this chapter, even for the case where a mass is added to
the second link’s endpoint.

2. Rotational inverted pendulum (Section 3.4): In this case study we first design
a conventional linear controller for balancing the pendulum. Then we intro-
duce a general procedure for incorporating these conventional control laws into
a fuzzy controller. In this way, for small signals the fuzzy controller will act
like a well-designed linear controller, and for larger signals the fuzzy controller
nonlinearity can be shaped appropriately. Experimental results are provided to
compare the conventional and fuzzy control approaches. In Chapter 6 we show
how an adaptive fuzzy controller can be used to achieve very good balancing
performance even if a sealed bottle half-filled with water is attached to the
pendulum endpoint to create a disturbance.

3. Machine Scheduling (Section 3.5): Here, we show how a fuzzy controller can
be used to schedule part processing in a simple manufacturing system. This
case study is included to show how a fuzzy system has wide applicability since
it can be used as a very general decision maker. Comparisons are made to
conventional scheduling methods to try to uncover the advantages of fuzzy
control. In Chapter 6 we extend the basic approach to provide an adaptive
scheduler that can reconfigure itself to maintain throughput performance even
if there are unpredictable changes in the machine.

4. Fuzzy decision-making systems (Section 3.6): In this case study we explain
the various roles that fuzzy systems can serve in the implementation of general
decision-making systems. Then we show how to construct fuzzy decision-making
systems for providing warnings of the spread of an infectious disease and failure
warnings for an aircraft. This case study is used to show that fuzzy systems
have broad applicability outside the area of traditional feedback control.

When you complete this chapter, you will have solidified your understanding of
the general fuzzy control system design methodology over that which was presented
in Chapter 2 for the academic inverted pendulum design problem. Also, you will
have gained an understanding of how to design fuzzy controllers for three specific
applications and fuzzy decision-making systems for several applications.

As indicated above, the case studies in this chapter will actually be used
throughout the remainder of the book. In particular, they will be used in Chapter 6
on adaptive fuzzy control and Chapter 7 on fuzzy supervisory control. Moreover,
they will be used as design problems in this and these later chapters. Hence, you

121

122

Chapter 3 / Case Studies in Design and Implementation

will want to at least skim the case studies if you are concerned with understanding
the corresponding later case studies where we will use adaptive and supervisory
control for the same plants. However, the reader who wants to learn techniques
alone and is not as concerned with applications and implementations can skip this
chapter.

3.2 Design Methodology

In Chapter 2 we provided an introduction to how to design fuzzy controllers, and
several basic guidelines for their design were provided in Section 2.4.4 on page 89.
Here, we provide an overview of the design procedure that we have in mind when
we construct the fuzzy controllers for the first two case studies in this chapter. Our
methodology is as follows:

1. Try to understand the behavior of the plant, how it reacts to inputs, what
are the effects of disturbances, and what fundamental limitations it presents
(e.g., nonminimum phase or unstable behavior). A clear understanding comes
from studying the physics of the process, developing mathematical models, us-
ing system identification methods, doing analysis, performing simulations, and
using heuristic knowledge about the plant dynamics. The analysis could in-
volve studying stability, controllability, or observability of the plant; how fast
the plant can react to various inputs; or how noise propagates in the dynam-
ics of the process (e.g., via stochastic analysis). The heuristic knowledge may
come from, for example, a human operator of the process or a control engi-
neer. Sometimes, knowledge of the plant’s behavior comes from actually trying
out a controller on the system (e.g., a PID, lead-lag, state-feedback, or fuzzy
controller).

2. Gain a clear understanding of the closed-loop specifications (i.e., the perfor-
mance objectives). These may be stated in terms of specifications on stability,
rise-time, overshoot, settling time, steady-state error, disturbance rejection, ro-
bustness, and so on. You should make sure that the performance objectives are
reasonable and achievable, and that they properly characterize exactly what is
desired in terms of closed-loop behavior.

3. Establish the basic structure of the control system (here we assume that a
“direct” (nonadaptive) controller is used). This will establish what the plant
and controller inputs and outputs should be.

4. Perform an initial control design. This may be with a simple PID controller,
some other linear technique (e.g., lead-lag compensation or state feedback), or
a simple fuzzy controller (often you should first try a fuzzy PD, PI, or PID
controller). For some basic ideas on how to design fuzzy controllers, see Chap-
ter 2, Section 2.4.4 on page 89. The basic approaches include (a) inclusion of
good control knowledge, (b) tuning the scaling gains, (¢) tuning the member-
ship functions, and (d) adding more rules or membership functions. Work hard

3.2 Design Methodology 123

to tune the chosen method. Evaluate if the performance objectives are met via
simulations or mathematical analysis (such as that found in Chapter 4) if you
have a model.

5. If your simple initial approach to control is successful, begin working on an
implementation. If it is not successful, first make sure that you are using solid
control engineering ideas to pick the “nonfuzzy” part of the controller (e.g.,
the preprocessing of fuzzy controller inputs by choosing to use an integrator to
try to remove steady-state error). If this does not work, consider the following
options:

® A more sophisticated conventional control method (e.g., feedback-linearization
or sliding-mode control).

® A more sophisticated fuzzy controller. You may need more inputs to the
fuzzy controller or more rules in the rule-base. You should carefully con-
sider if you have loaded the best knowledge about how to control the
process into the rule-base (often, the problem with tuning a fuzzy con-
troller boils down to a basic lack of understanding of how best to control
the plant and the corresponding lack of knowledge in the rule-base).

e Try designing the fuzzy controller by using a well-designed linear control
technique to specify the general shape of the control surface (especially
around zero) and then tune the surface starting from there (this approach
is illustrated in this chapter for the rotational inverted pendulum).

e Conventional or fuzzy adaptive or supervisory control approaches (see
Chapters 6 and 7).

Work hard to tune the chosen method. Evaluate if the performance objectives
are met.

6. Repeat the above process as often as necessary, evaluating the designs in sim-
ulation and, if possible, implementation. When you have met the performance
objectives for the implementation, you will likely have additional work including
“burn-in” tests, marketing analyses, cost analyses, and other issues (of course,
several of these will have to be considered much earlier in the design process).

Computer-aided design (CAD) packages are designed to try to help automate
the above process. While we recommend that you strongly consider their use, we
must reemphasize that it is best to first know how to program the fuzzy controller
in a high-level language before moving on to the use of CAD packages where the
user can be removed from understanding the low-level details of the operation of
fuzzy systems. Once fuzzy systems are well understood, you can use one of the
existing packages (e.g., the one currently in Matlab) or design a package on your
own. However, you should not dismiss the importance of knowing how to code a
fuzzy controller on your own. Often this is necessary for implementation anyway
(e.g., in C or assembly language).

124 Chapter 3 / Case Studies in Design and Implementation

3.3 Vibration Damping for a Flexible Robot

For nearly a decade, control engineers and roboticists alike have been investigating
the problem of controlling robotic mechanisms that have very flexible links. Such
mechanisms are important in space structure applications, where large, lightweight
robots are to be utilized in a variety of tasks, including deployment, spacecraft
servicing, space-station maintenance, and so on. Flexibility is not designed into the
mechanism; it is usually an undesirable characteristic that results from trading off
mass and length requirements in optimizing effectiveness and “deployability” of the
robot. These requirements and limitations of mass and rigidity give rise to many
interesting issues from a control perspective.

In this section we present a design case study that makes use of previous expe-
rience in the modeling and control of a two-link planar flexible robot. First, though,
we provide some motivation for why you would want to consider using fuzzy control
for the robot.

The modeling complexity of multilink flexible robots is well documented, and
numerous researchers have investigated a variety of techniques for representing flex-
ible and rigid dynamics of such mechanisms. Equally numerous are the works ad-
dressing the control problem in simulation studies based on mathematical models,
under assumptions of perfect modeling. Even in simulation, however, a challenging
control problem exists; it is well known that vibration suppression in slewing me-
chanical structures whose parameters depend on the configuration (i.e., are time
varying) can be extremely difficult to achieve. Compounding the problem, numer-
ous experimental studies have shown that when implementation issues are taken
into consideration, modeling uncertainties either render the simulation-based con-
trol designs useless, or demand extensive tuning of controller parameters (often in
an ad hoc manner).

Hence, even if a relatively accurate model of the flexible robot can be developed,
it is often too complex to use in controller development, especially for many control
design procedures that require restrictive assumptions for the plant (e.g., linearity).
It is for this reason that conventional controllers for flexible robots are developed
either (1) via simple crude models of the plant behavior that satisfy the necessary
assumptions (e.g., the model we develop below), or (2) via the ad hoc tuning of
linear or nonlinear controllers. Regardless, heuristics enter the design process when
the conventional control design process is used.

It is important to emphasize, however, that such conventional control-engineering
approaches that use appropriate heuristics to tune the design have been relatively
successful. For a process such as a flexible robot, you are left with the following
question: How much of the success can be attributed to the use of the mathe-
matical model and conventional control design approach, and how much should be
attributed to the clever heuristic tuning that the control engineer uses upon im-
plementation? While control engineers have a relatively good understanding of the
capabilities of conventional mathematical approaches to control, much less is un-
derstood about whether or not control techniques that are designed to exploit the
use of heuristic information (such as fuzzy control approaches) can perform better

3.3 Vibration Damping for a Flexible Robot

than conventional techniques.

In this section we show that fuzzy control can, in fact, perform quite well for
a particular two-link flexible robot. In Chapters 6 and 7 we will show how to use
adaptive and supervisory fuzzy control for this same mechanism. These methods
build on the direct fuzzy control methods studied in this chapter and provide the
best controllers developed for this experiment to date (including many conventional
methods).

3.3.1 The Two-Link Flexible Robot

In this section we describe the laboratory test bed, the control objectives, and how
the robot reacts to open-loop control.

Laboratory Test Bed

The two-link flexible robot shown in Figure 3.1 consists of three main parts: (1)
the robot with its sensors, (2) the computer and the interface to the robot, and
(3) the camera with its computer and interface. The robot is made up of two very
flexible links constrained to operate in the horizontal plane. The “shoulder link” is a
counterbalanced aluminum strip that is driven by a DC direct-drive motor with an
input voltage v1. The “elbow link,” which is mounted on the shoulder link endpoint,
is a smaller aluminum strip. The actuator for the elbow link is a geared DC motor
with an input voltage vs. The sensors on the robot are two optical encoders for
the motor shaft positions ©; and ©5, and two accelerometers mounted on the link
endpoints to measure the accelerations a; and as.

v -
Camera Light 2 Shoulder link Counterbalance

source Elbow link
N
= 1
) -
92 ﬁ

Encoder
Interface
Camera

interface

Motor voltage
Amplifier Cards

Camera data Control computer
acquisition
computer

FIGURE 3.1 Two-link flexible robot setup (figure taken from
(145], © IEEE).

A line scan camera is used to monitor the endpoint position of the robot for
plotting; this data is not used for feedback. The sampling period used for all sensors
and control updates is 15 milliseconds (ms). For comparative purposes, we use the

125

126 Chapter 3 / Case Studies in Design and Implementation

camera data for robot movements that begin in some position and end in a fully
extended position, to approximate equal movements in each joint. When responses
are plotted, the final endpoint position is nominally indicated (on the plot) to reflect
(approximately) the total movement, in degrees, of the shoulder joint.

Objectives and Open-Loop Control

The primary objective of this case study is to develop a controller that makes
the robot move to its desired position as quickly as possible, with little or no
endpoint oscillation. To appreciate the improvement in the plant behavior due to
the application of the various control strategies, we will first study how the robot
operates under the “no control” situation; that is, when no external digital control
algorithm is applied for vibration compensation. To implement the no control case,
we simply apply v1 = v = 0.3615 volts at t = 0 seconds and return v, and vy to zero
voltages as soon as the links reach their set-points. Note that for this experiment
we monitor the movement of the links but do not use this information as feedback
for control.

The results of the “no control” experiment are plotted in Figure 3.2, where the
endpoint position shows a significant amount of endpoint oscillation. As is typical
in mechanisms of this sort, inherent modal damping is present. It is well known
that the effect of mass-loading a slewing flexible beam is to reduce the modal
frequencies and this is indeed the case for this experiment. Indeed, when a 30-gram
payload is attached to the robot endpoint, the first modal frequency of the second
link (endpoint) reduces significantly. This effect causes performance degradation in
fixed, linear controllers. In Figure 3.2, as in all plots to follow, endpoint position
refers to the position of the elbow link endpoint. Note that the inset shown in
Figure 3.2 depicts the robot slew employed. The two dashed lines describe the
initial position of the links. The arrows show the direction of movement, and the
solid line shows the final position of the links. Hence, for this open-loop experiment,
we wanted 90 degrees of movement in each link. In the ideal case the shaft should
stop moving the instant the voltage signal to the motor amplifier is cut off. But
the arm had been moving at a constant velocity before the signal was cut off, and
thus had a momentum that dragged the shaft past the angle at which it was to
stop. This movement depends on the speed at which the arm was moving, which in
turn depends on the voltage signal applied. Clearly, there is a significant need for
vibration damping in endpoint positioning.

Quantitatively speaking, in terms of step-type responses (for motions through
large angles in each joint), the control objectives are as follows: system settling
(elimination of residual vibrations in endpoint position) within 2 seconds of mo-
tion initiation, and overshoot minimized to less than 5% deviation from the final
desired position. In addition, we wish to achieve certain qualitative aspects such as
eliminating jerky movements and having smooth transitions between commanded
motions.

3.3 Vibration Damping for a Flexible Robot

140

130 -

120

110

100

Endpoint position (deg)

80

70+

60 -

50
0

Time (sec)

FIGURE 3.2 Endpoint position: “No control” response
(figure taken from [145], © IEEE).

Model

While it is difficult to produce an accurate model of the two-link robot using mod-
eling based on first principles, it is possible to perform system identification studies
for this system to produce approximate linear models. Working along these lines,
the authors in [243] developed linear models for the two-link flexible robot. In par-
ticular, random inputs were injected via the voltage inputs, data was gathered at
the outputs, and a least squares method was used to compute the parameters of
linear models. Several experiments had to be performed since there are two inputs
and four outputs. To identify transfer functions from the inputs to the shaft ve-
locity and endpoint acceleration for the shoulder link, the elbow link was initially
fixed at a 180-degree angle (directly in line) with the shoulder link. While voltage
was applied to one link it was set to zero for the other link so that it would not be
commanded to move from its initial position. The sampling period for these sys-
tem identification experiments is 20 ms (note that this is different from the 15-ms
sampling period used in our control implementation studies to follow). Note that
the joint angles ©; and ©4 must lie in a +250-degree range, and v; and vo must lie
in a range of £5 volts (the values are saturated beyond this point). The saturation
constraints should be considered part of the model (so that the resulting model is
nonlinear).

Let wy; and ws denote the shaft velocity of the shoulder and elbow joints, re-
spectively. The models produced by the system identification experiments in [243]

127

128 Chapter 3 / Case Studies in Design and Implementation

are given by

wi —0.0166(z — 0.6427 £ j1.2174) (= — 1.4092) 5.1)
v1 (2 — 0.7385 % j0.6288)(z — 0.8165 + ;0.2839) '

ws —0.1(z — 1.8062 % 51.7386)(z + 0.9825)

vs (2 —0.7158 £ j0.615)(z — 0.8377 & j0.2553)

These equations provide models for relating voltages to velocities, but we actually
need the models for relating voltages to positions. To get these, you can simply
use a discrete approximation to an integrator (using a sampling period of 20 ms)
concatenated with the models for velocities to obtain the positions ©; and ©s.
The transfer functions that describe how the motor voltages affect the endpoint
accelerations a; and ag were determined in a similar way in [243] and are given by

ar 0.1425(z — 0.9589 + j0.9083)(z — 1.7945)

v1 (2 —0.7521 % j0.573)(z — 0.9365 + j0.139)

as —0.228(z — 1.5751)(z — 1.2402)

vy (z—0.9126)(z — 0.8387 + j0.4752)

Experiments showed that lower-order models resulted in less accurate models and
higher-order ones did not seem to make any of the above models more accurate.
Simple inspection of the root locations in the z-plane shows that parts of the dy-
namics are especially lightly damped, which characterizes the vibration damping
challenge for this problem.

Notice that we are ignoring certain cross-coupling effects in the model (e.g.,
how v1 combined with vy will affect ag); the effect of the movement of the modes,
and hence plant parameters, due to mass-loading (these models are for a robot that
is not mass-loaded); the effects of the position of one link on the model used for
the other link; dead-zone nonlinearities due to the gearbox on the elbow motor;
and many other characteristics. It is for these reasons that this model cannot be
expected to be a perfectly accurate representation of the two-link robot. It is correct
only under the experimental conditions outlined above. We present the model here
mainly to give the reader an idea of the type of dynamics involved in this experiment
and to use these models in a design problem at the end of the chapter.

We would like to emphasize that models that accurately characterize the cou-
pling effects between the two links are particularly difficult to develop. This has
significant effects on what is possible to illustrate in simulation, relative to what
can be illustrated in implementation. For instance, in the two following subsections
we will show that while an “uncoupled controller” (i.e., one where there are separate
controllers for the shoulder and elbow links) performs adequately in implementa-
tion, significant performance improvements can be obtained by using some heuristic
ideas about how to compensate for some of the coupling effects between the links

3.3 Vibration Damping for a Flexible Robot

(e.g., how vy for the elbow link should be changed based on the acceleration aq of
the shoulder link so that the effects of the movement of the shoulder link on the
elbow link can be tailored so that the endpoint vibrations can be reduced).

We have used least squares methods to identify linear models that attempt to
characterize the coupling between the two links; however, we were not able to make
these accurate enough so that a coupled controller developed from these models
would perform better than those developed as uncoupled controllers without this
information. Hence, the case study that follows is a good example of the case where
heuristic ideas about how to control a system proved to be more valuable than the
models we were able to produce for the system (and significantly less work was
needed to specify the heuristic ideas about compensating for coupling effects than
what it took to try to construct models and develop controllers based on these).

3.3.2 Uncoupled Direct Fuzzy Control

In this section and the next we investigate the use of two types of direct fuzzy
controllers for the flexible robot, one that uses information about the coupling
effects of the two links (coupled direct fuzzy control) and one that does not use
such information (uncoupled direct fuzzy control). The design scenario we present,
although specific to the flexible robot test bed under study, may be viewed as
following a general philosophy for fuzzy controller design where we are concerned
with loading good control knowledge into the rule-base.

For uncoupled direct fuzzy control, two separate controllers are implemented,
one for each of the two links. Each controller has two inputs and one output, as
shown in Figure 3.3. The term wuncoupled is used since the controllers operate in-
dependent of each other. No information is transferred between the shoulder and
elbow motor controllers. We thus consider the robot to be made up of two separate
single-link systems. In Figure 3.3, ©14 and ©54 denote the desired positions of the
shoulder and elbow links, respectively, and ©1(t) and O2(t) denote their position
at time t, as measured from the optical encoders. The inputs to the shoulder link
controller are the position error of the shoulder motor shaft e;(t) = ©14 — O1(t),
and the acceleration information a;(t) from the shoulder link endpoint. The out-
put of this controller is multiplied by the output gain g,; to generate the voltage
signal v1(t) that drives the shoulder motor amplifier. The inputs to the elbow link
controller are the elbow motor shaft position error es(t) = O24 — O2(t) and the
acceleration information from the elbow link endpoint as(t). The output of this
controller is multiplied by the output gain g,2 to generate the voltage signal va(t)
that drives the elbow motor amplifier. We did experiment with using the change
in position error of each link as an input to each of the link controllers but found
that it significantly increased the complexity of the controllers with very little, if
any, improvement in overall performance; hence we did not pursue the use of this
controller input. Typically, we use filtered signals from the accelerometers, prior to
processing, to enhance their effectiveness.

129

130 Chapter 3 / Case Studies in Design and Implementation

Normalized Vi
fuzzy __H_’ Link 1 a1

| controller

Shoulder motor controller

0,1

| Normalized Vo)
fuzzy ——.—’gv 5 Link 2 a1
| controller 5

Elbow motor controller

FIGURE 3.3 Fuzzy control system for uncoupled controller
(figure taken from [145], © IEEE).

Fuzzy Controller Design

The input and output universes of discourse of the fuzzy controller are normalized
on the range [—1, 1]. The gains ge1, ge2, ga1 and gq2 are used to map the actual inputs
of the fuzzy system to the normalized universe of discourse [—1, 1] and are called
normalizing gains, as was discussed in Chapter 2, Exercise 2.9 on page 107. Similarly
gv1 and g,o are the output gains that scale the output of the controllers. We use
singleton fuzzification and center of gravity (COG) defuzzification throughout this
case study, and the minimum operator to represent the premise and implication.
The shoulder controller uses triangular membership functions, as shown in Fig-
ure 3.4. Notice that the membership functions for the input fuzzy sets are uniform,
but the membership functions for the output fuzzy sets are narrower near zero.
This serves to decrease the gain of the controller near the set-point so we can ob-
tain a better steady-state control (since we do not amplify disturbances around the
set-point) and yet avoid excessive overshoot (i.e., we have a nonlinear (nonuniform)
spacing of the output membership function centers). The membership functions for
the elbow controller are similar but have different center values for the membership
functions as they use different universes of discourse than the shoulder controller.
For the shoulder controller, the universe of discourse for the position error is cho-
sen to be [—250, +250] degrees. Recall from Chapter 2 that we sometimes refer to
[X, Y] as being the universe of discourse while in actuality the universe of discourse
is made up of all real numbers (e.g., in Figure 3.4 we will refer to the universe of
discourse of ey (t) as [—250, +250]). In addition, will refer to Y — X as being the
“width” of the universe of discourse (so that the width of the universe of discourse
[—250, 4+250] is 500). Recall also that by specifying the width for the universes of
discourse, we are also specifying the corresponding scale factor. For example, if
the input universe of discourse for e;(t) is [—250, +250], then g.; = z—éo, and if
the output universe of discourse for vy (¢) is [—0.8, 40.8], then g,1 = 0.8. The uni-

3.3 Vibration Damping for a Flexible Robot 131

verse of discourse for the endpoint acceleration of the shoulder link is [—4, +4] g.
This width of 8 g was picked after experimentation with different slews at different
speeds, upon observing the output of the acceleration sensor. The output universe
of discourse of [—0.8,40.8] volts was chosen so as to keep the shaft speed within
reasonable limits.

O-s o4 a3 a2 O-1 1 2 3 4 5
£ By By £y £y Ey By E £y £y Ey
€ (deg)
0250 0200 O-150 ©H00 O-50 0 50 100 150 200 250
w
O 04 =K =k} 0, 0 1 2 3 4
A A Ay A A 4 AA a4 A Ay
a; @
040 032 024 Ou6 008 0 038 L6 24 32 40
n
] 04 =) 2 O 0yl 2 3 4 5
-3 & \4
v, v, v, ViV vy e vy vy v, vy
V) (volts)

008 0-0.6 004 002 001 0 01 02 0.4 0.6 0.8

FIGURE 3.4 Membership functions for the shoulder controller
(figure taken from [145], © IEEE).

For the elbow motor controller, the universe of discourse for the error input is set
to [—250, +250] degrees. This motor is mounted on the shoulder link endpoint and
the link movement is limited by the shoulder link. The universe of discourse for the
acceleration input is set to [—8, +8] g, which was picked after several experiments.
The universe of discourse for the output of the elbow controller is [—5, +5] volts.
This universe of discourse is large compared to the shoulder link as this motor is a
geared-head motor with a 30:1 reduction in the motor to the output shaft speed.

The rule-base array that we use for the shoulder controller is shown in Table 3.1,
and for the elbow link, in Table 3.2. Each rule-base is an 11 x 11 array, as we have 11
fuzzy sets on the input universes of discourse. The topmost row shows the indices for
the eleven fuzzy sets for the acceleration input a1, and the column at the extreme
left shows the indices for the eleven fuzzy sets for the position error input e;. The
bodies of the tables in Tables 3.1 and 3.2 show the indices m for V™ in fuzzy
implications of the form

If £/ and A¥ Then V"

where Ef, A{, and Vij denote the j'* fuzzy sets associated with e;, a;, and v;,
respectively (i = 1,2; —5 < j < +5). The number of rules used for the uncoupled

132

Chapter 3 / Case Studies in Design and Implementation

direct fuzzy controller is 121 for the shoulder controller, plus another 121 for the
elbow controller, giving a total of 242 rules.

What is the rationale for these choices for the rule-bases? First, notice the
uniformity of the indices in Tables 3.1 and 3.2. For example, for Table 3.1 if there is
a positive error e;(t) > 0 and a positive acceleration a;(t) > 0, then the controller
will input a positive voltage v1(t) > 0, since in this case the link is not properly
aligned but is moving in the proper direction. As the error (e1(t) > 0) decreases,
and the acceleration (a;i(t) > 0) decreases the controller applies smaller voltages
to try to avoid overshoot. The other part of Table 3.1 and all of Table 3.2 can be
explained in a similar way. Next, notice that for row j = 0 there are three zeros in
the center of both Tables 3.1 and 3.2. These zeros have been placed so as to reduce
the sensitivity of the controller to the noisy measurements from the accelerometer.
Via the interpolation performed by the fuzzy controller, these zeros simply lower
the gain near zero to make the controller less sensitive so that it will not amplify
disturbances.

TABLE 3.1 Rule-Base for Shoulder Link

AT

v [T a]3][2[1Jo0J1[2[3]4]5
S5 5]-5] 5] -4]-4]-3]-3[]-=2]-=2[-1]0
a5 -5| 44| 33| —=2]-—=2]-1]0 |1
S 5-4a| 43| 3|-—=2]—2]-1]0]1]2
4|4 -38]| 3| —=2|—=2[-1]0] 1]z2]z2
14| -3|-38]-—2] =210 1]2]2]3
EllTOo |[4[3]=2[-1]0 o001][2]3]4
T |83 —=2]—=2|-1]0 1] 2]2]3]3 |4

2 2 |-—2|-1]0 | T]2]2]|3]3]4]4

3 —2]-1]0 1] 2233]4]4]5

T 10| 1|22 |3]3]4]4]5 5
510 12233]| 44]5]5][5

Experimental Results

The endpoint position response for the uncoupled fuzzy controller is shown in Fig-
ure 3.5. The robot was commanded to slew 90 degrees for each link from the initial
position (shown by the dashed lines in the inset) to its fully extended position
(shown by the solid lines). Other “counterrelative” and small-angle movements
produced similar results in terms of the quality of the responses. From the plot
in Figure 3.5, we see that the magnitude of the endpoint oscillations is reduced
as compared to the “no control” case, and the settling time is also improved (see
Figure 3.2 on page 127). In the initial portion of the response (between 0.8 and 2.0
sec), we see large oscillations due to the fact that the controllers are uncoupled.
That is, the shoulder link comes close to its set-point at around 0.9 seconds but
is still traveling at a high speed. When the controller detects this, it tries to cut

3.3 Vibration Damping for a Flexible Robot 133

TABLE 3.2 Rule-Base for Elbow Link

A3

V" 5] 4] 3] 2] 1J0J1]2][3]4]5
S [5] 5] 4] 4] -3[-3[-3[-2[-2[-1]0
A 5| 4| 4] 3] 3 3[2[-—2[-1]0 |1
3| 4] 4| 3| 3] 3 2] 2[-1]0]1]z2
2| 4] 3| 3| 3] 2] 2[-1[0][1]2]z2
14| 3| 3 22 1[0 1 [2]2]3
B0 a3 —2-1t|o]o]o[1[2]3]4
T [3] 2] -2[-1]o0 1 [2][2][3]3]4

2 | 2| 2| 1[0 1T [2 23334

3 2 -t[o0 1T [2233 [3]4]1

1 1o [T [2[2[3[3[3[4a]4a]5

5 0 [T[22 [3 334455

the speed of the link by applying an opposite voltage at around 0.9 seconds. This
causes the endpoint of the elbow link to accelerate due to its inertia, causing it to
oscillate with a larger magnitude. When the controller for the elbow link detects
this sudden change, it outputs a large control signal in order to move the shaft in
the direction of acceleration so as to damp these oscillations. Once the oscillations
are damped out, the controller continues to output signals until the set-point is
reached.

110

100 -

80+

70+

Endpoint position (deg)

50+

40t

30

0 1 2 3 4 5 6 7

Time (sec)

FIGURE 3.5 Endpoint position for uncoupled controller design
(figure taken from [145], © IEEE).

134 Chapter 3 / Case Studies in Design and Implementation

Note that a portion of the oscillation is caused by the dead-zone nonlinearity
in the gearbox of the elbow motor. The sudden braking of the shoulder link causes
the elbow link to jerk, and the link oscillates in the dead-zone, creating what is
similar to a limit-cycle effect. One way of preventing these oscillations in the link
is to slow down the speed of the elbow link until the shoulder link is moving fast
and speed it up as the shoulder link slows down. This would ensure that the elbow
link is not allowed to oscillate as the motor is moving fast, and that the driven gear
does not operate in the dead-zone. This control technique will be examined in the
next section when we couple the acceleration feedback signals from the robot.

Figure 3.6 shows the response of the plant with a payload. The payload used
was a 30-gram block of aluminum attached to the elbow link endpoint. A slew of 90
degrees for each link was commanded, as shown in the inset. The payload at the end
of the elbow link increases the inertia of the link and reduces the modal frequencies
of oscillation. In this case this reduction in the frequency positively affected the
controller’s ability to dampen the oscillation caused by the dead-zone, as compared
to the unloaded case shown in Figure 3.5.

110

100 - 1

90 -

70+

Endpoint position (deg)

50+

40t

30

0 1 2 3 4 5 6 7

Time (sec)

FIGURE 3.6 Endpoint position for uncoupled controller design
with payload (figure taken from [145], © IEEE).

3.3.3 Coupled Direct Fuzzy Control

While the two uncoupled controllers provide reasonably good results, they are not
able to take control actions that are directly based on the movements in both links.
In this section we investigate the possibility of improving the performance by cou-

3.3 Vibration Damping for a Flexible Robot

pling the two controllers; this can be done by using either the position information,
the acceleration information, or both. From the tests on the independent controllers,
it was observed that the acceleration at the endpoint of the shoulder link signifi-
cantly affected the oscillations of the elbow link endpoint, whereas the acceleration
at the endpoint of the elbow link did not significantly affect the shoulder link. The
position of one link does not have a significant effect on the vibrations in the other.
As the primary objective here is to reduce the vibration at the endpoint as much
as possible while still achieving adequate slew rates, it was decided to couple the
controller for the elbow link to the shoulder link using the acceleration feedback
from the endpoint of the shoulder link; this is shown schematically in Figure 3.7.
Note that in addition to the six normalizing gains ge1, ge2, Ga1s Ga2, o1, and gye, a
seventh gain g,12 is added to the system. This gain can also be varied to tune the
controller and need not be the same as g,1-

(—)1(1)

Normalized V(0
fuzzy —> Link 1 a0

controller

Shoulder motor controller

. Normalized 0,1
+ fuzzy
: V(1)

controller g Link 2)

8e2
8a2
Elbow motor controller

FIGURE 3.7 Coupled fuzzy controller (figure taken from [145],
© IEEE).

o

Fuzzy Controller Design

Essentially, in coupling the controllers we are using our experience and intuition
to redesign the fuzzy controller. The rule-base and the membership functions for
the shoulder link are kept the same as in Figure 3.4 and Table 3.1, and the rule-
base for the elbow link is modified to include the acceleration information from the
shoulder link endpoint. Adding a third premise term to the premises of the rules
in the rule-base in this manner will, of course, increase the total number of rules.
The number of fuzzy sets for the elbow controller was therefore reduced to seven
in order to keep the number of rules at a reasonable level. The number of rules
for the second link with seven fuzzy sets increased to 343 (7 x 7 x 7). Hence, the

135

136 Chapter 3 / Case Studies in Design and Implementation

number of rules used for the coupled direct fuzzy controller is 121 for the shoulder
controller, plus 343 for the elbow link controller, for a total of 464 rules.

The membership functions for the elbow controller are shown in Figure 3.8.
The universe of discourse for the position error is [—250, +250] degrees, and for
the elbow link endpoint acceleration it is [—8, 48] g, as in the uncoupled case. The
universe of discourse for the shoulder link acceleration is [+2, —2] g. This smaller
range was chosen to make the elbow link controller sensitive to small changes in the
shoulder link endpoint oscillation. The universe of discourse for the output voltage
is [—4, +4] volts.

=] =] o 3
3 2 1 0 1 2
Ea £y £y £, Ey By Ey
f f u u Y Y e, (deg)
2250 [he6.67 18333 0 8333 166.67 250
n
0O, 0, o, 0 N 1 2 3
A A, Ay Ay 2 A A;
a., (@
f Y u Y Y Y 2 &
080 0533 0267 0 267 533 80
w
E 2 [m] 2
1 1 3
A Al A, a9 A Aq A
T Y Y T Y T a;®

u u T 1 Y Y f u Y Vo (volts)

f y Y
04.0 3.0 02.0 010 oos o 0.5 1.0 2.0 30 4.0

FIGURE 3.8 Membership functions for the elbow controller using
coupled control (figure taken from [145], © IEEE).

Tables 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9 depict a three-dimensional rule-base
table for the elbow link. Table 3.6 represents the case when the acceleration input
from the shoulder link is zero, and is the center of the rule-base (the body of the
table denotes the indices m for Vj™). Tables 3.3, 3.4, and 3.5 are for the case when
the shoulder endpoint acceleration is negative, and Tables 3.7, 3.8, and 3.9 are for
the case when the shoulder endpoint acceleration is positive. The central portion of
the rule-base makes use of the entire output universe of discourse. This is the portion

3.3 Vibration Damping for a Flexible Robot

of the rule-base where the acceleration input from the shoulder link endpoint is zero
or small. As we move away from the center of the rule-base (to the region where
the shoulder link endpoint acceleration is large), only a small portion of the output
universe of discourse is used to keep the output of the controller small. Thus the
speed of the elbow link is dependent on the acceleration input from the shoulder
link endpoint. The speed of the elbow link is decreased if the acceleration is large
and is increased as the acceleration input decreases.

TABLE 3.3 A;® portion of Rule-Base Array for the

Elbow Link
4] A
Vy" —3[—2[-1[0 1][2/]3
3 3] 3]-2]-=2[]-1]-1]0
2| 3 2| 2| 1| -1]0 |1
1| 2| 2| 1|10 1]|1
Eil o 2] -1To] 112
T[] =t o 1122
2 =10 |1 [1|12 |2
3o [T |1 1| 2] 2|2

TABLE 3.4 A7? portion of Rule-Base Array for the

Elbow Link
427 45
Vy" 3] -2]-1[0 [172]

3| -3]|-3|-3|-2]-2]-1

3

0

2 3 3| 2| 1| -1]0 |1

1| 3 2| 21011

Eil o0 2—2]-1]To]17]2T72
T[]t o112]2

2 =10 |1 [1|22 |2
3ot [12 2] 23

Also note that in Tables 3.5, 3.6, and 3.7 there are three zeros in the middle
rows to reduce the sensitivity of the controller to the noisy accelerometer signal.
This noise is not a significant problem when the endpoint is oscillating, and so
the rule-base does not have the zeros in the outer region. Taking the rule-base as
a three-dimensional array, we get a central cubical core made up of zeros. Also
notice that some parts of the rule-base, especially toward the extremes of the third
dimension, are not fully uniform. This has been done to slow down the elbow link
when the acceleration input from the shoulder link is very large. Overall, we see
that we are incorporating our understanding of the physics of the plant into the

137

138 Chapter 3 / Case Studies in Design and Implementation

TABLE 3.5 A portion of Rule-Base Array for the

Elbow Link
4] A5
Vn —3[2[-1] 0] 1T]2]3
3 4] 4] -3]-3[]-2]-1]0
2| 4| 3| 3| 2| -1]0 |1
1| 3] 3] 2|10 1]|1
Eil o 2]—=2]o0o]olo]1]2
T [2101223
2 1o 1T 22]33
3 0 [T [223373

TABLE 3.6 A? portion of Rule-Base Array for the

Elbow Link
i
vy 3] -2[1[0 1]2]

3] 5] 4] 4] 3] -3] 2

3

0

244 -3]-—=2]-1]0 |1
1|43 —=2]-1]0 | 1]2
EBilof[—2]-tTololo]1]2
I [—2]-1[o1]21]3/]4

2 [-1Jo 22371474

3 0| 1T [23] 4] 475

rule-base. We are shaping the nonlinearity of the fuzzy controller to try to improve
performance.

The coupled direct fuzzy controller seeks to vary the speed of the elbow link
depending on the amplitude of oscillations in the shoulder link. If the shoulder link
is oscillating too much, the speed of the elbow link is reduced so as to allow the
oscillations in the shoulder link to be damped; and if there are no oscillations in
the shoulder link, then the second link speed is increased. We do this to eliminate
the oscillation of the elbow link close to the set-point, where the control voltage
from the elbow controller is small. This scheme works well as will be shown by
the results, but the drawback is that it slows down the overall plant response as
compared to the uncoupled case (i.e., it slows the slew rate).

Experimental Results

The experimental results obtained using coupled direct fuzzy control are shown in
Figure 3.9. The slew requested here is the same as in the case of the uncoupled direct
fuzzy control experiment (Figure 3.5) as shown by the inset—that is, 90 degrees for
each link. We also ran experiments for “counterrelative” and small-angle slews and
obtained results of a similar nature. Note that there is no overshoot in the response,

3.3 Vibration Damping for a Flexible Robot 139

TABLE 3.7 A7 portion of Rule-Base Array for the

Elbow Link
| Al A5
Vn —3[—=2[-1]0 1] 273
—3[[-4]-3]-3[-2]-2[]-1]0
2| 3 3] 2| =2|-1]0 |1
1| 3 2| 21012
Eil o —2-1]o]o]o]1]2
T 2101|233
2 =10 12 3] 3[4
S ol T2 3344

TABLE 3.8 A? portion of Rule-Base Array for the

Elbow Link
‘Aﬂ Ak
V" B3[-2]-1[o0o]1[2]

33 —2]-=2]-1]-1]-1

3

0

23] —2]-—2]-1]-1]0 |1

[2] —2]-1]-1]0]1T]2

Bl of[—2]-1t]-1]To0o]1 1]2
I [[-t[-1o |1]1]2]3

2 -1 o1 1][27]37]3

3 0| 1 |22]3] 3 |4

with negligible residual vibrations. The dip in the curve in the initial part of the
graph is due to the first link “braking” as it reaches the set-point and is primarily
due to the dead-zone nonlinearity in the gears. As the shoulder link brakes, the
elbow link is accelerated due to its inertia. The elbow link, which was at one end of
its dead-zone while the shoulder was moving, shoots to the other end of the dead-
zone, causing the local maxima seen in Figure 3.9 at around 0.9 seconds. The link
recoils due to its flexibility and starts moving to the lower end of the dead-zone. By
this time the elbow motor speed increases and prevents further oscillation of the
elbow link in the dead-zone.

Notice that the multiple oscillations in the elbow link have been eliminated as
compared to Figure 3.5 on page 133. This is due to the fact that when the shoulder
link reaches its set-point, the elbow link is still away from its set-point, and as the
shoulder link slows down, the elbow link motor speeds up and keeps the elbow link
at one end of the dead-zone, preventing oscillation. Also notice that the rise time has
increased in this case compared to that of the uncoupled case due to the decrease
in speed of the second link while the first link is moving. This fact (increase in
rise-time) and, especially, the schema embodied in the coupled-controller rule-base
contribute to the reduction in endpoint residual vibration.

Experimentally, we have determined that the dip in the curve can be decreased,

140 Chapter 3 / Case Studies in Design and Implementation

TABLE 3.9 A? portion of Rule-Base Array for the

Elbow Link
| 41| Al
Vn —3[2[-1] 0] 1IT]2]3
3 2]—2]-2]-1]-1]-10
22 2] 1] -1]-1] 0|1
1| 2| 2] -1]-1] 012
Eil o 2] -1To]1]1T(2
T [-1 -1]0 1] 1] 2]2
2 =1 o [1T 1223
S ol T[Tt [22]373

but not completely eliminated as the rule-base does not have enough “granularity”
near zero (i.e., enough membership functions and rules). To alleviate this problem,
a “supervisor” can be used to change the granularity of the rule-base as the shoulder
link comes close to its desired set-point by changing the universes of discourse and
the appropriate normalizing gains. This would produce finer control close to the set-
point, resulting in a smoother transition in the speed of the shoulder link (this effect
could also be achieved via the addition of more membership functions and hence
rules, but this will adversely affect computational complexity). We will investigate
the use of such a supervisor in Chapter 7.

110

100 - 1

90

80+

70+

Endpoint position (deg)

50+

40+

0 1 2 3 4 5 6 7

Time (sec)

FIGURE 3.9 Endpoint position for coupled controller design
(figure taken from [145], © IEEE).

3.3 Vibration Damping for a Flexible Robot

Figure 3.10 shows the endpoint response of the robot with a 30-gram payload
attached to its endpoint. The commanded slew is 90 degrees for each link, as shown
in the inset. Notice that the dip in the curve (between 1.0 and 1.5 sec) is reduced as
compared to the case without a payload (Figure 3.9). This is due to the increased
inertia of the elbow link, which reduces the frequency of oscillation of the link,
as the elbow link motor speeds up at this point, preventing further oscillations.
Obviously, there is performance degradation relative to Figure 3.9 due to the fact
that the modal frequencies of the flexible links (particularly the elbow link) have
changed with the additional payload attached to the endpoint.

110

100 - 1

90 -

70+

60 -

Endpoint position (deg)

40t

30

0 1 2 3 4 5 6 7

Time (sec)

FIGURE 3.10 Endpoint position for coupled controller design
with payload (figure taken from [145], © IEEE).

This completes our case study for direct fuzzy control of the flexible robot.
The reader should note that while the performance obtained here compares fa-
vorably with all previous conventional control approaches studied to date for this
experimental apparatus, it is not the best possible. In particular, we will show in
Chapter 6 how to use adaptive fuzzy control to synthesize and later tune the fuzzy
controller when there are payload variations. Moreover, we will show in Chapter 7
how a supervisory fuzzy control approach can be used to incorporate abstract ideas
about how to achieve high-performance control and in fact improve performance
over the direct and adaptive fuzzy control approaches (and all past conventional
methods).

141

142

Chapter 3 / Case Studies in Design and Implementation

3.4 Balancing a Rotational Inverted Pendu-
lum

One of the classical problems in the study of nonlinear systems is that of the
inverted pendulum. The primary control problem you consider with this system
is regulating the position of the pendulum (typically a rod with a mass at the
endpoint) to the vertical “up” position (i.e., balancing it). A secondary problem is
that of “swinging up” the pendulum from its rest position (vertical “down”) to the
vertical “up” position. Often, actuation is accomplished via a motor that provides
a translational motion to a cart on which the pendulum is attached with a hinge.
In this case study actuation of the pendulum is accomplished through rotation of
a separate, attached link referred to henceforth as the “base.”

3.4.1 The Rotational Inverted Pendulum

In this section we describe the laboratory test bed, a model of the pendulum, and
a method to swing up the pendulum.

Laboratory Test Bed

The test bed consists of three primary components: (1) the plant, (2) digital and
analog interfaces, and (3) the digital controller. The overall system is shown in
Figure 3.11. The plant consists of a pendulum and a rotating base made of aluminum
rods, two optical encoders as the angular position sensors, and a permanent-magnet
DC motor to move the base. As the base rotates through the angle 8y, the pendulum
is free to rotate through its angle 6; made with the vertical. Interfaces between the
digital controller and the plant consist of two data-acquisition cards and some signal
conditioning circuitry. The sampling period for all experiments on this system is 10
ms (smaller sampling times did not help improve performance).

aces ! .
Controller ! Interfaces ! Rotational inverted pendulum
i Lab tender board !
1 condition .
| Signal conditioning | Wires from an optical encoder |
! e R circuit ' :
! ; L ! Pendulum -
| H 2 f—o i
1 B b ! 0, !
~] LOAMOSI3E 3 ! :
i counters j — 1
486DX/50 MHz PC : 4
Py S—

[1 AMY513 !
timer #2

Rotating base

DC motor

Servoamplifier

Wires from an optical encoder

FIGURE 3.11 Hardware setup (figure taken from [235], © IEEE).

3.4 Balancing a Rotational Inverted Pendulum 143

Model

The differential equations that approximately describe the dynamics of the plant
are given by

é() e —apéo + Kp Vaq
Cl . i mi gll

7 7 sin(ﬂl) + Kléo

where, again, 6y is the angular displacement of the rotating base, 6y is the angular
speed of the rotating base, 8, is the angular displacement of the pendulum, 6, is the
angular speed of the pendulum, v, is the motor armature voltage, K, = 74.8903
rad-s72-v~! and a, = 33.0408 s~2 are parameters of the DC motor with torque
constant K; = 1.9412 x 1073 kg-m/rad, g = 9.8066 m/sec? is the acceleration due
to gravity, m; = 0.086184 kg is the pendulum mass, [y = 0.113 m is the pendulum
length, J; = 1.3011 x 1073 N-m-s? is the pendulum inertia, and C; = 2.9794 x 103
N-m-s/rad is a constant associated with friction. Note that the sign of K depends
on whether the pendulum is in the inverted or noninverted position. In particular,
for < 6, < 3 (pendulum hanging down) we have K; = 1.9412 x 1073, and
K, = —1.9412 x 1073 otherwise. Hence, to properly simulate the system you change
the sign of K7 depending on the value of 6.

For controller synthesis we will require a state-variable description of the pen-
dulum system. This is easily done by defining state variables x1 = 6y, x2 = 6,
r3 =01, and x4 = 91, and control signal u = v, to get

$.1 = X2 (32)
Ty = —apT2 +Kyu
T3 = T4
. Kiap migl . Cy K, K,
[—|— g [_|_ P
T 7. To 7, sin(x3) 7, T4 7, i

Linearization of these equations about the vertical position (i.e., §; = 0), results
in the linear, time-invariant state variable model

1 0 1 0 0 1 0

To . 0 —-33.04 0 0 T2 n 74.89
T3 0 0 0 1 T3 0

T4 0 49.30 73.41 -2.29 T4 —111.74

Clearly, we cannot expect the above models to perfectly represent the physical
system. We are ignoring saturation effects, motor dynamics, friction and dead-zone
nonlinearities for movement of the links, and other characteristics. We present the
model here to give the reader an idea of how the physical system behaves and to
make it possible for the reader to study fuzzy controller design and simulation in
the design problems at the end of the chapter.

144 Chapter 3 / Case Studies in Design and Implementation

Swing-Up Control

Because we intend to develop control laws that will be valid in regions about the
vertical up position, it is necessary to swing the pendulum up so that it is near
vertical at near zero angular velocity. Elaborate schemes can be used for this task,
but for the purposes of this case study, we choose to use a simple heuristic procedure
called an “energy-pumping strategy.”

The goal of this simple swing-up strategy is to “pump” energy into the pendu-
lum link in such a way that the energy or magnitude of each swing increases until
the pendulum approaches its inverted position. To apply such an approach, consider
how you would (intuitively) swing the pendulum from its vertical down position to
its vertical up position. If the rotating base is repeatedly swung to the left and then
right at an appropriate magnitude and frequency, the magnitude of the pendulum
angle 6; relative to the down position will increase with each swing. Swinging the
pendulum in this fashion is continued until 0, is close to zero (vertical up), and we
try to design the swing up strategy so that 6, is also near zero at this point (so that
it is nearly balanced for an instant). Then, the swing up controller is turned off and
a “balancing controller” is used to catch and balance the pendulum (we switch the
swing-up controller off and the balancing controller on when |6;| < 0.3 rad). Next,
we explain the details of how such a swing-up strategy can be implemented.

Suppose that initially 6;(0) = 7 and 65(0) = 0. We use a swing-up strategy
that has u = K, (657 —6y) where 6 is switched between +T' and —T" where I’ > 0
is a parameter that specifies the amplitude of the rotating base movement during
swing-up. The criterion for switching between +I" is that if the pendulum base is
moving toward +I" then we use u = K,(I' — 6y) until 6; is close to zero (indicating
that the pendulum has swung up as far as it can for the given movement from the
base). Then we switch the control to u = K,(—T' — 6y) to drive the base in the
other direction until 6, is close to zero again. Then the process repeats until the
pendulum position is brought close to the vertical up position, where the swing-
up control is turned off and the balancing control is switched on. In addition to
manual tuning of I, it is necessary for the operator of the experiment to perform
some initial tuning for the positioning control gain K,. Basically, the gain K, is
chosen just large enough so that the actuator drives the base fast enough without
saturating the control output.

Finally, we note that if the dynamics of the pendulum are changed (e.g., adding
extra weight to the endpoint of the pendulum), then the parameter I' must be
retuned by the operator of the experiment. Moreover, retuning is sometimes even
needed if the temperature in the room changes.

3.4.2 A Conventional Approach to Balancing Control

Although numerous linear control design techniques have been applied to this par-
ticular system, here we consider the performance of only the linear quadratic reg-
ulator (LQR) [3, 12]. Our purpose is twofold: First, we wish to form a baseline for
comparison to fuzzy control designs to follow, and second, we wish to provide a
starting point for synthesis of the fuzzy controller.

3.4 Balancing a Rotational Inverted Pendulum

Because the linearized system is completely controllable and observable, linear
state-feedback strategies, such as the LQR, are applicable. The performance index
for the LQR is

J= / T)T Q) + u(t) T Ru(t))dt
0

where @ and R are the weighting matrices of appropriate dimension corresponding
to the state = and input u, respectively. Given fixed @ and R, the feedback gains
that optimize the function J can be uniquely determined by solving an algebraic
Riccati equation (e.g., in Matlab). Because we are more concerned with balancing
the pendulum than regulating the base position, we put the highest priority on
controlling #; by choosing the weighting matrices @ = diag(1,0,5,0) (a 4 x 4
diagonal matrix with zeros off the diagonal) and R = 1. The optimal feedback gains
corresponding to the weighting matrices @ and R are k; = —1.0, ks = —1.191,
ks = —9.699, and k4 = —0.961 (these are easily found in Matlab). Hence, our
controller is u(t) = Kx(t) where K = [k, ko, k3, k] . Although observers may be
designed to estimate the states 6, and 6y, we choose to use an equally effective and
simple backward difference approximation for each derivative.

Using the swing-up control strategy tuned for the nominal system (with K, =
0.5and I = 1.81 rad), the results of using the LQR controller for balancing, after the
pendulum is swung up, are given in Figure 3.12. These are actual implementation
results for the case where there is no additional mass added to the endpoint (i.e.,
what we will call the “nominal case”). The base angle is shown in the top plot, the
pendulum angle in the center plot, and the control output in the bottom plot. When
the LQR controller gains (k; through k4) are implemented on the actual system,
some trial-and-error tuning is required (changing the gains by about 10%) to obtain
performance matching the predicted results that we had obtained from simulation.
Overall, we see that the LQR is quite successful at balancing the pendulum.

3.4.3 Fuzzy Control for Balancing

Synthesis of the fuzzy controllers to follow is aided by (1) a good understanding of
the pendulum dynamics (the analytical model and intuition related to the physi-
cal process), and (2) experience with performance of linear control strategies such
as a proportional-derivative controller and the above LQR. Aside from serving to
illustrate procedures for synthesizing a fuzzy controller, several reasons arise for
considering the use of a nonlinear control scheme for the pendulum system. Be-
cause linear controllers are designed based on a linearized model of the system,
they are inherently valid only for a region about a specific point (in this case, the
vertical up position). For this reason, such linear controllers tend to be very sen-
sitive to parametric variations, uncertainties, and disturbances. This is indeed the
case for the experimental system under study. When an extra weight or sloshing
liquid (using a watertight bottle) is attached at the endpoint of the pendulum, the
performance of all the linear controllers we tested degrades considerably, often re-
sulting in unstable behavior. Hence, to enhance the performance of the balancing

145

146 Chapter 3 / Case Studies in Design and Implementation

Position of base (rad)
-
i

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Position of pendulum (rad)

Control output (volts)
& -
j

Time (sec)

FIGURE 3.12 LQR on the nominal system (figure taken from
[235], © IEEE).

control, you naturally turn to some nonlinear control scheme that is expected to
exhibit improved performance in the presence of nonlinearities, disturbances, and
uncertainties in modeling. We will investigate two such nonlinear controllers in this
book: in this section we describe how to construct a direct fuzzy controller, and in
Chapter 6 we develop an adaptive fuzzy controller.

The Fuzzy Controller

The fuzzy controller is shown in Figure 3.13. Similar to the linear quadratic regu-
lator, the fuzzy controller for the inverted pendulum system will have four inputs
and one output. The four inputs to the fuzzy controller are the position error of
the base ey, its change in error es, the position error of the pendulum ez, and the
change in error ey.

Our fuzzy controller utilizes singleton fuzzification and symmetric, triangular
membership functions on the controller input and output universes of discourse.
We use seven membership functions for each input, uniformly distributed across
their universes of discourse, as shown in Figure 3.14 (the choice of the scaling gains
that results in the scaling for the horizontal axes is explained below). The linguistic
values for the i*" input are denoted by EJ where j € {-3,-2, -1,0,1,2,3}. Lin-
guistically, we would therefore define E; ® as “negative large,” E- 2 as “negative
medium,” E? as “zero,” and so on. We use the minimum operation to represent
the premise and the implication, and COG defuzzification. We need to specify the

3.4 Balancing a Rotational Inverted Pendulum

Normalized fuzzy controller

oy _+

Inference)

9’9 mechanism

| —={>——= Inverted pendulum

Fuzzification
Defuzzification

Rule-base

FIGURE 3.13 Block diagram of direct fuzzy controller for the
rotational inverted pendulum (figure taken from [235], © IEEE).

output membership functions, the rules, and the gains g; to complete the design of
our fuzzy controller.

f f] f f f]
5.0 =34 -1.7 0 1.7 34 5.1 ¢ (rad) -42 -2.8 -14 0 14 28 42 ez(rad/sec)

v ' v
-0.5 -0.33 -0.167 0 0.167 033 0.5 ¢y (rad) 51034 -1.7 0 17 34 51 ¢, (rad/sec)

(©) (d

FIGURE 3.14 Four sets of input membership functions: (a) “Base position
error” (e1), (b) “base derivative error” (es2), (¢) “pendulum position error” (es),
and (d) “pendulum derivative error” (e4) (figures taken from [235], © IEEE).

To synthesize a fuzzy controller, we pursue the idea of making it match the
LQR for small inputs since the LQR was so successful. Then, we still have the
added tuning flexibility with the fuzzy controller to shape its control surface so
that for larger inputs it can perform differently from the LQR (and, if we get the
right knowledge into the rule-base, better).

Fuzzy Controller Design via Copying a Linear Controller

Recall from our discussion in Chapter 2 that a fuzzy system is a static nonlinear
map between its inputs and output. Certainly, therefore, a linear map such as the

147

148 Chapter 3 / Case Studies in Design and Implementation

LQR can be easily approximated by a fuzzy system (at least for small values of
the inputs to the fuzzy system). Two components of the LQR are the optimal
gains and the summation operation; the optimal gains can be replaced with the
scaling gains of a fuzzy system, and the summation can essentially be incorporated
into the rule-base of a fuzzy system. By doing this, we can effectively utilize a
fuzzy system to expand the region of operation of the controller beyond the “linear
region” afforded by the design process that relied on linearization. Intuitively, this is
done by making the “gain” of the fuzzy controller match that of the LQR when the
fuzzy controller inputs are small, while shaping the nonlinear mapping representing
the fuzzy controller for larger inputs (in regions further from zero).

Implementing the summation operation in the rule-base is straightforward.
First, we assume that all the input universes of discourse have uniformly distributed
triangular membership functions, such as those shown in Figure 3.14, but with ef-
fective universes of discourse all given by [—1, +1] (i.e., so that the left-most mem-
bership function and the right-most membership function saturate at —1 and +1,
respectively). Then we arrange the If-Then rules so that the output membership
function centers are equal to a scaled sum of the premise linguistic-numeric indices.

Assume that we label the membership functions with linguistic-numeric indices
that are integers with zero at the middle (as in our example below). In general, for
a fuzzy controller with n inputs and one output, the center of the controller output
fuzzy set Y® membership function would be located at

2

(j+k+...+l)xm

(3.3)

where s = j + k + ... + [is the index of the output fuzzy set Y°, {j, k,...l} are the
linguistic-numeric indices of the input fuzzy sets, IV is the number of membership
functions on each input universe of discourse (we assume that there is the same
number on each universe of discourse), and n is the number of inputs. This will
result in the positioning of a certain number of distinct output membership function
centers (the actual number depends on n and N). We choose triangular membership

functions for these, with centers given by Equation (3.3), and base widths equal to
1

2.5
As a simple example of how to make a rule-base implement a summation op-

eration, assume that we have input membership functions of the form shown in
Figure 3.14 but with N = 5 and n = 2 and effective universes of discourse [—1, +1].
In this case Equation (3.3) is given by

G+h)

and will result in the rule-base shown in Table 3.10, where the body of the table
represents the centers of nine distinct output membership function centers (we
assume that their base widths are equal to 0.5 so that they are uniformly distributed
on the output universe of discourse).

3.4 Balancing a Rotational Inverted Pendulum 149

TABLE 3.10 Rule Table Created for
Copying a Linear Controller

Output center “Input 2” j index
-2] -1] o J 1] 2
-2 -1 —0.75 | —0.5 | —0.25 0
“Input 1”7 | =1 || =0.75 | —0.5 | —0.25 0 0.25
k index 0 —0.5 | —0.25 0 0.25 0.5
1 —0.25 0 0.25 0.5 0.75
2 0 0.25 0.5 0.75 1

In this case we know that our fuzzy system is normalized (i.e., its effective
universe of discourse for the inputs and output are [—1, +1]). Also, the fuzzy system
will act like a summation operation. All that remains is to explain how to pick the
scaling gains so that the fuzzy system implements a weighted sum.

The basic idea in specifying the scaling gains go,..., g4 is that for “small”
controller inputs (e;) the local slope (about zero) of the input-output mapping
representing the controller should be similar to the LQR gains (i.e., the k;). We
know that by changing the g; we change the slope of the nonlinearity. Increasing g;,
i=1,2,...,n causes the “gain” of the fuzzy controller to increase for small signals
(recall the discussions from Chapter 2, Section 2.4.1 on page 78). Increasing go, we
proportionally increase the “gain” of the fuzzy system. Hence, the approximate gain
on the " input-output pair is g;go, so to copy the k; gains of the state-feedback
controller choose

gigo = ki

We can select all the scaling gains via this formula. Recall that the LQR gains are
k1 =-0.9, ks = —1.1, k3 = —9.2, and k4 = —0.9. Transformation of the LQR gains
into the scaling gains of the fuzzy system is achieved according to the following
simple scheme:

® Choose the controller input that most greatly influences plant behavior and over-
all control objectives; in our case, we choose the pendulum position 6,. Next, we
specify the operating range of this input (e.g., the interval [—0.5, +0.5] radians,
for which the corresponding normalizing input gain g3 = 2).

® Given g3, the output gain of the fuzzy controller is calculated according to go =
ks _
o =—4.6.

® Given the output gain go, the remaining input gains can be calculated according
to g; = =, where j € {1,2,3,4}, j # i (note that i =3). For gg = —4.6, the
input gains g1, g2, g3, and g4 are 0.1957, 0.2391, 2, and 0.1957, respectively.

The resulting (nonnormalized) input universes of discourse are shown in Figure 3.14.

150 Chapter 3 / Case Studies in Design and Implementation

Experimental Results

If the resulting fuzzy controller that was designed based on the LQR is implemented,
we get similar results to the LQR, so we do not include them here. Instead, we will
pursue the idea of shaping the nonlinearity induced by the fuzzy controller so that
it will be able to perform better than the LQR for the case where a sloshing liquid
is added to the endpoint of the pendulum.

The fuzzy controller is a parameterized nonlinearity that can be tuned in a
variety of ways. For instance, in Chapter 2 we explained how the output centers
can be specified according to a nonlinear function to shape the nonlinearity. Such
shaping of the fuzzy controller nonlinearity represents yet another area where intu-
ition (i.e., knowledge about how best to control the process) may be incorporated
into the design process. In order to preserve behavior in the “linear” region (i.e.,
the region near the origin) of the fuzzy controller that we designed using the LQR
gains, but at the same time provide a smooth transition from the linear region to
its extensions (e.g., regions of saturation), we choose an arctangent-type mapping
of the output membership function centers to achieve this rearrangement. Because
of the slope of such a mapping near the origin, we expect the fuzzy controller to
behave somewhat like the LQR when the states are near the process equilibrium;
however, for our particular chosen arctan-type function, we do not expect it to be
exactly the same since this warping of the fuzzy controller nonlinearity with the
function on the output centers actually changes the slope on the nonlinearity com-
pared to the LQR near the origin. The rationale for this choice of raising the gain
near zero will become clear below when we test the fuzzy controller for a variety of
conditions on the experimental test bed.

For comparative purposes, we first consider the nominal system—that is, the
pendulum alone with no added weight or disturbances. With the pendulum ini-
tialized at its hanging position, the swing-up control was tuned to give the best
swing-up response (we left K, the same as for the LQR case but set I' = 1.71). The
only tuning required for the fuzzy control scheme in transferring it from simulation
to implementation was in adjusting the value for g3 upward to improve performance
(recall that the gain g3 is critical in that it essentially determines the other scaling
gains).

Figure 3.15 shows the results for the fuzzy controller on the laboratory appara-
tus. The response is comparable to that of the LQR controller (compare Figure 3.15
to Figure 3.12 on page 146) in terms of the ability of the controller to balance the
pendulum in the vertical up position. Although some oscillation is noticed in the
controller output, any difference in the ability to balance the pendulum is only
slightly discernible in viewing the operation of the system. (This oscillation on the
controller input arises from our use of the arctan-type function since it raises the
gain of the controller near zero.)

As a final evaluation of the performance of the fuzzy controller, and to show
why we employ the arctan-type function, we illustrate how it performs when a con-
tainer half-filled with water is attached to the pendulum endpoint. This essentially
gives a “sloshing-liquid” effect when the pendulum reaches the balanced position. In

3.4 Balancing a Rotational Inverted Pendulum

Position of base (rad)
o
I

L [L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Position of pendulum (rad)

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Control output (volts)
o
5

Time (sec)

FIGURE 3.15 Direct fuzzy control on the nominal rotational
inverted pendulum system (figure taken from [235], © IEEE).

addition, the added weight shifts the pendulum center of mass away from the pivot
point; as a result, the natural frequency of the pendulum decreases. Furthermore,
the effect of friction becomes less dominant because the inertia of the pendulum
increases. These effects obviously come to bear on the balancing controller perfor-
mance, but also significantly affect the swing-up controller as well.

With the sloshing liquid added to the pendulum endpoint, the LQR. controller
(and, in fact, other linear control schemes we implemented on this system) produced
an unstable response and was unable to balance the pendulum, so we do not show
their responses here. Of course, the linear control schemes can be tuned to improve
performance for the perturbed system, at the expense of degraded performance for
the nominal system. Moreover, it is important to note that tuning of the LQR type
controller is difficult and ad hoc without additional modeling to account for the
added dynamics. Such an attempt on this system produced a controller with stable
but poor performance.

It is interesting to note, however, that the fuzzy controller was able to maintain
stability in the presence of the additional dynamics and disturbances caused by
the sloshing liquid, without tuning. These results are shown in Figure 3.16, where
some degradation of controller performance is apparent. Basically, due to the added
flexibility in tuning the fuzzy controller nonlinearity, we are able to make it behave
similarly to the LQR for the nominal case, but also make it perform reasonably
well for the case where the sloshing-liquid disturbance is added. Moreover, there
is nothing mystical about the apparent “robustness” of the fuzzy controller: The

151

152

Chapter 3 / Case Studies in Design and Implementation

shaping of the nonlinearity near zero with the arctan-type function provides a higher
gain that counteracts the effects of the sloshing liquid.

Position of base (rad)
-
L

L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Position of pendulum (rad)

L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

o
T

Control output (volts)

L L L L L L L L L
0 1 2 3 4 5

Time (sec)

N
<
%
©

10

FIGURE 3.16 Direct fuzzy control on the rotational inverted
pendulum with sloshing liquid at its endpoint (figure taken from
[235], © IEEE).

In Chapter 6 we will show how to design an adaptive fuzzy controller that can
automatically reshape its control surface to compensate for endpoint disturbances.
This controller will try to optimize its own performance for both the nominal and
added-weight cases; we will demonstrate how it will improve the performance of
the direct fuzzy controller.

3.5 Machine Scheduling

The flexible manufacturing system (FMS) that we consider in this case study is
a system composed of several machines, such as the one shown in Figure 3.17.
The system processes several different part-types (indicated by Pi, i= 1,2,3 in
Figure 3.17). Each part-type enters the system at a prespecified rate and is routed
in the system through a sequence of machines (indicated by Mi, i= 1,2,...,6 in
Figure 3.17) over the transportation tracks (the arrows in Figure 3.17). A part-
type may enter the same machine more than once for processing (i.e., the FMS is
“nonacyclic”). The length of processing time for each part-type at each machine is
also prespecified. The same part-type may have different processing times for the
same machine at different visits—that is, a machine may process a part-type longer

3.5 Machine Scheduling

at its first visit than at its second. Each part that arrives at a machine is stored
in a buffer until the machine is ready to process the part. There are prespecified
“set-up times” (delays) when the machine switches from processing one part-type to
another. Each scheduler on each machine tries to minimize the size of the “backlog”
of parts by appropriately scheduling the sequence of parts to be processed. The goal
is to specify local scheduling policies that maximize the throughput of each part-
type and hence minimize the backlog and the overall delay incurred in processing
parts through the FMS.

P1

B

FIGURE 3.17 Example flexible manufacturing
system.

In this section we focus on showing how to design a fuzzy controller (scheduler)
for a single machine. We use simulations to illustrate that its performance is com-
parable to conventional scheduling policies. We note that the fuzzy scheduler we
develop here is quite different from the ones shown in the two previous case studies.
This case study helps to show how fuzzy controllers can be used in nontraditional
control problems as general decision makers.

3.5.1 Conventional Scheduling Policies
Figure 3.18 illustrates a single machine that operates on P different part-types.
The value of d, represents the arrival rate of part-type p, and 7, represents the
amount of time it takes to process a part of type p. Parts of type p that are not yet
processed by the machine, are stored in buffer b,. The single machine can process
only one part at a time. When the machine switches processing from one part-type
p to another part-type p’, it will consume a set-up time §, /. For convenience, we
will assume that all the set-up times are equal to a single fixed value 9.

If a scheduling policy does not appropriately choose which part to process

153

154 Chapter 3 / Case Studies in Design and Implementation

Fpd o
VIV I
¢¢¢ac1ne ¢

FIGURE 3.18 Single machine with P
part-types.

next, the buffer levels of the parts that are not processed often enough may rise
indefinitely high, which can result in buffer overflow. To avoid that problem, the
machine must have a proper scheduler (controller). In addition to keeping the buffer
levels finite, the scheduler must also increase the throughput of each part-type, and
decrease the buffer levels (i.e., decrease the backlog).

Scheduling Policies

A block diagram of a single machine with its controller (scheduler) is shown in
Figure 3.19. The inputs to the scheduler are the buffer levels z,, of each part-type.
The output from the scheduler is p*, which represents the next part-type to process.
In order to minimize the idle time due to set-ups, the machine will clear a buffer
before it starts to process parts from another buffer. There are three clearing policies
proposed in [168]: (1) clear largest buffer (CLB), (2) clear a fraction (CAF), and
(3) an unnamed policy in Section IV of [168], which we will refer to as “CPK,”
after the authors, Perkins and Kumar.

p* X
Scheduler Machine

t

FIGURE 3.19 Machine with its controller
(scheduler).

Let z,(T},) represent the buffer level of b, at T},, the time at which the scheduler
selects the next buffer of part-type p* to clear. Let 7, be any positive weighting
factors (throughout this case study, we set the 7, to 1 so that the “AWBL,” to
be defined below, is “average work”). Each of the three clearing policies is briefly
described as follows:

1. CLB: Select px such that zp.(T,,) > zp(T),) for all p (i.e., select the buffer to
process that has the highest number of parts in it).

3.5 Machine Scheduling

. CAF: Select p* such that

P

Tps(Th) 2 ez zp(Th)
p=1
where € is a small number, often set to % (i.e., when € = %, select any buffer

to process that has greater than the average number of parts in the buffers).

. CPK: Select p* such that

T,) +dd
p*x = arg max 2p(Tn) + Oy
? dp\/'YpP;gl(l — Pp)

where p, = d,7p.

In addition to these clearing policies, there exist many other policies that are used
in FMS (e.g., first-come first-served (FCFS)).

Machine Properties

A single machine is “stable” if the buffer level for each part-type is bounded. In
this case there exists m, >0,p =1,2,..., P, such that

supz,(t) <mp < +oo forp=1,2,...,P
t

A necessary condition for stability is that the machine load p = Zf::l pp <1
where p, = d,7,. For the single-machine case, the authors in [168] prove that all
three policies described above cause the machine to be stable.

There are various ways to measure the performance of a scheduling policy. We

can measure the average delays incurred when a part is processed in the machine.
We can also measure the maximum value of each buffer level. The performance
criterion proposed in [168] is a quantity called the average weighted buffer level
(AWBL), defined as follows:

S Y
AWBL = théEfZ/O l? 7p7p$p(5)] ds

For any stable scheduling policy, the average weighted buffer level has a lower

bound (LB), defined in [168] as follows:

_ g |:Zp Vpep (1= Pp)] i

kb 21—)

155

156 Chapter 3 / Case Studies in Design and Implementation

Let n = AVLV% be a measure of how close a scheduling policy is to optimal.
An optimal scheduling policy has n equal to 1; any scheduling policy has n > 1. To
compute the value of AWBL, we will of course have to choose some finite value of
t to terminate our simulations.

Stabilizing Mechanism

The universally stabilizing supervisory mechanism (USSM) introduced in [100] is
a mechanism that is used to govern any scheduling policy. There are two sets of
parameters employed by the mechanism for the single machine—mnamely, v and z,,
where it must be the case that

y > 2y S
and z, can be chosen arbitrarily. The single machine will process parts of type
p for exactly yd,7, units of time unless it is cleared first (if a part is currently
being processed when this amount of time is up, the processing on this part is
finished). Once the machine takes yd,7, units of time to process parts of type p
or the parts of type p are cleared before d,7, elapses, the machine will schedule
another part to be processed next. In addition, the USSM has a first-in-first-out
queue (. When a buffer level z,, exceeds z,, and the buffer is not being processed
or set up, that buffer will be placed into Q. When there is some buffer in the queue
overruling the scheduling policy, the next buffer scheduled to be processed is the
first buffer in the queue. Once that first buffer is processed, it leaves the queue,
then any remaining buffers in the queue are processed. Hence, the USSM stabilizes
any scheduling policy by truncating long production runs and by giving priority to
buffers that become excessively high. Note that x, is not exactly bounded by z,
since x, can still increase while it is listed in the queue. However, x,, is affected by
Zp. The larger z, is, the larger the maximum of z, tends to be. Also, note that if
the system is already stable (i.e., without the USSM) and the values of v and z,
are large enough, the mechanism will not be invoked.

3.5.2 Fuzzy Scheduler for a Single Machine

In this section we will show how to perform scheduling via a fuzzy scheduler. The
fuzzy scheduler is designed to be a clearing policy just as CLB, CAF, and CPK
are. There is no guarantee of stability when operating by itself; therefore, the fuzzy
scheduler is always augmented with the USSM.

As for the conventional scheduling policies CLB, CAF, and CPK, the inputs to
the fuzzy scheduler policy are the buffer levels x,. The output of the fuzzy scheduler
is simply an index p* indicating which one of the buffers will be processed next. The
universe of discourse for each z), is [0,00). The universe of discourse of each z, has
several fuzzy sets. The membership function for each fuzzy set is triangular except
at the extreme right, as shown in Figure 3.20. Figure 3.20 shows the membership
functions p for the case where the universe of discourse for x, has three fuzzy sets.
These fuzzy sets, indexed as 1, 2, and 3, indicate how “small,” “medium,” and
“large,” respectively, the value of z,, is. If the buffer level x,, exceeds M, the value

3.5 Machine Scheduling

of z,, is assumed to be M), by the fuzzy scheduler, where M,, must be predetermined.
We will call this parameter M), the saturation value of the fuzzy scheduler for z,
and will use M, as a tuning parameter.

" low medium high
N\ 2 3

Yo M X

FIGURE 3.20 Three
membership functions for x,.

Table 3.11 shows a rule-base of a fuzzy scheduler for a single machine that has
3 part-types using the fuzzy sets shown in Figure 3.20. In each rule, I, represents
the index of the fuzzy set and J represents the part-type that is selected by the
rule. Then, for instance, rule number 2 takes on the form

If z; is small and x5 is small and z3 is medium Then px = 3

In other words, if the buffer levels of b; and by are small and the buffer level of
b3 is medium then process part-type 3. The part of type J that is selected in each
rule has buffer level x; that falls into a fuzzy set that has index I, the largest
compared to the other indices. In some rules, there are indices of fuzzy sets of several
part-types that have equal largest value. In these cases, one of these part-types is
selected arbitrarily in our rule-base. For example, the first rule in Table 3.11 is fixed
to select part-type 1 even though the fuzzy set indices of all part-types in the rule
are equal to 1. Therefore, this rule is biased toward part-type 1. We note that our
fuzzy scheduler essentially “fuzzifies” the operation of the CLB policy; however,
due to the interpolation inherent in the implementation of the fuzzy scheduler it
will behave quite differently from the conventional CLB (as the simulation results
below indicate).

Throughout the simulation studies in the next subsection, if we use more fuzzy
sets on the universe of discourse we will utilize a similar structure for the rule-
base (i.e., uniformly distributed and symmetric membership functions). The output
universe of discourse (the positive integers) has P membership functions denoted
by p, where for each p € {1,2,...,P}, pup(i) = 1 for i« = p and p,(i) = 0 for
i # p (i.e., singletons). We use singleton fuzzification, minimum for the premise and
implication, and max-defuzzification to pick p*, given the rule-base and particular
values of x,.

For P buffers and m fuzzy sets, the size of memory needed to store the rules
is on the order of P™; hence, the CLB, CPK, and CAF policies are simpler than
the fuzzy scheduler. We will, however, show that with the use of this more complex
scheduler we can get enhanced performance in some cases.

157

158 Chapter 3 / Case Studies in Design and Implementation

TABLE 3.11 Rule-Base of a
Fuzzy Scheduler with 3 Inputs and
3 Fuzzy Sets on Each Universe of
Discourse

Rule No. | I,
1

1, 1,

0O Ok Wi

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

QO = = 0 WO R WO W RN R W NN W WS

W W WWWWWWWNNDNDNDNDNDNDDNDN R == = e
W W WR NN WWWR NN WWWKDNDN N
WK WK WNRFE WNDF WK = WK F WND R WK = W ®

It is possible to expand the fuzzy scheduler to use the information about ar-
rival rates, processing times, and set up times also. There may be significant im-
provements in performance if this information is represented with the control rules;
however, the memory size can significantly increase too. In the interest of ensuring
that the fuzzy scheduler will be implementable in real time we did not present this
variation in this case study.

3.5.3 Fuzzy Versus Conventional Schedulers

Next, we simulate a single machine that uses CLB, CAF, CPK, and the fuzzy
scheduler so that we can compare their performance. The machine parameters are
as follows: d; = 7,de =9, ds = 3, 1 = 1/100, 7 = 1/51, 73 = 1/27, and § = 1.
Figures 3.21 and 3.22 show the plots of the buffer levels of a single machine with
three part-types for the first 10 production runs (a production run is defined as

3.5 Machine Scheduling

setting up for and processing all the parts in a buffer) and the last 30 production
runs when CPK and the fuzzy scheduler are used (note that CLB and CAF did
not perform as well, so we do not include their plots). The parameters M; = 35,
My = 35, and M3 = 12 are selected based on the maximum value x, obtains when
the CPK policy is used. Note that the first 10 production runs of the fuzzy scheduler
are very different from CPK. However, for large values of ¢ they are quite similar
but not exactly the same, as indicated by the last 30 production runs when CPK
and the fuzzy scheduler are used. Even though the buffer levels are maintained at
nearly the same heights, the periodic sequence of scheduling the part-types by CPK
is 1,3,2,1,3,2,..., whereas the sequence by the fuzzy scheduler is 1,2,3,1,2,3,...

First 10 production runs Last 30 production runs
35 ; T - 35 -
— i i |
2 A P
30F 3. I A 30H
251 25
S T A 20F |

P N N]
0 5 10 15 1552 1553 1554 1555 1556

x104

FIGURE 3.21 Buffer levels using the CPK scheduling
policy (figure taken from [4], © IEEE).

Among the three schedulers—namely, CLB, CAF, and CPK—CPK often yields
the best performance—that is, its 7 is closest to one [168]. The performance of the
fuzzy scheduler is compared to that of CLB, CAF, and CPK for several single ma-
chines below. The number of fuzzy sets is set to 3, 5, and 7 for each universe of
discourse x,, so as to observe how the number of fuzzy sets can affect the perfor-
mance of the fuzzy scheduler. The first two machines are chosen from Section IV
of [168].

Machine 1: d1 = 7, dy = 9, d3 = 3, i = 1/100, » = 1/51, 3 = 1/27,
p = 0.35758.

e CLB: n=1.0863484
e CAF: n=1.2711257

159

160 Chapter 3 / Case Studies in Design and Implementation

First 10 production runs Last 30 production runs
35 T T 35

25| [1 asp f i

ok G I B 0
0 5 10 15 1.552 1.553 1.554 1.555 1.556

x104

FIGURE 3.22 Buffer levels using the fuzzy scheduler
(figure taken from [4], © IEEE).

CPK: n = 1.0262847

Fuzzy scheduler: My = 35, My = 35, M3 = 12; v = 34.0, z; = 30, 22 = 30,
zZ3 = 30

For 3 fuzzy subsets, n = 1.0263256

For 5 fuzzy subsets, n = 1.0262928

For 7 fuzzy subsets, n = 1.0262928

These simulations show that a fuzzy scheduler can perform nearly as well as

can CPK. Note also that we cannot significantly improve n by simply increasing
the number of fuzzy subsets for the same M), (for this machine).

Machine 2: dy = 18, dy = 3,d3 =1, 71 = 1/35, o = 1/7, 73 = 1/20, p =

0.99286.

CLB: n = 1.1738507
CAF: n = 1.179065
CPK: n =1.0017406

Fuzzy scheduler: M; = 3375, My = 626, M3 = 665; v = 1000.0, z; = 5000,
zg = 5000, z3 = 5000.

For 3 fuzzy subsets, n = 1.0027945

For 5 fuzzy subsets, n = 1.0027945

For 7 fuzzy subsets, n = 1.0013173

These simulations show that with the machine load closer to one, the fuzzy

3.6 Fuzzy Decision-Making Systems 161

scheduler can work even better than CPK provided that there are enough fuzzy
sets on the input space. Next, we create a new machine that has a lower machine
load, and compare the performance of the scheduling policies.

Machine 3: d; = 3.5, do = 4.5, ds = 1.5, 7 = 1/100, 7, = 1/51, 3 = 1/27,
p = 0.17879.

e CLB: n=1.0841100
e CAF: n=1.3456014
e CPK: 1 =1.0306833

® Fuzzy scheduler: M; = 23.6, My = 25.1, M3 = 5.6; v = 100.0, z; = 5000,
22 = 5000, z3 = 5000.
For 3 fuzzy subsets, n = 1.0307992
For 5 fuzzy subsets, n = 1.0319630
For 7 fuzzy subsets, n = 1.0306972

® Fuzzy scheduler with 3 fuzzy subsets; M; = 50, My = 50, M3 = 20; v = 100.0,
z1 = 5000, 2o = 5000, z3 = 5000: n = 1.2273009

These simulations show that the fuzzy scheduler cannot perform any better
than CPK when the machine load is small for this machine. Also note that if the
parameters M, are not set properly, the performance of the fuzzy scheduler can
degrade.

Our experience in simulation above shows that it is possible to tune the fuzzy
scheduler by choosing the values of M, and the fuzzy sets to minimize 7. We have
used the following procedure to tune the fuzzy scheduler to get smaller n: (1) use
i fuzzy sets and set the M), all to unity, (2) run a simulation, (3) replace M, with
the maximum buffer levels obtained in z, and rerun the simulation, and (4) repeat
as necessary with ¢ + 1 fuzzy sets, ¢ + 2 fuzzy sets, and so on. Using this tuning
approach for the above machine we find that for 3-buffer machines the results are as
good as those of CPK, and for some 5-buffer machines the tuning method converges
to a good result, even though the result is not quite as good as that of CPK. Note
that our experiences in tuning allowed us to develop the on-line adaptive fuzzy
scheduler technique that is studied in Chapter 6.

3.6 Fuzzy Decision-Making Systems

A fuzzy controller is constructed to make decisions about what the control input
to the plant should be given processed versions of the plant outputs and reference
input. It is a form of artificial (i.e., nonbiological) decision-making system. Decision-
making systems find wide application in many areas, not only the ones that have
been traditionally studied in control systems. For instance, the machine scheduling
case study of the previous section shows a nontraditional application of feedback
control where a fuzzy system can play a useful role as a decision-making system.

162

Chapter 3 / Case Studies in Design and Implementation

There are many other areas in which fuzzy decision-making systems can be used
including the following:

® Manufacturing: Scheduling and planning materials flow, resource allocation, rout-
ing, and machine and equipment design.

® Traffic systems: Routing and signal switching.

® Robotics: Path planning, task scheduling, navigation, and mission planning.

e (Computers: Memory allocation, task scheduling, and hardware design.

® Process industries: Monitoring, performance assessment, and failure diagnosis.

® Science and medicine: Medical diagnostic systems, health monitoring, and auto-
mated interpretation of experimental data.

® Business: Finance, credit evaluation, and stock market analysis.

This list is by no means exhaustive. Virtually any computer decision-making system
has the potential to benefit from the application of fuzzy logic to provide for “soft”
decisions when there is the need for decision making under uncertainty.

In this section we focus on the design of fuzzy decision-making systems for
problems other than feedback control. We begin by showing how to construct fuzzy
systems that provide warnings for the spread of an infectious disease. Then we show
how to construct a fuzzy decision making system that will act as a failure warning
system in an aircraft.

3.6.1 Infectious Disease Warning System

In this section we study a biological system where a fuzzy decision-making system
is used as a warning system to produce alarm information. To model a form of
biological growth, one of Volterra’s population equations is used. A simple model
representing the spread of a disease in a given population is given by

dxc;t(t) = —az1(t) + b1 (t)z2() (34
dxa(t)
= —bx1(t)xa(t) (35)

where z1(t) is the density of the infected individuals, x2(t) is the density of the
noninfected individuals, a > 0, and b > 0. These equations are only valid for
21(t) > 0 and x2(t) > 0. The initial conditions z1(0) > 0 and z2(0) > 0 must also
be specified.

Equation (3.5) intuitively means that the noninfected individuals become in-
fected at a rate proportional to z1(t)z2(t). This term is a measure of the interaction
between the two groups. The term —az1(t) in Equation (3.4) represents the rate at
which individuals die from disease or survive and become forever immune. The term

3.6 Fuzzy Decision-Making Systems 163

bxy(t)z2(t) in Equation (3.4) represents the rate at which previously noninfected
individuals become infected.

Here, we design a fuzzy system to produce alarms if certain conditions occur
in the diseased population—that is, a simple warning system. The fuzzy system
uses x1(t) and x2(t) as inputs, and its output is an indication of what type of
warning condition occurred along with the certainty that this warning condition has
occurred. To specify the types of alarms we would like the fuzzy system to output,
we first begin by using conventional (nonfuzzy) logic and “decision regions” to
specify the alarms. In particular, we would like indications of the following alarms:

1. “Warning: The density of infected individuals is unsafe”; this occurs if z1(t) >
a1 where a is some positive real number (here x1(t) > 1 specifies a “decision
region” for where we could like the warning to be given).

2. “Caution: The density of infected individuals is unsafe, and the number of
infected individuals is greater than the number of noninfected individuals”;
this occurs if x1(t) > ay and x1(t) > x2(t) + ag but z1(t) < x2(t) + a3, where
ao and ag are positive real numbers such that as < ag.

3. “Critical: The density of infected individuals is unsafe, and the number of in-
fected individuals is much greater than the number of noninfected individuals”;
this occurs if z1(t) > a1 and x1(t) > z2(t) + as.

The three alarms represent certain warnings characterized by the decision re-
gions shown in Figure 3.23. The darkest region plus the other lighter shaded regions
represent the first warning’s decision region, the slightly lighter one represents the
second warning, and the lightest shaded represents the third warning.

(1)

7t

/

FIGURE 3.23 Decision regions for the
biological system (figure taken from [164],
© IEEE).

164 Chapter 3 / Case Studies in Design and Implementation

We could simply use the above inequalities to implement a system that would
take as inputs x1(t) and x2(¢) and output an indication of which warning above has
occurred. Then, as the differential equation evolves, the values of x;(t) and z2(t)
change and different warning conditions will hold (when none hold, there is no
warning). Here, we will implement a fuzzy decision-making system by using fuzzy
logic to “soften” the decision boundaries. We do this since we are not certain about
the positions of these boundaries and since we would like an earlier indication when
we are near a boundary and therefore near having another condition begin to hold.

To construct the fuzzy system, we would like to implement fuzzy versions of
the following three rules:

1. If 21(t) > oy Then warning is “Warning”

2. If z1(t) > a1 and x1(t) > x2(t) + a2 and z1(t) < z2(t) + a3 Then warning is
“Caution”

3. If z1(t) > o and z1(t) > z2(t) + a3 Then warning is “Critical”

While the rules we used in the fuzzy controllers in Chapter 2 were different, we can
still use fuzzy logic to quantify these rules. First, we need to quantify the meaning
of each of the premise terms. Then we will be able to use the standard fuzzy logic
approach to quantify the meaning of the “and” in the premises.

First, notice that the premise term x1(t) > «; can be quantified with the
membership function shown in Figure 3.24 (study the shape of the membership
function carefully and convince yourself that this is the case). The membership
functions in Figure 3.25 quantify the meaning of z1(t) > za(t) + ae and z1(t) <
22(t)+as. Notice that we have made the positioning of the membership functions in
Figure 3.25 dependent on the value of x2(t); hence, to compute the certainty of the
statement x1(t) > x2(t) + g, we would first position the membership function with
the given value of z5(t), then we would compute the certainty of the statement (i.e.,
its membership value). You can avoid this shifting of the membership functions by
simply making the two inputs to the fuzzy system z;(t) and x;1(t) — z2(¢) rather
than x1(¢) and 5 (¢) (since then you can use a similar characterization to that which
was used for the first alarm—why?). We can quantify the third alarm in a similar
way to the second one.

a, X

FIGURE 3.24 Membership
function representing
z1(t) > a.

3.6 Fuzzy Decision-Making Systems

' L

T t t

X X
1)c2+()'.3 1

(2) (b)

FIGURE 3.25 Membership functions representing (a)
z1(t) > x2(t) + a2 and (b) z1(¥) < z2(t) + as.

Next, we need to use fuzzy logic to quantify the consequents of the three rules.
To do this, suppose that we let the universe of discourse for “warning” be the
interval of the real line [0, 10]. Then we simply use the membership functions shown
in Figure 3.26. There, the membership function on the left represents “Warning,”
the one in the middle represents “Caution,” and the one on the right represents
“Critical” (note that all of these have finite area). Suppose that we use minimum
to quantify the premise and implication, and that we use COG defuzzification (be
careful with COG since the output membership functions are not symmetric).

TWarning Caution Critical

10 warning

FIGURE 3.26 Membership functions to
quantify the consequents.

This completes the definition of the fuzzy warning system for the biological
system. We leave it to the reader to simulate the biological system and verify that
the fuzzy system will provide the proper values for the output “warning.” Note
that to interpret the output of the fuzzy system you will want to have a list of the
three failures “Warning,” “Caution,” and “Critical” and their associated certainties
of being true. Define the certainty of each warning being true as the minimum
certainty of any premise term in the premise of the rule that corresponds to the
warning. The output of the fuzzy system, “warning” will also provide a numerical
rating of the severity of the warning. In this way the fuzzy system provides both a
linguistic and numeric quantification of the warning.

165

166 Chapter 3 / Case Studies in Design and Implementation

3.6.2 Failure Warning System for an Aircraft

Consumer and governmental demands have provided the impetus for an extraor-
dinary increase in the complexity of the systems that we use. For instance, in
automotive and aircraft systems, governmental demands have called for (1) highly
accurate air-to-fuel-ratio control in automobiles to meet pollution standards, and
(2) highly technological aircraft capable of achieving frequent flights with very little
maintenance downtime. Similarly, consumer demands have driven (1) the develop-
ment of antiskid braking systems for increased stopability, steerability, and stability
in driving and (2) the need for increased frequency of commercial flights such that
travel must occur under all weather conditions in a timely manner.

While engineers have, in general, been able to meet these demands by enhancing
the functionality of high-technology systems, this has been done at the risk of
significant failures (it is generally agreed that “the more complex a system is the
more likely it is to fail in some way”). For automotive and aircraft systems, some
of the failures that are of growing concern include the following:

e Failures and/or degradation of performance of the emissions control systems (fail-
ures or degradation leads to a significant increase in the level of pollutants).

e “Cannot duplicate” failures where a failure is detected while the aircraft is in flight
that cannot be duplicated during maintenance, which lengthens the downtime.

® Actuator, sensor, and other failures in aircraft systems that cause commercial
aircraft crashes in adverse weather conditions.

e A system failure in an integrated vehicle handling, braking and traction control
system, which can lead to a loss of control by the driver.

Automotive and aircraft systems provide excellent examples of how failures in
high-technology systems can result in catastrophic failures. In addition, the effect
of undetected system faults can lead to costly downtime or catastrophic failures
in manufacturing systems, nuclear power plants, and process control problems. As
history indicates, the probability of some of the system failures listed above is
sometimes high. There is then the need for detecting, identifying, and providing
appropriate warnings about failures that occur on automobiles, aircraft, and other
systems so that corrective actions can be taken before there is a loss of life or other
undesirable consequences.

Experience in developing on-line failure warning systems has indicated that
there is no uniform approach to solving all problems; solutions are “problem-
dependent.” This makes the fuzzy system particularly well suited for this applica-
tion. You simply have to load different knowledge into a fuzzy system for different
applications. Next, we look at a simple example of how to construct a fuzzy warning
system for an aircraft.

The simple warning system for an aircraft uses the aircraft’s measurable inputs
and outputs. Suppose the aircraft’s input vector u has two components, the elevator
e (deg), and thrust d; (deg). The output vector y has three components, pitch rate g

3.6 Fuzzy Decision-Making Systems 167

(deg/sec), pitch angle 6 (deg), and load factor 1, (g). Four aircraft failure modes are
considered here. To define the modes, we take the same approach as in the previous
section and define decision regions using conventional logic and inequalities. Later,
we will soften the decision boundaries and define the fuzzy decision-making system.

To define the decision boundaries, each input and output is discretized into five
regions with four boundaries associated with the real number line. For example,
the elevator ¢, is discretized as follows:

® Region Ry: 0. < IR,

® Region Yi: 0r, < 0. < 0y,
® Region G: dy, < de < 0y,
® Region Y3: dy, < 0. < IR,

® Region Ra: 0. > IR,

where dr, and Jdy, are negative constants with dg, larger in magnitude than dy,,
and dy, and g, are positive constants with dy, < dr,. The G (for Green) region
denotes an area of safe operation, the Y7 and Ys (for Yellow) regions denote areas
of warning, and the Ry and Ry (for Red) regions denote areas of unsafe operation.
Suppose that using a similar notation we define such regions for all the other aircraft
input and output variables. For simplicity we will then sometimes say that other
variables lie in the regions Ry, Y1, G, Y3, and Ry with the understanding that there
can be different values of the constants used to define the intervals on the real line.

Using the defined regions for the aircraft inputs and outputs, four failure modes
for the aircraft are identified as follows:

1. Load factor is in region Rs.
2. Load factor is in region Ya.
3. Load factor is in region Y3 and elevator is in region Y;

4. (Pitch rate is in Y7 and Pitch angle is in Y7) or (Pitch rate is in Y5 and Pitch
angle is in Y3).

The decision regions for the fourth failure mode are shown as the shaded areas
in Figure 3.27 (notice that we use an appropriate notation for the constants that
define the boundaries).

The fuzzy system’s inputs are the aircraft inputs and outputs, and its outputs
are the four failure warnings. Suppose that the output of the fuzzy system is either
1, 2, 3, or 4, representing the failure warning mode, ¢ = 1, 2, 3, 4. Now, we want to
define a fuzzy system that will give a proper indication of the above failure warning
modes. To define the fuzzy system, we use the same approach as in the previous
section. We can define rules representing each of the four failure warning modes.

168 Chapter 3 / Case Studies in Design and Implementation

FIGURE 3.27 Decision regions for aircraft
failure mode four (figure taken from [164],
© IEEE).

These will have the proper logical combinations of the inequalities in the premises,
and the consequents will be, for example, “failure warning = 1.”

For the first mode (load factor is in region Rs), you can use the same approach
as in the last section to specify a membership function to represent the single
premise term; the same for the second and third failure warning modes. For the
fourth failure warning mode, we can use fuzzy logic in the characterization of the
“and” in the premise as we did in the last section. Also, we can use the fuzzy
logic characterization of “or” to represent the combination of the two terms in the
premise of the rule for the fourth failure warning mode. You can use singletons
positioned at i = 1,2, 3,4 for the ‘" failure warning mode rule. Then use center-
average defuzzification to complete the specification of the fuzzy warning system.
We leave the details of constructing this fuzzy decision-making system to the reader.

3.7 Summary

In this chapter we provided an overview of the design methodology for fuzzy control
systems and showed how to design fuzzy controllers in the two-link flexible robot and
the rotational inverted pendulum case studies. We used the machine control problem
and fuzzy decision-making systems to illustrate how the fuzzy system can also
be useful in nontraditional control applications. Each problem provided different
challenges, and in two of the case studies we showed actual implementation results.
In two of the cases we compared the fuzzy controller to conventional approaches,
which highlights the advantages and disadvantages of fuzzy control.
Upon completing this chapter, the reader should understand the following;:

3.8 For Further Study

® The general design methodology for fuzzy controllers.

e How to design a fuzzy controller for a flexible-link robot and how the use of ad-
ditional, more-detailed knowledge can improve performance (e.g., the uncoupled
versus coupled cases) but increases the complexity of the controller (e.g., the
number of rules increased).

® How to design a swing-up controller and LQR for balancing for the rotational
inverted pendulum, how to use the LQR design to provide the first guess at the
fuzzy controller (that may later be tuned), and how to use a nonlinear mapping
to set the positions of the output membership function centers.

e How to specify a fuzzy controller that can schedule the processing of parts at a
machine and perform at comparable levels to good conventional schedulers.

® How to design fuzzy decision-making systems, particularly for failure warning
systems.

Essentially, this is a checklist for the major topics covered in this chapter. The
reader should be sure to understand each of the above concepts or approaches
before proceeding on to more-advanced chapters, especially the ones on adaptive
and supervisory fuzzy control, where the first three case studies examined here are
further investigated.

3.8 For Further Study

There are many conference and journal papers that focus on the application of direct
fuzzy control—indeed, too many to mention here. Here, we simply highlight a few
case studies that are particularly interesting or instructive [125, 91, 21, 35, 25]
and refer the interested reader to several books that have focused on industrial
applications of fuzzy control, including [240, 137, 175, 206] (these also have extensive
lists of references that the interested reader may want to follow up on). Also, there
are some recent books [47, 154] and papers (e.g., [218]) that focus on some new
design methodologies for fuzzy controllers that the reader may be interested in.
One of these is based on sliding-mode control [217], and the other is related to
gain-scheduling-type control.

The case study in this chapter on the two-link flexible robot was taken directly
from [145, 144]; the interested reader should see those papers (and the references
within them) to obtain a more complete treatment of work related to the case study.
Since the literature abounds with work on the modeling and control of flexible
robots, both from a theoretical (simulation-based) and an experimental point of
view, we refer the interested reader to Chapter 8 of [193] for an overview of the
literature on conventional approaches. Some studies that are particularly relevant
to our case study are in [69, 242, 243].

The case study for the rotational inverted pendulum was taken from [235, 244].
The literature abounds in research and implementations of the linear-translational

169

170 Chapter 3 / Case Studies in Design and Implementation

inverted pendulum. The approach of using the linear controller to initialize the fuzzy
controller that is used for the rotational inverted pendulum was first introduced
in [104], where it was used for an aircraft application. It is interesting to note that
in [235] it is shown how a fuzzy system can be used to automate the swing-up
control so that the manual tuning of the above parameters is not needed even if
additional mass is added to the endpoint of the pendulum.

The machine control case study was taken directly from [6]. The work was
inspired by the earlier work of P.R. Kumar and his colleagues (see, for example,
[168, 100]) on the development of distributed scheduling policies for flexible man-
ufacturing systems. The failure warning systems are fuzzy versions of the ones de-
veloped in [164]; for a more detailed study of aircraft failure diagnostic systems, see
[161]. Fuzzy decision-making systems are discussed in some more detail in [206, 175].

The motor control design problem in the problems at the end of the chapter
is part of a control laboratory at Ohio State University (developed over the years
by many people, including U. Ozgfmer, L. Lenning, and S. Brown). The ship steer-
ing problem comes from [11] and [112]. The rocket velocity control problem was
taken directly from [113]. The design problem on the acrobot was taken directly
from [27] and builds directly on earlier work performed by M. Spong and his col-
leagues, who have focused on the development of conventional controllers for the
acrobot. Their work in [190] and [191] serves as an excellent introduction to the
acrobot and its dynamics. The dynamics of a simple acrobot are also described
in both works; however, a more complete development of the acrobot dynamics
may be found in [192]. The base-braking control problem is taken from [75, 66]
and was based on years of contracted research with Delphi Chassis Division of
General Motors. Previous research on the brake system has been conducted using
proportional-integral-derivative (PID), lead-lag, autotuning, and model reference
adaptive control (MRAC) techniques [66]. The particular problem description we
use for the brakes was taken from [118].

3.9 Exercises

Exercise 3.1 (Simulation of General Fuzzy Systems): Write a program in
high-level language that will simulate a general fuzzy controller with the following
characteristics:

(a) n inputs and one output (i.e., so that the user can input n).

(b) Triangular membership functions (with appropriately saturated ones at the
endpoints of the input universes of discourse).

(¢) Gaussian membership functions (with appropriately saturated ones at the
endpoints of the input universes of discourse).

(d) Trapezoidal membership functions (with appropriately saturated ones at the
endpoints of the input universes of discourse).

(e) The use of product or minimum for representing the premise and implication.

(f) The use of center-average or COG defuzzification.

3.9 Exercises

Exercise 3.2 (Efficient Simulation of Fuzzy Systems): Write a program in
high-level language that will simulate a general fuzzy controller with the following
characteristics:

® n inputs and one output.

¢ Triangular membership functions (with appropriately saturated ones at the
outermost regions of the input universes of discourse) that are uniformly
distributed across the universes of discourse so that there are at most two
of them overlapping at any one point.

® The use of minimum for representing the premise and implication.
® The use of COG defuzzification.

Exploit the fact that no more than two membership functions overlap at any one
point to make the code as efficient as possible. Use ideas from Chapter 2 where
we discuss simulation of fuzzy systems and real-time implementation issues.

Exercise 3.3 (Fuzzy Systems: Computational Complexity): Fuzzy con-
trollers can at times require significant computational resources to compute op-
erations in real-time. Define a “computing step” as the act of performing a basic
mathematical operation (e.g., addition, subtraction, multiplication, division, or
finding the maximum or minimum of a set of numbers). For the first inverted
pendulum controller that we designed in Chapter 2 (i.e., the one using triangu-
lar membership functions with R = 25 rules), using this measure, determine the
number of computing steps that it takes to perform the following operations (as-
sume that you code it efficiently, exploiting the fact that only two membership
functions overlap at any point so at most four rules are on):

(a) COG defuzzification—assuming that you are already given the values of the
premise membership function certainties.

(b) Center-average defuzzification—assuming that you are already given the val-
ues of the premise membership function certainties.

(¢) Assume that we switch to using Gaussian membership functions as in Exer-
cise 2.3 on page 102. Does this increase or decrease computational complex-
ity? Why?

Exercise 3.4 (Fuzzy Controller Design Using Linear Controllers): Sup-
pose that you have a PD controller that generates the plant input u = K,e +
Kd%e (e = r — y where r is the reference input and y is the plant output) and
that it performs well for small values of its inputs, but that for larger values you
happen to know some additional heuristics that can be used to improve perfor-
mance. To capture this information, suppose that you decide to use a two-input,
one-output fuzzy controller. Rather than throwing out all the work you have done
to tune the PD gains K, and Kg4, you would like to make the fuzzy controller
behave similarly to the PD controller. Suppose that K, = 2 and K4 = 5. Design
a fuzzy controller that will approximate these same gains for small values of e

171

172 Chapter 3 / Case Studies in Design and Implementation

and dite. Demonstrate that the two are close by providing a three-dimensional
plot of the control surfaces for both the PD and the fuzzy controller (note that
the PD controller surface looks like a plane in three dimensions).

Exercise 3.5 (Fuzzy Control Design Trade-Offs)*: List all the trade-offs
involved in choosing fuzzy versus conventional control and, for the application
of your choice, provide a written analysis of whether you think fuzzy control is
a viable approach for your problem. Fully support your conclusions. You may
choose your own application, but if you do you must fully describe the control
problem that you study and provide at least simulation studies to back up your
conclusions. Alternatively, you may choose one of the case study examples in this
chapter (or one of the design problems) for your analysis.

3.10 Design Problems

Design Problem 3.1 (Inverted Pendulum: Use of a CAD Package): In
this problem you will learn to use a CAD package (such as the one available in
Matlab) for the development and analysis of fuzzy control systems.

(a) Use a CAD package to solve Exercise 2.3 on page 102.
(b) Use a CAD package to solve Exercise 2.4 on page 103.
(¢) Use a CAD package to solve Design Problem 2.1 on page 110.

Design Problem 3.2 (Single-Link Flexible Robot): This problem focuses
on the design of a fuzzy controller for a single-link flexible robot. To perform
the designs, use the model provided in Section 3.3.1 on page 127 (in particular,
Equation (3.1)); hence, the plant input is v; and the plant output is ;. Com-
mand a 90-degree step change in the position to test your closed-loop system.
Use the saturation nonlinearities that were provided for the voltage input and
link position. The goals are fast slewing with minimal endpoint vibrations and
no steady-state tracking error. Use a 20-ms sampling period and discrete time
controllers.

(a) Design a fuzzy controller for the single-link flexible robot and evaluate its
performance.

(b) Design the best linear controller that you can for the flexible robot and
compare its performance to that of the fuzzy controller.

(¢) Compare the performance that was obtained in (a) to that obtained in (b).
Identify which characteristics of your simulation responses are different from
the implementation responses for the two-link robot, and try to provide
reasons for these differences.

3.10 Design Problems 173

Design Problem 3.3 (Rotational Inverted Pendulum): This problem fo-
cuses on the design of fuzzy controllers for the rotational inverted pendulum that
was studied in this chapter. To perform the designs, use the model provided in
Section 3.4.1 on page 143. You should seek to obtain performance comparable to
that seen in the implementation results for the rotational inverted pendulum.

(a) Design an “energy-pumping” swing-up strategy for the rotational inverted
pendulum, and develop a LQR controller for balancing the pendulum. Demon-
strate its performance in simulation.

(b) Design a fuzzy controller for balancing the pendulum, and, using the same
swing-up strategy as in (a), demonstrate its performance in simulation.

(¢) For both (a) and (b), compare the performance that was obtained to that
which was found in implementation. Identify characteristics of your simu-
lation responses that are different from the implementation responses, and
provide a reason for these differences.

Design Problem 3.4 (Machine Scheduling): Here, we focus on the design
of fuzzy schedulers for the machine scheduling problem that was studied in this
chapter. To perform the designs, use the model provided in Section 3.5.1 on
page 153. Suppose that we define “Machine 4” to have the following characteris-
tics: dl = 1, dz = 1, dg = 1/09, d4 = 1, d5 = 1, T = 015, T2 = 0.2, T3 = 005,
74 =0.1, 75 = 0.2, p = 0.7055556 (i.e., it has five buffers).

(a) Develop CLB, CAF, and CPK schedulers, simulate them, and determine the
value for 7 for each of these.

(b) Develop a fuzzy scheduler using the same approach as in the case study.
Find the value of n for the cases where 3, 5, and 7 fuzzy sets are used on
each input universe of discourse. Be careful to properly tune the values of
the M; and use v = 100.0, and z; = 30, ¢ = 1,2,3,4,5. You should tune
the M; so that the fuzzy scheduler performs better than the ones in (a) as
measured by 7.

Design Problem 3.5 (Motor Control): In this problem we study control of
the Pittman GM9413H529 DC motor with a simulated inertial load (aluminum
disk). The simulated moment of inertia is small, and is considerably less than
the actual motor moment of inertia. The effective gear ratio is 7860:18 (from the
motor armature shaft to the actual load); therefore, the reflected load inertia
seen by the motor is very small. The equivalent circuit diagram of the DC motor
system is shown in Figure 3.28.

The DC motor has a single measurable signal: the motor’s rotational ve-
locity. This velocity is sensed using an optical encoder mounted on the shaft
of the motor. An optical encoder outputs square wave pulses with a frequency
proportional to rotational velocity. The pulses from the encoder are counted by

174 Chapter 3 / Case Studies in Design and Implementation

FIGURE 3.28 Equivalent circuit diagram of the DC motor

system (figure drawn by Scott C. Brown).

Gearbox

Load

a data-acquisition card’s counter/timer, and translated to a rotational velocity
of the inertial plate. Pulse width modulation (PWM) is used to vary the input
voltage to the motor. PWM varies the duty cycle of a constant magnitude square
wave to achieve an approximation of a continuous control input. A diagram of

the motor experimental setup is shown in Figure 3.29.

PWM

? amplifier 12 V.

power

EZ supply
— lg3__ |

=

Interface
box

computer

Breadboard

FIGURE 3.29 Motor experimental setup
(figure drawn by Scott C. Brown).

The transfer function of the motor can be derived from the following data

(taken from the Pittman motor spec sheets for winding 114T32):

R, = armature resistance = 8.33 Q2
L, = armature inductance = 6.17 mH

K. = back emf constant = 4.14 V/krpm = 3.953 x 1072 V/(rad/s)
K, = torque constant = 5.60 oz - in/A = 0.03954 N - m/A
J, = armature inertia = 3.9 x 10™% oz - in- s> = 2.75 x 107% Kg - m?

Jr = load inertia = 0.0137 Kg - m?
Jr

J = total inertia = motor + load = J, + 1 = 2.82 1079 Kg - m?

N = Gear ratio = 7860 : 18

3.10 Design Problems

The aluminum disk has a radius of 15.24 cm, a thickness of 0.6 cm and a density
of 2699 Kg/m3.

Using these parameters, the following system time constants can be deter-
mined:

1/T. = R./L, = 1350 (rad/sec)
1T, = 58 = 66.43 (rad/sec)
Since L, < %,
wa(8) 1/K,
G P P
1(s) Vea(s) (14 Tus)(1 + Tps)
25.3

- (4 me)(+ 59)
2.27 x 108 (rad/sec)

(51 1350)(s + 66.4) _V
wr,(s) 1 wr(s)
G =7 5 = ¥ =6

B 5194 rad/sec
T (5+1350)(s + 66.4) \ V

_wi(s) 5194 (g)
Gs(s) = Veg(s) (s +1350)(s + 66.4)
49.60 x 103 (rpm)

v

(s +1350)(s + 66.4)

G1(s) specifies the transfer function from voltage input to motor speed, while
G2(s) and G3(s) specify the transfer function from voltage input to load speed
(in different units). G3(s) is the transfer function of interest for this system, as
the reference input to track is specified in rpm. Note that the maximum system
input is +12 volts.

We will study the development of controllers with a focus on implementation;
hence, we will develop a discrete model for the simulations. To simulate the
system G3(s), it is converted to a state-space realization, and then a discrete
state-space realization (we use the zero order hold (ZOH) method for continuous
to discrete-time conversion). Use a sampling period of 0.01 sec. The discrete-time
model

z(k+1)= Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

175

176 Chapter 3 / Case Studies in Design and Implementation

can be simulated where u is the system input, or controller output. Note that this
model is a relatively accurate representation of the actual physical experiment in
our laboratory, shown in Figure 3.29 (the main difference lies in the presence of
more noise in the actual experiment).

We developed and implemented a fuzzy controller that we consider to be only
marginally acceptable for the motor and show its response in Figure 3.30. We
consider this plot to provide an indication of the type of performance we expect
from controller designs for this plant.

Fuzzy control system (step response for tracking a 4 rpm step)

4.5 T T T T T T T T T
4+ W
351 : .
3k i
g
East 1
=
3 2 1
ol
a
2]
15+ .
1 i
0.5 .
0 I I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (sec)

FIGURE 3.30 Motor step response (plot created by Scott C.
Brown).

(a) Design a linear controller for the motor, and demonstrate that you can do
better than the performance shown in Figure 3.30.

(b) Define a two-input, single-output fuzzy system to control the motor. Use e
and fot e dt (use the trapezoidal approximation to integration to approximate
fot edt) as inputs to your fuzzy system where error is defined as

A .
error = reference input — system output

Use triangular input and output membership functions (with appropriately
saturated ones at the outermost edges). Be sure that your fuzzy system
output is in the range [—12.0,12.0]. Simulate the system with the fuzzy
controller by tracking a 4-rpm step input.

3.10 Design Problems

(¢) Tune your fuzzy system to obtain a better step response. Try changing the
number of input and output membership functions, as well as the gains mul-
tiplying the fuzzy controller inputs and outputs. (Remember, your output
should saturate at +12 volts.) Can you do better than the response shown
in Figure 3.307 Obtain plots of the input and output membership functions,
and simulated step response for your best response.

(d) Using your best fuzzy controller in (c¢), simulate the system tracking a 1-rpm
step input.

Design Problem 3.6 (Cargo Ship Steering): In this problem we study the
development of fuzzy controllers for a ship steering problem. The model for the
ship is given in Chapter 6, Section 6.3.1 on page 333. Use the nonlinear model
of the ship provided in Equation (6.5) in all the simulation evaluations for the
control systems that you develop. Note that we would like to make the closed-loop
system for the ship steering system behave like the reference model provided in
Chapter 6 for the ship. Note that to simulate the system given in Equation (6.5) on
page 334, you will have to convert the third-order nonlinear ordinary differential
equation to three first-order ordinary differential equations, as is explained in
Chapter 6.

(a) Develop a fuzzy controller for the ship steering problem that will result
in achieving the performance specified by the reference model (it may be
off slightly during transients). That is, you should achieve nearly the same
performance as that shown in Figure 6.6 on page 342.

(b) Design a linear controller for the ship steering problem that will result in
achieving the performance specified by the reference model (it may be off
slightly during transients).

(¢) Compare the results in (a) and (b).

Design Problem 3.7 (Base Braking Control): Antilock braking systems
(ABS) are designed to stop vehicles as safely and quickly as possible. Safety
is achieved by maintaining lateral stability (and hence steering effectiveness) and
reducing braking distances over the case where the brakes are controlled by the
driver. Current ABS designs typically use wheel speed compared to the velocity
of the vehicle to measure when wheels lock (i.e., when there is “slip” between the
tire and the road) and use this information to adjust the duration of brake signal
pulses (i.e., to “pump” the brakes). Essentially, as the wheel slip increases past
a critical point where it is possible that lateral stability (and hence our ability
to steer the vehicle) could be lost, the controller releases the brakes. Then, once
wheel slip has decreased to a point where lateral stability is increased and braking
effectiveness is decreased, the brakes are reapplied. In this way the ABS cycles the
brakes to achieve an optimum trade-off between braking effectiveness and lateral

177

178 Chapter 3 / Case Studies in Design and Implementation

stability. Inherent process nonlinearities, limitations on our abilities to sense cer-
tain variables, and uncertainties associated with process and environment (e.g.,
road conditions changing from wet asphalt to ice) make the ABS control problem
challenging. Many successful proprietary algorithms exist for the control logic for
ABS. In addition, several conventional nonlinear control approaches have been
reported in the literature.

In this problem, we do not consider brake control for a “panic stop,” and hence
for this problem the brakes are in a non-ABS mode. Instead, we consider what
is referred to as the “base-braking” control problem, where we seek to have the
brakes perform consistently as the driver (or an ABS) commands, even though
there may be aging of components or environmental effects (e.g., temperature
or humidity changes) that can cause “brake grab” or “brake fade.” We seek to
design a controller that will ensure that the braking torque commanded by the
driver (related to how hard we hit the brakes) is achieved by the brake system.
Clearly, solving the base-braking problem is of significant importance since there
is a direct correlation between safety and the reliability of the brakes in providing
the commanded stopping force. Moreover, base-braking algorithms would run in
parallel with ABS controllers so that they could also enhance braking effectiveness
while the brakes are in an ABS mode.

Figure 3.31 shows the diagram of the base-braking system, as developed
in [66, 118]. The input to the system, denoted by r(kT), is the braking torque
(in ft-1bs) requested by the driver. The output, y(kT) (in ft-1bs), is the output of
a torque sensor, which directly measures the torque applied to the brakes. Note
that while torque sensors are not available on current production vehicles, there
is significant interest in determining the advantages of using such a sensor. The
signal e(kT) represents the error between the reference input and output torques,
which is used by the controller to create the input to the brake system, u(kT). A
sampling interval of T" = 0.005 seconds is used.

+ u(kT) Brake system Torque sensor ;

e(kT), ' i
HAT) [”256” + e 1 5 05187 s 028] 0y
—>| b —_— v,
Desired controller 7 e 22-1.942+0.9409 o CP—) 2072 ||s Output

torque - torque

Specific torque
N

FIGURE 3.31 Brake control system (figure taken from [118], (© IEEE).

The General Motors braking system used in this problem is physically limited
to processing signals between [0, +1] volts, while the braking torque can range
from 0 to 2700 ft-1bs. For this reason and other hardware specific reasons [66],
the input torque is attenuated by a factor of 2560 and the output is amplified
by the same factor. After u(kT) is multiplied by 2560, it is passed through a
saturation nonlinearity where if 2560u(kT) < 0, the brake system receives a zero

3.10 Design Problems

input and if 2560u(kT") > 5, the input is 5. The output of the brake system passes
through a similar nonlinearity that saturates at zero and 2700. The output of this
nonlinearity passes through F(y), which is defined as

Y

F(y) = ———— +0.
(v) = 5555 19 *+ 0-0139878

The function F(y) was experimentally determined and represents the relation-
ship between brake fluid pressure and the stopping force on the car. Next, F(y)
is multiplied by the “specific torque” S;. This signal is passed through an exper-
imentally determined model of the torque sensor, the signal is scaled, and y(kT')
is output.

The specific torque S; in the braking process reflects the variations in the
stopping force of the brakes as the brake pads increase in temperature. The
stopping force applied to the wheels is a function of the pressure applied to the
brake pads and the coefficient of friction between the brake pads and the wheel
rotors. As the brake pads and rotors increase in temperature, the coefficient of
friction between the brake pads and the rotors increases. The result is that less
pressure on the brake pads is required for the same amount of braking force. The
specific torque S; of this braking system has been found experimentally to lie
between two limiting values so that

0.85 < 5; < 1.70

To conduct simulations for this problem, you should use the specific methodology
that we present next to represent the fact that as you repeatedly apply your
brakes, they heat up—which is represented by increasing the value of S;. In
particular, a repeating 4-second input reference signal should be used where each
period of this signal corresponds to one application of the brakes. The input
reference begins at 0 ft-lbs, increases linearly to 1000 ft-lbs by 2 seconds, and
remains constant at 1000 ft-1bs until 4 seconds. After 4 seconds the states of
the brake system and controller should be cleared, and the simulation can be
run again. For part (d) below the first two 4-second simulations are run with
St = 0.85, corresponding to “cold brakes” (a temperature of 125° F for the brake
pads). The next two 4-second simulations are run with S; increasing linearly from
0.85 at 8 seconds to 1.70 after 12 seconds. Finally, two more 4-second simulations
are run with S; = 1.7, corresponding to “hot brakes” (a temperature of 250° F
for the brake pads).

(a) Develop a fuzzy controller for the base-braking control problem assuming
that the brakes always stay cold (i.e., Sy = 0.85).

(b) Develop a fuzzy controller for the base-braking control problem assuming
that the brakes always stay hot (i.e., Sy = 1.7).

(¢) Test the fuzzy controller developed for the cold brakes on the hot ones, and
vice-versa.

179

180 Chapter 3 / Case Studies in Design and Implementation

(d) Next, test the performance of the controller developed for the cold brakes
on brakes that heat up over time. Use the simulation methodology outlined
above.

(e) Repeat (a)—(d) using a conventional control approach and compare its per-
formance to that of the fuzzy controllers.

Design Problem 3.8 (Rocket Velocity Control): A mathematical model
that is useful in the study of the control of the velocity of a single-stage rocket is
given by (see [16] and [136])

d th = c(t) (M_Lml» ~g (%@) ~ 0.5 02(¢) (%) (3.6)

where v(t) is the rocket velocity at time ¢ (the plant output), y(t) is the altitude
of the rocket (above sea level), and ¢(¢t) (the plant input) is the velocity of the
exhaust gases (in general, the exhaust gas velocity is proportional to the cross-
sectional area of the nozzle, so we take it as the input). Also,

®)M = 15000.0 kg = the initial mass of the rocket and fuel.
e m =100.0 ké = the exhaust gases mass flow rate (approximately constant
for some solid propellant rockets).

e A =1.0 meter? = the maximum cross-sectional area of the rocket.

e g=038 % = the the acceleration due to gravity at sea level.

® R =06.37 x 10° meters = the radius of the earth.

® p, =121 Il%g = the density of air.

® (Cy = 0.3 = the drag coefficient for the rocket.
Due to the loss of fuel resulting from combustion and exhaust, the rocket has a
time-varying mass.

To specify the performance objectives, we use a “reference model.” That is, we
desire to have the closed-loop system from r to v behave the same as a reference
model does from r to v,,. In our case, we choose the reference model to be

dvp, (t)
dt

= —0.20, () + 0.2r(t)

where v,,,(t) specifies the desired rocket velocity. This shows that we would like
a first-order-type response due to a step input.
(a) Pick an altitude trajectory y(t) that you would like to follow.

(b) Develop a fuzzy controller for the rocket velocity control problem and demon-
strate that it meets the performance specifications via simulation.

3.10 Design Problems

(b) Develop a controller using conventional methods and demonstrate that it
meets the performance objectives. Compare its performance to that of the
fuzzy controller.

Design Problem 3.9 (An Acrobot)*: An acrobot is an underactuated, un-
stable two-link planar robot that mimics the human acrobat who hangs from
a bar and tries to swing up to a perfectly balanced upside-down position with
his or her hands still on the bar (see Figure 3.32). In this problem we apply di-
rect fuzzy control to two challenging robotics control problems associated with
the acrobot, swing-up and balancing, and use different controllers for each case.
Typically, a heuristic strategy is used for swing-up, where the goal is to force the
acrobot to reach its vertical upright position with near-zero velocity on both links.
Then, when the links are close to the inverted position, a balancing controller is
switched on and used to maintain the acrobot in the inverted position (again, see
Figure 3.32). Such a strategy was advocated in earlier work in [191] and [190].

Motor fixed “Link 2"

to link 1, used
to drive

k2 T

Sensors for
angular

ition
/ posi

"Link 1"

Hanging Movement

position to help
(stable) swing-up
Moving Near Inverted
toward inverted position
inverted position (unstable)
position
Use swing-up controller Switch to balancing controller

FIGURE 3.32 The acrobot (figure taken
from [27], © Kluwer Academic Pub.).

The acrobot has a single actuator at the elbow and no actuator at the
shoulder; the system is “underactuated” because we desire to control two links of
the acrobot (each with a degree of freedom) with only a single system input. The
configuration of a simple acrobot, from which the system dynamics are obtained,
is shown in Figure 3.33. The joint angles ¢; and g2 serve as the generalized system
coordinates; m; and mg specify the mass of the links; [y and ls specify the link
lengths; l.; and .o specify the distance from the axis of rotation of each link to

181

182

Chapter 3 / Case Studies in Design and Implementation

its center of mass; and I; and I specify the moment of inertia of each link taken
about an axis coming out of the page and passing through its center of mass. The
single system input 7 is defined such that a positive torque causes g2 to increase
(move in the counterclockwise direction).

FIGURE 3.33 Simple acrobot notation
(figure taken from [27], © Kluwer Academic
Pub.).

The dynamics of the simple acrobot may be obtained by determining the Euler-
Lagrange equations of motion for the system. This is accomplished by finding
the Lagrangian of the system, or the difference between the system’s kinetic
and potential energies. Indeed, determining the kinetic and potential energies
of each link is the most difficult task in obtaining the system dynamics and
requires forming the manipulator Jacobian (see Chapters 5 and 6 of [192] for more
details). In [192], Spong has developed the equations of motion of a planar elbow
manipulator; this manipulator is identical to the acrobot shown in Figure 3.33,
except that it is actuated at joints one and two. The dynamics of the acrobot
are simply those of the planar manipulator, with the term corresponding to the
input torque at the first joint set equal to zero. The acrobot dynamics may be
described by the two second-order differential equations

di1Gr + di2Ga + hi + 1 =0 (3.7)
di2Gr + daaGa + ho + p2 =T (3.8)

where the coefficients in Equations (3.7) and (3.8) are defined as

di1 = mllgl + mz(l% + 132 + 2lqleo COS(QQ)) + 1+ 1>

3.10 Design Problems

d22 = mzlg2 + 12
dlg = mz(lfz + lllcz COS(Q2)) + 12

h1 = —malyleo Siﬂ(Qz)Qg — 2malyles sin(gz)gadu

ho = maliles sin(qz)q'f

&1 = (m1ler +mali)gcos(qr) + maleagcos(qr + q2)
$2 = maleagcos(qr + q2)

In our acrobot model, we have also limited the range for joint angle g5 to
[-7, 7] (i.e., the second link is not free to rotate in a complete revolution—it
cannot cross over the first link). We have also cascaded a saturation nonlinearity
between the controller output and plant input to limit the input torque magnitude
to 4.5 N-m. The model parameter values are given in Table 3.12.

TABLE 3.12 Acrobot Model
Parameters Used in Simulations

| Parameter | Value |

my 1.9008 kg

mo 0.7175 kg

l1 02 m

lo 0.2 m

le1 1.8522 x 10~ ' m

leo 6.2052 x 107° m

i) 4.3399 x 103 kg-m?
I 5.2285 x 10~ kg-m?

When you simulate the acrobot, be sure to use a good numerical simulation
algorithm with a small enough integration step size. For instance, use a fourth-
order Runge-Kutta technique with an integration step size of 0.0025 seconds. To
simulate the effects of implementing the controllers on a digital computer, sample
the output signals with a period T' = 0.01 seconds, and only update the control
input every T seconds (holding the value constant in between updates).

(a) Find a linear model about the equilibrium inverted position (¢1 = 7/2,
g2 =0, ¢ =0, ¢o = 0) with 7 = 0 (note that there is actually a continuum
of equilibrium positions). Define the state vector z = [q1 — 7/2, q2, 41, G2) "
to transform the balancing control problem to a regulation problem. The
acrobot dynamics linearized about x = [0, 0,0,0]" may be described by

&= Ax+ Bt
y=Czx+ Dt

Find the numerical values for the A, B, C, and D matrices and verify that the
system is unstable. Design a linear quadratic regulator (LQR), and illustrate

183

184 Chapter 3 / Case Studies in Design and Implementation

its performance in simulation for an initial condition ¢;(0) = 7/2 + 0.04,
g2(0) = —0.0500, ¢1(0) = —0.2000, and ¢2(0) = 0.0400. This initial condition
is such that the first link is approximately 2.29° beyond the inverted position,
while the second link is displaced approximately —2.86° from the first link.
The initial velocities are such that the first link is moving away from the
inverted position, while the second link is moving into line with the first
link.

(b) Next we study the development of a fuzzy controller for the acrobot. Suppose
that your fuzzy controller has four inputs: go(q1 —7/2), 9192, g24g1, and gsqgo;
and a single output. Here, gp—g3 are scaling gains, and the output of the
fuzzy controller is scaled by a gain h. Test your controller in simulation
using the same initial conditions as in part (a). Hint: Use the approach of
copying the LQR gains as we did for the rotational inverted pendulum. Also,
consider specifying the output membership function centers via a nonlinear
function.

Design Problem 3.10 (Fuzzy Warning Systems): In this problem you will
fully develop the fuzzy decision-making systems that are used as warning systems
for an infectious disease and an aircraft.

(a) Fully develop the fuzzy system that will serve as a warning system for the
infectious disease warning system described in Section 3.6.1 on page 162.
Test the performance of the system by showing that it can provide proper
warnings for each of the warning conditions.

(b) Repeat (a) but for the aircraft failure warning system described in Sec-
tion 3.6.2 on page 166.

Design Problem 3.11 (Automobile Speed Warning System)*: In this
problem you will study the development of a fuzzy decision-making system for
“intelligent vehicle and highway systems” where there is a focus on the devel-
opment of “automated highway systems” (AHS). In AHS it is envisioned that
vehicles will be automatically driven by an on-board computer that interacts
with a specially designed roadway. Such AHS offer significant improvements in
safety and overall roadway efficiency (i.e., they increase vehicle throughput). It
is evident that the AHS will evolve by the sequential introduction of increasingly
advanced automotive and roadway subsystems. One such system that may be
used is a speed advisory system to be placed on the vehicle to enhance safety,
as shown in Figure 3.34. There is a vehicle and a changeable electronic sign that
displays the speed limit for the current weather and traffic conditions, and in
addition transmits the current speed limit to passing vehicles. There is a receiver
in the vehicle that can collect this speed limit information. The problem is to
design a speed advisory system that can display warnings to the driver about the
dangers of exceeding the speed limit. We will use this problem to illustrate the

3.10 Design Problems

development of a fuzzy decision-making system that can emulate the manner in
which a human safety expert would warn the driver about traveling at dangerous
speeds if such a person could be available on each and every vehicle.

=
— bs

FIGURE 3.34 Scenario for an automobile speed advisory
system.

The first step in the design of the speed advisory system is to specify the types
of advice that the safety expert should provide. Then the expert should indicate
what variables need to be known to in order to provide such advice. This will help
define the inputs and outputs of the fuzzy system. Suppose specifications dictate
that the advisory system is to provide (1) an indication of the likelihood (on a
scale of zero to one, with one being very likely) that the vehicle will exceed the
current speed limit (which we assume is fixed at 55 mph for our example), and (2)
a numeric rating between one and ten (ten being the highest) of how dangerous
the current operating speed is. Suppose that to provide such information the
safety expert indicates that the error between the current vehicle speed and the
speed limit and the derivative of the error between the current vehicle speed and
the speed limit will be needed. Clearly, the fuzzy system will then have two inputs
and two outputs.

To develop a fuzzy speed warning system, we need to have the engineer
interview the safety expert to determine how to decide what warnings should be
provided to the driver. The safety expert will provide a linguistic description of
her or his approach. First, define the universe of discourse for the speed error
input to the fuzzy system to be [—100, 100] mph (where 100 mph is the highest
speed that the vehicle can attain) and universe of discourse for the change in speed
input to be [—10,10] mph/sec (so that the vehicle can accelerate or decelerate
at most 10 mph in one second). The universe of discourse for the output that
indicates the likelihood to exceed the speed limit is [0, 1], and the universe of
discourse for the danger rating output is [0, 10], with 10 representing the most
dangerous situation. We use e to denote the speed error, é for the derivative of
the error, s for the likelihood that the speed limit will be exceeded, and d for
the danger rating for the current speed. The linguistic variables for the inputs
could be = “error” and = “error-deriv,” and for the outputs they could be =
“likely-to-exceed-limit” and = “danger-rating.”

Examples of linguistic rules for the fuzzy system could be the following: (1)
If error is “possmall” and error-deriv is “neglarge” Then likely-to-exceed-limit is
“medium” (i.e., if the speed is below the limit, but it is approaching the limit
quickly, then there is some concern that the speed limit will be exceeded), (2) If

185

186 Chapter 3 / Case Studies in Design and Implementation

error is “zero” and error-deriv is “neglarge” Then likely-to-exceed-limit is “large”

(i.e.,

if the speed is currently at the speed limit and it is increasing rapidly, then

there is a significant concern that the speed limit will be exceeded), and (3) If
error is “possmall” and error-deriv is “neglarge” Then danger-rating is “small”

(i.e.,

if the speed is below the limit, but it is approaching the limit quickly, Then

there is some danger because the limit is likely to at least slightly exceed what
experts judge to be a safe driving speed).

(a)
(b)
()

Develop a fuzzy decision-making system that can serve as a speed advisory
system for automobiles.

Develop a test scenario for the fuzzy system. Clearly explain how you will
test the system.

Test the system according to your plan in (b), and show your results (these
should include showing that the system can provide warnings under the
proper conditions).

Design Problem 3.12 (Design of Fuzzy Decision-Making Systems)*: In
this problem you will assist in both defining the problem and the solution. The
problem focuses on the development of fuzzy decision-making systems that are
not necessarily used in the control of a system.

(a)

Suppose that you wish to buy a used car. You have various priorities with
regard to price, color, safety features, the year the car was made, and the
make of the car. Quantify each of these characteristics with fuzzy sets and
load appropriate rules into a fuzzy decision-making system that represents
your own priorities in purchasing a used car. For instance, when presented
with N cars in a row, the fuzzy system should be able to provide a value
that represents your ranking of the desirability of purchasing each of the
cars. Demonstrate in simulation the performance of the system (i.e., that
it properly represents your decision-making strategy for purchasing a used
car).

Suppose that you wish to design a computer program that will guess which
team wins in a football game (that has already been played) when it is given
only total passing yards, total rushing yards, and total time of possession
for each team. Design a fuzzy decision-making system that will guess at the
outcome (score) of a game based on these inputs. Test the performance of
the system by using data from actual games played by your favorite team.

An alternative, perhaps more interesting system to develop than the one
described in (b), would be one that would predict who would win the game
before it was played. How would you design such a system?

C HHEAPTE R——"4

Nonlinear Analysis

So far as the laws of mathematics refer to reality,
they are not certain. And so far as they are certain,
they do not refer to reality.

—Albert Einstein

4.1 Overview

As we described it in Chapters 1-3, the standard control engineering methodology
involves repeatedly coordinating the use of modeling, controller design, simulation,
mathematical analysis, implementations, and evaluations to develop control sys-
tems. In Chapters 2 and 3 we showed via examples how modeling is used, and we
provided guidelines for controller design. Moreover, we discussed how to simulate
fuzzy controllers, highlighted some issues that are encountered in implementation,
and showed case studies that illustrated the design, simulation, and implementa-
tion of fuzzy control systems. In this chapter we show how to perform mathematical
analysis of various properties of fuzzy control systems so that the designer will have
access to all steps of the basic control design methodology.

Basically, we use the mathematical model of the plant and nonlinear analysis to
enhance our confidence in the reliability of a fuzzy control system by verifying sta-
bility and performance specifications and possibly redesigning the fuzzy controller.
We emphasize, however, that mathematical analysis alone cannot provide defini-
tive answers about the reliability of the fuzzy control system since such analysis
proves properties about the model of the process, not the actual physical process.
Indeed, it can be argued that a mathematical model is never a perfect representa-
tion of a physical process; hence, while nonlinear analysis may appear to provide
definitive statements about control system reliability, you must understand that
such statements are only accurate to the extent that the mathematical model is
accurate. Nonlinear analysis does not replace the use of common sense and evalua-

187

188 Chapter 4 / Nonlinear Analysis

tion via simulations and experimentation. It simply assists in providing a rigorous
engineering evaluation of a fuzzy control system before it is implemented.

It is important to note that the advantages of fuzzy control often become most
apparent for very complex problems where we have an intuitive idea about how
to achieve high-performance control (e.g., the two-link flexible robot case study
in Chapter 3). In such control applications, an accurate mathematical model is so
complex (i.e., high order, nonlinear, stochastic, with many inputs and outputs) that
it is sometimes not very useful for the analysis and design of conventional control
systems since assumptions needed to utilize conventional control design approaches
are often violated. The conventional control engineering approach to this problem is
to use an approximate mathematical model that is accurate enough to characterize
the essential plant behavior in a certain region of operation, yet simple enough so
that the necessary assumptions needed to apply the analysis and design techniques
are satisfied. However, due to the inaccuracy of the model, upon implementation
the developed controllers often need to be tuned via the “expertise” of the control
engineer.

The fuzzy control approach, where explicit characterization and utilization of
control expertise is used earlier in the design process, largely avoids the problems
with model complexity that are related to design. That is, for the most part, fuzzy
control system design does not depend on a mathematical model unless it is needed
to perform simulations to gain insight into how to choose the rule-base and mem-
bership functions. However, the problems with model complexity that are related
to analysis have not been solved (i.e., analysis of fuzzy control systems critically
depends on the form of the mathematical model); hence, it is often difficult or
impossible to apply nonlinear analysis techniques to the applications where the
advantages of fuzzy control are most apparent!

For instance, existing results for stability analysis of fuzzy control systems typ-
ically require that the plant model be deterministic and satisfy some continuity
constraints, and sometimes require the plant to be linear or have a very specific
mathematical form. The most general approaches to the nonlinear analysis of fuzzy
control systems are those due to Lyapunov (his direct and indirect methods). On
the other hand, for some stability analysis approaches (e.g., for absolute stability),
the only results for analysis of steady-state tracking error of fuzzy control systems,
and the existing results on the use of describing functions for analysis of limit cycles,
essentially require a linear time-invariant plant (or one that has a special form so
that the nonlinearities can be bundled into one nonlinear component in the loop).

These limitations in the theory help to show that fuzzy control technology is in
a sense leading the theory; the practitioner will go ahead with the design and im-
plementation of many fuzzy control systems without the aid of nonlinear analysis.
In the meantime, theorists will continue to develop a mathematical theory for the
verification and certification of fuzzy control systems. This theory will have a syn-
ergistic effect by driving the development of fuzzy control systems for applications
where there is a need for highly reliable implementations.

Overall, the objectives of this chapter are as follows:

4.2 Parameterized Fuzzy Controllers

e To help teach sound techniques for the construction of fuzzy controllers by alerting
the designer to some of the pitfalls that can occur if a rule-base is improperly
constructed (e.g., instabilities, limit cycles, and steady-state errors).

® To provide insights into how to modify the fuzzy controller rule-base to guar-
antee that performance specifications are met (thereby helping make the fuzzy
controller design process more systematic).

® To provide examples of how to apply the theory to some simple fuzzy control
system analysis and design problems.

We provide an introduction to the use of Lyapunov stability analysis in Sec-
tion 4.3. In particular, we introduce Lyapunov’s direct and indirect methods and
illustrate the use of these via several examples and an inverted pendulum applica-
tion. Moreover, we show how to use Lyapunov’s direct method for the analysis of
stability of plants represented with Takagi-Sugeno fuzzy systems that are controlled
with a Takagi-Sugeno form of a fuzzy controller.

We introduce analysis of absolute stability in Section 4.4, steady-state error
analysis in Section 4.5, and describing function analysis in Section 4.6. In each
of these sections we show how the methods can aid in picking the membership
functions in a fuzzy controller to avoid limit cycles, and instabilities, and ultimately
to meet a variety of closed-loop specifications. Since most fuzzy control systems are
“hybrid” in that the controller contains a linear portion (e.g., an integrator or
differentiator) as well as a nonlinear portion (a fuzzy system), we will show how to
use nonlinear analysis to design both of these portions of the fuzzy control system.

Overall, while we highly recommend that you study this chapter carefully, if you
are not concerned with the verification of the behavior of a fuzzy control system,
you can skip to the next chapter. Indeed, there is no direct dependence of any topic
in the remaining chapters of this book on the material in this chapter. This chapter
simply tends to deepen your understanding of the material studied in Chapters 1-3.

4.2 Parameterized Fuzzy Controllers

In this section we will introduce the fuzzy control system to be investigated and
briefly examine the nonlinear characteristics of the fuzzy controller. Except in Sec-
tion 4.3, the closed-loop systems in this chapter will be as shown in Figure 4.1
(where we assume that G(s) is a single-input single-output (SISO) linear system)
or they will be modified slightly so that the fuzzy controller is in the feedback path.!
We will be using both SISO and MISO (multi-input single-output) fuzzy controllers
as they are defined in the next subsections.

1. We assume throughout this chapter that the fuzzy controller is designed so that the existence
and uniqueness of the solution of the differential equation describing the closed-loop system is
guaranteed.

189

190 Chapter 4 / Nonlinear Analysis

r e Fuzzy u y

—;@—) controller Plant
T — [

FIGURE 4.1 Fuzzy control system.

4.2.1 Proportional Fuzzy Controller

)

For the “proportional fuzzy controller,” as the SISO fuzzy controller in Figure 4.1
is sometimes called, the rule-base can be constructed in a symmetric fashion with
rules of the following form:

1. If e is NB Then u is NB
2. If e is NM Then v is NM
If e is NS Then u is NS
If e is ZE Then u is ZE
If e is PS Then u is PS
If e is PM Then u is PM

Noe ok W

If ¢ is PB Then u is PB

where NB, NM, NS, ZE, PS, PM, and PB are linguistic values representing “nega-
tive big,” “negative medium,” and so on.

The membership functions for the premises and consequents of the rules are
shown in Figure 4.2. Notice in Figure 4.2 that the widths of the membership func-
tions are parameterized by A and B. Throughout this chapter, unless it is indicated
otherwise, the same rule-base and similar uniformly distributed membership func-
tions will be used for all applications (where if the number of input and output
membership functions and rules increase, our analysis approaches work in a similar
manner). The fuzzy controller will be adjusted by changing the values of A and
B. The manner in which these values affect the nonlinear map that the fuzzy con-
troller implements will be discussed below. The fuzzy inference mechanism operates
by using the product to combine the conjunctions in the premise of the rules and
in the representation of the fuzzy implication. Singleton fuzzification is used, and
defuzzification is performed using the center-average method.

The SISO fuzzy controller described above implements a static nonlinear input-
output map between its input e(t) and output u(t). As we discussed in Chapter 2,
the particular shape of the nonlinear map depends on the rule-base, inference strat-
egy, fuzzification, and defuzzification strategy utilized by the fuzzy controller. Con-
sider the input-output map for the above fuzzy controller shown in Figure 4.3 with
A = B = 1. Modifications to the fuzzy controller can provide an infinite variety

4.2 Parameterized Fuzzy Controllers 191

e(t)

\ \
\ \
\ \
| |
\ T
OB 028 E% 0 B 2B B u(t)
FIGURE 4.2 Membership functions for e(t) and u(t) (figure

taken from [83], (© John Wiley and Sons).

of such input-output maps (e.g., by changing the consequents of the rules). Notice,
however, that there is a marked similarity between the input-output map in Fig-
ure 4.3 and the standard saturation nonlinearity. In fact, the parameters A and B
from the fuzzy controller are similar to the saturation parameters of the standard
saturation nonlinearity—that is, B is the level at which the output saturates, and
A is the value of e(t) at which the saturation of u(t) occurs. Because the input-
output map of the fuzzy controller is odd, —B is the saturation level for e(t) < —A,
and —A is the value of e(t) where the saturation occurs. By modifying A and B
(and hence moving the input and output membership functions), we can change the
input-output map nonlinearity and its effects on the system. Throughout this chap-
ter, except in Section 4.3, we will always use rules in the form described above. We
emphasize, however, that the nonlinear analysis techniques used in this chapter will
work in the same manner for other types of rule-bases (and different fuzzification,
inference, and defuzzification techniques).

4.2.2 Proportional-Derivative Fuzzy Controller

There are many different types of fuzzy controllers we could examine for the MISO
case. Here, aside from Section 4.3, we will constrain ourselves to the two input
“proportional-derivative fuzzy controller” (as it is sometimes called). This controller
is similar to our SISO fuzzy controller with the addition of the second input, é. In
fact, the membership functions on the universes of discourses and linguistic values
NB, NM, NS, ZE, PS, PM, and PB for e and u are the same as they are shown in
Figure 4.2 and will still be adjusted using the parameters A and B, respectively.
The membership functions on the universe of discourse and the linguistic values for
the second input, é, are the same as for e with the exception that the adjustment

192

Chapter 4 / Nonlinear Analysis

0.5 q

u(t)

-0.5F q

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

e(t)

FIGURE 4.3 Input-output map of the proportional fuzzy
controller (figure taken from [83], © John Wiley and Sons).

parameter will be denoted by D. Therefore, there are now three parameters for
changing the fuzzy controller: A, B, and D. Assuming that there are seven mem-
bership functions on each input universe of discourse, there are 49 possible rules
that can be put in the rule-base. A typical rule will take on the form

If ¢ is NB and ¢ is NB Then v is NB

The complete set of rules is shown in tabulated form in Table 4.1. In Table 4.1
the premises for the input é are represented by the linguistic values found in the
top row, the premises for the input e are represented by the linguistic values in the
left-most column, and the linguistic values representing the consequents for each
of the 49 rules can be found at the intersections of the row and column of the
appropriate premises (note that this is a slightly different tabular form than what
we used earlier since we list the actual linguistic values here). The upper left-hand
corner of the body of Table 4.1 is the representation of the above rule, “If e is
NB and ¢ is NB Then u is NB.” The remainder of the MISO fuzzy controller is
similar to the SISO fuzzy controller (i.e., singleton fuzzification, the product for
the premise and implication, and center-average defuzzification are used). Notice
that there is a type of pattern of rules in Figure 4.1 that will result in a particular
(somewhat irregular shaped) nonlinearity. This particular rule-base was chosen for
an application we study in describing function analysis later in the chapter.

We can also construct an input-output map for this MISO fuzzy controller.
The parameters A and B have the same effect as with the SISO fuzzy controller.
By changing the values A, B, and D, we can change the effect of the MISO fuzzy
controller on the closed-loop system without reconstructing the rule-base or any

4.3 Lyapunov Stability Analysis 193

TABLE 4.1 Rule Table for PD Fuzzy Controller

“output” “change-in-error” é
U NB|NM [NS [ZE | PS [PM [PB
NB ||[NB| NS | PS | PB | PB | PB | PB
NM|[NB|NM | ZE [PM | PM | PB | PB
“error” | NS || NB[NM | NS | PS | PM | PB | PB
e ZE |NB| NM | NS | ZE | PS | PM | PB
PS | NB| NB | NM | NS | PS | PM | PB
PM | NB|NB |NM|NM| ZE | PM | PB
PB || NB| NB | NB | NB | NS | PS | PB

other portion of the fuzzy controller. Again, we emphasize that while we use this
particular fuzzy controller, which is conveniently parameterized by A, B, and D, the
approaches to nonlinear analysis in this chapter work in a similar manner for fuzzy
controllers that use other membership functions, rule-bases, inference mechanisms,
and fuzzification and defuzzification strategies.

4.3 Lyapunov Stability Analysis

Often the designer is first concerned about investigating the stability properties of
a fuzzy control system, since it is often the case that if the system is unstable there
is no chance that any other performance specifications will hold. For example, if
the fuzzy control system for an automobile cruise control is unstable, you would
be more concerned with the possibility of unsafe operation than with how well it
regulates the speed at the set-point. In this section we provide an overview of two
approaches to stability analysis of fuzzy control systems: Lyapunov’s direct and
indirect methods. We provide several examples for each of the methods, including
the application of Lyapunov’s direct method to the stability analysis of Takagi-
Sugeno fuzzy systems. In the next section we show how to use the circle criterion
in the analysis of absolute stability of fuzzy control systems.

4.3.1 Mathematical Preliminaries
Suppose that a dynamic system is represented with

o(t) = f(z(t)) (4.1)
where z € R™ is an n vector and f: D — R™ with D = R" or D = B(h) for some
h > 0 where

B(h) ={z e R" : |z| < h}

is a ball centered at the origin with a radius of h and |- | is a norm on R" (e.g.,
|z| = /(zTx)). If D =R" then we say that the dynamics of the system are defined
globally, while if D = B(h) they are only defined locally. Assume that for every xg

194 Chapter 4 / Nonlinear Analysis

the initial value problem

@(t) = f(x(0)), 2(0) =m0 (4.2)

possesses a unique solution ¢(t, zg) that depends continuously on zy. A point z, €
R™ is called an “equilibrium point” of Equation (4.1) if f(x.) = 0 for all t > 0. An
equilibrium point z. is an “isolated equilibrium point” if there is an A’ > 0 such
that the ball around z.,

B(xe, M) ={z € R": |z — x| < 1}

contains no other equilibrium points besides z.. As is standard, we will assume that
the equilibrium of interest is an isolated equilibrium located at the origin of R™.
This assumption results in no loss of generality since if . # 0 is an equilibrium
of Equation (4.1) and we let Z(t) = x(t) — ., then Z = 0 is an equilibrium of the
transformed system

a(t) = f(z(t)) = f(2(t) + @)

(for an example of this idea, see Section 4.3.4).

The equilibrium z, = 0 of (4.1) is “stable” (in the sense of Lyapunov) if for
every € > 0 there exists a d(€) > 0 such that |¢(¢, zo)| < € for all ¢ > 0 whenever
|zo] < 0(€) (i.e., it is stable if when it starts close to the equilibrium it will stay
close to it). The notation §(e) means that § depends on e. A system that is not
stable is called “unstable.”

The equilibrium z,. = 0 of Equation (4.1) is said to be “asymptotically stable” if
it is stable and there exists n > 0 such that lim; o ¢(t, 29) = 0 whenever |zg| <
(i.e., it is asymptotically stable if when it starts close to the equilibrium it will
converge to it).

The set Xg C R™ of all 29 € R™ such that ¢(t,29) — 0 as t — oo is called the
“domain of attraction” of the equilibrium z. = 0 of Equation (4.1). The equilibrium
z. = 0 is said to be “globally asymptotically stable” if X; = R™ (i.e., if no matter
where the system starts, its state converges to the equilibrium asymptotically).

As an example, consider the scalar differential equation

(t) = —2z(t)

which is in the form of Equation (4.2). For this system, D = ! (i.e., the dynamics
are defined on the entire real line, not just some region around zero). We have
z. = 0 as an equilibrium point of this system since 0 = —2x.. Notice that for any
o, we have the solution

B(t, 20) = o 2 — 0

as t — oo so that the equilibrium x, = 0 is stable since if you are given any
€ > 0 there exists a § > 0 such that if |zo| < 0, ¢(¢,20) < €. To see this, simply

4.3 Lyapunov Stability Analysis

choose 0 = € for any € > 0 that you choose. Also note that since for any g € R",
o(t,z9) — 0, the system is globally asymptotically stable. While determining if this
system possesses certain stability properties is very simple since the system is so
simple, for complex nonlinear systems it is not so easy. One reason for this is that
for complex nonlinear systems, it is difficult to even solve the ordinary differential
equations (i.e., to find ¢(t,zg) for all ¢ and xg). However, Lyapunov’s methods
provide two techniques that allow you to determine the stability properties without
solving the ordinary differential equations.

4.3.2 Lyapunov’s Direct Method

The stability results for an equilibrium z. = 0 of Equation (4.1) that we provide
next depend on the existence of an appropriate “Lyapunov function” V : D — R
where D = R™ for global results (e.g., global asymptotic stability) and D = B(h) for
some h > 0, for local results (e.g., stability in the sense of Lyapunov or asymptotic
stability). If V' is continuously differentiable with respect to its arguments, then the
derivative of V' with respect to t along the solutions of Equation (4.1) is

Viwny(@(8) = VV (2 (t) T f(z(t)
where

v v Al
VV(x(t)) = or 9os’ " Do
is the gradient of V with respect to x. Using the subscript on V is sometimes
cumbersome, so we will at times omit it with the understanding that the derivative
of V is taken along the solutions of the differential equation that we are studying
the stability of.
Lyapunov’s direct method is given by the following:

1. Let &, = 0 be an equilibrium for Equation (4.1). Let V : B(h) — R be a
continuously differentiable function on B(h) such that V(0) = 0 and V(z) > 0
in B(h) — {0}, and V{4.1)(z) < 0in B(h). Then x. = 0 is stable. If, in addition,
\'/(4.1)(33) < 0in B(h) — {0}, then z. = 0 is asymptotically stable.

2. Let . = 0 be an equilibrium for Equation (4.1). Let V : ®* — R be a contin-
uously differentiable function such that V(0) = 0 and V(x) > 0 for all z # 0,
|z| — oo implies that V(x) — oo, and V(4.1)(x) < 0 for all 2 # 0. Then z. =0
is globally asymptotically stable.

As an example, consider the system

#(t) = —223

195

196 Chapter 4 / Nonlinear Analysis

that has an equilibrium z. = 0. Choose

1
Vi(x) = 5332
With this choice we have
. oV dx
V=_"""—gi=—23%
Ox dt xx .

so that clearly if # # 0 then —22* < 0, so that by Lyapunov’s direct method x, = 0
is asymptotically stable. Notice that . = 0 is in fact globally asymptotically stable.

While Lyapunov’s direct method has found wide application in conventional
control, it is important to note that it is not always easy to find the “Lyapunov
function” V that will have the above properties so that we can guarantee that the
system is stable. Next, we introduce Lyapunov’s indirect method.

4.3.3 Lyapunov’s Indirect Method

Let % = [ng} denote the nxn “Jacobian matrix.” For the next result, assume that
J

f: D — R" where D C R, that x, € D, and that f is continuously differentiable.
Lyapunov’s indirect method is given by the following: Let x, = 0 be an equi-
librium point for the nonlinear system Equation (4.1). Let the n x n matrix

1= f
A= ax(x)

rx=x.=0

then

1. The origin . = 0 is asymptotically stable if Re[);] < 0 (the real part of A;) for
all eigenvalues \; of A.

2. The origin z, = 0 is unstable if Re[)\;] > 0 for one or more eigenvalues of A.

3. If Rg[Ai] < 0 for all ¢ with Re[A;] = 0 for some ¢ where the \; are the eigenvalues
of A, then we cannot conclude anything about the stability of x, = 0 from
Lyapunov’s indirect method.

Lyapunov’s indirect method has also found wide application in conventional
control. Note that the term “indirect” is used since we arrive at our conclusions
about stability indirectly by first linearizing the system about an operating point.
The indirect method is sometimes called Lyapunov’s “first method,” while the direct
method is referred to as his “second method.”

As an example, consider the system

Tr=-x

4.3 Lyapunov Stability Analysis

that has an equilibrium z. = 0. We have

[l:a—f(x) =-2r=0

81: rx=x.=0

so that we can conclude nothing about stability. In the next section we will show a
simple example where both Lyapunov techniques can be used to draw conclusions

about stability for a fuzzy control system.

4.3.4 Example: Inverted Pendulum
In this section we will illustrate the use of Lyapunov’s indirect method for stability
analysis of an inverted pendulum (one with a model different from the ones used

in Chapters 2 and 3).
A simple model of the pendulum shown in Figure 4.4 is given by

(4.3)

$.1 = T2
. - k 1
By = —%sin(x1) — a0+ —mT

where g = 9.81, £ = 1.0, m = 1.0, k = 0.5, z1 is the angle (in radians) shown in
Figure 4.4, x5 is the angular velocity (in radians per second), and T is the control

input.

)
Inverted 2
position 3

| T
Downward |
position Ly

|
I
FIGURE 4.4 Pendulum.
If we assume that T' = 0, then there are two distinct isolated equilibrium points,

one in the downward position [0,0]T and one in the inverted position [r, 0] . Since
we are interested in the control of the pendulum about the inverted position, we

197

198 Chapter 4 / Nonlinear Analysis

need to translate the equilibrium by letting # = z — [7,0] ". From this we obtain

I
=h

&I

(z) (4.4)

1) — %fz + #T = fz(f)

&I

2 P
sin(

Sk &I

1
2

]

where if 7' = 0 then Z = 0 corresponds to the equilibrium [r,0]" in the original
system in Equation (4.3), so studying the stability of Z = 0 corresponds to studying
the stability of the fuzzy control system about the inverted position. Now, it is
traditional to omit the cumbersome bar notation in Equation (4.4) and study the
stability of = 0 for the system

$.1:$2=f1(213 (45)
$.2 = %Sin($1) — %$2 + #T = fQ(ZIJ))
with the understanding that we are actually studying the stability of Equation (4.4).
Assume that the fuzzy controller denoted by T' = ®(x1, x2), which utilizes 1 and
29 as inputs to generate T as an output, is designed so that f (i.e., the closed-loop
dynamics) are continuously differentiable and so that D is a neighborhood of the
origin.

Application of Lyapunov’s Direct Method
Assume that for the fuzzy controller (0, 0) = 0 so that the equilibrium is preserved.

Choose
1 1 1
V(z)= §xTx = §x% + 533%
so that
VV(x(t) = [z1,22] "
and

V = [z1, 2] .
TP Sin(a) — Loy + L5 0(a1, 70)

and we would like V' < 0 to prove asymptotic stability (i-e., to show that the fuzzy
controller can balance the pendulum). We have

k 1
o | 1+ g sin(z1) — —x2 + —P(x1,22) | < -0
1 m mi?

if for some fixed 5 > 0 (note that xzs # 0)

k 1
x1 + %Sin(xl) — a2t W@(azl,xz) < —%

4.3 Lyapunov Stability Analysis

Rearranging this equation, we see that we need

k .
®(x1,20) < M2 (_x% + Exz —x1 — %5111(351))

on z € B(h) for some h > 0 and 8 > 0. As a graphical approach, we can plot
the right-hand side of this equation, design the fuzzy controller ®(x1,x3), and find
h >0 and 8 > 0 so that the given inequality holds and hence asymptotic stability
holds.

We must emphasize that this is a local result. This means that we have shown
that there exists an h and hence a ball B(h) such that if we start our initial
conditions in this ball (i.e., z(0) € B(h)), then the fuzzy controller will balance the
pendulum. The theory does not say how large h is; hence, it can be very small so
that you may have to start the initial condition very close to the vertical equilibrium
point for it to balance.

Application of Lyapunov’s Indirect Method
For Equation (4.5)

- ofi Ofr 0 1
A=19% 38 :[g+ Lor ko 16_T] (4.6)
Ox1 Oxo =0 £ me2 Oz, m me2 Oxa =0

The eigenvalues of A are given by the determinant of A\I — A. To ensure that the
eigenvalues \;, i = 1,2, of A are in the left half of the complex plane, it is sufficient

that
k 1 aT g 1 9T
22 ————] —Z—-——)=0 4.7
* (m mi? 8332) * (¢ me? 8331) (47)
where x = 0, has its roots in the left half-plane. Equation (4.7) will have its roots

in the left half-plane if each of its coefficients are positive. (Why?) Hence, if we
substitute the values of the model parameters, we need

Ba7|_, <k =05, s
= 4.8
g—T < glm = —9.81
1 z=0

to ensure asymptotic stability.

Using simple intuitive knowledge about the dynamics of the inverted pendu-
lum, we can design a fuzzy controller that uses triangular membership functions
and 25 rules that meets these constraints. Rather than provide the details of the
development of the fuzzy controller, which differs slightly from the one introduced
in Section 4.2.1 on page 190, we would simply like to emphasize that any fuzzy
controller that satisfies the above conditions in Equation (4.8) will result in a sta-
ble closed-loop system (we have designed and tested one). One easy way to design

199

200 Chapter 4 / Nonlinear Analysis

such a fuzzy controller is to construct one in the usual way (i.e., heuristically) then
plot the controller surface and check that the above conditions in Equation (4.8)
are met (by simply inspecting the plot to make sure that its slope near zero (i.e.,
x = 0) satisfies the above constraints).

Finally, it is important that the reader not overgeneralize the stability result
that is obtained via Lyapunov’s indirect method. For the pendulum, Lyapunov’s
indirect method simply says that if the pendulum position begins close enough
to the inverted position, the fuzzy controller will be guaranteed to balance it in
the upright position; whereas if the pendulum starts too far from the balanced
condition, the fuzzy controller may not balance it.

4.3.5 Example: The Parallel Distributed Compensator

While in the remainder of this chapter we consider nonlinear analysis of fuzzy con-
trol systems where the fuzzy controller is the “standard” one, in this one subsection
we consider the case where the plant and controller are Takagi-Sugeno fuzzy sys-
tems. While here we will study the continuous-time case, in Exercise 4.6 on page 227
we will focus on the discrete-time case.

Plant, Controller, and Closed-Loop System

In particular, consider the plant introduced in Chapter 2, Section 2.3.7, in Equa-
tion (2.23) on page 76, where if we let z(t) = x(t) we have

R R
i(t) = (Z Ai@-(x(t))) o(t) + (Z BMx(t))) u(t) (4.9)

which is a Takagi-Sugeno fuzzy system. We could let u(t) = 0, ¢ > 0 and study
the stability of Equation (4.9). Instead, we will consider the case where we use a
controller to generate u(t).

Assume that we can measure z(t) and that the controller is another Takagi-
Sugeno fuzzy system with R rules (the same number of rules as was used to describe
the plant) of the form

If &, is A] and &5 is Af and, ..., and Z, is A', Then v’ = K;z(t)

where K;, i = 1,2,..., R, are 1 X n vectors of control gains and the premises of
the rules are identical to the premises of the plant rules that were used to specify
Equation (4.9). In this case

R
u(t) = 3 K8 (w(t)a(t) (4.10)

This controller is sometimes referred to as a “parallel distributed compensator”
since some think of the i*" rule in the controller as controlling the ** rule of
the plant, as this may be how you think of the design methodology for the Kj;

4.3 Lyapunov Stability Analysis

gains. In this context some people think of the compensator as being “parallel”
and “distributed” since the rules can be viewed as parallel and since some view
the construction of the gain K; as separate from the construction of the gain Kj;
where i # j. We will, however, see below that the construction of each K; gain is
not necessarily independent of the construction of other K; gains, i # j.

If we connect the controller to the plant in Equation (4.9), we get a closed-loop
system

R
> Aiki(a () (ZB&)ZK &(x a(t) (4.11)

which is in the form of Equation (4.1). We assume that p; and hence ; are defined
so that Equation (4.11) possesses a unique solution that is continuously dependent
on z(0).

Stability Analysis
For stability analysis we use the direct method of Lyapunov. Choose a (quadratic)
Lyapunov function

V(z) =z Pz

where P is a “positive definite matrix” (denoted by P > 0) that is symmetric (i.e.,
P = PT). Given a symmetric matrix P we can easily test if it is positive definite.
You simply find the eigenvalues of P, and if they are all strictly positive, then P is
positive definite. If P is positive definite, then for all = # 0, T Pz > 0. Hence, we
have V(x) > 0 and V(z) = 0 only if z = 0. Also, if |z| — oo, then V(z) — 0.

To show that the equilibrium 2 = 0 of the closed-loop system in Equation (4.11)
is globally asymptotically stable, we need to show that V() < 0 for all z. Notice
that

V(z)=2"Pi+i' Pz

so that since

oy pi(a(1))
S = @)
we have
Vo) = o7 | im Aitis(@(®)) | (25;1 Bz-m(t))) (ZJ 1&%(%(&))]
- R R
SE L p(a(t)) SE L pa(a(t)) S ()
S A (t)) (25;1 BM(%@))) (ZJ 1Kaug(x(t))>
+x = . + = . Pz

Zi:l:ul(x(t)) Zi:l:ul(x(t)) Z 1#3((t))

201

202 Chapter 4 / Nonlinear Analysis

_rp [S A) S5 (1) (25‘113%@@))) (Zf_lKjuj(x(t))ﬂ
=7 R R + R R z
> im iz (1)) Zj:l i (x(t)) 2 i iz (1)) Zj:l i (x(t))
T SR A (a() S5 (a(2)
S i () S0y (2(1))
(T

Pz

(2511 wa(t))) (ZJ K (et >>>
+ = =
2 i Mi(z(t)) 23:1 1 (z(t))

Now, if we let >, . denote the sum over all possible combinations of i and j,
1=1,2,. R]—12 ., R, we get

)i (z(1)) +Z”BKJM(r))pi (=) |

I (2 (1)) i g (@ (8)) g (2

[y Al () (1) +Z”BKJM(a(t))p; (x(t))
Z”uz(a(t))p; (x(t)) i g i (8)) g ((2)

V(iz)=z'P

D (A + BiK)pi (2 () (x(t))
I > hi(@ () (2 (t)

>, (A + BiK;
i Z”m()
>ij(Ai + BiK;)m

Z'LJ:‘L’L(()

_ T Dotz ())ug((t) [P (Ai + BiK;) + (Ai + BiK;) " P]
B > i) (z(t))

W\/
s
—~
8
—~
~
~—
~—

\/‘g
<.
—~
8
—~
=

I—I

T

Now, since

we have

Hence, if

z" (P(4i + BiK;) + (A + BiK;) T P)z < 0 (4.12)

4.3 Lyapunov Stability Analysis

then V(z) < 0.
Let

Z =P(A;+ B;K;) + (A + B.K;)' P

Notice that since P is symmetric Z is symmetric so that ZT = Z. Equation (4.12)
holds if Z is a “negative definite matrix.” For a symmetric matrix Z, we say that
it is negative definite (denoted Z < 0) if " Zx < 0 for all x # 0. If Z is symmetric,
then it is negative definite if the eigenvalues of Z are all strictly negative. Hence,
to show that the equilibrium 2 = 0 of Equation (4.11) is globally asymptotically
stable, we must find a single n X n positive definite matrix P such that

P(A; + BiK;) + (A + B;K;) ' P <0 (4.13)

foralli=1,2,...,Rand j=1,2,..., R.

Notice that in Equation (4.13) finding the common P matrix such that the
R? matrices are negative definite is not trivial to compute by hand if n and R are
large. Fortunately, “linear matrix inequality” (LMI) methods can be used to find P
if it exists, and there are functions in a Matlab toolbox for solving LMI problems.
If, however, via these methods there does not exist a P, this does not mean that
there does not exist a Takagi-Sugeno fuzzy controller that can stabilize the plant;
it simply means that the quadratic Lyapunov function approach (i.e., our choice of
V(x) above) did not lead us to find one. If you pick a different Lyapunov function,
you may be able to find a Takagi-Sugeno controller that will stabilize the plant. It
is in this sense that Lyapunov techniques often are called “conservative” in that
conditions can often be relaxed beyond what the Lyapunov method would say for a
given Lyapunov function and stability is still maintained. This does not, however,
give us the license to ignore the conditions set up by the Lyapunov method; it simply
is something that the designer must keep in mind in designing stable controllers
with a Lyapunov method.

In our use of the Lyapunov method for constructing a Takagi-Sugeno fuzzy
controller, it is evident that the overall approach must be conservative due partially
to the use of the quadratic Lyapunov function and also since the stability test in
Equation (4.13) depends in no way on the membership functions that are chosen for
the plant representation that are used in the controller. In other words the results
indicate that no matter what membership functions are used to represent the plant,
and these are what allow for the modeling of nonlinear behavior, the stability test
is the same. In this sense the test is for all possible membership functions that can
be used. Clearly, then, we are not exploiting all of the known nonlinear structure
of the plant and hence we are opening the possibility that the resulting stability
analysis is conservative.

Regardless of the conservativeness, the above approach to controller construc-
tion and stability analysis can be quite useful for practical applications where you
may ignore the stability analysis and simply use the type of controller that the
method suggests (i.e., the controller in Equation (4.10) that is a nonlinear inter-

203

204 Chapter 4 / Nonlinear Analysis

polation between R linear controllers). We will discuss the use of this controller in
more detail in Chapter 7, Section 7.2.2, when we discuss gain scheduling since you
can view the Takagi-Sugeno fuzzy controller as a nonlinear interpolator between R
linear controllers for R linear plants represented by the Takagi-Sugeno model of the
plant.

Simple Stability Analysis Example
As a simple example of how to use the stability test in Equation (4.13), assume
that n = 1, R =2, Ay = —1, By = 2, A, = =2, and By = 1. These provide
the parameters describing the plant. We do not provide the membership functions
as any that you choose (provided that they result in a differential equation with
a unique solution that depends continuously on z(0)) will work for the stability
analysis that we provide.

Equation (4.13) says that to stabilize the plant with the Takagi-Sugeno fuzzy
controller in Equation (4.10), we need to find a scalar P > 0 and gains K7 and K>

such that
P(—1+4+2K;)+(-14+2K;)P <0
P(—1+42K3) + (-1+2K3)P <0
P(—24+ K|)+ (-2+K)P <0
P(—2+4+ K3)+ (-2 + K3)P <0

Choose any P > 0 such as P = 0.5. The stability test indicates that we need K;
and Ko such that K3 < 0.5 and K2 < 2 to get a globally asymptotically stable
equilibrium z = 0. If you simulated the closed-loop system for some z(0) # 0, you
would find that x — 0 as t — co.

4.4 Absolute Stability and the Circle Crite-
rion

In this section we will examine the use of the Circle Criterion for testing and

designing to ensure the stability of a fuzzy control system. The methods of this

section provide an alternative (to the ones described in the previous section) for
when the closed-loop system is in a special form to be defined next.

4.4.1 Analysis of Absolute Stability

Figure 4.5 shows a basic regulator system. In this system G(s) is the transfer
function of the plant and is equal to C(sI — A)~!B where (4, B, () is the state
variable description of the plant (z is the n-dimensional state vector). Furthermore,
(A, B) is controllable and (A, C') is observable [54]. The function ®(t,y), represents
a memoryless, possibly time-varying nonlinearity—in our case, the fuzzy controller.
Here, the fuzzy controller does not change with time, so we denote it by ®(y). Even
though the fuzzy controller is in the feedback path rather than the feed-forward

4.4 Absolute Stability and the Circle Criterion

path in this system, we will be able to use the same SISO fuzzy controller described
in Section 4.2.1 since it represents an odd function (i.e., for our illustrative example
with the SISO fuzzy controller ®(—y) = —®(y) so we can transform Figure 4.5
into Figure 4.2). It is assumed that ®(y) is piecewise continuous in ¢ and locally
Lipschitz [141].

i G(s) -

D(1,y)

FIGURE 4.5 Regulator
system.

If @ is bounded within a certain region as shown in Figure 4.6 so that there
exist «, 3, a, b, (8 > «, a < 0 < b) for which

ay < ®(y) < By (4.14)

for all ¢ > 0 and all y € [a,b] (i.e., it fits between two lines that pass through
zero) then @ is said to be a “sector nonlinearity” or it is said to “lie on a sector.” If
Equation (4.14) is true for all y € (—00, 00), then the sector condition holds globally;
and if certain conditions hold (to be listed below), the system is “absolutely stable”
(i.e., = 0 is (uniformly) globally asymptotically stable). For the case where ® only
satisfies Equation (4.14) locally (i.e., for some a and b), if certain conditions (to
be listed below) are met, then the system is “absolutely stable on a finite domain”
(i.e., z = 0 is asymptotically stable).

/By)
/
/ -
-~
ay
-~
|
b y

FIGURE 4.6 Sector-bounded
nonlinearity.

205

206 Chapter 4 / Nonlinear Analysis

Recall that in Section 4.2.1 we explained how the fuzzy controller is often similar
to a saturation nonlinearity. Clearly, the fuzzy controller can be sector-bounded in
the same manner as the saturation nonlinearity with either o = 0 for the global
case, or for local stability, with some « > 0. To see this, consider how you would
bound the plot of the fuzzy controller input-output map in Figure 4.3 on page 192
with two lines as shown in Figure 4.6.

Last, we define D(c, 3) to be a closed disk in the complex plane whose diameter
is the line segment connecting the points —i + 40 and —% + j0. A picture of this
disk is shown in Figure 4.7.

Im[s]

o U N Re[s]
o B

FIGURE 4.7 Disk.

Circle Criterion: With ® satisfying the sector condition in Equation (4.14), the
regulator system in Figure 4.5 is absolutely stable if one of the following three
conditions is met:

1. If 0 < a < @, the Nyquist plot of G(jw) is bounded away from the disk
D(a,) and encircles it m times in the counterclockwise direction where m is
the number of poles of G(s) in the open right half-plane.

2. If 0 = o < B, G(s) is Hurwitz (i.e., has its poles in the open left half plane)

and the Nyquist plot of G(jw) lies to the right of the line s = —5.

3. If a < 0 < B, G(s) is Hurwitz and the Nyquist plot of G(jw) lies in the interior
of the disk D(a,) and is bounded away from the circumference of D(«, 3).

If ® satisfies Equation (4.6) only on the interval y € [a, b] (i.e., it only lies between
the two lines in a region around zero), then the above conditions ensure absolute
stability on a finite domain. It is important to note that the above conditions are
only sufficient conditions for stability and hence there is the concern that they are
conservative. In [223] it is shown how the circle criterion can be adjusted such that
the conditions are sufficient and necessary in a certain way. We introduce these
next.

It is necessary to begin by providing some mathematical preliminaries. For each
real p € [1,00), the set L, consists of functions f(-) : [0,00) — R such that

S 1P dt < oo (4.15)

For instance, if f(t) = e~%, then we can say that f(t) € L;. The set Lo, denotes
the set of all functions f(t) such that sup,{f(¢)} < co (i.e., the set of all bounded

4.4 Absolute Stability and the Circle Criterion

functions). Clearly, e™% € Lo, also.
Let

fr(t) ={ S g=r=t (4.16)

be a truncated version of f(t). Let the set L., the extension of Ly, consist of all
functions fr : [0,00) — R, such that fr € L, for all finite T Finally, let

S 1/p
150 1= | [1o]
I FC) llzp = (1 FC) [l
If R is a binary relation on Lye, then R is said to be L,-stable if
(z,y) ER,z€L,=>y€EL, (4.17)

For example, if z is the input to a system and y is the output, this quantifies a type
of input-output stability. R is “L,-stable with finite gain” if it is L,-stable, and in
addition there exist finite constants «y, and b, such that

(z,y) € R,z € Ly = |lylly < wllllp + by (4.18)

R is “L,-stable with finite gain and zero bias” if it is L,-stable, and in addition
there exists a finite constant 7, such that

(z,y) € Ry x € Ly = lylly < wllell (4.19)

Assume that we are given the regulator system shown in Figure 4.5 (with G
defined as above) except that now ® is in general defined by ® : Lo, — Lo (more
general than above so it can still represent a fuzzy controller). ® belongs to the
open sector (o,) if it belongs to the sector [+ €, 3 — €] for some € > 0 with the
sector bound defined as

[z — [(8 +)/2z||72 < L5 ||z|| 70, for all T > 0, for all € Ly (4.20)

In actuality, this definition of the sector [«, 3] is the same as our previous definition
in Equation (4.14) if ® is memoryless (i.e., it has no dynamics, and it does not use
past values of its inputs, only its current input). Hence, since we have a memoryless
fuzzy controller, we can use the sector condition from Equation (4.14). Next, we
state a slightly different version of the circle criterion that we will call the circle
criterion with sufficient and necessary conditions (SNC).

Circle Criterion with Sufficient and Necessary Conditions (SNC): For
the system of Figure 4.5 with ® defined as ® : Ly — Lo, which satisfies Equa-
tion (4.20), and «, 8 two given real numbers with o < 3, the following two state-
ments are equivalent [223]:

207

208 Chapter 4 / Nonlinear Analysis

1. The feedback system is Lo-stable with finite gain and zero bias for every ®
belonging to the sector («, 3).

2. The transfer function G satisfies one of the following conditions as appropriate:

(a) If af > 0, then the Nyquist plot of G(jw) does not intersect the interior
of the disk D(«, 8) and encircles the interior of the disk D(a, 3) exactly
m times in the counterclockwise direction, where m is the number of poles
of G with positive real part.

(b) If & = 0, then G has no real poles with positive real part, and Re[G(jw)] >
—% for all w.

(¢) If af < 0, then G is a stable transfer function and the Nyquist plot of
G(jw) lies inside the disk D(«, 8) for all w.

If the conditions in statement 2 are satisfied, the system is Ls-stable and the
result is similar to the circle criterion with sufficient conditions only. Negation of
statement 2 infers negation of statement 1, and we can state that the system will
not be Lo-stable for every nonlinearity in the sector (it may not be apparent which
of the nonlinearities in a sector will cause the instability). Hence, if a given fuzzy
control system does not satisfy any of the conditions of statement 2, then we do
not know that it will result in an unstable system. All we know is that there is a
way to define the fuzzy controller (perhaps one you would not pick) that will result
in an unstable closed-loop system.

4.4.2 Example: Temperature Control
Suppose that we are given the thermal process shown in Figure 4.8, where 7. is the
temperature of a liquid entering the insulated chamber, 7, is the temperature of
the liquid leaving the chamber, and 7 = 7, — 7 is the temperature difference due
to the thermal process. The heater/cooling element input is denoted with g. The
desired temperature is 74. Suppose that the plant model is

7(s) 1

a(s) s+2

(note that we are slightly abusing the notation by showing 7 as a function of the
Laplace variable). Suppose that we wish to track a unit step input 74. We wish to
design a stable fuzzy control system and would like to try to make the steady-state
error go to zero.

Suppose that the control system that we use is shown in Figure 4.9. The con-
troller G(s) is a post compensator for the fuzzy controller. Suppose that we begin
by choosing G.(s) = K = 2 and that we simply consider this gain to be part of the
plant. Furthermore, for the SISO fuzzy controller we use input membership func-
tions shown in Figure 4.10 and output membership functions shown in Figure 4.11.
Note that we denote the variable that is output from the fuzzy controller (and input
to G.(s)) as ¢’. We use 11 rules in the rule-base. For instance,

4.4 Absolute Stability and the Circle Criterion

——
Fluid in z

e — —
1 1 v Fluid out

Heater/cooling
element

FIGURE 4.8 Thermal process.

e If e is positive small Then ¢ is positive small
® If e is zero Then q is zero
o If e is negative big Then ¢ is negative big

are rules in the rule-base (the others are similar in that they associate one fuzzy set
on the input universe of discourse with one on the output universe of discourse).
We use minimum to represent the premise and implication, singleton fuzzification,
and COG defuzzification (different from our parameterized fuzzy controller in Sec-
tion 4.2.1).

Controller Thermal heating
process

*»&

T
d ¢ Fuzz;
- y - | -
™| controller Gc G

:

FIGURE 4.9 Thermal process control system.

"zero"

u(e) /"positive small"

I
90 -72 -54 -36 -18 18 36 54 72 90 e, temperature
0 difference

FIGURE 4.10 Input fuzzy sets.
A plot of the nonlinear surface for the fuzzy controller, which looks similar to a

saturation nonlinearity, can be used to show that @ = 0 (it must be since the fuzzy
controller output is saturated and the only line that will fit under the saturation

209

210 Chapter 4 / Nonlinear Analysis

w(g’)

I
-80 -64 -48 -32 -16 16 32 48 64 80 q’, heat
0 flow rate

FIGURE 4.11 Output fuzzy sets.

is one with zero slope) and § = % (to see this, plot the nonlinear surface and note
that a line with a slope of % overbounds the nonlinearity). The Nyquist plot of G.G
is in the right half-plane so that there are no encirclements (i.e., m = 0). Also, G.G
is Hurwitz since it has no right half-plane poles (including none on the jw axis).
Using the second condition of the circle criterion, we can conclude that the system
is absolutely stable. If you were to pick some initial conditions on the state and let
the reference input be zero, you could show in simulation that the state trajectories
asymptotically decrease to zero.
It is interesting to note, however, that if you let the reference input be

Ta = 20u(t)

where u(t) is the unit step function, then you would find a large steady-state error.
Hence, we see that the guarantee for stability holds only for the case where 75 = 0.

If you would like to get rid of this steady-state error, one way to proceed would
be to add an integrator (using standard ideas from conventional control). Suppose
that we choose G(s) = 2. With this choice G.G is no longer Hurwitz, so the
second condition of the circle criterion cannot be used. Using the plot of the fuzzy
controller nonlinearity, we see that we can choose a = % and = % and the sector
condition holds on a region [—80,80]. Now, we consider the disk D(—4/3,—-3/4)
and note that there are no encirclements of this disk (i.e., m = 0). Hence, by the
first condition of the circle criterion we get absolute stability on a finite domain.

From this, if you were to do a simulation where the initial conditions were
started sufficiently close to the origin and the reference input were equal to zero,
then the state trajectories would asymptotically decrease to zero. It is interesting to
note that if we choose 74 = 20u(t) (i.e., a nonzero reference input) and a simulation
is done, we would find that there would be no steady-state error. The theory above
does not guarantee this; however, we will study how to guarantee that we will get
zero steady-state error in the next section.

4.5 Analysis of Steady-State Tracking Error

A terrain-following and terrain-avoidance aircraft control system uses an altimeter
to provide a measurement of the distance of the aircraft from the ground to decide
how to steer the aircraft to follow the earth at a pilot-specified height. If a fuzzy

4.5 Analysis of Steady-State Tracking Error

controller is employed for such an application, and it consistently seeks to control
the height of the plane to be lower than what the pilot specifies, there will be a
steady-state tracking error (an error between the desired and actual heights) that
could result in a crash. In this section we will show how to use the results in [178]
for predicting and eliminating steady-state tracking errors for fuzzy control systems
so that problems of this sort can be avoided.

4.5.1 Theory of Tracking Error for Nonlinear Systems

The system is assumed to be of the configuration shown in Figure 4.1 on page 190
where r, e, u, and y belong to Lo and ®(e) is the SISO fuzzy controller described
in Section 4.2.1. We will call e55 = lim;_, o e(t) the steady-state tracking error. G(s)
has the form

G(s) = 5222) (4.21)

where p, a nonnegative integer, is the number of poles of G(s) at s = 0, and p(s)
and sPq(s) are relatively prime polynomials (i.e., they have no common factors)
such that deg(p(s)) < deg(s”q(s)). For example, if

G(s)=8(5+1

s+2)
then p = 1. Furthermore, we assume that ®(0) = 0, and ® is bounded by « and 3
according to

< Bla) — @)

)20 < (4.22)

for all a # b. Notice that this sector bound is different from the sector bound
in Equation (4.14). This new sector bound is determined by the maximum and
minimum slopes of ® at any point and is sometimes not as easy to determine as
the graphical sector bound described in the last section. Finally, we assume that
one of the three circle criterion conditions listed on page 207 is satisfied.

To predict the value of egs, we must make several definitions. First, we define
an “average gain” for @, ¢, as

co = %(044'5)

and we assume that cg # 0. In [178] the authors show that for this ¢o, 14+coG(s) # 0
for Re(s) > 0. Therefore, the rational function

G(s)

H(s) = 14+ coG(s)

211

212 Chapter 4 / Nonlinear Analysis

is strictly proper, and has no poles in the closed right half-plane. Defined in this
manner, H(s) is the closed-loop equation for the system shown in Figure 4.1 with
co as an average gain of ®. Finally, we define

d(e) = Ble) — coe

for all e. That is, ® is the difference between the actual value of ® at some point e
and a predicted value found by using the average gain cg.

Suppose that the above assumptions are met. It is proven in [178] that for each
given real number ~, there exists a unique real number £ such that

v =&+ H(0)D() (4.23)

where to find the value of £ we use

¢ = lim & (4.24)
where
Ery1 =7 — H(0)®(&) (4.25)

and & is an arbitrary real number and 7 is given (Equation (4.25) is an iterative
algorithm that will be used to find eg). Furthermore, if we define ¢ as

e = 3(8-) HO) (4.26)

and assume that ¢ < 1, then the equation

Ck

1—c¢

€ — &l < S0 =7+ H(0)(&o)|, k=1 (4.27)
must be true for the iterative algorithm, Equation (4.25), to converge.

Finally, suppose that we define ©(y) = & to represent the algorithm in Equa-
tion (4.25). Hence, © is given a +, an arbitrary &y is chosen, ¢y and H(0) are
specified, then with the given fuzzy controller ®, we let ®(e) = ®(e) — coe, and
Equation (4.25) is computed until k is large enough that &1 — & is very small.
The resulting converged value of £ is the value of ©(7).

Tracking Error Theorem: Assuming that all the described assumptions are
satisfied, then

1. If r(t) approaches a limit [as t — oo, then ess = lim;_ o e(t) exists. Moreover,

ess # 0 if and only if I # 0 and p = 0, and then e,s = O(7) where v = #G(O)'

4.5 Analysis of Steady-State Tracking Error

2. Assuming that
r(t) =Y a;t!, t>0 (4.28)
=0

in which the a; are real, v is a positive integer, and a, # 0, the following holds:

(a) e is unbounded if v > p.

(b) if v < p, then e approaches a limit as t — oo. If v = p, this limit is
ess = ©(7) where

_ a,v!q(0)

cop(0) (4.29)

If v < p, then the limit is zero.

Notice that for Equation (4.28) if we want r(¢) to be a unit step, then v = 0 so
r(t) = ag, t > 0 and we choose ag = 1. If we want r(¢) to be a ramp of unit slope,
then we choose v =1 so that r(t) = ag + a1t and we choose ap = 0 and a; = 1.

An examination of the above theorem reveals that in actuality the proposed
method for finding the steady-state error for fuzzy control systems is similar to the
equations used in conventional linear control systems. The theorem performs the
function of identifying an appropriate equation for ess based on the type of input
and the “system type.” Notice that the two equations for + in the theorem are
analogous to the equations for the “error constants” [54], 1/(1 + K,), 1/K,, and
1/K,, and provide an initial estimate for egs.

4.5.2 Example: Hydrofoil Controller Design

The HS Denison is an 80-ton hydrofoil stabilized via flaps on the main foils and the
incidence of the aft foil. The transfer function for a linearized model of the plant
that includes the foil and vehicle is

0(s) 10*
D(s) 52+ 60s+ 104

where 6(s) is the pitch angle and D(s) is the command input. We wish to design
a fuzzy controller that will maintain a constant deflection of the pitch angle with
less than 1% steady-state error from the desired angle.

We first determine that if @ = 0, then S must be less than 1.56 for the circle
criterion conditions to be satisfied. Therefore, our preliminary design for the SISO
parameterized fuzzy controller will have A = B = 1. For this controller § = 1,
a =0, and ¢y = 0.5. The other relevant values are H(0) = 0.6667 and G(0) = 1. If
our input r(t) is a step with magnitude 5.0, then we will use the first condition of
the theorem and v = 3.3333. Using these values in the iterative equation, we find
that our steady-state error will be 4.0. This is a very large error and is obviously

213

214 Chapter 4 / Nonlinear Analysis

much larger than 1%. Even with 8 = 1.559 we cannot meet the error requirement.
Therefore, the system requirements cannot be met with a simple fuzzy controller.
However, if we combine a simple fuzzy controller with an integrator, the circle
criterion is satisfied as long as B/A < 50. Furthermore, p = 1 for this system
and part 1 of the theorem predicts that ess = 0. Simulations for this system with
A = B =1 show that in fact e;s = 0 and we have met the design criteria.

4.6 Describing Function Analysis

Autopilots used for cargo ship steering seek to achieve a smooth response by ap-
propriately actuating the rudder to steer the ship. The presence of unwanted oscil-
lations in the ship heading results in loss of fuel efficiency and a less comfortable
ride. While such oscillations, which are closed periodic orbits in the state plane,
sometimes called “limit cycles,” result from certain inherent nonlinearities in the
control loop, it is sometimes possible to carefully construct a controller so that such
undesirable behavior is avoided.

In this section we will investigate the use of the describing function method for
the prediction of the existence, frequency, amplitude, and stability of limit cycles.
We will first present describing function theory following the format in [189]. Next,
we will use several examples to show how describing function analysis can be used in
the design of SISO and MISO fuzzy controllers of the form described in Section 4.2.
Finally, we will use describing function analysis to design fuzzy controllers for an
underwater vehicle and a tape drive servo.

4.6.1 Predicting the Existence and Stability of Limit Cycles

Before explaining the describing function method, we will discuss several assump-
tions that we will use in applying the techniques of this section.

Basic Assumptions

There are several assumptions that need to be satisfied for our purposes for the
describing function method. These assumptions are as follows:

1. There is only a single nonlinear component and the system can be rearranged
into the form shown in Figure 4.1 on page 190.

2. The nonlinear component is time-invariant.

3. Corresponding to a sinusoidal input e(t) = sin(wt), only the fundamental com-
ponent wu;(t) in the output u(t) must be considered.

4. The nonlinearity ® (which will represent the fuzzy controller) is an odd function.

The first assumption requires that nonlinearities associated with the plant or output
sensors be rearranged to appear in ® as shown in Figure 4.1. The second assumption
originates from the use in this method of the Nyquist criterion, which can only be

4.6 Describing Function Analysis 215

applied to linear time-invariant systems. The third assumption implies that the
linear component following the nonlinearity has characteristics of a low-pass filter
so that

|IG(jw)| > |G(njw)| forn = 2,3, ... (4.30)

and therefore the higher-frequency harmonics, as compared to the fundamental
component, can be neglected in the analysis. This is the fundamental assumption
of describing function analysis and represents an approximation as there normally
will be higher-frequency components in the signal. The fourth assumption simplifies
the analysis of the system by allowing us to neglect the static term of the Fourier
expansion of the output.

We emphasize that due to the lack of perfect satisfaction of the above assump-
tions the resulting analysis is only approximate. Next, we introduce the tools and
methods of describing function analysis.

Defining and Computing the Describing Function

For an input e(t) = C'sin(wt) to the nonlinearity, ®(e), there will be an output u(t).
This output will often be periodic though generally nonsinusoidal. Expanding this
u(t) into a Fourier series results in

?0 Z an cos(nwt) + by, sin(nwt)] (4.31)

The Fourier coefficients (a;’s and b;’s) are generally functions of C' and w and are
determined by

ay = % /_ " u()d(wt) (4.32)
i = % / " u(t) cos(nuwt)d(wt) (4.33)
by = % /_ " u(t) sin(nwt)d(wt) (4.34)

Because of our assumptions ag = 0, n = 1, and

u(t) = ui(t) = a1 cos(wt) 4 by sin(wt) = M(C, w) sin(wt + ¢(C,w)) (4.35)

M(C,w) =1/a? + b3 (4.36)

216 Chapter 4 / Nonlinear Analysis

and where

#(C,w) = arctan (Z—i) (4.37)

From the above equations we can see that the fundamental component of the out-

put, corresponding to a sinusoidal input, is a sinusoid of the same frequency that
can be written in complex representation as

uy = M(C,w)e? @HHoC@)) — (b 4 ja;)el* (4.38)

We will now define the describing function of the nonlinear element to be the
complex ratio of the fundamental component of the nonlinear element by the input
sinusoid

Uy M(C,w)el (Wtte(Cw)) 1

N(C,w) C'sin(wt) Ceiwt glbr +im) (4.39)

By replacing the nonlinear element ®(e) with its describing function N(C,w), the
nonlinear element can be treated as if it were a linear element with a parameterized
frequency response function.

Generally, the describing function depends on the frequency and amplitude of
the input signal. However, for some special cases it does not depend on frequency.
For example, if the nonlinearity is time-invariant and memoryless, N(C,w) is real
and frequency-independent. For this case, N(C,w) is real because evaluating Equa-
tion (4.33) gives a; = 0. Furthermore, in the same equations, the integration of the
single-valued function u(t) sin(wt) = [C'sin(wt)] sin(wt) is done for the variable wt,
implying that w does not explicitly appear in the integration and that the function
N(C,w) is frequency-independent.

There are several ways to compute describing functions. The describing function
can be computed analytically if u = ®(e) is known and the integrations to find a;
and by can be easily carried out. If the input-output relationship of ®(e) is given
by graphs or tables, then numerical integration can be used. The third method,
and the one that we will use, is “experimental evaluation.” We will excite the input
of the fuzzy controller with sinusoidal inputs, save the related outputs, and then
use the input and output waveforms to determine the gain and phase shift at the
frequency of the input sinusoid. By varying the amplitude and frequency (or just
the amplitude if the fuzzy controller is SISO, time-invariant, and memoryless) of
the input sinusoid, we can find u; at several points and plot the corresponding
describing function.

Predicting Limit Cycles
In Figure 4.1 on page 190, if we replace ®(e) with N(C,w) and assume that a self-
sustained oscillation of amplitude C' and frequency w exists in the system, then for

4.6 Describing Function Analysis

r=20,y#0, and
G(jw)N(C,w)+1=0 (4.40)

This equation, sometimes called the “harmonic balance equation,” can be rewritten
as

1

N (%)

(4.41)

If any limit cycles exist in our system, and the four basic assumptions outlined
above are satisfied, then the amplitude and frequency of the limit cycles can be
predicted by solving the harmonic balance equation. If there are no solutions to the
harmonic balance equation, then the system will have no limit cycles (under the
above assumptions).

However, solving the harmonic balance equation is not trivial; for higher-order
systems, the analytical solution is very complex. The usual method, therefore, is to
plot G(jw) and —1/N(C, w) on the same graph and find the intersection points. For
each intersection point, there will be a corresponding limit cycle. The amplitude
and frequency of each limit cycle can then be determined by finding the particular
C and w that give the value of —1/N(C,w) and G(jw) at the intersection point.

Along with the amplitude and frequency of the limit cycles, we also would
like to determine whether the limit cycles are stable or unstable. A limit cycle is
considered stable if system trajectories move to the limit cycle when they start
within a certain neighborhood of it. Therefore, once the system is in a limit cycle,
the system will return to the limit cycle when perturbations move the system off of
the limit cycle. For an unstable limit cycle, there is no neighborhood within which
the system trajectory moves to the limit cycle when the system trajectory starts
near it. Instead, the trajectory will move away from the limit cycle. Therefore, if
a system is perturbed from an unstable limit cycle, the oscillations will either die
out, increase until the system goes unstable, or move to a stable limit cycle. The
stability of limit cycles can be determined from the same plot used to predict the
existence of the limit cycles. A summary of the above conclusions is given by the
following criterion from [189].

Limit Cycle Criterion: Each intersection point of the G(jw) and —1/N(C,w)
curves corresponds to a limit cycle. In particular, if the curves intersect, we predict
that there will be a limit cycle in the closed-loop system with amplitude C' and
frequency w. If points near the intersection and along the increasing-C' side of the
curve —1/N(C,w) are not encircled by the curve G(jw), then the corresponding
limit cycle is stable. Otherwise, the limit cycle is unstable.

In the next two subsections we will show how to use this criterion to test for
the existence, amplitude, frequency, and stability of limit cycles. Also, we will show
how it can be used in the redesign of the fuzzy controller to eliminate limit cycles.

217

218 Chapter 4 / Nonlinear Analysis

4.6.2 SISO Example: Underwater Vehicle Control System

We wish to design a fuzzy controller for the direction control system of an under-
water vehicle described in [45]. The electrically controlled rudder and an added
compensator have transfer function

C(s) 5+0.1
R(s) s(s+5)%(s+0.001)

We must design the fuzzy controller such that there are no limit cycles possible
within the closed-loop system.

Our fuzzy controller will be SISO, odd, time-invariant, and memoryless. There-
fore, we know that the describing function will be real-valued and can only intersect
the Nyquist plot of G(jw) along the real axis. Examining a Nyquist plot of G(jw) for
this system, we find that it intersects the real axis at one point only, —0.0042 + ;0
(an enlargement of this plot is shown in Figure 4.12, where —1/N(C,w) is on
top of the horizontal axis) and hence a limit cycle exists (you can simulate the
closed-loop system to illustrate this). To avoid intersecting this point, we must con-
struct the fuzzy controller so that —1/N(C,w) < —0.0042 or N(C,w) < 240.0528
for all values of C. For the type of fuzzy controller we are using, this criterion
can be achieved if B/A < 240.0528. We will choose A = 2 and B = 200. The
resulting describing function is shown in Figure 4.13. Since the largest value of
—1/N(C,w) = —2/200 = —0.01 is less than —0.0042, there is no solution to the
harmonic balance equation, and the approximate analysis indicates that the exis-
tence of a limit cycle is unlikely. A simulation of this system for » = 5 is shown in
Figure 4.14. No limit cycles exist, and our design was successful.

0.02

0.015

0.01F

0.005

Imaginary axis

-0.005

-0.01+

-0.015F

20.02 . I I I I I
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

Real axis

FIGURE 4.12 Plot of G(jw) for the underwater vehicle
(figure taken from [83], © John Wiley and Sons).

4.6 Describing Function Analysis 219

100

80

60

N(C)

40

201 q

Amplitude, C

FIGURE 4.13 Describing function for fuzzy controller
with A =2 and B = 200 (figure taken from [83], © John
Wiley and Sons).

1)

0 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Time (sec)

FIGURE 4.14 Simulation of the underwater vehicle
(figure taken from [83], © John Wiley and Sons).

4.6.3 MISO Example: Tape Drive Servo

The describing function analysis of the previous design example was for SISO fuzzy
controllers whose describing functions are not dependent on w. However, it is impor-

220 Chapter 4 / Nonlinear Analysis

tant that we also examine how this type of analysis can be applied to MISO fuzzy
controllers. While for a MISO fuzzy controller the basic theory is still the same,
there are several differences in determining and using the describing function. First,
the describing function will be dependent on both C' and w. Because of this, when
we experimentally determine N(C,w), we have to find not only the amplitude of
the fundamental frequency of the output waveform but also the phase of the fun-
damental frequency for inputs of different amplitude and frequency. Methods for
doing this can be found in [13]. This also means that there will be more lines to plot
as we will have to plot —1/N(C,w) as C changes for each value of w so that there
will be a curve for each value of w for which N(C,w) is calculated. Second, not all
intersections of G(jw) and —1/N(C,w) will be limit cycles. For an intersection to
predict a limit cycle, the values of w for G(jw) and —1/N(C,w) at the intersection
must be the same. We can see that, as would be expected, the limit cycle prediction
procedure using describing functions is slightly more complex for MISO systems.
However, with the adjustments mentioned above, the procedure follows the same
format as before. This will be shown in the following design example.

We will design a fuzzy controller for a tape drive servo described in [54] with
transfer function

1552 +13.55 + 12
(s+1)(s>+11s+1)

G(s) =

Also included in the system is a precompensator of the form C(s) = (s + 20)/s. It
is desired that a step input of current to the drive mechanism will cause the tape
to have a stable velocity. To analyze the system for limit cycles, we will choose a
fuzzy controller, empirically find the describing function, search for solutions to the
harmonic balance equation, and then redesign the fuzzy controller if necessary.

We will begin by choosing A = 100, B = 600, and D = 50. Next, we will
find N(C,w) for 0 < C <100 and w = 0.5, 1, 10, 50, 100, and 500. The resulting
plot of G(jw) and —1/N(C,w) is shown in Figure 4.15. There are no intersection
points and therefore no predicted limit cycles. By simulating the system with the
chosen values of A, B, and D and r = 12, we verify that no limit cycles exist. This
simulation is shown in Figure 4.16.

4.7 Limitations of the Theory

It is important to note that there are limitations to the approaches that we covered
in this chapter in addition to the general ones outlined in Section 4.1 on page 187,
which included the following:

® The model of a physical process is never perfectly accurate, and since the mathe-
matical analysis is based on the model, the analysis is of limited accuracy for the
physical system. The more accurate the model, the more accurate the conclusions
from the mathematical analysis as they pertain to the real physical system.

® Fuzzy control tends to show its greatest advantages for processes that are very

4.7 Limitations of the Theory 221

50

401 |
301 |
201 |
g 1of |
=
N
50 () 77777777
£
10} |
201 |
301 |
401 |
-50 ‘ ‘ ‘ ‘
-10 -8 6 “ 2 0
Real axis

FIGURE 4.15 Plot of G(jw) and —1/N(C,w) for
A =100, B =600, and D = 50 (figure taken from [83],
© John Wiley and Sons).

1)

0 I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (sec)

FIGURE 4.16 Simulation of the tape drive servo and
fuzzy controller (figure taken from [83], © John Wiley
and Sons).

complex in terms of nonlinearities, stochastic influences, process uncertainties,
and so on. The mathematical analysis tools that are available often do not apply
to very complex processes as the needed assumptions are often not satisfied. There
is then an inherent limitation of the mathematical analysis tools due to the need

222

Chapter 4 / Nonlinear Analysis

for such tools for any nonlinear control systems, let alone fuzzy control systems.

Next, we provide a more detailed overview of some additional limitations to
the approaches covered in this chapter. In general, except for Lyapunov’s methods,
discussed in Section 4.3, we have examined only linear plant models or nonlinear
plants that can be manipulated to be in the form of Figure 4.5. In Section 4.3 some
of the stability conditions are often conservative, which means that if the conditions
for stability are not met, the system could still be stable. Indeed, the results for the
circle criterion have often been found to be too conservative. While the results for
absolute stability, steady-state tracking error, and describing functions can certainly
be applied to models linearized about operating points in a nonlinear system, such
results are only local in nature. Furthermore, we have limited ourselves throughout
the entire chapter (except Section 4.3) to SISO and MISO fuzzy controllers. In
addition to these general limitations, there are also limitations specific to each
section. In the section on absolute stability, we have only examined the SISO fuzzy
controller and not the MISO case (of course, extension to the multivariable case is
not difficult using, for example, the development in [90]). Furthermore, although
the circle criterion conditions are sufficient and necessary, the necessary conditions
are for a class of nonlinearities and do not identify which of the nonlinearities (i.e.,
which fuzzy controller) within the class will cause the system to become unstable.
There is currently no theory for the tracking error analysis of multivariable nonlinear
systems. Our describing function technique, even though it can be applied to SISO
and MISO fuzzy controllers and certain nonlinear plant models, is limited by the
fact that the use of the approach for more than three inputs to the fuzzy controller
becomes prohibitive. There has been some work on the expansion of the theory
of nonlinear analysis to a wider class of nonlinear plants where a mathematical
characterization of the fuzzy controller is used (see, for example, [106, 105, 47, 154]).

In this chapter we often utilize a graphical approach to nonlinear analysis where,
for example, we plot the input-output map of the fuzzy controller and read off per-
tinent information such as the sector bounds, or use a graphical technique for de-
scribing function analysis. We believe that the incorporation of graphical techniques
for the nonlinear analysis of fuzzy control systems offers (1) an intuitive approach
that ties in better with the fuzzy control design procedure, and (2) some of the
same advantages as have been realized in classical control via the use of graphical
techniques (such as the Nyquist plot). On the other hand, our approach has its
own limitations (listed above). We emphasize that there are many approaches to
analyzing fuzzy control systems, and we highly recommend that the reader study
Section 4.9, For Further Study, and the references provided there.

4.8 Summary

In this chapter we have provided an introduction to nonlinear analysis of (non-
adaptive) fuzzy control systems. We showed how to perform Lyapunov stability
analysis of fuzzy control systems and showed how the circle criterion could be
used to analyze and redesign a fuzzy control system. We introduced the theory of

4.9 For Further Study

steady-state tracking error for fuzzy control systems and showed how to predict
and eliminate tracking error. We outlined the theory of describing functions and
showed how to predict the amplitude, frequency, and stability of limit cycles. We
performed analysis and design examples for an inverted pendulum, a temperature
control problem, a hydrofoil, an underwater vehicle, and a tape drive servo.

Upon completing this chapter, the reader should understand the following:

e Lyapunov’s direct and indirect methods.

e How to use the direct and indirect methods, coupled with a plot of the nonlinear
surface of the fuzzy controller, to establish conditions for stability.

® How to use Lyapunov’s direct method to provide sufficient conditions for stability
for Takagi-Sugeno fuzzy systems.

® The concept of absolute stability.
® The circle criterion in two forms.

® The procedure for the application of the circle criterion to fuzzy control systems,
both to predict instability and its use in design to avoid instability.

® The concepts and theory of steady-state tracking error for nonlinear systems.

® The procedure for applying the theory of analysis of tracking error to fuzzy control
systems.

® The assumptions and theory of describing functions.

® How to construct a describing function for a fuzzy controller that has one or two
inputs.

® The conditions for the existence of limit cycles and how to determine their am-
plitude and frequency, and whether or not they are stable.

® The procedure to use describing function analysis for both SISO and MISO fuzzy
control systems, both for limit cycle prediction and in redesigning for limit cycle
elimination.

Essentially, this is a checklist of the major topics of this chapter. With the
completion of Chapters 1-4 you have now finished the first part of this book, where
our primary focus has been on direct fuzzy controllers. The second part of the book,
Chapters 5-7, focuses on adaptive fuzzy systems in estimation and control.

4.9 For Further Study

An earlier version of this chapter appears in [83]. Several of the design problems at
the end of the chapter also came from [83]. For a detailed comparative analysis of

223

224 Chapter 4 / Nonlinear Analysis

fuzzy controllers and linear controllers and for more details on the nonlinear char-
acteristics of fuzzy controllers, see [29, 28, 241] and the more recent work in [124].
The work in [30] and [34] presents Lyapunov methods for analyzing the stability of
fuzzy control systems. The authors in [106, 105] also use Lyapunov’s direct method
and the generalized theorem of Popov [148, 90] to provide sufficient conditions for
fuzzy control system stability.

An area that is receiving an increasing amount of attention is stability analysis
of fuzzy control systems where the fuzzy control system is developed using ideas
from sliding-mode control or where Takagi-Sugeno fuzzy systems are used in a
gain-scheduling type of control [153, 47, 154]. Here, our treatment of the stability
of Takagi-Sugeno fuzzy systems is based on the work in [213, 209]. Extensions to
this work that focus on robustness can be found in [212, 210, 84], and work focusing
on the use of linear matrix inequality (LMI) methods for analysis and controller
construction is provided in [210, 226, 225, 248, 247].

In [7], stability indices for fuzzy control systems are established using phase
portraits (of course, standard phase plane analysis [90] can be useful in character-
izing and understanding the dynamic behavior of low-order fuzzy control systems
[65]). Related work is given in [49]. The circle criterion [148] is used in [171] and
[172] to provide sufficient conditions for fuzzy control system stability. Related work
on stability analysis of fuzzy control systems is provided in [211]. While we use the
circle criterion theory found in [90] and [223], there are other frequency domain—
based criteria for stability that can be utilized for fuzzy control system analysis
(e.g., Popov’s criterion and the multivariable circle criterion [148, 90]). Describing
function analysis has already been examined in [92] and [14]. Our coverage here
differs from that in [92] in that we use experimentally determined describing func-
tions, whereas in [92] the describing function is determined for a “multilevel relay”
model of a specific class of fuzzy controllers. A collection of papers on theoretical
aspects of fuzzy control is in [151].

The characterization and analysis of the stability of fuzzy dynamic systems is
studied in [93]. Furthermore, approximate analysis of fuzzy systems is studied by
the authors in [33, 32, 52| using the “cell-to-cell mapping approach” from [71, 72].

One graphical technique that we have found to be useful on occasion, which we
did not cover here, is called the “method of equivalent gains” (see [55, 54]), where
we view the fuzzy controller as an input-dependent time-varying gain and then use
conventional root-locus methods to design fuzzy control systems (the gain moves
the poles along the root-locus). This method is, however, limited to the case of
linear plants. For an idea of how this approach is used, see Exercise 4.3 at the end
of the chapter. Another topic that we did not cover is that of phase plane analysis
for differential equations and what has been called “fuzzy phase plane analysis.” To
get an idea of how such analysis is done, see Exercise 4.2 at the end of this chapter
or [47].

For a more detailed discussion on the general relationships between conventional
and intelligent control and mathematical modeling and nonlinear analysis of more
general intelligent control systems (including expert control systems), see [6, 160,
156, 157, 163].

4.10 Exercises

4.10 Exercises

Exercise 4.1 (The Nonlinear Fuzzy Control Surface): In this problem you
will study the nonlinear control surface that is induced by the fuzzy controller.

(a) Plot u versus e for the parameterized SISO fuzzy controller of Section 4.2.1
for the case where A =5 and B = 2.

(b) Plot u versus e for the parameterized SISO fuzzy controller of Section 4.2.1
for the case where A = 3 and B = 6. Compare the result to that obtained
in (a).

(¢) Plot the three-dimensional plot of the PD fuzzy controller surface for the

case where there is a proportional and derivative input, as described in
Section 4.2. Choose A= B =D =1.

(d) Choose A =5, B =2, and D = 1 and repeat (c). Compare the result to
that obtained in (c).

Exercise 4.2 (Phase Plane Analysis: Conventional and Fuzzy): The phase
plane is a graph used for the analysis of low-order (typically second-order) non-
linear differential equations (i.e., n = 2 for Equation (4.1)). The phase plane is
simply a plot of x1(t) versus za(t), where x = [z1,22]" is the state of Equa-
tion (4.1), for a number of initial conditions z(0).

(a) Write down second-order differential equations that are unstable, marginally
stable, and asymptotically stable, and use a computer program to generate
their phase planes (the choice of the initial conditions should be done so
that they are within a ball of size h where h = 10 and there are at least 50
initial conditions spread out uniformly in the ball).

(b) Learn at least one technique for the construction of phase planes (by hand)
and apply it to the differential equations you developed for (a). Refer to [90]
to learn a method for constructing the phase plane.

(¢c) When the inputs to a fuzzy controller are e(t) = r(t) — y(t) (where r(t) is
the reference input and y(¢) is the plant output) and “e(¢), sometimes the
plot of e(t) versus “e(t) is thought of as a type of phase plane if r(¢) = 0.
Moreover, some have introduced the notion of a “fuzzy phase plane” that
is best thought of as a rule-base table for the two-input fuzzy controller.
Motion in the fuzzy phase plane is given by which membership functions have
values greater than zero and as the control system operates, different cells
in the rule-base table become “active” (i.e., the rules associated with them
are on). Following Design Problem 2.1(a) on page 110, begin the pendulum
out of the balanced position but with zero initial velocity and show on the
corresponding rule-base table the trajectory of active regions as the fuzzy
controller balances the pendulum.

225

226 Chapter 4 / Nonlinear Analysis

Exercise 4.3 (Method of Equivalent Gains): In the “method of equivalent
gains” (see [55, 54]), we view the fuzzy controller as an input-dependent time-
varying gain and use conventional root-locus methods to design fuzzy control
systems (the gain moves the poles along the root-locus).

(a)

To understand why the fuzzy controller is an input-dependent gain, choose
A = B =1 for the parameterized SISO fuzzy controller of Section 4.2.1, and
plot the output of the fuzzy controller u divided by its input e (i.e., the “gain
of the fuzzy controller”—notice that it is closely related to the describing
function of the fuzzy controller) versus its input e for both positive and
negative values of e.

Suppose that you are given a plant

1

Gls) = s(s+1)

that is in a unity feedback configuration with a fuzzy controller. Suppose that
you know that the reference input will never be larger, in magnitude, than
one. View the fuzzy controller as implementing a gain in the control loop
where the value of the gain is given at any one time by the plot you produced
in (a). Use this gain, coupled with the conventional root-locus approach [54],
to design a fuzzy controller so that you get as short a rise-time due to a unit-
step input as possible but with no more than 5% overshoot. This approach
to design is called the method of equivalent gains. Note that this approach
is heuristic and that there are no guarantees of achieving the performance
sought or that the resulting closed-loop system will be stable.

Exercise 4.4 (Lyapunov’s Direct Method): Suppose that you are given the
plant

T = ax + bu

where b > 0 and a < 0 (so the system is stable). Suppose that you design a fuzzy
controller ® that generates the input to the plant given the state of the plant

(i.e., u = ®(x)). Assume that you design the fuzzy controller so that ®(0) = 0
and so that ® () is continuous. Choose the Lyapunov function V(z) = 122
(a) Show that if z and ®(z) always have opposite signs, then z = 0 is stable.
(b) What types of stability does & = 0 of the fuzzy control system possess for
part (a)?
(¢) Why do we assume that ®(0) =0 for (a)?
(d) Design a fuzzy controller that satisfies the condition stated in (a) and simu-

late the closed-loop system to help illustrate the stability of the fuzzy control
system (of course, the simulation does not prove that the closed-loop system

4.10 Exercises

is stable—it only shows that for one initial condition the state appears to
converge but cannot prove that it converges since the simulation is only for
a finite amount of time). Choose the initial condition 2(0) = 1, a = —2, and
b=2.

Exercise 4.5 (Stability of Takagi-Sugeno Fuzzy Systems): Suppose that
you have the same plant as described in the Section 4.3.5 example but with
Ay = =3, By =6, As = —5, and By = 2. Construct the Takagi-Sugeno fuzzy
controller gains K7 and K» so that x(0) = 0 of the closed-loop system is globally
asymptotically stable.

Exercise 4.6 (Stability of Discrete-Time Takagi-Sugeno Fuzzy Systems):
Suppose that you are given a discrete-time Takagi-Sugeno fuzzy system model
of a nonlinear system that arises from R Takagi-Sugeno rules and results in

R R
k1) = 3 B wl)alh) + D Tk (4.42)
where
P S)
S =S i)

In Equation (4.42), ®; is an n x n matrix, and T'; is the n input matrix.

Stability conditions for the discrete-time direct method of Lyapunov are
slightly different from the continuous-time case so we discuss these first. The
equilibrium 2(0) = 0 of the system in Equation (4.42) is globally asymptotically
stable if there exists a function V' (z) such that V(x) > 0 except at © = 0 where
V(z) =0, V(z) > oo if |x| — oo, and

Viz(k+1))—V(x(k)) <0
(a) Let u(k) = 0 for k > 0. Choose V(x) = 2" Px where P is a positive definite
symmetric matrix. Show that if there exists a single n x n matrix, P > 0
such that foralli=1,2,...,Rand j=1,2,..., R
®/ PO, -~ P <0 (4.43)

then the equilibrium z = 0 of Equation (4.42) is globally asymptotically
stable.

(b) Suppose that you use a Takagi-Sugeno fuzzy controller to choose the input
u(k) so that

R
u(k) = Z Ki&i(x(k))x(k)

227

228 Chapter 4 / Nonlinear Analysis

Using the result from (a), find a stability condition similar to Equation (4.43)
for the closed-loop system.

This problem is based on the work in [213] where the authors also show how to
further simplify the condition in Equation (4.43).

4.11 Design Problems

Design Problem 4.1 (Stable Fuzzy Controller for an Inverted Pendu-
lum): In this problem you will verify the stability analysis for the design of the
fuzzy controller for the inverted pendulum described in Section 4.3.

(a) Design a fuzzy controller that will result in the inverted pendulum of Sec-
tion 4.3 being locally stable, and demonstrate this via Lyapunov’s indirect
method.

(b) Repeat (a) except use minimum to represent the premise and implication
and COG for defuzzification.

(¢) Using Lyapunov’s direct method, design a fuzzy controller for the inverted
pendulum that you can guarantee is stable in the inverted position. Provide
a simulation to help verify the stability of the closed-loop system.

Design Problem 4.2 (Stable Fuzzy Controller for the Magnetic Ball Sus-
pension System): In this problem you study the stability properties of a fuzzy
controller for the magnetic ball suspension system.

(a) Design a fuzzy controller for the ball suspension system studied in Exer-
cise 2.5 on page 116, and demonstrate in simulation that it appears to be
stable (at least locally—i.e., for initial conditions very near the operating
point at which you perform the linearization to test stability). Seek to bal-
ance the ball half way between the coil and the “ground.”

(b) Prove, using the methods of Section 4.3, that the fuzzy control system is
locally stable at the operating point studied in (a).

Design Problem 4.3 (Designing Stable Fuzzy Control Systems): Sup-
pose that you are given a plant with transfer function

1
s34+ Ts2+Ts+ 15

G(s) =

This plant is chosen because it illustrates the problems with stability that can
arise when designing fuzzy controllers.

4.11 Design Problems

(a) A controller that some expert could construct is one with A = 0.5 and
B = 16.6667 (using the parameterized fuzzy controller of Section 4.2.1).
Simulate this system with initial conditions z(0) = [0,0,2]" to show that
the system has sustained oscillations.

(b) If we consider the fuzzy controller as a nonlinearity ®, we can find a sector
(a, B) in which @ lies and use the circle criterion to determine why the insta-
bility is occurring and perhaps determine how to tune the fuzzy controller
so that it does not cause sustained oscillations. Plot the nonlinearity of the
fuzzy controller from (a). Plot the Nyquist plot of G. Show that the circle
criterion/SNC predicts that not all of the nonlinearities within this sector
will be stable. Hence, the fuzzy controller in (a) verifies this statement by
producing sustained oscillations in the closed-loop system.

(¢) Next we use condition (b) of the circle criterion/SNC to provide ideas on
how to tune the fuzzy controller. To do this, we will have to adjust 3 so that
—% < —0.0733, (i.e., so that 8 < 13.64). Why? As there are many different
choices for A and B so that the fuzzy controller will fit inside the sector, more
about the system would have to be known (e.g., what the saturation limits
at the input of the plant are) to know whether to tune A or B. Suppose you
choose B = 16.6667 and make A > 1.222 so that % < 13.64. As an example,
choose A = 1.3. Produce a simulation of the resulting fuzzy control system
with 2(0) = [0,0,2] " to show that there are no sustained oscillations so that
the fuzzy controller has been successfully redesigned to avoid the instability.

(d) Repeat (c) but choose A = 0.5 and find a value of B that will result in
a stable closed-loop system. Justify your choice of B theoretically and by
providing a simulation that shows the choice was good.

Design Problem 4.4 (Stable Temperature Control): In this problem you
will verify the results of Section 4.4.2 on page 208 where the problem of designing
a stable fuzzy control system for a temperature control problem was addressed.
Suppose that the control system that we use is shown in Figure 4.9. The controller
G.(s) is a post compensator for the fuzzy controller.

(a) Suppose that we begin by choosing G.(s) = K = 2. Provide a plot of ¢’
versus e for the 11-rule fuzzy controller that is specified in Section 4.4.2.

(b) Show that « =0 and 8 = %. Plot the Nyquist plot of G.G and determine the
number of encirclements. What conclusion can be reached from the circle
criterion?

(¢) Choose a value for the initial state of the system, let the reference input be
zero, and show that the state trajectories converge asymptotically to zero.

(d) Let 74 = 20u(t) where wu(t) is a unit step, and determine the value of the
steady-state error using a simulation of the closed-loop system.

(e) Suppose that we choose G (s) = 2 (chosen to try to eliminate the steady-
state error). Using the plot of the fuzzy controller nonlinearity, show that

229

230 Chapter 4 / Nonlinear Analysis

we can choose a = % and 3 = % and the sector condition holds on a region
[—80, 80].

(f) Show that the Nyquist plot of G.G does not encircle the disk D(—4/3, —3/4).
What is concluded from the circle criterion?

(g) Do a simulation where the initial conditions are started sufficiently close to
the origin (and the reference input is equal to zero) to show that the state
trajectories asymptotically decrease to zero.

(h) Next, choose 74 = 20u(t) where u(t) is a unit step, and do a simulation to
show that there is no steady-state error.

Design Problem 4.5 (Designing for Zero Steady State Tracking Error):
Consider a plant of the form

1

Gls) = 52 4+4s+3

(a) Choose a SISO proportional fuzzy controller and determine the « and
describing the sector in which it lies where the type of sector is the one used
for the theory of steady-state tracking error. Note that you can find o and
[numerically by inserting values of a and b into the equation

and determining the maximum and minimum values. An alternative ap-
proach is to plot the fuzzy controller nonlinearity and read the values off the
plot by inspection.

(b) Which condition of the circle criterion holds? Show a Nyquist plot to support
your conclusion.

(¢) For your choice of o and §, find ¢g and H(0). Find 7, and then solve the
recursive equation from Equation (4.25). Suppose that we choose a step
input of magnitude 3. What is the value of e,s?

(d) Suppose that we consider the steady-state error to be excessive, and that
we would like to redesign our fuzzy controller using the steady-state error
prediction procedure as part of the design process. Intuitively, we would
expect that if we increased the “gain of the fuzzy controller,” the steady-
state error would decrease. In terms of the egs prediction procedure, this
would mean changing « and (3. Because of the inherent saturation of the
fuzzy controller, o will always equal 0. Therefore, we will have to adjust by
changing 3 only. Find a value of 3 so that ess < 0.4.

(e) Cousider the response of the system from (d) to a ramp input. What is the
value of e(t) as ¢t goes to infinity? Will changing the scaling gains of your
fuzzy controller improve tracking error?

4.11 Design Problems

Design Problem 4.6 (Design of Hydrofoil Controller to Get Zero Track-

ing Error): In this problem you will verify the results of Section 4.5.2 on
page 213. Suppose that we use a proportional fuzzy controller of the form de-
scribed in Section 4.2.1.

(a) Show that 8 must be less than 1.56 for the circle criterion conditions to be
satisfied.

(b) Choose A = B = 1. Show that ¢y = 0.5, H(0) = 0.6667, and G(0) = 1. Let
the input be a step with magnitude 5.0, and show that v = 3.3333. Find the
value of the steady-state error.

(¢) Add an integrator and show that if B/A < 50 we can meet the conditions
to get ess = 0. Perform a simulation for this system with A = B = 1 and
show that ess = 0.

Design Problem 4.7 (Prediction and Elimination of Limit Cycles: SISO
Case): Suppose that a fuzzy controller of the form described in Section 4.2.1
has A = 0.2 and B = 0.1 and a plant with transfer function

1

Gls) = s(s2+0.2s+1)

configured in the form used in Section 4.6.1.

(a) Plot the describing function for the fuzzy controller.

(b) Plot G(jw) and — gray on the same plot and find the intersection point(s).
What are the magnitude and frequency of the predicted limit cycle? Is the
limit cycle stable? Why?

(¢) The last step of this process is to verify by simulation that the limit cycle
does exist. Choose r(t) = 1 and simulate the closed-loop system. What are
the frequency and amplitude of the limit cycle in the simulation? Compare
your results to the predicted values in (b).

(d) Now that we have predicted the existence of a limit cycle for our system, we
desire to redesign the fuzzy controller so that there are no limit cycles. What
value must —1/N(C,w) be less than so that there would be no intersection
point and no limit cycle? What values of A and B should you choose so that
there will be no limit cycles? Why? Choose r(t) = 1 and simulate the closed-
loop system to verify that there are now no limit cycles for your choice of A
and B.

Design Problem 4.8 (Prediction and Elimination of Limit Cycles: SISO
Case, Unstable Limit Cycle): Consider a plant with transfer function

52 +0.4s +2.29
G(s) = —=
s(s? +0.45s+1.04)

231

232

Chapter 4 / Nonlinear Analysis

(a)

Our first design for the fuzzy controller will have A = 0.1 and B = 0.3. To
predict the limit cycles of this system, find N(C,w) then plot —1/N(C,w)
and G(jw) on the same plot and identify the intersection points. What
amplitudes and frequencies will the limit cycles have? Are they stable?

To confirm that these limit cycles exist, simulate the system with » = 0.761
(this value was chosen to best show the existence of both limit cycles). What
are the values of the amplitudes and frequencies of the limit cycles? How
do these compare with the predicted values? What happens if r < 0.7617
Simulate the system for this case to illustrate the behavior.

Redesign the fuzzy controller so that no limit cycles exist. To demonstrate
that no limit cycles exist for your design, use the theory and a simulation
with » = 0.761.

Design Problem 4.9 (Prediction and Elimination of Limit Cycles: MISO
Case): Suppose that the plant has the transfer function

(s+1)2
53

G(s) =

Our fuzzy controller is the two-input fuzzy controller with inputs e and é described
in Section 4.2 on page 189, and with parameters A, B, and D.

(a) Show that choosing A= B = D =1 is not a good choice.

(b)

Use describing function analysis to choose the parameters A, B, and D for
the fuzzy controller so that no limit cycles occur, and demonstrate in simu-
lation that they do not occur. Note that when you experimentally determine
the describing function you must consider a range of values of both C' and
w to find different —1/N(C,w) curves to find the intersection points. You
can assume that the reference input is a positive step with a magnitude no
larger than five. What happens if the amplitude of the step input is greater
than 307 Simulate the system for this case to illustrate the behavior.

C HHEA=P=TER—"5

Fuzzy Identification
and Estimation

For the things we have to learn before we can do
them,

we learn by doing them.

—Aristotle

5.1 Overview

While up to this point we have focused on control, in this chapter we will examine
how to use fuzzy systems for estimation and identification. The basic problem to
be studied here is how to construct a fuzzy system from numerical data. This is
in contrast to our discussion in Chapters 2 and 3, where we used linguistics as
the starting point to specify a fuzzy system. If the numerical data is plant input-
output data obtained from an experiment, we may identify a fuzzy system model
of the plant. This may be useful for simulation purposes and sometimes for use in a
controller. On the other hand, the data may come from other sources, and a fuzzy
system may be used to provide for a parameterized nonlinear function that fits the
data by using its basic interpolation capabilities. For instance, suppose that we have
a human expert who controls some process and we observe how she or he does this
by observing what numerical plant input the expert picks for the given numerical
data that she or he observes. Suppose further that we have many such associations
between “decision-making data.” The methods in this chapter will show how to
construct rules for a fuzzy controller from this data (i.e., identify a controller from
the human-generated decision-making data), and in this sense they provide another
method to design controllers.

Yet another problem that can be solved with the methods in this chapter is
that of how to construct a fuzzy system that will serve as a parameter estimator.

233

234 Chapter 5 / Fuzzy ldentification and Estimation

To do this, we need data that shows roughly how the input-output mapping of the
estimator should behave (i.e., how it should estimate). One way to generate this data
is to begin by establishing a simulation test bed for the plant for which parameter
estimation must be performed. Then a set of simulations can be conducted, each
with a different value for the parameter to be estimated. By coupling the test
conditions and simulation-generated data with the parameter values, you can gather
appropriate data pairs that allow for the construction of a fuzzy estimator. For some
plants it may be possible to perform this procedure with actual experimental data
(by physically adjusting the parameter to be estimated). In a similar way, you could
construct fuzzy predictors using the approaches developed in this chapter.

We begin this chapter by setting up the basic function approximation problem
in Section 5.2, where we provide an overview of some of the fundamental issues in
how to fit a function to input-output data, including how to incorporate linguistic
information into the function that we are trying to force to match the data. We
explain how to measure how well a function fits data and provide an example of how
to choose a data set for an engine failure estimation problem (a type of parameter
estimation problem in which when estimates of the parameters take on certain
values, we say that a failure has occurred).

In Section 5.3 we introduce conventional least squares methods for identifica-
tion, explain how they can be used to tune fuzzy systems, provide a simple exam-
ple, and offer examples of how they can be used to train fuzzy systems. Next, in
Section 5.4 we show how gradient methods can be used to train a standard and
Takagi-Sugeno fuzzy system. These methods are quite similar to the ones used to
train neural networks (e.g., the “back-propagation technique”). We provide exam-
ples for standard and Takagi-Sugeno fuzzy systems. We highlight the fact that via
either the recursive least squares method for fuzzy systems or the gradient method
we can perform on-line parameter estimation. We will see in Chapter 6 that these
methods can be combined with a controller construction procedure to provide a
method for adaptive fuzzy control.

In Section 5.5 we introduce two techniques for training fuzzy systems based
on clustering. The first uses “c-means clustering” and least squares to train the
premises and consequents, respectively, of the Takagi-Sugeno fuzzy system; while
the second uses a nearest neighborhood technique to train standard fuzzy systems.
In Section 5.6 we present two “learning from examples” (LFE) methods for con-
structing rules for fuzzy systems from input-output data. Compared to the previous
methods, these do not use optimization to construct the fuzzy system parameters.
Instead, the LFE methods are based on simple procedures to extract rules directly
from the data.

In Section 5.7 we show how hybrid methods for training fuzzy systems can
be developed by combining the methods described in this chapter. Finally, in Sec-
tion 5.8, we provide a design and implementation case study for parameter estima-
tion in an internal combustion engine.

Overall, the objective of this chapter is to show how to construct fuzzy systems
from numerical data. This will provide the reader with another general approach
for fuzzy system design that may augment or extend the approach described in

5.2 Fitting Functions to Data

Chapters 2 and 3, where we start from linguistic information. With a good under-
standing of Chapter 2, the reader can complete this chapter without having read
Chapters 3 and 4. The section on indirect adaptive control in Chapter 6 relies on
the gradient and least squares methods discussed in this chapter, and a portion of
the section on gain schedule construction in Chapter 7 relies on the reader knowing
at least one method from this chapter. In other words, this chapter is important
since many adaptive control techniques depend on the use of an estimator. More-
over, the sections on neural networks and genetic algorithms in Chapter 8 depend
on this chapter in the sense that if you understand this chapter and those sections,
you will see how those techniques relate to the ones discussed here. Otherwise, the
remainder of the book can be completed without this chapter; however, this chapter
will provide for a deeper understanding of many of the concepts to be presented
in Chapters 6 and 7. For example, the learning mechanism for the fuzzy model
reference learning controller (FMRLC) described in Chapter 6 can be viewed as an
identification algorithm that is used to tune a fuzzy controller.

5.2 Fitting Functions to Data

We begin this section by precisely defining the function approximation problem, in
which you seek to synthesize a function to approximate another function that is
inherently represented via a finite number of input-output associations (i.e., we only
know how the function maps a finite number of points in its domain to its range).
Next, we show how the problem of how to construct nonlinear system identifiers
and nonlinear estimators is a special case of the problem of how to perform function
approximation. Finally, we discuss issues in the choice of the data that we use to
construct the approximators, discuss the incorporation of linguistic information,
and provide an example of how to construct a data set for a parameter estimation
problem.

5.2.1 The Function Approximation Problem
Given some function

g:X—Y
where X C R” and V C R, we wish to construct a fuzzy system
f:X—=Y

where X C X and Y C Y are some domain and range of interest, by choosing a
parameter vector 6 (which may include membership function centers, widths, etc.)
so that

g9(x) = f(]0) + e(x) (5.1)

235

236 Chapter 5 / Fuzzy ldentification and Estimation

for all # = [r1,22,...,7,)" € X where the approximation error e(z) is as small as
possible. If we want to refer to the input at time k, we will use z(k) for the vector
and z;(k) for its j*" component.

Assume that all that is available to choose the parameters 6 of the fuzzy system
f(x]6) is some part of the function g in the form of a finite set of input-output data
pairs (i.e., the functional mapping implemented by g is largely unknown). The 7"
input-output data pair from the system g is denoted by (z%,y') where z¢ € X,
y' €Y, and y' = g(z%). We let 2* = [z¢, 2}, ...,2%]T represent the input vector
for the i'" data pair. Hence, 2 is the j*" element of the i’ data vector (it has a
specific value and is not a variable). We call the set of input-output data pairs the
training data set and denote it by

G={"y",.. ., @M MY cXxY (5.2)

where M denotes the number of input-output data pairs contained in G. For con-
venience, we will sometimes use the notation d for data pair (z?,y").

To get a graphical picture of the function approximation problem, see Fig-
ure 5.1. This clearly shows the challenge; it can certainly be hard to come up with
a good function f to match the mapping g when we know only a little bit about
the association between X and Y in the form of data pairs G. Moreover, it may be
hard to know when we have a good approximation—that is, when f approximates
g over the whole space of inputs X.

FIGURE 5.1 Function mapping with three
known input-output data pairs.

To make the function approximation problem even more concrete, consider a
simple example. Suppose that n = 2, X C ®2, Y = [0,10], and g : X — Y. Let
M = 3 and the training data set

=z])-(E o) (]) 69

which partially specifies g as shown in Figure 5.2. The function approximation
problem amounts to finding a function f(xz|f) by manipulating 6 so that f(x|6)

5.2 Fitting Functions to Data

approximates g as closely as possible. We will use this simple data set to illustrate
several of the methods we develop in this chapter.

)

74
6+ .
5__
44+ .
3_._

2 ¢
: _-\

+— t — ——+—
01234567 x 012

w -+
W+
w -+
g
[3
O\ -9
g+
<

FIGURE 5.2 The training data G generated from the
function g.

How do we evaluate how closely a fuzzy system f(x|f) approximates the func-
tion g(x) for all x € X for a given 0?7 Notice that

sup{lg(x) — f(z[0)[} (5-4)

rzeX

is a bound on the approximation error (if it exists). However, specification of such a
bound requires that the function g be completely known; however, as stated above,
we know only a part of g given by the finite set G. Therefore, we are only able to
evaluate the accuracy of approximation by evaluating the error between g(z) and
f(x]6) at certain points x € X given by available input-output data. We call this
set of input-output data the test set and denote it as I', where

L= {4y, ., (@M M) c X xY (5.5)

Here, Mr denotes the number of known input-output data pairs contained within
the test set. It is important to note that the input-output data pairs (2%, y*) con-
tained in I' may not be contained in G, or vice versa. It also might be the case that
the test set is equal to the training set (G = T'); however, this choice is not always
a good one. Most often you will want to test the system with at least some data
that were not used to construct f(z|0) since this will often provide a more realistic
assessment of the quality of the approximation.

We see that evaluation of the error in approximation between g and a fuzzy
system f(z]0) based on a test set I' may or may not be a true measure of the error
between g and f for every = € X, but it is the only evaluation we can make based

237

238 Chapter 5 / Fuzzy ldentification and Estimation

on known information. Hence, you can use measures like

Yo (9(a’) — fa'9)? (5.6)

(z?,y*)er

or

sup {|g(a") — f(«"10)[} (5.7)

(zf,yH)er

to measure the approximation error. Accurate function approximation requires that
some expression of this nature be small; however, this clearly does not guarantee
perfect representation of g with f since most often we cannot test that f matches
g over all possible input points.

We would like to emphasize that the type of function that you choose to ad-
just (i.e., f(x|f)) can have a significant impact on the ultimate accuracy of the
approximator. For instance, it may be that a Takagi-Sugeno (or functional) fuzzy
system will provide a better approximator than a standard fuzzy system for a par-
ticular application. We think of f(z|f) as a structure for an approximator that is
parameterized by 6. In this chapter we will study the use of fuzzy systems as ap-
proximators, and use a fuzzy system as the structure for the approximator. The
choice of the parameter vector 6 depends on, for example, how many membership
functions and rules you use. Generally, you want enough membership functions and
rules to be able to get good accuracy, but not too many since if your function is
“overparameterized” this can actually degrade approximation accuracy. Often, it is
best if the structure of the approximator is based on some physical knowledge of
the system, as we explain how to do in Section 5.2.4 on page 241.

Finally, while in this book we focus primarily on fuzzy systems (or, if you un-
derstand neural networks you will see that several of the methods of this chapter
directly apply to those also), at times it may be beneficial to use other approxi-
mation structures such as neural networks, polynomials, wavelets, or splines (see
Section 5.10 “For Further Study,” on page 302).

5.2.2 Relation to ldentification, Estimation, and Prediction
Many applications exist in the control and signal processing areas that may utilize
nonlinear function approximation. One such application is system identification,
which is the process of constructing a mathematical model of a dynamic system
using experimental data from that system. Let g denote the physical system that
we wish to identify. The training set G is defined by the experimental input-output
data.
In linear system identification, a model is often used where

y(k) = a,y(k —i) + > Oy, u(k — i) (5.8)
=1 1=0

5.2 Fitting Functions to Data

and u(k) and y(k) are the system input and output at time k& > 0. Notice that you
will need to specify appropriate initial conditions. In this case f(x|6), which is not
a fuzzy system, is defined by

f(z]0) =0Tz
where
w(k) = [y(k = 1), y(k — @), u(k), -, u(k —p)]" (5.9)
9:[oap"'aoaqaobga"';obﬁ]—r (510)

Let N = g+p+1 so that x(k) and 6 are N x 1 vectors. Linear system identification
amounts to adjusting 6 using information from G so that g(z) = f(z|6) + e(x)
where e(x) is small for all x € X.

Similar to conventional linear system identification, for fuzzy identification we
will utilize an appropriately defined “regression vector” z as specified in Equa-
tion (5.9), and we will tune a fuzzy system f(x|6) so that e(x) is small. Our hope is
that since the fuzzy system f(z|0) has more functional capabilities (as characterized
by the universal approximation property described in Section 2.3.8 on page 77) than
the linear map defined in Equation (5.8), we will be able to achieve more accurate
identification for nonlinear systems by appropriate adjustment of its parameters 6
of the fuzzy system.

Next, consider how to view the construction of a parameter (or state) estimator
as a function approximation problem. To do this, suppose for the sake of illustration
that we seek to construct an estimator for a single parameter in a system g. Suppose
further that we conduct a set of experiments with the system g in which we vary a
parameter in the system—say, a.. For instance, suppose we know that the parameter
o lies in the range [amin, maz) but we do not know where it lies and hence we would
like to estimate it. Generate a data set G with data pairs (2%, a’) € G where the o
are a range of values over the interval [amin, Qmaq) and the x* corresponding to each
o' is a set of input-output data from the system g in the form of Equation (5.9)
that results from using o' as the parameter value in g. Let & denote the fuzzy
system estimate of . Now, if we construct a function & = f(z|f) from the data
in G, it will serve as an estimator for the parameter o. Each time a new x vector
is encountered, the estimator f will interpolate between the known associations
(2%, a%) € G to produce the estimate &. Clearly, if the data set G is “rich” enough,
it will have enough (2%, o) pairs so that when the estimator is presented with an
x # x', it will have a good idea of what & to specify because it will have many
that are close to x that it does know how to specify « for. We will study several
applications of parameter estimation in this chapter and in the problems at the end
of the chapter.

To apply function approximation to the problem of how to construct a predictor
for a parameter (or state variable) in a system, we can proceed in a similar manner to
how we did for the parameter estimation case above. The only significant difference
lies in how to specify the data set G. In the case of prediction, suppose that we

239

240 Chapter 5 / Fuzzy ldentification and Estimation

wish to estimate a parameter a(k + D), D time steps into the future. In this case
we will need to have available training data pairs (z¢, a’(k+ D)) € G that associate
known future values of a with available data z?. A fuzzy system constructed from
such data will provide a predicted value &(k + D) = f(z|f) for given values of .

Overall, notice that in each case—identification, estimation, and prediction—
we rely on the existence of the data set G from which to construct the fuzzy system.
Next, we discuss issues in how to choose the data set G.

5.2.3 Choosing the Data Set

While the method for adjusting the parameters 6 of f(x|6) is critical to the overall
success of the approximation method, there is virtually no way that you can succeed
at having f approximate g if there is not appropriate information present in the
training data set G. Basically, we would like G to contain as much information
as possible about g. Unfortunately, most often the number of training data pairs
is relatively small, or it is difficult to use too much data since this affects the
computational complexity of the algorithms that are used to adjust 6. The key
question is then, How would we like the limited amount of data in G structured so
that we can adjust 6 so that f matches g very closely?

There are several issues involved in answering this question. Intuitively, if we
can manage to spread the data over the input space uniformly (i.e., so that there
is a regular spacing between points and not too many more points in one region
than another) and so that we get coverage of the whole input space, we would often
expect that we may be able to adjust 6 properly, provided that the space between
the points is not too large [108]. This is because we would then expect to have
information about how the mapping g is shaped in all regions so we should be able
to approximate it well in all regions. The accuracy will generally depend on the
slope of g in various regions. In regions where the slope is high, we may need more
data points to get more information so that we can do good approximation. In
regions with lower slopes, we may not need as many points. This intuition, though,
may not hold for all methods of adjusting 6. For some methods, you may need just
as many points in “flat” regions as for those with ones that have high slopes. It is
for this reason that we seek data sets that have uniform coverage of the X space.
If you feel that more data points are needed, you may want to simply add them
more uniformly over the entire space to try to improve accuracy.

While the above intuitive ideas do help give directions on how to choose G for
many applications, they cannot always be put directly into use. The reason for this
is that for many applications (e.g., system identification) we cannot directly pick the
data pairs in G. Notice that since our input portion of the input-output training
data pairs (i.e.,) is typically of the form shown in Equation (5.9), = actually
contains both the inputs and the outputs of the system. It is for this reason that it
is not easy to pick an input to the system u that will ensure that the outputs y will
have appropriate values so that we get x values that uniformly cover the space X.
Similar problems may exist for other applications (e.g., parameter estimation), but
for some applications this may not be a problem. For instance, in constructing a

5.2 Fitting Functions to Data

fuzzy controller from human decision-making data, we may be able to ensure that
we have the human provide data on how to respond to a whole range of input data
(i-e., we may have full control over what the input portion of the training data in
G is).

It is interesting to note that there are fundamental relationships between a data
set that has uniform coverage of X and the idea of “sufficiently rich” signals in sys-
tem identification (i.e., “persistency of excitation” in adaptive systems). Intuitively,
for system identification we must choose a signal u to “excite” the dynamics of the
system so that we can “see,” via the plant input-output data, what the dynamics
are that generated the output data. Normally, constraints from conventional linear
system identification will require that, for example, a certain number of sinusoids
be present in the signal u to be able to estimate a certain number of parameters.
The idea is that if we excite more modes of the system, we will be able to identify
these modes. Following this line of reasoning, if we use white noise for the input
u, then we should excite all frequencies of the system—and therefore we should be
able to better identify the dynamics of the plant.

Excitation with a noise signal will have a tendency to place points in X over
a whole range of locations; however, there is no guarantee that uniform coverage
will be achieved for nonlinear identification problems with standard ideas from
conventional linear identification. Hence, it is a difficult problem to know how to
pick u so that G is a good data set for solving a function approximation problem.
Sometimes we will be able to make a choice for u that makes sense for a particular
application. For other applications, excitation with noise may be the best choice
that you can make since it can be difficult to pick the input u that results in a
better data set G; however, sometimes putting noise into the system is not really a
viable option due to practical considerations.

5.2.4 Incorporating Linguistic Information

While we have focused above on how best to construct the numerical data set G so
that it provides us with good information on how to construct f, it is important
not to ignore the basic idea from the earlier chapters that linguistic information
has a valuable role to play in the construction of a fuzzy system. In this section
we explain how all the methods treated in this chapter can be easily modified so
that linguistic information can be used together with the numerical data in G to
construct the fuzzy system.

Suppose that we call f the fuzzy system that is constructed with one of the
techniques described in this chapter—that is, from numerical data. Now, suppose
that we have some linguistic information and with it we construct another fuzzy
system that we denote with fr . If we are studying a system identification problem,
then fr may contain heuristic knowledge about how the plant outputs will respond
to its inputs. For specific applications, it is often easy to specify such information,
especially if it just characterizes the gross behavior of the plant. If we are studying
how to construct a controller, then just as we did in Chapters 2 and 3, we may
know something about how to construct the controller in addition to the numerical

241

242 Chapter 5 / Fuzzy ldentification and Estimation

data about the decision-making process. If so, then this can be loaded into fr. If
we are studying an estimation or prediction problem, then we can provide similar
heuristic information about guesses at what the estimate or prediction should be
given certain system input-output data.

Suppose that the fuzzy system f1, is in the same basic form (in terms of its
inference strategy, fuzzification, and defuzzification techniques) as f, the one con-
structed with numerical data. Then to combine the linguistic information in fr,
with the fuzzy system f that we constructed from numerical data, we simply need
to combine the two fuzzy systems. There are many ways to do this. You could
merge the two rule-bases then treat the combined rule-base as a single rule-base.
Alternatively, you could interpolate between the outputs of the two fuzzy systems,
perhaps with another fuzzy system. Here, we will explain how to merge the two
fuzzy systems using one rule-base merging method. It will then be apparent how
to incorporate linguistic information by combining fuzzy systems for the variety of
other possible cases (e.g., merging information from two different types of fuzzy
systems such as the standard fuzzy system and the Takagi-Sugeno fuzzy system).

Suppose that the fuzzy system we constructed from numerical data is given by

S bipi(x)

0= 5@

where

. 2
n 1 [x;—c
te) = [T 5 (%)
j=1 j

It uses singleton fuzzification, Gaussian membership functions, product for the
premise and implication, and center-average defuzzification. It has R rules, out-
put membership function centers at b;, input membership function centers at cz-,
and input membership function spreads cr;'-. Suppose that the additional linguistic
information is described with a fuzzy system

S5 bk (x)

Il = om0

where

. 2
n 1 [z;—¢C
L _ ot J J
j=1 j

This fuzzy system has Ry, rules, output membership function centers at bX, input

membership function centers at ¢, and input membership function widths 7.

5.2 Fitting Functions to Data

The combined fuzzy system fo can be defined by

S bipi(a) + X bEpk (2)
Zil () + ZzR:Ll NzL(x)

This fuzzy system is obtained by concatenating the rule-bases for the two fuzzy
systems, and this equation provides a mathematical description of how this is done.
This combination approach results in a fuzzy system that has the same basic form
as the fuzzy systems that it is made of.

Overall, we would like to emphasize that at times it can be very beneficial to
include heuristic information via the judicious choice of fr. Indeed, at times it can
make the difference between the success or failure of the methods of this chapter.
Also, some would say that our ability to easily incorporate heuristic knowledge via
fr is one of the advantages of fuzzy over neural or conventional identification and
estimation methods.

fe(z) =

5.2.5 Case Study: Engine Failure Data Sets

In this section we will show how to choose the training data for a case study that we
will use in the homework problems of this chapter. In particular, we will establish
an engine failure simulator for the generation of data to train a failure estimator (a
type of parameter estimator) for an internal combustion engine.

Engine Failure Simulator

An engine failure simulator takes engine inputs and and uses an engine model with
specified parameters to produce engine outputs. When the engine parameters are
varied, the failure simulator produces an output corresponding to the varied pa-
rameters. In this case study we use the engine model shown in Figure 5.3, with pa-
rameters defined in Table 5.1, which was developed in [174]. This particular model
is a crude representation of a fuel-injected internal combustion engine. It describes
the throttle to engine speed dynamics, taking into account some of the dynamics
from other engine subsystems. The engine model includes a throttle position sensor
for ©, manifold absolute pressure (MAP) sensor for P,,, and a sensor for the en-
gine speed N. The model describes the intake manifold dynamics, the pressure to
torque map, the rotating dynamics of the engine, including the inherent frictional
losses, and the load torque due to outside disturbances, T7,. Under normal vehicle
operation, the system contains nonlinearities that make modeling the engine quite
complex. Some of these nonlinearities are determined by the speed and throttle and
can be linearized about an idle speed operating point, as was done with this model.
While such a simple model does not represent the complete engine dynamics, it
proves adequate for our failure estimation example, as it has the ability to roughly
model the failure modes that we are interested in.

There are several inputs to the failure simulator: the throttle position ©; the
parameters ki1—k7, whose variations represent failures; and the load torque distur-
bance T7,. Recall that we will use different conditions for training and testing the

243

244 Chapter 5 / Fuzzy ldentification and Estimation

MAP sensor

By
Throttle —)[>—>
position Engine

T
k L speed
Time delay + > 1 N
Ip =0.0549 1 Kl
) 7
k5

V 4

FIGURE 5.3 Linearized engine model (figure drawn by Sashonda Morris).

TABLE 5.1 Parameter Values for an Operating Condition

Engine speed N 1092.6 rpm

Throttle position O || 10.22% of full throttle
Change in input throttle angle k1 || 949.23 kPa/second-volts
Change in intake manifold k2 || 6.9490 kPa/second-kPa
Change in engine pumping ks || 0.3787 kPa/second-rpm
Change in combustion characteristic ks || 0.8045 (Nt-m)/kPa
Change in the engine friction ks || 0.0246 (Nt-m)/rpm
Change in air pressure intake manifold | k¢ || 1.0000 kPa/second-kPa
Change in speedometer sensor k7 || 1.0000 (Nt-m)/rpm
Time delay tp || 0.0549 second

Inertia J || 0.00332 (Nt-m second)/rpm

accuracy of our estimator. For training, the input © is a “staircase step,” with
amplitude ranging from 0.1 to 0.025, as shown in Figure 5.4. For testing, the in-
put © is a constant step of 0.1. For training, we set T, = 0. For testing, the load
torque disturbance 77, is shown in Figure 5.4 where we use a height of 5 Nm, a start
time of 0.1 sec, a period of 3 sec, and a width of 0.2 sec. This type of disturbance
corresponds to the load placed on the engine due to the on/off cycling of the air
conditioner compressor. Since we are using a linearized model, the values of the
step correspond to the change in the input throttle angle and load torque around
the idle speed. Note that we use 17, = 0 for training since this represents that we
do not know how the load torque will influence the system a priori. Then, in testing
we can evaluate the ability of our estimator to perform under conditions that it
was not originally designed for.

To modify the gains k1—k7 in the engine model in Figure 5.3 to represent fail-
ures, we use

k;i(failure) = k;(nominal) + Ak; x k;(nominal) (5.11)

5.2 Fitting Functions to Data 245

Training input Disturbance input
0.1
5tn o o o
§ 0.08 4
=]
£0.06 €3
2 =~
s &~
g 2
=0.04
1
0.02 0
0 2 4 6 8 0 2 4 6 8
Time (sec) Time (sec)

FIGURE 5.4 Throttle position © and load torque 77 (plots
created by Sashonda Morris).

where

_ % of failure

Ak 100

(5.12)
Ak; € [-1.0,+1.0],¢ € {1,2,...,7}, and the k;(nominal), are the values of the
parameters k; given in Table 5.1. The percentage of failure can be any value between
+100%. If Ak; = 0, then k;(failure) = k;(nominal), and no failure occurred for that
particular parameter. If Ak; # 0, then the value of the nominal gain is increased
for Ak; > 0 and decreased for Ak; < 0.

Engine Failure Scenarios

The failure simulator is capable of simulating throttle position, manifold absolute
pressure, and vehicle speed sensor failures. It also has the ability to simulate various
plant and actuator failures, such as the change in engine pumping and change in
combustion characteristics. In this case study, the intake manifold coefficient, ks,
and the frictional coefficient, k5, were varied for failure estimation purposes. A
decrease in ko represents a vacuum or gasket leak, which results from a cracked or
loose gasket. Under these conditions, the engine may idle rough, stall, or yield poor
fuel economy. An increase in ks indicates excessive engine friction resulting from an
excessive loss in torque. This condition may result in engine knocking, backfiring,
surging at steady speed, or a lack of engine power. Our objective is to develop a
parameter estimator for these parameters so that we can provide an indication if
there has been a failure in the engine.

The two failure scenarios are shown in Table 5.2. The scenarios represent single
parameter engine faults. Figure 5.5 shows the output responses for the specified
failure scenarios. These will be used to test the fuzzy parameter estimators for ks
and ks after they are constructed. The first plot in the figure indicates normal
operation of the engine when © is a step input of amplitude 0.1. The last two plots
illustrate the output responses for the failure scenarios specified in Table 5.2. The
failures were induced at the beginning of the simulation. Notice that a ko failure

246 Chapter 5 / Fuzzy ldentification and Estimation

results in an increase in overshoot and some steady-state error, while a k5 failure
results in a significant steady-state error.

TABLE 5.2 Failure Scenarios for Automotive Engine

Failure Gain Original Failure

Scenarios Value Setting

Leakage in gasket ko 6.9490 kPa/second-kPa | —50%

Excessive engine friction ks 0.0246 (Nt-m)/rpm +100%
No failures

300 T

Engine speed (rpm)
s 8
(=} o (=]
7
Il Il

0 2 3 4 5 6 7 8
Time (sec)
-50% k 2 failure
z 300 T
E-
<200 [|
2
&
2100 - g
g
éb O L L L L L L L
= o 1 2 3 4 5 6 7 8
Time (sec)
+100% k5 failure
=150 T T
g
£
= 100 - B
£
17) 50 |- -
g
ED 0 L L L L L L L
=) 0 1 2 3 4 5 6 7 8
Time (sec)

FIGURE 5.5 Output responses for the automotive engine failure
scenarios (plots created by Sashonda Morris).

The Training Data Set

To train the fuzzy parameter estimator, the training input for the throttle posi-
tion © shown in Figure 5.4 is used as the input to the engine. Using this input,
the engine failure simulator produces output responses corresponding to the sys-
tem parameters. Varying a single parameter over a range of values yields different
responses, with each one corresponding to the value of the parameter. For our pur-
poses, the parameters ko and ks were varied individually over a specified range
of values to account for the possible failure scenarios the system might encounter.
The parameter ko was varied between —50% and +50% of its nominal value (i.e.,

5.2 Fitting Functions to Data 247

Akg € [-0.5,+40.5]), and ks was varied between +100% and +200% of its nominal
value (i.e., Aks € [+1,+2]). The parameters ks and k5 were varied at 5% and 10%
increments, yielding My, = 21 and My, = 11 responses, which are shown in Fig-
ures 5.6 and 5.7. These plots represent how the engine will behave over a variety of
failure conditions.

300

250 -

)

=3

S
T

%
3
T

Engine speed (rpm)

S
3
T

50,

Time (sec)

FIGURE 5.6 Automotive engine rpm for
Aks € [—0.5,0.5] (plots created by Sashonda Morris).

250

200 - 4

Engine speed (rpm)

Time (sec)

FIGURE 5.7 Automotive engine rpm for
Aks € [4+1,+42] (plots created by Sashonda Morris).

248 Chapter 5 / Fuzzy ldentification and Estimation

The output responses were sampled with a sampling period of T" = 0.25 sec to
form the engine failure data sets. In particular, the full set of engine failure data is
given by

Gr, = {([©)(kT), N (KT), N/ (kT —T)] ", k) : k € {1,2,...,30},
ifi=21<j< My, andifi=51<j< M} (513)

where k/ denotes the j** value (1 < j < My,) of k; and ©(kT), N7 (kT), and
N/ (KT — T) represent the corresponding values of ©(kT), N(kT), and N (kT —T)
that were generated using this &/ (note that “k” denotes a time index while k; and
k! denote parameter values). Hence, G, (Gy,) is the set of data that we will use
in the problems at the end of the chapter to train fuzzy systems to estimate the
value of ko (ks5). Notice that the number of training data points in Gy, is 30 M,
i=2,5.

We choose z = [©)(kT), N} (kT), N/ (kT — T)]" since the value of k; depends
on the size of O, the size of N(kT), and the rate of change of N(kT). Also, we
chose to have more training points in the ky data set since we found it somewhat
more difficult to estimate. Notice also that we choose the Gy, to represent a range of
failures, and for illustration purposes we will test the performance of our estimators
near the end of these ranges (i.e., a —50% failure on ks and a +100% failure on k).
Generally, it is often better to train for a whole range of failures around where you
expect the failed parameter values to be. For this reason, estimators developed based
on these training data will tend to be worse than what is possible to obtain (we
made this choice for testing our fuzzy parameter estimation systems for illustrative
purposes to show that even at the limits of the training data it is possible for you
get reasonably good estimation results).

5.3 Least Squares Methods

In this section we will introduce batch and recursive least squares methods for
constructing a linear system to match some input-output data. Following this, we
explain how these methods can be directly used for training fuzzy systems. We
begin by discussing least squares methods as they are simple to understand and
have clear connections to conventional estimation methods. We also present them
first since they provide for the training of only certain parameters of a fuzzy system
(e.g., the output membership function centers). Later, we will provide methods that
can be used to tune all the fuzzy system’s parameters.

5.3.1 Batch Least Squares

We will introduce the batch least squares method to train fuzzy systems by first
discussing the solution of the linear system identification problem. Let g denote
the physical system that we wish to identify. The training set G is defined by the
experimental input-output data that is generated from this system. In linear system

5.3 Least Squares Methods

identification, we can use a model

y(k) = Z oaiy(k - Z) + Z obmu(k - Z)
1=1 1=0

where u(k) and y(k) are the system input and output at time k. In this case f(z|0),
which is not a fuzzy system, is defined by

f(x|0) = 6" z(k) (5.14)

where we recall that

and
oz[oala"'aoaq aoboa"'aob

We have N = ¢+ p+ 1 so that (k) and 6 are N x 1 vectors, and often x(k) is
called the “regression vector.”

Recall that system identification amounts to adjusting 6 using information from
G so that f(x|6) =~ g(z) for all x € X. Often, to form G for linear system identifi-
cation we choose ' = (i), y* = y(i), and let G = {(z%,y%) : i = 1,2,...,M}. To
do this you will need appropriate initial conditions.

Batch Least Squares Derivation

In the batch least squares method we define
1,2 My T
V(M) = [y 4%y

to be an M X 1 vector of output data where the y',i=1,2,...,M come from G
(i.e., y* such that (z',y") € G). We let

be an M x N matrix that consists of the x' data vectors stacked into a matrix (i.e.,
the 2* such that (z*,y") € G). Let

e =1y — ()76

249

250 Chapter 5 / Fuzzy ldentification and Estimation

be the error in approximating the data pair (2%, %) € G using 6. Define
T
E(M) = [61, €2, .. .,GM]
so that
E=Y —®0
Choose
L T

to be a measure of how good the approximation is for all the data for a given 6. We
want to pick 6 to minimize V(). Notice that V() is convex in 6 so that a local
minimum is a global minimum.

Now, using basic ideas from calculus, if we take the partial of V' with respect to
6 and set it equal to zero, we get an equation for 6, the best estimate (in the least
squares sense) of the unknown . Another approach to deriving this is to notice
that

W=E'E=Y'Y-Y'®-0"d"Y +0"d 00
Then, we “complete the square” by assuming that ® T ® is invertible and letting

2W=Y"Y Y3 -0"0'Y +0" 0 D
+yv'e@'®) e’y —ve@ e) ey

(where we are simply adding and subtracting the same terms at the end of the
equation). Hence,

W=Y"I-3@ ®) oYY +6H—-(2'®) 0 V)'d"d06 - (2'®)'d'Y)

The first term in this equation is independent of 6, so we cannot reduce V via
this term, so it can be ignored. Hence, to get the smallest value of V', we choose
¢ so that the second term is zero. We will denote the value of ¢ that achieves the
minimization of V' by 6, and we notice that

6= o) oYy (5.15)

since the smallest we can make the last term in the above equation is zero. This is
the equation for batch least squares that shows we can directly compute the least
squares estimate 6 from the “batch” of data that is loaded into ® and Y. If we pick
the inputs to the system so that it is “sufficiently excited” [127], then we will be
guaranteed that ® T ® is invertible; if the data come from a linear plant with known
¢ and p, then for sufficiently large M we will achieve perfect estimation of the plant
parameters.

5.3 Least Squares Methods

In “weighted” batch least squares we use

V() = %ETWE (5.16)
where, for example, W is an M x M diagonal matrix with its diagonal elements
w; > 0 for i = 1,2,..., M and its off-diagonal elements equal to zero. These w;
can be used to weight the importance of certain elements of G more than others.
For example, we may choose to have it put less emphasis on older data by choosing
wy < wy < -+ < wy when 22 is collected after x!, z3 is collected after 2, and so
on. The resulting parameter estimates can be shown to be given by

Oupis = (@ W) 'O WY (5.17)
To show this, simply use Equation (5.16) and proceed with the derivation in the

same manner as above.

Example: Fitting a Line to Data

As an example of how batch least squares can be used, suppose that we would like
to use this method to fit a line to a set of data. In this case our parameterized
model is

y = x101 + 2202 (5.18)

Notice that if we choose x2 = 1, y represents the equation for a line. Suppose that
the data that we would like to fit the line to is given by

1 2 3
L)) (R]
Notice that to train the parameterized model in Equation (5.18) we have chosen
xh =1fori=1,2,3= M. We will use Equation (5.15) to compute the parameters

for the line that best fits the data (in the sense that it will minimize the sum of the
squared distances between the line and the data). To do this we let

11
P=1]2 1
3 1

and

~
I

251

252 Chapter 5 / Fuzzy ldentification and Estimation

Hence,

0= (@Te)'oTy = ([o 3 D_l [5] B [4]

Hence, the line

Y= 3
best fits the data in the least squares sense. We leave it to the reader to plot the
data points and this line on the same graph to see pictorially that it is indeed a
good fit to the data.

The same general approach works for larger data sets. The reader may want to
experiment with weighted batch least squares to see how the weights w; affect the
way that the line will fit the data (making it more or less important that the data
fit at certain points).

5.3.2 Recursive Least Squares

While the batch least squares approach has proven to be very successful for a variety
of applications, it is by its very nature a “batch” approach (i.e., all the data are
gathered, then processing is done). For small M we could clearly repeat the batch
calculation for increasingly more data as they are gathered, but the computations
become prohibitive due to the computation of the inverse of ® T ® and due to the fact
that the dimensions of ® and Y depend on M. Next, we derive a recursive version
of the batch least squares method that will allow us to update our @ estimate each
time we get a new data pair, without using all the old data in the computation and
without having to compute the inverse of ® T ®.

Since we will be considering successively increasing the size of G, and we will
assume that we increase the size by one each time step, we let a time index k = M
and 7 be such that 0 <7 < k. Let the N x N matrix

k -1
Pk)=(®T®)" ! = (Z xi(xi)T> (5.19)

and let A(k—1) denote the least squares estimate based on k— 1 data pairs (P(k) is
called the “covariance matrix”). Assume that ® " @ is nonsingular for all k. We have
Pl(k)=®7® =7 4'(z%)7 so we can pull the last term from the summation
to get

P_l(k) _ le(xl)T +ZIIk(ZIIk)T

5.3 Least Squares Methods

and hence
P YE)=P Yk —1)+aFam)T (5.20)
Now, using Equation (5.15) we have

(k)= (@"®) o'y

()

(ny + zky) (5.21)

Hence,
~ k_l . .
6(k—1)=Pk-1) x'yt
i=1
and so
~ k_l . .
Pk =10k —1)=> 2"y
i=1

Now, replacing P~1(k — 1) in this equation with the result in Equation (5.20), we
get

k—1
(PH(k) = 2" (2*))0k — 1) = Z a'y’

Using the result from Equation (5.21), this gives us

O(k) = P(k)(P~" (k) — " (@) T)O(k — 1) + P(k)a*y"
k—1) = P(k)a*(@*)T0(k — 1) + P(k)z" ’“
— (=

k—1)+ P(k)z* (" Tk —1)). (5.22)

This provides a method to compute an estimate of the parameters é(k) at each time

step k from the past estimate é(k — 1) and the latest data pair that we received,

(z*, y*). Notice that (y* — (%) T8(k—1)) is the error in predicting y* using 6(k—1).
To update 6 in Equation (5.22) we need P(k), so we could use

=0(
0(

P YE)=P Yk —1)+2"@™)" (5.23)

253

254 Chapter 5 / Fuzzy ldentification and Estimation

But then we will have to compute an inverse of a matrix at each time step (i.e.,
each time we get another set of data). Clearly, this is not desirable for real-time
implementation, so we would like to avoid this. To do so, recall that the “matrix
inversion lemma” indicates that if A, C, and (C~!+DA~! B) are nonsingular square
matrices, then A + BCD is invertible and

(A+ BCD) ' = A — A 'B(C™' + DA'B)'DA™!

We will use this fact to remove the need to compute the inverse of P~1(k) that
comes from Equation (5.23) so that it can be used in Equation (5.22) to update 6.
Notice that

P(k) = (2" (k)®(k))~"
=@ " (k—1)®(k—1)+2"@"")!
=P Mk—-1)+a"@")")!

k

3

and that if we use the matrix inversion lemma with A = P~Y(k - 1), B = x
C=1I,and D = (z*)T, we get

P(k)=P(k—1)— P(k—1)a*(I + («®)"P(k — D)a®) " (@*)"P(k —1) (5.24)
which together with
O(k) = 0(k — 1) + P(k)z"(y* — ()T 0(k — 1)) (5.25)

(that was derived in Equation (5.22)) is called the “recursive least squares (RLS)
algorithm.” Basically, the matrix inversion lemma turns a matrix inversion into the
inversion of a scalar (i.e., the term (I + (z*)T P(k — 1)z¥)~! is a scalar).

We need to initialize the RLS algorithm (i.e., choose 6(0) and P(0)). One
approach to do this is to use 6(0) = 0 and P(0) = P, where Py = ol for some
large o > 0. This is the choice that is often used in practice. Other times, you may
pick P(0) = Py but choose 0(0) to be the best guess that you have at what the
parameter values are.

There is a “weighted recursive least squares” (WRLS) algorithm also. Suppose
that the parameters of the physical system 6 vary slowly. In this case it may be
advantageous to choose

k
VR = 5 3N - @) TP

where 0 < A < 1 is called a “forgetting factor” since it gives the more recent data
higher weight in the optimization (note that this performance index V' could also
be used to derive weighted batch least squares). Using a similar approach to the

5.3 Least Squares Methods

above, you can show that the equations for WRLS are given by

PR) = 5 (1= P(k— D" O+ @8 TPk = 127 ()T) PGk~ 1) (5.26)

O(k) = 0(k — 1) + P(k)a*(y* — (@*)T0(k — 1))

(where when A\ = 1 we get standard RLS). This completes our description of the
least squares methods. Next, we will discuss how they can be used to train fuzzy
systems.

5.3.3 Tuning Fuzzy Systems

It is possible to use the least squares methods described in the past two sections
to tune fuzzy systems either in a batch or real-time mode. In this section we will
explain how to tune both standard and Takagi-Sugeno fuzzy systems that have
many inputs and only one output. To train fuzzy systems with many outputs,
simply repeat the procedure described below for each output.

Standard Fuzzy Systems
First, we consider a fuzzy system

R
i Dipi(z)
y= falf) = i) (5.27
>z Hi(@)
where r = [r1,2,...,2,)" and p;(z) is defined in Chapter 2 as the certainty of the

premise of the i" rule (it is specified via the membership functions on the input
universe of discourse together with the choice of the method to use in the triangular
norm for representing the conjunction in the premise). The b;, 7 = 1,2, ..., R, values
are the centers of the output membership functions. Notice that

Falp) = @) | bepe(@) | brue(@)

S) T) Sy pi(x)
and that if we define
()= @) 5.28
R VRE >

then

f(x|0) = b1&1(x) + b2ba(x) + - - 4 brEr ()

Hence, if we define

6({13) = [615 527 ceey gR]T

255

256 Chapter 5 / Fuzzy ldentification and Estimation

and
0 =[by,bo,...,bg]"
then

y = f(z]0) =0"¢(w) (5.29)

We see that the form of the model to be tuned is in only a slightly different form
from the standard least squares case in Equation (5.14). In fact, if the u; are given,
then £(z) is given so that it is in ezactly the right form for use by the standard least
squares methods since we can view £(x) as a known regression vector. Basically, the
training data x’ are mapped into £(z%) and the least squares algorithms produce
an estimate of the best centers for the output membership function centers b;.

This means that either batch or recursive least squares can be used to train
certain types of fuzzy systems (ones that can be parameterized so that they are
“linear in the parameters,” as in Equation (5.29)). All you have to do is replace z°
with £(z?) in forming the ® vector for batch least squares, and in Equation (5.26)
for recursive least squares. Hence, we can achieve either on- or off-line training of
certain fuzzy systems with least squares methods. If you have some heuristic ideas
for the choice of the input membership functions and hence £(z), then this method
can, at times, be quite effective (of course any known function can be used to replace
any of the &; in the £(x) vector). We have found that some of the standard choices
for input membership functions (e.g., uniformly distributed ones) work very well
for some applications.

Takagi-Sugeno Fuzzy Systems

It is interesting to note that Takagi-Sugeno fuzzy systems, as described in Sec-
tion 2.3.7 on page 73, can also be parameterized so that they are linear in the
parameters, so that they can also be trained with either batch or recursive least
squares methods. In this case, if we can pick the membership functions appro-
priately (e.g., using uniformly distributed ones), then we can achieve a nonlinear
interpolation between the linear output functions that are constructed with least

squares.
In particular, as explained in Chapter 2, a Takagi-Sugeno fuzzy system is given

by

R

y = Zi:l gi(z)pi()
= R

Zi:l wi()

where

9i(z) = aio + a;i1T1 + -+ i pTy

5.3 Least Squares Methods 257

Hence, using the same approach as for standard fuzzy systems, we note that

Siny aiopi(x) N S @i () . Yoy GinTpi(z)
R I3 I3
>ic Hi(@) >z ki) Do bi(@)

We see that the first term is the standard fuzzy system. Hence, use the &;(x) defined
in Equation (5.28) and redefine £(z) and 6 to be

y:

£(z) = [&(2), &(2), - . -, §r(7), 1161 (7), 1&2(2), - . ., 1€R(T), - . -,
$n§l(x)v $n§2($), SRRE) xﬂgR(x)]T

and

T
0= [al,Oa a2,0,---,aR,0,01,1,02,15+++-,AR15+++, A1l n, A2 0y - - -, a’R,n]

so that

f(z]0) = 07¢(x)

represents the Takagi-Sugeno fuzzy system, and we see that it too is linear in the
parameters. Just as for a standard fuzzy system, we can use batch or recursive
least squares for training f(x|6). To do this, simply pick (a priori) the p;(x) and
hence the &;(z) vector, process the training data z° where (z%,y‘) € G through
&(x), and replace 2 with £(z?) in forming the ® vector for batch least squares, or
in Equation (5.26) for recursive least squares.

Finally, note that the above approach to training will work for any nonlinearity
that is linear in the parameters. For instance, if there are known nonlinearities
in the system of the quadratic form, you can use the same basic approach as the
one described above to specify the parameters of consequent functions that are
quadratic (what is £(x) in this case?).

5.3.4 Example: Batch Least Squares Training of Fuzzy Systems

As an example of how to train fuzzy systems with batch least squares, we will
consider how to tune the fuzzy system

iN 2
R xi—c’
2 iz bi H?:l exp (_% (]g;i]) >
i 2
R 1 xTri—C.
i Ty exp (_5 (]a;l]) >

(however, other forms may be used equally effectively). Here, b; is the point in the
output space at which the output membership function for the i‘” rule achieves a
maximum, ¢ is the point in the 4" input universe of discourse where the member-

f(z]0) =

ship function for the i*" rule achieves a maximum, and a§ > (is the relative width
of the membership function for the j** input and the i** rule. Clearly, we are using

258 Chapter 5 / Fuzzy ldentification and Estimation

center-average defuzzification and product for the premise and implication. Notice
that the outermost input membership functions do not saturate as is the usual case
in control.

We will tune f(x]6) to interpolate the data set G given in Equation (5.3) on
page 236. Choosing R = 2 and noting that n = 2, we have § = [b1, b] " and

7 2
XTi—C.
e (-3 (%52))

Si(z) = SR T exp (_% (Iz‘;é)z) : (5.30)

Next, we must pick the input membership function parameters cz-, i =1,2,
7 = 1,2. One way to choose the input membership function parameters is to use
the 2® portions of the first R data pairs in G. In particular, we could make the
premise of rule i have unity certainty if z¢, (z%,y%) € G, is input to the fuzzy
system, i = 1,2,..., R, R < M. For instance, if 2! = [0,2]" = [z, 2}]T and
2?2 = [2,4]7 = [22,23]7, we would choose ¢} = x1 =0, ¢} =2 =2, 2 = 22 = 2,
and ¢ = 23 = 4.

Another approach to picking the cz- is simply to try to spread the membership
functions somewhat evenly over the input portion of the training data space. For
instance, consider the axes on the left of Figure 5.2 on page 237 where the input
portions of the training data are shown for G. From inspection, a reasonable choice
for the input membership function centers could be ¢} = 1.5, ¢} = 3, ¢? = 3,
and ¢ = 5 since this will place the peaks of the premise membership functions in
between the input portions of the training data pairs. In our example, we will use
this choice of the .

Next, we need to pick the spreads cr;'-. To do this we simply pick cr§ = 2 for
i=1,2,j =1,2 as a guess that we hope will provide reasonable overlap between
the membership functions. This completely specifies the &;(z) in Equation (5.30).
Let &(x) = [1(x), &a(a)] .

We have M = 3 for G, so we find

T (xh) 0.8634 0.1366
d=| (22 | =| 05234 0.4766
€7 (2®) 0.2173 0.7827

and Y = [y, 52,43 " = [1,5,6]T. We use the batch least squares formula in Equa-
tion (5.15) on page 250 to find § = [0.3646,8.1779] T, and hence our fuzzy system

is f(x]6).
To test the fuzzy system, note that at the training data
F(z']6) = 1.4320
f(2%]0) = 4.0883
f(2%]0) = 6.4798

5.3 Least Squares Methods

so that the trained fuzzy system maps the training data reasonably accurately
(3 = [3,6]T). Next, we test the fuzzy system at some points not in the training
data set to see how it interpolates. In particular, we find

F([1,2]716) = 1.8267
f([2.5,5] "|0) = 5.3981
F([4,7710) = 7.3673

These values seem like good interpolated values considering Figure 5.2 on page 237,
which illustrates the data set GG for this example.

5.3.56 Example: Recursive Least Squares Training of

Fuzzy Systems
Here, we illustrate the use of the RLS algorithm in Equation (5.26) on page 255 for
training a fuzzy system to map the training data given in G in Equation (5.3) on
page 236. First, we replace z* with £(z*) in Equation (5.26) to obtain

P(k) = %(I = P(k = 1)&(@") (A + (£(") T P(k = DE@E®) THEER))Pk - 1)

O(k) = 0(k — 1) + P(k)é(a")(v* — (")) T0(k - 1) (5.31)

and we use this to compute the parameter vector of the fuzzy system. We will train
the same fuzzy system that we considered in the batch least squares example of
the previous section, and we pick the same ¢} and o}, i = 1,2, j = 1,2 as we chose
there so that we have the same &(z) = [¢1, &) .

For initialization of Equation (5.31), we choose

0(0) = [2,5.5]"

as a guess of where the output membership function centers should be. Another
guess would be to choose §(0) = [0, 0] . Next, using the guidelines for RLS initial-
ization, we choose

P(0)=al

where a = 2000. We choose A = 1 since we do not want to discount old data, and
hence we use the standard (nonweighted) RLS.

Before using Equation (5.31) to find an estimate of the output membership
function centers, we need to decide in what order to have RLS process the training
data pairs (z¢,%) € G. For example, you could just take three steps with Equa-
tion (5.31), one for each training data pair. Another approach would be to use each
(2, y') € G N; times (in some order) in Equation (5.31) then stop the algorithm.
Still another approach would be to cycle through all the data (i.e., (z*,y!) first,
(x2,9?) second, up until (z™,y™) then go back to (x',y') and repeat), say, Nrrs
times. It is this last approach that we will use and we will choose Nrrs = 20.

259

260 Chapter 5 / Fuzzy ldentification and Estimation

After using Equation (5.31) to cycle through the data Ngys times, we get the
last estimate

R [0.3647]

O(Nrrs - M) = | ¢ ong (5.32)

and

0.0685 —0.0429
P(Ngps - M) = [—0.0429 0.0851]

Notice that the values produced for the estimates in Equation (5.32) are very close
to the values we found with batch least squares—which we would expect since
RLS is derived from batch least squares. We can test the resulting fuzzy system in
the same way as we did for the one trained with batch least squares. Rather than
showing the results, we simply note that since 8(Ngrs - M) produced by RLS is
very similar to the 6 produced by batch least squares, the resulting fuzzy system is
quite similar, so we get very similar values for f(x|0(Ngrs - M)) as we did for the
batch least squares case.

5.4 Gradient Methods

As in the previous sections, we seek to construct a fuzzy system f(z]f) that can ap-
propriately interpolate to approximate the function g that is inherently represented
in the training data G. Here, however, we use a gradient optimization method to
try to pick the parameters 6 that perform the best approximation (i.e., make f(x|6)
as close to g(x) as possible). Unfortunately, while the gradient method tries to pick
the best 6, just as for all the other methods in this chapter, there are no guarantees
that it will succeed in achieving the best approximation. As compared to the least
squares methods, it does, however, provide a method to tune all the parameters of
a fuzzy system. For instance, in addition to tuning the output membership func-
tion centers, using this method we can also tune the input membership function
centers and spreads. Next, we derive the gradient training algorithms for both stan-
dard fuzzy systems and Takagi-Sugeno fuzzy systems that have only one output.
In Section 5.4.5 on page 270 we extend this to the multi-input multi-output case.

5.4.1 Training Standard Fuzzy Systems

The fuzzy system used in this section utilizes singleton fuzzification, Gaussian input
membership functions with centers cz- and spreads a;'-, output membership function
centers b;, product for the premise and implication, and center-average defuzzifica-
tion, and takes on the form

iN 2
R x;—ct
Dim1 bi H?:l exp (_% (]a;l]) >
i 2
R xTri—C.
2im1 H?:l exp <_% (e]) >

J

f(z]0) =

(5.33)

5.4 Gradient Methods

Note that we use Gaussian-shaped input membership functions for the entire input
universe of discourse for all inputs and do not use ones that saturate at the outer-
most endpoints as we often do in control. The procedure developed below works in
a similar fashion for other types of fuzzy systems. Recall that cz- denotes the center
for the it rule on the j** universe of discourse, b; denotes the center of the output
membership function for the i rule, and o denotes the spread for the i*" rule on
the j** universe of discourse.
Suppose that you are given the m!”" training data pair (z™,y™) € G. Let

em = 5 [7@™]0) —y™]*

In gradient methods, we seek to minimize e,, by choosing the parameters 6, which
for our fuzzy system are b;, (33-, and cr;'-, 1=1,2,...,R, j=1,2,...,n (we will use
6(k) to denote these parameters’ values at time k). Another approach would be to
minimize a sum of such error values for a subset of the data in G or all the data in
G; however, with this approach computational requirements increase and algorithm

performance may not.

Output Membership Function Centers Update Law

First, we consider how to adjust the b; to minimize e,,. We use an “update law”
(update formula)

oem,
;i |,

bi(k + 1) = bi(k) — Ay

where ¢ = 1,2,..., R and k > 0 is the index of the parameter update step. This is a
“gradient descent” approach to choosing the b; to minimize the quadratic function
em that quantifies the error between the current data pair (2™, y™) and the fuzzy
system. If e,,, were quadratic in 6 (which it is not; why?), then this update method
would move b; along the negative gradient of the e,, error surface—that is, down
the (we hope) bowl-shaped error surface (think of the path you take skiing down
a valley—the gradient descent approach takes a route toward the bottom of the
valley). The parameter A; > 0 characterizes the “step size.” It indicates how big
a step to take down the e,, error surface. If A\; is chosen too small, then b; is
adjusted very slowly. If A; is chosen too big, convergence may come faster but you
risk it stepping over the minimum value of e,, (and possibly never converging to
a minimum). Some work has been done on adaptively picking the step size. For
example, if errors are decreasing rapidly, take big steps, but if errors are decreasing
slowly, take small steps. This approach attempts to speed convergence yet avoid
missing a minimum.

Now, to simplify the b; update formula, notice that using the chain rule from
calculus

9em
ob;

= (ftam o) -y 2

261

262 Chapter 5 / Fuzzy ldentification and Estimation

SO

m_ i 2
n x —c
der [Ty exp (‘ (%52))

= @10 —y™)

For notational convenience let

i (2™,) zjﬁexp —% (%)2 (5.34)
and let
em(k) = f(z™|0(k)) —y™
Then we get

Zil ,ul(xma k)
as the update equation for the b;, i =1,2,..., R, kK > 0.

The other parameters in 6§, ¢ (k) and o’ (k), will also be updated with a gradient
algorithm to try to minimize e,,, as we explain next.

bi(k + 1) = bi(k) — Mem (k) (5.35)

Input Membership Function Centers Update Law
To train the ¢}, we use

dem
oct
7k

c;(k +1)= cz(k) — Ao
where A2 > 0 is the step size (see the comments above on how to choose this step
size), 1 =1,2,...,R, j=1,2,...,n,and k > 0. At time k using the chain rule,

Of(x™[0(k)) Opi(z™, k)
Api(x™, k) 8c§-

Oem e (k)

8c§- N
fori=1,2,...,R,j=1,2,...,n,and k£ > 0. Now,
oo (Tih m@™ 0) bik) = (T, b0, b)) (1)
Opi(z™, k) (Zil i (z™, k))z

5.4 Gradient Methods

so that
af(@™0(k)) _ bi(k) — f(=™]0(k))

Opi(z™, k) Y (e, k)

Also,
o(a™ k) (x? - cz'-(k))
—— = (" k) | ——5—
o " (7} 5)

so we have an update method for the ¢%(k) for all i = 1,2,...,R, j = 1,2,...,n,
and k > 0. In particular, we have

; ; bi(k) — f(=z™[0(k)) N c;'-(k))
ci(k+1) = i (k) —Xaem(k (" k)| ——— 5.36
S(k+1) = c;(k) ()(ST i@ k))u()(1 0) (5.36)

fori=1,2,...,R,j=1,2,...,n,and k > 0.

Input Membership Function Spreads Update Law
To update the o’ (k) (spreads of the membership functions), we follow the same
procedure as above and use

Oem,
o'

I 1k

O’;—(k +1)= O’;—(k) — A3

where A3 > 0 is the step size, 1 =1,2,..., R, 7 =1,2,...,n, and k > 0. Using the
chain rule, we obtain

Oem _ k) af (@™[0(k)) Opi(z™, k)
do’ T O (k) do’
We have
Opila™ k) _ (@) — (k)
go7 ") (4 (k))°
so that
ik + 1) = 03 (k) — A () LT ORD) o 05— G 5 o

Zil i (xm’ k)

fori =1,2,...,R, j = 1,2,...,n, and k£ > 0. This completes the definition of
the gradient training method for the standard fuzzy system. To summarize, the
equations for updating the parameters 6 of the fuzzy system are Equations (5.35),
(5.36), and (5.37).

263

264 Chapter 5 / Fuzzy ldentification and Estimation

Next, note that the gradient training method described above is for the case
where we have Gaussian-shaped input membership functions. The update formulas
would, of course, change if you were to choose other membership functions. For
instance, if you use triangular membership functions, the update formulas can be
developed, but in this case you will have to pay special attention to how to define
the derivative at the peak of the membership function.

Finally, we would like to note that the gradient method can be used in either
an off- or on-line manner. In other words, it can be used off-line to train a fuzzy
system for system identification, or it can be used on-line to train a fuzzy system to
perform real-time parameter estimation. We will see in Chapter 6 how to use such
an adaptive parameter identifier in an adaptive control setting.

5.4.2 Implementation Issues and Example

In this section we discuss several issues that you will encounter if you implement a
gradient approach to training fuzzy systems. Also, we provide an example of how
to train a standard fuzzy system.

Algorithm Design

There are several issues to address in the design of the gradient algorithm for
training a fuzzy system. As always, the choice of the training data G is critical.
Issues in the choice of the training data, which we discussed in Section 5.2 on
page 235, are relevant here. Next, note that you must pick the number of inputs n
to the fuzzy system to be trained and the number of rules R; the method does not
add rules, it just tunes existing ones.

The choice of the initial estimates b;(0), ¢;(0), and ¢%(0) can be important.
Sometimes picking them close to where they should be can help convergence. Notice
that you should not pick b; = 0 for all : = 1,2, ..., R or the algorithm for the b;
will stay at zero for all £ > 0. Your computer probably will not allow you to pick
a;'-(O) = 0 since you divide by this number in the algorithm. Also, you may need to
make sure that in the algorithm ¢’(k) > & > 0 for some fixed scalar & so that the
algorithm does not tune the parameters of the fuzzy system so that the computer
has to divide by zero (to do this, just monitor the o (k), and if there exists some &’
where o (k') < &, let o(k') = &). Notice that for our choice of input membership
functions

so that we normally do not have to worry about dividing by it in the algorithm.
Note that the above gradient algorithm is for only one training data pair. That
is, we could run the gradient algorithm for a long time (i.e., many values of k) for
only one data pair to try to train the fuzzy system to match that data pair very
well. Then we could go to the next data pair in GG, begin with the final computed

values of b;, ¢}, and o from the last data pair we considered as the initial values for

5.4 Gradient Methods

this data pair, and run the gradient algorithm for as many steps as we would like
for that data pair—and so on. Alternatively, we could cycle through the training
data many times, taking one step with the gradient algorithm for each data pair.
It is difficult to know how many parameter update steps should be made for each
data pair and how to cycle through the data. It is generally the case, however, that
if you use some of the data much more frequently than other data in G, then the
trained fuzzy system will tend to be more accurate for that data rather than the
data that was not used as many times in training. Some like to cycle through the
data so that each data pair is visited the same number of times and use small step
sizes so that the updates will not be too large in any direction.

Clearly, you must be careful with the choices for the \;, i = 1,2, 3 step sizes
as values for these that are too big can result in an unstable algorithm (i.e., 6
values can oscillate or become unbounded), while values for these that are too
small can result in very slow convergence. The main problem, however, is that in
the general case there are no guarantees that the gradient algorithm will converge
at alll Moreover, it can take a significant amount of training data and long training
times to achieve good results. Generally, you can conduct some tests to see how
well the fuzzy system is constructed by comparing how it maps the data pairs to
their actual values; however, even if this comparison appears to indicate that the
fuzzy system is mapping the data properly, there are no guarantees that it will
“generalize” (i.e., interpolate) for data not in the training data set that it was
trained with.

To terminate the gradient algorithm, you could wait until all the parameters
stop moving or change very little over a series of update steps. This would indicate
that the parameters are not being updated so the gradients must be small so we
must be at a minimum of the e,, surface. Alternatively, we could wait until the
€m Or Zﬁf:l em does not change over a fixed number of steps. This would indicate
that even if the parameter values are changing, the value of e,, is not decreasing,
so the algorithm has found a minimum and it can be terminated.

Example
As an example, consider the data set G in Equation (5.3) on page 236: we will train
the parameters of the fuzzy system with R = 2 and n = 2. Choose \; = Ay = A3 =
1. Choose

dO1_[0] [ado] _[1
d0) | T2 ol | =1] ®=1
and
(GO] _[2] [e30)] _[1]
L C%(O) 1 - L 4 | ’ i g%(())] = I 1] ;b2(0) =5

In this way the two rules will begin by perfectly mapping the first two data pairs
in G (why?). The gradient algorithm has to tune the fuzzy system so that it will

265

266 Chapter 5 / Fuzzy ldentification and Estimation

provide an approximation to the third data pair in G, and in doing this it will tend
to somewhat degrade how well it represented the first two data pairs.

To train the fuzzy system, we could repeatedly cycle through the data in G so
that the fuzzy system learns how to map the third data pair but does not forget
how to map the first two. Here, for illustrative purposes, we will simply perform
one iteration of the algorithm for the b; parameters for the third data pair. That
is, we use

In this case we have
p1(22,0) = 0.000003724
and
po(x3,0) = 0.08208

so that f(23]0(0)) = 4.99977 and €,,(0) = —1.000226. With this and Equation (5.35),
we find that b1(1) = 1.000045379 and bo(1) = 6.0022145. The calculations for the
(1) and o’(1) parameters, i = 1,2, j = 1,2, are made in a similar way, but using
Equations (5.36) and (5.37), respectively.

Even with only one computation step, we see that the output centers b;,7 = 1, 2,
are moving to perform an interpolation that is more appropriate for the third data
point. To see this, notice that by(1) = 6.0022145 where b2(0) = 5.0 so that the
output center moved much closer to y* = 6.

To further study how the gradient algorithm works, we recommend that you
write a computer program to implement the update formulas for this example. You
may need to tune the \; and approach to cycling through the data. Then, using an
appropriate termination condition (see the discussion above), stop the algorithm
and test the quality of the interpolation by placing inputs into the fuzzy system and
seeing if the outputs are good interpolated values (e.g., compare them to Figure 5.2
on page 237). In the next section we will provide a more detailed example, but for
the training of Takagi-Sugeno fuzzy systems.

5.4.3 Training Takagi-Sugeno Fuzzy Systems

The Takagi-Sugeno fuzzy system that we train in this section takes on the form
R
Zi:l gl(xa k)lu%(xa k)
R
> i Hilz, k)

where p;(x, k) is defined in Equation (5.34) on page 262 (of course, other definitions
are possible), T = [v1,22,...,2,] ", and

f(z]0(k)) =

gi(x, k) = a;o(k) + ai1(k)r1 + a;2(k)ze + - - - + aj n(k)xn

5.4 Gradient Methods

(note that we add the index k since we will update the a; ; parameters). For more
details on how to define Takagi-Sugeno fuzzy systems, see Section 2.3.7 on page 73.

Parameter Update Formulas

Following the same approach as in the previous section, we need to update the
a;,j parameters of the g;(z, k) functions and ¢ and o. Notice, however, that most
of the work is done since if in Equations (5.36) and (5.37) we replace b;(k) with
gi(x™, k), we get the update formulas for the ¢} and o for the Takagi-Sugeno fuzzy
system.

To update the a; ; we use

dem

da; j k

am-(k + 1) = am-(k) — M\ (538)

when Ay > 0 is the step size. Notice that

Gen _ 1o D1G1OR)) dgi(a)
oom 8gi($m, k) 8ai7j(k)

aam-
foralli=1,2,...,R, j=1,2,...,n (plus j = 0) and

Of (x™]0(k)) pi(z™, k)

dgi(z™ k) Y, p(am, k)

foralli=1,2,..., R. Also,

dgi(x™, k) 1

8ai,0(/€) N
and

dgi(z, k)

dai, (k)

forall j=1,2,...,nandi=1,2,..., R.

This gives the update formulas for all the parameters of the Takagi-Sugeno
fuzzy system. In the previous section we discussed issues in the choice of the step
sizes and initial parameter values, how to cycle through the training data in G,
and some convergence issues. All of this discussion is relevant to the training of
Takagi-Sugeno models also. The training of more general functional fuzzy systems
where the g; take on more general forms proceeds in a similar manner. In fact, it
is easy to develop the update formulas for any functional fuzzy system such that

Ag;(z™, k)
aam- (k)

267

268 Chapter 5 / Fuzzy ldentification and Estimation

can be determined analytically. Finally, we would note that Takagi-Sugeno or gen-
eral functional fuzzy systems can be trained either off- or on-line. Chapter 6 dis-
cusses how such on-line training can be used in adaptive control.

Example

As an example, consider once again the data set G in Equation (5.3) on page 236.
We will train the Takagi-Sugeno fuzzy system with two rules (R = 2) and n = 2
considered in Equation (5.33). We will cycle through the data set G 40 times (similar
to how we did in the RLS example) to get the error between the fuzzy system output
and the output portions of the training data to decrease to some small value.

We use Equations (5.38), (5.36), and (5.37) to update the a; ;(k), c}(k), and
a}(k) values, respectively, for all : = 1,2,..., R, j = 1,2,...,n, and we choose &
from the previous section to be 0.01. For initialization we pick Ay = 0.01, Ay =
A3 =1, a;5(0) = 1, and 0% = 2 for all i and j, and ¢1(0) = 1.5, ¢3(0) = 3,
c2(0) = 3, and c2(0) = 5. The step sizes were tuned a bit to improve convergence,
but could probably be further tuned to improve it more. The a; ;(0) values are
simply somewhat arbitrary guesses. The O’;—(O) values seem like reasonable spreads
considering the training data. The c§(0) values are the same ones used in the least
squares example and seem like reasonable guesses since they try to spread the
premise membership function peaks somewhat uniformly over the input portions of
the training data. It is possible that a better initial guess for the a; ;(0) could be
obtained by using the least squares method to pick these for the initial guesses for
the ¢}(0) and ¢(0); in some ways this would make the guess for the a; ;(0) more
consistent with the other initial parameters.

By the time the algorithm terminates, the error between the fuzzy system
output and the output portions of the training data has reduced to less than 0.125
but is still showing a decreasing oscillatory behavior. At algorithm termination
(k = 119), the consequent parameters are

a1,0(119) = 0.8740, a1.1(119) = 0.9998, a1 5(119) = 0.7309

a2,0(119) = 0.7642, az,1(119) = 0.3426, as2(119) = 0.7642
the input membership function centers are

c1(119) = 2.1982, ¢3(119) = 2.6379

c3(119) = 4.2833, c3(119) = 4.7439
and their spreads are

01 (119) = 0.7654, 07 (119) = 2.6423

5.4 Gradient Methods

03(119) = 1.2713, 03(119) = 2.6636

These parameters, which collectively we call 8, specify the final Takagi-Sugeno fuzzy
system.

To test the Takagi-Sugeno fuzzy system, we use the training data and some
other cases. For the training data points we find

f(z)0) = 1.4573
f(2%|0) = 4.8463
f(z3]6) = 6.0306

so that the trained fuzzy system maps the training data reasonably accurately.
Next, we test the fuzzy system at some points not in the training data set to see
how it interpolates. In particular, we find

f([1,2]7|6) = 2.4339
f(12.5,5]710) = 5.7117
f([4,7)716) = 6.6997

These values seem like good interpolated values considering Figure 5.2 on page 237,
which illustrates the data set GG for this example.

5.4.4 Momentum Term and Step Size

There is some evidence that convergence properties of the gradient method can
sometimes be improved via the addition of a “momentum term” to each of the
update laws in Equations (5.35), (5.36), and (5.37). For instance, we could modify
Equation (5.35) to

dem,
bi(k 4+ 1) = bi(k) — \ ;b- + Bi(bi(k) = bi(k — 1))
i |k
i=1,2,..., R where (3; is the gain on the momentum term. Similar changes can be

made to Equations (5.36) and (5.37). Generally, the momentum term will help to
keep the updates moving in the right direction. It is a method that has found wide
use in the training of neural networks.

While for some applications a fixed step size)\; can be sufficient, there has
been some work done on adaptively picking the step size. For example, if errors are
decreasing rapidly, take big update steps, but if errors are decreasing slowly take
small steps. Another option is to try to adaptively pick the A; step sizes so that
they best minimize the error

Em —

[f(@™]0(k)) —y™]?

N | =

For instance, for Equation (5.35) you could pick at time k the step size to be A}

269

270 Chapter 5 / Fuzzy ldentification and Estimation

such that

)]

! [f (xm| {9(k> Hhilk) = A1 5
1))

)\116%%\1] 5 [f (x |{9(k) sbi(k) — M1 o,
(where A; > 0 is some scalar that is fixed a priori) so that the step size will optimize
the reduction of the error. Similar changes could be made to Equations (5.36)
and (5.37). A vector version of the statement of how to pick the optimal step size is
given by constraining all the components of 8(k), not just the output centers as we
do above. The problem with this approach is that it adds complexity to the update
formulas since at each step an optimization problem must be solved to find the step
S1ze.

5.4.5 Newton and Gauss-Newton Methods

There are many gradient-type optimization techniques that can be used to pick 6 to
minimize e,,. For instance, you could use Newton, quasi-Newton, Gauss-Newton,
or Levenberg-Marquardt methods. Each of these has certain advantages and disad-
vantages and many deserve consideration for a particular application.

In this section we will develop vector rather than scalar parameter update laws
so we define 0(k) = [01(k), 02(k),...,0,(k)]T to be a p x 1 vector. Also, we provide
this development for n input, N output fuzzy systems so that f(z™|6(k)) and y™
are both N x 1 vectors.

The basic form of the update using a gradient method to minimize the function

en(kIO(K)) = 317" 0(k)) — 4"

(notice that we explicitly add the dependence of e,, (k) on 6(k) by using this nota-
tion) via the choice of 6(k) is

Ok + 1) = 0(k) + Apd(k) (5.39)

where d(k) is the p x 1 descent direction, and Ay is a (scalar) positive step size that
can depend on time k (not to be confused with the earlier notation for the step
sizes). Here, |2|?2 = x T z. For the descent function

(aem(klﬂ(k))

.
2000) > d(k) <0

and if

Oem (k|O(K))

200 "

5.4 Gradient Methods

where “0” is a p x 1 vector of zeros, the method does not update 8(k). Our update
formulas for the fuzzy system in Equations (5.35), (5.36), and (5.37) use

_ Oem (K[O(K))

d(k) = 0 —Ven (kl0(k))

(which is the gradient of e, with respect to 8(k)) so they actually provide for a
“steepest descent” approach (of course, Equations (5.35), (5.36), and (5.37) are
scalar update laws each with its own step size, while Equation (5.39) is a vector
update law with a single step size). Unfortunately, this method can sometimes
converge slowly, especially if it gets on a long, low slope surface.
Next, let
2 e (K|0(K))

be the p x p “Hessian matrix,” the elements of which are the second partials of
em(k|0(k)) at (k). In “Newton’s method” we choose

d(k) = = (Ve (kI0(K))) ™ Ven(k|0(k)) (5.40)

provided that VZe,,(k|0(k)) is positive definite so that it is invertible (see Sec-
tion 4.3.5 for a definition of “positive definite”). For a function e,,(k|0(k)) that
is quadratic in 6(k), Newton’s method provides convergence in one step; for some
other functions, it can converge very fast. The price you pay for this convergence
speed is computation of Equation (5.40) and the need to verify the existence of the
inverse in that equation.

In “quasi-Newton methods” you try to avoid problems with existence and com-
putation of the inverse in Equation (5.40) by choosing

d(k) = =A(k)Ven (k|0(F))

where A(k) is a positive definite p X p matrix for all £ > 0 and is sometimes chosen
to approximate (VQem(kW(k)))_l (e.g., in some cases by using only the diagonal
elements of (Vzem(kw(k)))_l). If A(k) is chosen properly, for some applications
much of the convergence speed of Newton’s method can be achieved.

Next, consider the Gauss-Newton method that is used to solve a least squares
problem such as finding 6(k) to minimize

en(KIO(R)) = 51 F0)) — 5™ = Llen (ORI
where

€m(l€|9(l€)) = f($m|9(k)> - ym = [eﬂna €magy .-y emN]T

271

272 Chapter 5 / Fuzzy ldentification and Estimation

First, linearize €., (k|0(k)) around (k) (i.e., use a truncated Taylor series expansion)
to get

Em(010(k)) = em(klO(K)) + Ve (k[O(k)) T (0 — 0(K))
Here,
Vem(kl0(k)) = [Vem, (k|0(k)), Vem, (k|0(K)), .. ., Vem g (k0(k))]
is a p x N matrix whose columns are gradient vectors

Ve (k) = 2 el)
i=1,2,...,N. Notice that
Ven(k|6(k)T

is the “Jacobian.” Also note that the notation é,,(0|6(k)) is used to emphasize the
dependence on both 6(k) and 6.
Next, minimize the norm of the linearized function €,,(0|6(k)) by letting

1
00k +1) = argmin /& (810(K))

Hence, in the Gauss-Newton approach we update 6(k) to a value that will best
minimize a linear approximation to €,,(k|6(k)). Notice that
0(k +1) = argmin 5 [|em(k|0(k))|2 +2(0 = 0(k))T (Vem(K|0(K))) €m(k|0(K))
(G—G(k)) Vem (k[0(k))Ven(klO(k) T (0 — 0(K))]
o1
= argmin 5 [em (K[O(K))> + 20 = 0(k)) T (Vem(k|O(K))) em(k|O(K))
+ 0T Ven (k|O(k)Ven (k|0(K) "0 — 20(k) T Ve, (k|0(K)) Ve (kl0(K)) 6
+ 0(k) " Vem(k|0(k)) Ve (k|0(k) T 0(K)] (5.41)
To perform this minimization, notice that we have a quadratic function so we find

o]

20 = Vem (k|0(k))em (k|O(K)) + Ven (k|O(k)) Ve (k|0(k) "0

— Ven(k|0(k)) Ven(k|0(k)) T 0(k) (5.42)

where [-] denotes the expression in Equation (5.41) in brackets multiplied by one
half. Setting this equal to zero, we get the minimum achieved at 6* where

Ve (k|0(k)) Ve (kl0(K)) T (6" — 0(k)) = —Vem(kI0(k) " em(Kl0(K))

5.5 Clustering Methods

or, if Ve, (k|0(k))Ven(k|0(k))T is invertible,
0 — (k) = — (Vem (kIO Ver (kOHR)) ™ e (kIO(R) e (19(K))
Hence, the Gauss-Newton update formula is
Bk +1) = 0(k) — (Ve (kI8(k) Vem (kIO(K)T) ™ Ve (K6(K))em (K[6(K))

To avoid problems with computing the inverse, the method is often implemented
as

O(k +1) = 0(k) — M (Ve (k|0(k) Vem (ElOR) T + T(k)) " Ve (k|0(k))em (k|0(K))

where)i is a positive step size that can change at each time k, and T'(k) isap x p
diagonal matrix such that

Ve (k|O(k))Ven (k[6(k)) T +T (k)

is positive definite so that it is invertible. In the Levenberg-Marquardt method you
choose T'(k) = af where a > 0 and I is the p x p identity matrix. Essentially,
a Gauss-Newton iteration is an approximation to a Newton iteration so it can
provide for faster convergence than, for instance, steepest descent, but not as fast
as a pure Newton method; however, computations are simplified. Note, however,
that for each iteration of the Gauss-Newton method (as it is stated above) we must
find the inverse of a p X p matrix; there are, however, methods in the optimization
literature for coping with this issue.

Using each of the above methods to train a fuzzy system is relatively straight-
forward. For instance, notice that many of the appropriate partial derivatives have
already been found when we developed the steepest descent approach to training.

5.5 Clustering Methods

“Clustering” is the partitioning of data into subsets or groups based on similarities
between the data. Here, we will introduce two methods to perform f