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Preface
Fuzzy control is a practical alternative for a variety of challenging control applica-
tions since it provides a convenient method for constructing nonlinear controllers
via the use of heuristic information. Such heuristic information may come from
an operator who has acted as a “human-in-the-loop” controller for a process. In
the fuzzy control design methodology, we ask this operator to write down a set of
rules on how to control the process, then we incorporate these into a fuzzy con-
troller that emulates the decision-making process of the human. In other cases, the
heuristic information may come from a control engineer who has performed exten-
sive mathematical modeling, analysis, and development of control algorithms for a
particular process. Again, such expertise is loaded into the fuzzy controller to au-
tomate the reasoning processes and actions of the expert. Regardless of where the
heuristic control knowledge comes from, fuzzy control provides a user-friendly for-
malism for representing and implementing the ideas we have about how to achieve
high-performance control.

In this book we provide a control-engineering perspective on fuzzy control.
We are concerned with both the construction of nonlinear controllers for challeng-
ing real-world applications and with gaining a fundamental understanding of the
dynamics of fuzzy control systems so that we can mathematically verify their prop-
erties (e.g., stability) before implementation. We emphasize engineering evaluations
of performance and comparative analysis with conventional control methods. We
introduce adaptive methods for identification, estimation, and control. We exam-
ine numerous examples, applications, and design and implementation case studies
throughout the text. Moreover, we provide introductions to neural networks, ge-
netic algorithms, expert and planning systems, and intelligent autonomous control,
and explain how these topics relate to fuzzy control.

Overall, we take a pragmatic engineering approach to the design, analysis,
performance evaluation, and implementation of fuzzy control systems. We are not
concerned with whether the fuzzy controller is “artificially intelligent” or with in-
vestigating the mathematics of fuzzy sets (although some of the exercises do), but
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rather with whether the fuzzy control methodology can help solve challenging real-
world problems.

Overview of the Book

The book is basically broken into three parts. In Chapters 1–4 we cover the basics of
“direct” fuzzy control (i.e., the nonadaptive case). In Chapters 5–7 we cover adap-
tive fuzzy systems for estimation, identification, and control. Finally, in Chapter 8
we briefly cover the main areas of intelligent control and highlight how the topics
covered in this book relate to these areas. Overall, we largely focus on what one
could call the “heuristic approach to fuzzy control” as opposed to the more recent
mathematical focus on fuzzy control where stability analysis is a major theme.

In Chapter 1 we provide an overview of the general methodology for conven-
tional control system design. Then we summarize the fuzzy control system design
process and contrast the two. Next, we explain what this book is about via a simple
motivating example. In Chapter 2 we first provide a tutorial introduction to fuzzy
control via a two-input, one-output fuzzy control design example. Following this
we introduce a general mathematical characterization of fuzzy systems and study
their fundamental properties. We use a simple inverted pendulum example to illus-
trate some of the most widely used approaches to fuzzy control system design. We
explain how to write a computer program to simulate a fuzzy control system, using
either a high-level language or Matlab1. In the web and ftp pages for the book we
provide such code in C and Matlab. In Chapter 3 we use several case studies to
show how to design, simulate, and implement a variety of fuzzy control systems.
In these case studies we pay particular attention to comparative analysis with con-
ventional approaches. In Chapter 4 we show how to perform stability analysis of
fuzzy control systems using Lyapunov methods and frequency domain–based sta-
bility criteria. We introduce nonlinear analysis methods that can be used to predict
and eliminate steady-state tracking error and limit cycles. We then show how to
use the analysis approaches in fuzzy control system design. The overall focus for
these nonlinear analysis methods is on understanding fundamental problems that
can be encountered in the design of fuzzy control systems and how to avoid them.

In Chapter 5 we introduce the basic “function approximation problem” and
show how identification, estimation, prediction, and some control design problems
are a special case of it. We show how to incorporate heuristic information into the
function approximator. We show how to form rules for fuzzy systems from data pairs
and show how to train fuzzy systems from input-output data with least squares,
gradient, and clustering methods. And we show how one clustering method from
fuzzy pattern recognition can be used in conjunction with least squares methods to
construct a fuzzy model from input-output data. Moreover, we discuss hybrid ap-
proaches that involve a combination of two or more of these methods. In Chapter 6
we introduce adaptive fuzzy control. First, we introduce several methods for auto-
matically synthesizing and tuning a fuzzy controller, and then we illustrate their
application via several design and implementation case studies. We also show how

1. MATLAB is a registered trademark of The MathWorks, Inc.
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to tune a fuzzy model of the plant and use the parameters of such a model in the
on-line design of a controller. In Chapter 7 we introduce fuzzy supervisory control.
We explain how fuzzy systems can be used to automatically tune proportional-
integral-derivative (PID) controllers, how fuzzy systems provide a methodology
for constructing and implementing gain schedulers, and how fuzzy systems can be
used to coordinate the application and tuning of conventional controllers. Follow-
ing this, we show how fuzzy systems can be used to tune direct and adaptive fuzzy
controllers. We provide case studies in the design and implementation of fuzzy
supervisory control.

In Chapter 8 we summarize our control engineering perspective on fuzzy control,
provide an overview of the other areas of the field of “intelligent control,” and
explain how these other areas relate to fuzzy control. In particular, we briefly cover
neural networks, genetic algorithms, knowledge-based control (expert systems and
planning systems), and hierarchical intelligent autonomous control.

Examples, Applications, and Design and Implementation Case Studies

We provide several design and implementation case studies for a variety of appli-
cations, and many examples are used throughout the text. The basic goals of these
case studies and examples are as follows:

• To help illustrate the theory.

• To show how to apply the techniques.

• To help illustrate design procedures in a concrete way.

• To show what practical issues are encountered in the development and implemen-
tation of a fuzzy control system.

Some of the more detailed applications that are studied in the chapters and their
accompanying homework problems are the following:

• Direct fuzzy control: Translational inverted pendulum, fuzzy decision-making sys-
tems, two-link flexible robot, rotational inverted pendulum, and machine schedul-
ing (Chapters 2 and 3 homework problems: translational inverted pendulum, au-
tomobile cruise control, magnetic ball suspension system, automated highway sys-
tem, single-link flexible robot, rotational inverted pendulum, machine scheduling,
motor control, cargo ship steering, base braking control system, rocket velocity
control, acrobot, and fuzzy decision-making systems).

• Nonlinear analysis: Inverted pendulum, temperature control, hydrofoil controller,
underwater vehicle control, and tape drive servo (Chapter 4 homework problems:
inverted pendulum, magnetic ball suspension system, temperature control, and
hydrofoil controller design).
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• Fuzzy identification and estimation: Engine intake manifold failure estimation,
and failure detection and identification for internal combustion engine calibra-
tion faults (Chapter 5 homework problems: tank identification, engine friction
estimation, and cargo ship failures estimation).

• Adaptive fuzzy control: Two-link flexible robot, cargo ship steering, fault toler-
ant aircraft control, magnetically levitated ball, rotational inverted pendulum,
machine scheduling, and level control in a tank (Chapter 6 homework problems:
tanker and cargo ship steering, liquid level control in a tank, rocket velocity con-
trol, base braking control system, magnetic ball suspension system, rotational
inverted pendulum, and machine scheduling).

• Supervisory fuzzy control: Two-link flexible robot, and fault-tolerant aircraft con-
trol (Chapter 7 homework problems: liquid level control, and cargo and tanker
ship steering).

Some of the applications and examples are dedicated to illustrating one idea from
the theory or one technique. Others are used in several places throughout the text
to show how techniques build on one another and compare to each other. Many of
the applications show how fuzzy control techniques compare to conventional control
methodologies.

World Wide Web Site and FTP Site: Computer Code Available

The following information is available electronically:

• Various versions of C and Matlab code for simulation of fuzzy controllers, fuzzy
control systems, adaptive fuzzy identification and estimation methods, and adap-
tive fuzzy control systems (e.g., for some examples and homework problems in
the text).

• Other special notes of interest, including an errata sheet if necessary.

You can access this information via the web site:

http://www.awl.com/cseng/titles/0-201-18074-X

or you can access the information directly via anonymous ftp to

ftp://ftp.aw.com/cseng/authors/passino/fc

For anonymous ftp, log into the above machine with a username “anonymous” and
use your e-mail address as a password.

Organization, Prerequisites, and Usage

Each chapter includes an overview, a summary, and a section “For Further Study”
that explains how the reader can continue study in the topical area of the chapter.
At the end of each chapter overview, we explain how the chapter is related to the
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others. This includes an outline of what must be covered to be able to understand
the later chapters and what may be skipped on a first reading. The summaries at
the end of each chapter provide a list of all major topics covered in that chapter so
that it is clear what should be learned in each chapter.

Each chapter also includes a set of exercises or design problems and often both.
Exercises or design problems that are particularly challenging (considering how far
along you are in the text) or that require you to help define part of the problem are
designated with a star (“�”) after the title of the problem. In addition to helping
to solidify the concepts discussed in the chapters, the problems at the ends of
the chapters are sometimes used to introduce new topics. We require the use of
computer-aided design (CAD) for fuzzy controllers in many of the design problems
at the ends of the chapters (e.g., via the use of Matlab or some high-level language).

The necessary background for the book includes courses on differential equa-
tions and classical control (root locus, Bode plots, Nyquist theory, lead-lag com-
pensation, and state feedback concepts including linear quadratic regulator design).
Courses on nonlinear stability theory and adaptive control would be helpful but
are not necessary. Hence, much of the material can be covered in an undergraduate
course. For instance, one could easily cover Chapters 1–3 in an undergraduate course
as they require very little background besides a basic understanding of signals and
systems including Laplace and z-transform theory (one application in Chapter 3
does, however, require a cursory knowledge of the linear quadratic regulator). Also,
many parts of Chapters 5–7 can be covered once a student has taken a first course
in control (a course in nonlinear control would be helpful for Chapter 4 but is not
necessary). One could cover the basics of fuzzy control by adding parts of Chapter 2
to the end of a standard undergraduate or graduate course on control. Basically,
however, we view the book as appropriate for a first-level graduate course in fuzzy
control.

We have used the book for a portion (six weeks) of a graduate-level course on
intelligent control and for undergraduate independent studies and design projects.
In addition, portions of the text have been used for short courses and workshops on
fuzzy control where the focus has been directed at practicing engineers in industry.

Alternatively, the text could be used for a course on intelligent control. In this
case, the instructor could cover the material in Chapter 8 on neural networks and
genetic algorithms after Chapter 2 or 3, then explain their role in the topics covered
in Chapters 5, 6, and 7 while these chapters are covered. For instance, in Chapter 5
the instructor would explain how gradient and least squares methods can be used
to train neural networks. In Chapter 6 the instructor could draw analogies between
neural control via the radial basis function neural network and the fuzzy model
reference learning controller. Also, for indirect adaptive control, the instructor could
explain how, for instance, the multilayer perceptron or radial basis function neural
networks can be used as the nonlinearity that is trained to act like the plant. In
Chapter 7 the instructor could explain how neural networks can be trained to serve
as gain schedulers. After Chapter 7 the instructor could then cover the material on
expert control, planning systems, and intelligent autonomous control in Chapter 8.
Many more details on strategies for teaching the material in a fuzzy or intelligent
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control course are given in the instructor’s manual, which is described below.
Engineers and scientists working in industry will find that the book will serve

nicely as a “handbook” for the development of fuzzy control systems, and that the
design, simulation, and implementation case studies will provide very good insights
into how to construct fuzzy controllers for specific applications. Researchers in
academia and elsewhere will find that this book will provide an up-to-date view
of the field, show the major approaches, provide good references for further study,
and provide a nice outlook for thinking about future research directions.

Instructor’s Manual

An Instructor’s Manual to accompany this textbook is available (to instructors only)
from Addison Wesley Longman. The Instructor’s Manual contains the following:

• Strategies for teaching the material.

• Solutions to end-of-chapter exercises and design problems.

• A description of a laboratory course that has been taught several times at The
Ohio State University which can be run in parallel with a lecture course that is
taught out of this book.

• An electronic appendix containing the computer code (e.g., C and Matlab code)
for solving many exercises and design problems.

Sales Specialists at Addison Wesley Longman will make the instructor’s manual
available to qualified instructors. To find out who your Addison Wesley Longman
Sales Specialist is please see the web site:

http://www.aw.com/cseng/

or send an email to:

cseng@aw.com

Feedback on the Book

It is our hope that we will get the opportunity to correct any errors in this book;
hence, we encourage you to provide a precise description of any errors you may
find. We are also open to your suggestions on how to improve the textbook. For
this, please use either e-mail (passino@ee.eng.ohio-state.edu) or regular mail to the
first author: Kevin M. Passino, Dept. of Electrical Engineering, The Ohio State
University, 2015 Neil Ave., Columbus, OH 43210-1272.
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C H A P T E R 1

Introduction
It is not only old and early impressions

that deceive us; the charms of novelty

have the same power.

–Blaise Pascal

1.1 Overview
When confronted with a control problem for a complicated physical process, a
control engineer generally follows a relatively systematic design procedure. A simple
example of a control problem is an automobile “cruise control” that provides the
automobile with the capability of regulating its own speed at a driver-specified
set-point (e.g., 55 mph). One solution to the automotive cruise control problem
involves adding an electronic controller that can sense the speed of the vehicle via
the speedometer and actuate the throttle position so as to regulate the vehicle speed
as close as possible to the driver-specified value (the design objective). Such speed
regulation must be accurate even if there are road grade changes, head winds, or
variations in the number of passengers or amount of cargo in the automobile.

After gaining an intuitive understanding of the plant’s dynamics and establish-
ing the design objectives, the control engineer typically solves the cruise control
problem by doing the following:

1. Developing a model of the automobile dynamics (which may model vehicle and
power train dynamics, tire and suspension dynamics, the effect of road grade
variations, etc.).

2. Using the mathematical model, or a simplified version of it, to design a con-
troller (e.g., via a linear model, develop a linear controller with techniques from
classical control).

1
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3. Using the mathematical model of the closed-loop system and mathematical
or simulation-based analysis to study its performance (possibly leading to re-
design).

4. Implementing the controller via, for example, a microprocessor, and evaluating
the performance of the closed-loop system (again, possibly leading to redesign).

This procedure is concluded when the engineer has demonstrated that the con-
trol objectives have been met, and the controller (the “product”) is approved for
manufacturing and distribution.

In this book we show how the fuzzy control design methodology can be used
to construct fuzzy controllers for challenging real-world applications. As opposed
to “conventional” control approaches (e.g., proportional-integral-derivative (PID),
lead-lag, and state feedback control) where the focus is on modeling and the use of
this model to construct a controller that is described by differential equations, in
fuzzy control we focus on gaining an intuitive understanding of how to best control
the process, then we load this information directly into the fuzzy controller.

For instance, in the cruise control example we may gather rules about how to
regulate the vehicle’s speed from a human driver. One simple rule that a human
driver may provide is “If speed is lower than the set-point, then press down fur-
ther on the accelerator pedal.” Other rules may depend on the rate of the speed
error increase or decrease, or may provide ways to adapt the rules when there are
significant plant parameter variations (e.g., if there is a significant increase in the
mass of the vehicle, tune the rules to press harder on the accelerator pedal). For
more challenging applications, control engineers typically have to gain a very good
understanding of the plant to specify complex rules that dictate how the controller
should react to the plant outputs and reference inputs.

Basically, while differential equations are the language of conventional control,
heuristics and “rules” about how to control the plant are the language of fuzzy
control. This is not to say that differential equations are not needed in the fuzzy
control methodology. Indeed, one of the main focuses of this book will be on how
“conventional” the fuzzy control methodology really is and how many ideas from
conventional control can be quite useful in the analysis of this new class of control
systems.

In this chapter we first provide an overview of the standard approach to con-
structing a control system and identify a wide variety of relevant conventional con-
trol ideas and techniques (see Section 1.2). We assume that the reader has at least
some familiarity with conventional control. Our focus in this book is not only on
introducing a variety of approaches to fuzzy control but also on comparing these to
conventional control approaches to determine when fuzzy control offers advantages
over conventional methods. Hence, to fully understand this book you need to un-
derstand several ideas from conventional control (e.g., classical control, state-space
based design, the linear quadratic regulator, stability analysis, feedback lineariza-
tion, adaptive control, etc.). The reader not familiar with conventional control to
this extent will still find the book quite useful. In fact, we expect to whet the
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appetite of such readers so that they become interested in learning more about
conventional control. At the end of this chapter we will provide a list of books that
can serve to teach such readers about these areas.

Following our overview of conventional control, in Section 1.3 we outline a
“philosophy” of fuzzy control where we explain the design methodology for fuzzy
controllers, relate this to the conventional control design methodology, and highlight
the importance of analysis and verification of the behavior of closed-loop fuzzy
control systems.

We highly recommend that you take the time to study this chapter (even if you
already understand conventional control or even the basics of fuzzy control) as it
will set the tone for the remainder of the book and provide a sound methodology
for approaching the sometimes “overhyped” field of fuzzy control. Moreover, in
Section 1.4 we provide a more detailed overview of this book than we provided in
the Preface, and you will find this useful in deciding what topics to study closely
and which ones you may want to skip over on a first reading.

1.2 Conventional Control System Design
A basic control system is shown in Figure 1.1. The process (or “plant”) is the
object to be controlled. Its inputs are u(t), its outputs are y(t), and the reference
input is r(t). In the cruise control problem, u(t) is the throttle input, y(t) is the
speed of the vehicle, and r(t) is the desired speed that is specified by the driver.
The plant is the vehicle itself. The controller is the computer in the vehicle that
actuates the throttle based on the speed of the vehicle and the desired speed that
was specified. In this section we provide an overview of the steps taken to design
the controller shown in Figure 1.1. Basically, these are modeling, controller design,
and performance evaluation.

T

C P

FIGURE 1.1 Control system.

1.2.1 Mathematical Modeling
When a control engineer is given a control problem, often one of the first tasks that
she or he undertakes is the development of a mathematical model of the process to
be controlled, in order to gain a clear understanding of the problem. Basically, there
are only a few ways to actually generate the model. We can use first principles of
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physics (e.g., F = ma) to write down a model. Another way is to perform “system
identification” via the use of real plant data to produce a model of the system.
Sometimes a combined approach is used where we use physics to write down a
general differential equation that we believe represents the plant behavior, and
then we perform experiments on the plant to determine certain model parameters
or functions.

Often, more than one mathematical model is produced. A “truth model” is one
that is developed to be as accurate as possible so that it can be used in simulation-
based evaluations of control systems. It must be understood, however, that there
is never a perfect mathematical model for the plant. The mathematical model is
an abstraction and hence cannot perfectly represent all possible dynamics of any
physical process (e.g., certain noise characteristics or failure conditions). This is
not to say that we cannot produce models that are “accurate enough” to closely
represent the behavior of a physical system. Usually, control engineers keep in mind
that for control design they only need to use a model that is accurate enough to
be able to design a controller that will work. Then, they often also need a very
accurate model to test the controller in simulation (e.g., the truth model) before
it is tested in an experimental setting. Hence, lower-order “design models” are
also often developed that may satisfy certain assumptions (e.g., linearity or the
inclusion of only certain forms of nonlinearities) yet still capture the essential plant
behavior. Indeed, it is quite an art (and science) to produce good low-order models
that satisfy these constraints. We emphasize that the reason we often need simpler
models is that the synthesis techniques for controllers often require that the model
of the plant satisfy certain assumptions (e.g., linearity) or these methods generally
cannot be used.

Linear models such as the one in Equation (1.1) have been used extensively in
the past and the control theory for linear systems is quite mature.

ẋ = Ax + Bu (1.1)
y = Cx + Du

In this case u is the m-dimensional input; x is the n-dimensional state (ẋ = dx(t)
dt

);
y is the p dimensional output; and A, B, C, and D are matrices of appropriate
dimension. Such models, or transfer functions (G(s) = C(sI − A)−1B + D where
s is the Laplace variable), are appropriate for use with frequency domain design
techniques (e.g., Bode plots and Nyquist plots), the root-locus method, state-space
methods, and so on. Sometimes it is assumed that the parameters of the linear
model are constant but unknown, or can be perturbed from their nominal values
(then techniques for “robust control” or adaptive control are developed).

Much of the current focus in control is on the development of controllers using
nonlinear models of the plant of the form

ẋ = f(x, u) (1.2)
y = g(x, u)
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where the variables are defined as for the linear model and f and g are nonlinear
functions of their arguments. One form of the nonlinear model that has received
significant attention is

ẋ = f(x) + g(x)u (1.3)

since it is possible to exploit the structure of this model to construct nonlinear con-
trollers (e.g., in feedback linearization or nonlinear adaptive control). Of particular
interest with both of the above nonlinear models is the case where f and g are not
completely known and subsequent research focuses on robust control of nonlinear
systems.

Discrete time versions of the above models are also used, and stochastic effects
are often taken into account via the addition of a random input or other stochastic
effects. Under certain assumptions you can linearize the nonlinear model in Equa-
tion (1.2) to obtain a linear one. In this case we sometimes think of the nonlinear
model as the truth model, and the linear models that are generated from it as con-
trol design models. We will have occasion to work with all of the above models in
this book.

There are certain properties of the plant that the control engineer often seeks
to identify early in the design process. For instance, the stability of the plant may
be analyzed (e.g., to see if certain variables remain bounded). The effects of certain
nonlinearities are also studied. The engineer may want to determine if the plant
is “controllable” to see, for example, if the control inputs will be able to properly
affect the plant; and “observable” to see, for example, if the chosen sensors will allow
the controller to observe the critical plant behavior so that it can be compensated
for, or if it is “nonminimum phase.” These properties will have a fundamental
impact on our ability to design effective controllers for the system. In addition,
the engineer will try to make a general assessment of how the plant behaves under
various conditions, how the plant dynamics may change over time, and what random
effects are present. Overall, this analysis of the plant’s behavior gives the control
engineer a fundamental understanding of the plant dynamics. This will be very
valuable when it comes time to synthesize a controller.

1.2.2 Performance Objectives and Design Constraints
Controller design entails constructing a controller to meet the specifications. Often
the first issue to address is whether to use open- or closed-loop control. If you
can achieve your objectives with open-loop control, why turn to feedback control?
Often, you need to pay for a sensor for the feedback information and there needs
to be justification for this cost. Moreover, feedback can destabilize the system. Do
not develop a feedback controller just because you are used to developing feedback
controllers; you may want to consider an open-loop controller since it may provide
adequate performance.

Assuming you use feedback control, the closed-loop specifications (or “perfor-
mance objectives”) can involve the following factors:
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• Disturbance rejection properties (e.g., for the cruise control problem, that the
control system will be able to dampen out the effects of winds or road grade vari-
ations). Basically, the need for disturbance rejection creates the need for feedback
control over open-loop control; for many systems it is simply impossible to achieve
the specifications without feedback (e.g., for the cruise control problem, if you
had no measurement of vehicle velocity, how well could you regulate the velocity
to the driver’s set-point?).

• Insensitivity to plant parameter variations (e.g., for the cruise control problem,
that the control system will be able to compensate for changes in the total mass
of the vehicle that may result from varying the numbers of passengers or the
amount of cargo).

• Stability (e.g., in the cruise control problem, to guarantee that on a level road the
actual speed will converge to the desired set-point).

• Rise-time (e.g., in the cruise control problem, a measure of how long it takes for
the actual speed to get close to the desired speed when there is a step change in
the set-point speed).

• Overshoot (e.g., in the cruise control problem, when there is a step change in the
set-point, how much the speed will increase above the set-point).

• Settling time (e.g., in the cruise control problem, how much time it takes for the
speed to reach to within 1% of the set-point).

• Steady-state error (e.g., in the cruise control problem, if you have a level road,
can the error between the set-point and actual speed actually go to zero; or if
there is a long positive road grade, can the cruise controller eventually achieve
the set-point).

While these factors are used to characterize the technical conditions that indi-
cate whether or not a control system is performing properly, there are other issues
that must be considered that are often of equal or greater importance. These include
the following:

• Cost: How much money will it take to implement the controller, or how much
time will it take to develop the controller?

• Computational complexity: How much processor power and memory will it take
to implement the controller?

• Manufacturability: Does your controller have any extraordinary requirements with
regard to manufacturing the hardware that is to implement it?

• Reliability: Will the controller always perform properly? What is its “mean time
between failures?”
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• Maintainability: Will it be easy to perform maintenance and routine adjustments
to the controller?

• Adaptability: Can the same design be adapted to other similar applications so
that the cost of later designs can be reduced? In other words, will it be easy to
modify the cruise controller to fit on different vehicles so that the development
can be done just once?

• Understandability: Will the right people be able to understand the approach to
control? For example, will the people that implement it or test it be able to fully
understand it?

• Politics: Is your boss biased against your approach? Can you sell your approach
to your colleagues? Is your approach too novel and does it thereby depart too
much from standard company practice?

Most often not only must a particular approach to control satisfy the basic
technical conditions for meeting the performance objectives, but the above issues
must also be taken into consideration — and these can often force the control
engineer to make some very practical decisions that can significantly affect how, for
example, the ultimate cruise controller is designed. It is important then that the
engineer has these issues in mind early in the design process.

1.2.3 Controller Design
Conventional control has provided numerous methods for constructing controllers
for dynamic systems. Some of these are listed below, and we provide a list of ref-
erences at the end of this chapter for the reader who is interested in learning more
about any one of these topics.

• Proportional-integral-derivative (PID) control: Over 90% of the controllers in op-
eration today are PID controllers (or at least some form of PID controller like a P
or PI controller). This approach is often viewed as simple, reliable, and easy to un-
derstand. Often, like fuzzy controllers, heuristics are used to tune PID controllers
(e.g., the Zeigler-Nichols tuning rules).

• Classical control: Lead-lag compensation, Bode and Nyquist methods, root-locus
design, and so on.

• State-space methods: State feedback, observers, and so on.

• Optimal control: Linear quadratic regulator, use of Pontryagin’s minimum prin-
ciple or dynamic programming, and so on.

• Robust control: H2 or H∞ methods, quantitative feedback theory, loop shaping,
and so on.



8 Chapter 1 / Introduction

• Nonlinear methods: Feedback linearization, Lyapunov redesign, sliding mode con-
trol, backstepping, and so on.

• Adaptive control: Model reference adaptive control, self-tuning regulators, non-
linear adaptive control, and so on.

• Stochastic control: Minimum variance control, linear quadratic gaussian (LQG)
control, stochastic adaptive control, and so on.

• Discrete event systems: Petri nets, supervisory control, infinitesimal perturbation
analysis, and so on.

Basically, these conventional approaches to control system design offer a variety
of ways to utilize information from mathematical models on how to do good control.
Sometimes they do not take into account certain heuristic information early in the
design process, but use heuristics when the controller is implemented to tune it
(tuning is invariably needed since the model used for the controller development is
not perfectly accurate). Unfortunately, when using some approaches to conventional
control, some engineers become somewhat removed from the control problem (e.g.,
when they do not fully understand the plant and just take the mathematical model
as given), and sometimes this leads to the development of unrealistic control laws.
Sometimes in conventional control, useful heuristics are ignored because they do
not fit into the proper mathematical framework, and this can cause problems.

1.2.4 Performance Evaluation
The next step in the design process is to perform analysis and performance evalua-
tion. Basically, we need performance evaluation to test that the control system that
we design does in fact meet the closed-loop specifications (e.g., for “commissioning”
the control system). This can be particularly important in safety-critical applica-
tions such as a nuclear power plant control or in aircraft control. However, in some
consumer applications such as the control of a washing machine or an electric shaver,
it may not be as important in the sense that failures will not imply the loss of life
(just the possible embarrassment of the company and cost of warranty expenses),
so some of the rigorous evaluation methods can sometimes be ignored. Basically,
there are three general ways to verify that a control system is operating properly:
(1) mathematical analysis based on the use of formal models, (2) simulation-based
analysis that most often uses formal models, and (3) experimental investigations
on the real system.

Mathematical Analysis

In mathematical analysis you may seek to prove that the system is stable (e.g.,
stable in the sense of Lyapunov, asymptotically stable, or bounded-input bounded-
output (BIBO) stable), that it is controllable, or that other closed-loop specifica-
tions such as disturbance rejection, rise-time, overshoot, settling time, and steady-
state errors have been met. Clearly, however, there are several limitations to mathe-
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matical analysis. First, it always relies on the accuracy of the mathematical model,
which is never a perfect representation of the plant, so the conclusions that are
reached from the analysis are in a sense only as accurate as the model that they
were developed from (the reader should never forget that mathematical analysis
proves that properties hold for the mathematical model, not for the real physical
system). And, second, there is a need for the development of analysis techniques for
even more sophisticated nonlinear systems since existing theory is somewhat lack-
ing for the analysis of complex nonlinear (e.g., fuzzy) control systems, particularly
when there are significant nonlinearities, a large number of inputs and outputs, and
stochastic effects. These limitations do not make mathematical analysis useless for
all applications, however. Often it can be viewed as one more method to enhance
our confidence that the closed-loop system will behave properly, and sometimes it
helps to uncover fundamental problems with a control design.

Simulation-Based Analysis

In simulation-based analysis we seek to develop a simulation model of the physical
system. This can entail using physics to develop a mathematical model and perhaps
real data can be used to specify some of the parameters of the model (e.g., via system
identification or direct parameter measurement). The simulation model can often
be made quite accurate, and you can even include the effects of implementation
considerations such as finite word length restrictions. As discussed above, often
the simulation model (“truth model”) will be more complex than the model that
is used for control design because this “design model” needs to satisfy certain
assumptions for the control design methodology to apply (e.g., linearity or linearity
in the controls). Often, simulations are developed on digital computers, but there
are occasions where an analog computer is still quite useful (particularly for real-
time simulation of complex systems or in certain laboratory settings).

Regardless of the approach used to develop the simulation, there are always
limitations on what can be achieved in simulation-based analysis. First, as with the
mathematical analysis, the model that is developed will never be perfectly accurate.
Also, some properties simply cannot be fully verified via simulation studies. For
instance, it is impossible to verify the asymptotic stability of an ordinary differential
equation via simulations since a simulation can only run for a finite amount of
time and only a finite number of initial conditions can be tested for these finite-
length trajectories. Basically, however, simulation-based studies can enhance our
confidence that properties of the closed-loop system hold, and can offer valuable
insights into how to redesign the control system before you spend time implementing
the control system.

Experimental Investigations

To conduct an experimental investigation of the performance of a control system,
you implement the control system for the plant and test it under various condi-
tions. Clearly, implementation can require significant resources (e.g., time, hard-
ware), and for some plants you would not even consider doing an implementation
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until extensive mathematical and simulation-based investigations have been per-
formed. However, the experimental evaluation does shed some light on some other
issues involved in control system design such as cost of implementation, reliability,
and perhaps maintainability. The limitations of experimental evaluations are, first,
problems with the repeatability of experiments, and second, variations in physical
components, which make the verification only approximate for other plants that
are manufactured at other times. On the other hand, experimental studies can go a
long way toward enhancing our confidence that the system will actually work since
if you can get the control system to operate, you will see one real example of how
it can perform.

Regardless of whether you choose to use one or all three of the above approaches
to performance evaluation, it is important to keep in mind that there are two basic
reasons we do such analysis. First, we seek to verify that the designed control system
will perform properly. Second, if it does not perform properly, then we hope that
the analysis will suggest a way to improve the performance so that the controller
can be redesigned and the closed-loop specifications met.

1.3 Fuzzy Control System Design
What, then, is the motivation for turning to fuzzy control? Basically, the difficult
task of modeling and simulating complex real-world systems for control systems
development, especially when implementation issues are considered, is well docu-
mented. Even if a relatively accurate model of a dynamic system can be developed,
it is often too complex to use in controller development, especially for many conven-
tional control design procedures that require restrictive assumptions for the plant
(e.g., linearity). It is for this reason that in practice conventional controllers are
often developed via simple models of the plant behavior that satisfy the necessary
assumptions, and via the ad hoc tuning of relatively simple linear or nonlinear
controllers. Regardless, it is well understood (although sometimes forgotten) that
heuristics enter the conventional control design process as long as you are concerned
with the actual implementation of the control system. It must be acknowledged,
moreover, that conventional control engineering approaches that use appropriate
heuristics to tune the design have been relatively successful. You may ask the fol-
lowing questions: How much of the success can be attributed to the use of the math-
ematical model and conventional control design approach, and how much should
be attributed to the clever heuristic tuning that the control engineer uses upon
implementation? And if we exploit the use of heuristic information throughout the
entire design process, can we obtain higher performance control systems?

Fuzzy control provides a formal methodology for representing, manipulating,
and implementing a human’s heuristic knowledge about how to control a system.
In this section we seek to provide a philosophy of how to approach the design of
fuzzy controllers. This will lead us to provide a motivation for, and overview of, the
entire book.

The fuzzy controller block diagram is given in Figure 1.2, where we show a
fuzzy controller embedded in a closed-loop control system. The plant outputs are
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denoted by y(t), its inputs are denoted by u(t), and the reference input to the fuzzy
controller is denoted by r(t).

Fu
zz

if
ic

at
io

n

D
ef

uz
zi

fi
ca

tio
n

Fuzzy
Inference
Mechanis

m

Rule-Base

Fu
zz

if
ic

at
io

n

D
ef

uz
zi

fi
ca

tio
nInference

mechanism

Rule-base

Process

Inputs OutputsReference input

Fuzzy controller

r(t)
u(t) y(t)

FIGURE 1.2 Fuzzy controller architecture.

The fuzzy controller has four main components: (1) The “rule-base” holds the
knowledge, in the form of a set of rules, of how best to control the system. (2)
The inference mechanism evaluates which control rules are relevant at the current
time and then decides what the input to the plant should be. (3) The fuzzification
interface simply modifies the inputs so that they can be interpreted and compared
to the rules in the rule-base. And (4) the defuzzification interface converts the
conclusions reached by the inference mechanism into the inputs to the plant.

Basically, you should view the fuzzy controller as an artificial decision maker
that operates in a closed-loop system in real time. It gathers plant output data y(t),
compares it to the reference input r(t), and then decides what the plant input u(t)
should be to ensure that the performance objectives will be met.

To design the fuzzy controller, the control engineer must gather information on
how the artificial decision maker should act in the closed-loop system. Sometimes
this information can come from a human decision maker who performs the control
task, while at other times the control engineer can come to understand the plant
dynamics and write down a set of rules about how to control the system without
outside help. These “rules” basically say, “If the plant output and reference input
are behaving in a certain manner, then the plant input should be some value.”
A whole set of such “If-Then” rules is loaded into the rule-base, and an inference
strategy is chosen, then the system is ready to be tested to see if the closed-loop
specifications are met.

This brief description provides a very high-level overview of how to design a
fuzzy control system. Below we will expand on these basic ideas and provide more
details on this procedure and its relationship to the conventional control design
procedure.
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1.3.1 Modeling Issues and Performance Objectives
People working in fuzzy control often say that “a model is not needed to develop
a fuzzy controller, and this is the main advantage of the approach.” However, will
a proper understanding of the plant dynamics be obtained without trying to use
first principles of physics to develop a mathematical model? And will a proper
understanding of how to control the plant be obtained without simulation-based
evaluations that also need a model? We always know roughly what process we
are controlling (e.g., we know whether it is a vehicle or a nuclear reactor), and it
is often possible to produce at least an approximate model, so why not do this?
For a safety-critical application, if you do not use a formal model, then it is not
possible to perform mathematical analysis or simulation-based evaluations. Is it
wise to ignore these analytical approaches for such applications? Clearly, there will
be some applications where you can simply “hack” together a controller (fuzzy or
conventional) and go directly to implementation. In such a situation there is no need
for a formal model of the process; however, is this type of control problem really so
challenging that fuzzy control is even needed? Could a conventional approach (such
as PID control) or a “table look-up” scheme work just as well or better, especially
considering implementation complexity?

Overall, when you carefully consider the possibility of ignoring the information
that is frequently available in a mathematical model, it is clear that it will often be
unwise to do so. Basically, then, the role of modeling in fuzzy control design is quite
similar to its role in conventional control system design. In fuzzy control there is a
more significant emphasis on the use of heuristics, but in many control approaches
(e.g., PID control for process control) there is a similar emphasis. Basically, in fuzzy
control there is a focus on the use of rules to represent how to control the plant
rather than ordinary differential equations (ODE). This approach can offer some
advantages in that the representation of knowledge in rules seems more lucid and
natural to some people. For others, though, the use of differential equations is more
clear and natural. Basically, there is simply a “language difference” between fuzzy
and conventional control: ODEs are the language of conventional control, and rules
are the language of fuzzy control.

The performance objectives and design constraints are the same as the ones
for conventional control that we summarized above, since we still want to meet
the same types of closed-loop specifications. The fundamental limitations that the
plant provides affect our ability to achieve high-performance control, and these are
still present just as they were for conventional control (e.g., nonminimum phase or
unstable behavior still presents challenges for fuzzy control).

1.3.2 Fuzzy Controller Design
Fuzzy control system design essentially amounts to (1) choosing the fuzzy controller
inputs and outputs, (2) choosing the preprocessing that is needed for the controller
inputs and possibly postprocessing that is needed for the outputs, and (3) designing
each of the four components of the fuzzy controller shown in Figure 1.2. As you
will see in the next chapter, there are standard choices for the fuzzification and
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defuzzification interfaces. Moreover, most often the designer settles on an inference
mechanism and may use this for many different processes. Hence, the main part of
the fuzzy controller that we focus on for design is the rule-base.

The rule-base is constructed so that it represents a human expert “in-the-loop.”
Hence, the information that we load into the rules in the rule-base may come from
an actual human expert who has spent a long time learning how best to control the
process. In other situations there is no such human expert, and the control engineer
will simply study the plant dynamics (perhaps using modeling and simulation) and
write down a set of control rules that makes sense. As an example, in the cruise
control problem discussed above it is clear that anyone who has experience driving
a car can practice regulating the speed about a desired set-point and load this
information into a rule-base. For instance, one rule that a human driver may use is
“If the speed is lower than the set-point, then press down further on the accelerator
pedal.” A rule that would represent even more detailed information about how to
regulate the speed would be “If the speed is lower than the set-point AND the
speed is approaching the set-point very fast, then release the accelerator pedal by
a small amount.” This second rule characterizes our knowledge about how to make
sure that we do not overshoot our desired goal (the set-point speed). Generally
speaking, if we load very detailed expertise into the rule-base, we enhance our
chances of obtaining better performance.

1.3.3 Performance Evaluation
Each and every idea presented in Section 1.2.4 on performance evaluation for con-
ventional controllers applies here as well. The basic reason for this is that a fuzzy
controller is a nonlinear controller — so many conventional modeling, analysis (via
mathematics, simulation, or experimentation), and design ideas apply directly.

Since fuzzy control is a relatively new technology, it is often quite important to
determine what value it has relative to conventional methods. Unfortunately, few
have performed detailed comparative analyses between conventional and intelligent
control that have taken into account a wide array of available conventional methods
(linear, nonlinear, adaptive, etc.); fuzzy control methods (direct, adaptive, super-
visory); theoretical, simulation, and experimental analyses; computational issues;
and so on.

Moreover, most work in fuzzy control to date has focused only on its advantages
and has not taken a critical look at what possible disadvantages there could be
to using it (hence the reader should be cautioned about this when reading the
literature). For example, the following questions are cause for concern when you
employ a strategy of gathering heuristic control knowledge:

• Will the behaviors that are observed by a human expert and used to construct the
fuzzy controller include all situations that can occur due to disturbances, noise,
or plant parameter variations?

• Can the human expert realistically and reliably foresee problems that could arise
from closed-loop system instabilities or limit cycles?
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• Will the human expert be able to effectively incorporate stability criteria and
performance objectives (e.g., rise-time, overshoot, and tracking specifications)
into a rule-base to ensure that reliable operation can be obtained?

These questions may seem even more troublesome (1) if the control problem in-
volves a safety-critical environment where the failure of the control system to meet
performance objectives could lead to loss of human life or an environmental dis-
aster, or (2) if the human expert’s knowledge implemented in the fuzzy controller
is somewhat inferior to that of the very experienced specialist we would expect to
design the control system (different designers have different levels of expertise).

Clearly, then, for some applications there is a need for a methodology to develop,
implement, and evaluate fuzzy controllers to ensure that they are reliable in meeting
their performance specifications. This is the basic theme and focus of this book.

1.3.4 Application Areas
Fuzzy systems have been used in a wide variety of applications in engineering,
science, business, medicine, psychology, and other fields. For instance, in engineering
some potential application areas include the following:

• Aircraft/spacecraft: Flight control, engine control, avionic systems, failure diag-
nosis, navigation, and satellite attitude control.

• Automated highway systems: Automatic steering, braking, and throttle control
for vehicles.

• Automobiles: Brakes, transmission, suspension, and engine control.

• Autonomous vehicles: Ground and underwater.

• Manufacturing systems: Scheduling and deposition process control.

• Power industry: Motor control, power control/distribution, and load estimation.

• Process control: Temperature, pressure, and level control, failure diagnosis, dis-
tillation column control, and desalination processes.

• Robotics: Position control and path planning.

This list is only representative of the range of possible applications for the methods
of this book. Others have already been studied, while still others are yet to be
identified.

1.4 What This Book Is About
In this section we will provide an overview of the techniques of this book by using
an automotive cruise control problem as a motivational example. Moreover, we will
state the basic objectives of the book.
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1.4.1 What the Techniques Are Good For: An Example
In Chapter 2 we will introduce the basics of fuzzy control by explaining how the
fuzzy controller processes its inputs to produce its outputs. In doing this, we explain
all the details of rule-base construction, inference mechanism design, fuzzification,
and defuzzification methods. This will show, for example, how for the cruise control
application you can implement a set of rules about how to regulate vehicle speed.
In Chapter 2 we also discuss the basics of fuzzy control system design and provide
several design guidelines that have been found to be useful for practical applications
such as cruise controller development. Moreover, we will show, by providing psue-
docode, how to simulate a fuzzy control system, and will discuss issues that you
encounter when seeking to implement a fuzzy control system. This will help you
bridge the gap between theory and application so that you can quickly implement
a fuzzy controller for your own application.

In Chapter 3 we perform several “case studies” in how to design fuzzy control
systems. We pay particular attention to how these perform relative to conventional
controllers and provide actual implementation results for several applications. It
is via Chapter 3 that we solidify the reader’s knowledge about how to design,
simulate, and implement a fuzzy control system. In addition, we show examples of
how fuzzy systems can be used as more general decision-making systems, not just
in closed-loop feedback control.

In Chapter 4 we will show how conventional nonlinear analysis can be used to
study, for example, the stability of a fuzzy control system. This sort of analysis is
useful, for instance, to show that the cruise control system will always achieve the
desired speed. For example, we will show how to verify that no matter what the
actual vehicle speed is when the driver sets a desired speed, and no matter what
terrain the vehicle is traveling over, the actual vehicle speed will stay close to the
desired speed. We will also show that the actual speed will converge to the desired
speed and not oscillate around it. While this analysis is important to help verify
that the cruise controller is operating properly, it also helps to show the problems
that can be encountered if you are not careful in the design of the fuzzy controller’s
rule-base.

Building on the basic fuzzy control approach that is covered in Chapters 2–4, in
the remaining chapters of the book we show how fuzzy systems can be used for more
advanced control and signal processing methods, sometimes via the implementation
of more sophisticated intelligent reasoning strategies.

First, in Chapter 5 we show how to construct a fuzzy system from plant data
so that it can serve as a model of the plant. Using the same techniques, we show
how to construct fuzzy systems that are parameter estimators. In the cruise control
problem such a “fuzzy estimator” could estimate the current combined mass of
the vehicle and its occupants so that this parameter could be used by a control
algorithm to achieve high-performance control even if there are significant mass
changes (if the mass is increased, rules may be tuned to provide increased throttle
levels). Other times, we can use these “fuzzy identification” techniques to construct
(or design) a fuzzy controller from data we have gathered about how a human
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expert (or some other system) performs a control problem. Chapter 5 also includes
several case studies to show how to construct fuzzy systems from system data.

In Chapter 6 we further build on these ideas by showing how to construct
“adaptive fuzzy controllers” that can automatically synthesize and, if necessary,
tune a fuzzy controller using data from the plant. Such an adaptive fuzzy controller
can be quite useful for plants where it is difficult to generate detailed a priori
knowledge on how to control a plant, or for plants where there will be significant
changes in its dynamics that result in inadequate performance if only a fixed fuzzy
controller were used. For the cruise control example, an adaptive fuzzy controller
may be particularly useful if there are failures in the engine that result in somewhat
degraded engine performance. In this case, the adaptation mechanism would try to
tune the rules of the fuzzy controller so that if, for example, the speed was lower
than the set-point, the controller would open the throttle even more than it would
with a nondegraded engine. If the engine failure is intermittent, however, and the
engine stops performing poorly, then the adaptation mechanism would tune the
rules so that the controller would react in the same way as normal. In Chapter 6
we introduce several approaches for adaptive fuzzy control and provide several case
studies that help explain how to design, simulate, and implement adaptive fuzzy
control systems.

In Chapter 7 we study another approach to specifying adaptive fuzzy controllers
for the case where there is a priori heuristic knowledge available about how a fuzzy
or conventional controller should be tuned. We will load such knowledge about
how to supervise the fuzzy controller into what we will call a “fuzzy supervisory
controller.” For the cruise control example, suppose that we have an additional
input to the system that allows the driver to specify how the vehicle is to respond
to speed set-point changes. This input will allow the driver to specify if he or she
wants the cruise controller to be very aggressive (i.e., act like a sports car) or very
conservative (i.e., more like a family car). This information could be an input to
a fuzzy supervisor that would tune the rules used for regulating the speed so that
they would result in either fast or slow responses (or anything in between) to set-
point changes. In Chapter 7 we will show several approaches to fuzzy supervisory
control where we supervise either conventional or fuzzy controllers. Moreover, we
provide several case studies to help show how to design, simulate, and implement
fuzzy supervisory controllers.

In the final chapter of this book we highlight the issues involved in choosing
fuzzy versus conventional controllers that were brought up throughout the book
and provide a brief overview of other “intelligent control” methods that offer dif-
ferent perspectives on fuzzy control. These other methods include neural networks,
genetic algorithms, expert systems, planning systems, and hierarchical intelligent
autonomous controllers. We will introduce the multilayer perceptron and radial
basis function neural network, explain their relationships to fuzzy systems, and ex-
plain how techniques from neural networks and fuzzy systems can cross-fertilize the
two fields. We explain the basics of genetic algorithms, with a special focus on how
these can be used in the design and tuning of fuzzy systems. We will explain how
“expert controllers” can be viewed as a general type of fuzzy controller. We high-
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light the additional functionalities often used in planning systems to reason about
control, and discuss the possibility of using these in fuzzy control. Finally, we offer
a broad view of the whole area of intelligent control by providing a functional ar-
chitecture for an intelligent autonomous controller. We provide a brief description
of the operation of the autonomous controller and explain how fuzzy control can fit
into this architecture.

1.4.2 Objectives of This Book
Overall, the goals of this book are the following:

1. To introduce a variety of fuzzy control methods (fixed, adaptive, and super-
visory) and show how they can utilize a wide diversity of heuristic knowledge
about how to achieve good control.

2. To compare fuzzy control methods with conventional ones to try to determine
the advantages and disadvantages of each.

3. To show how techniques and ideas from conventional control are quite useful in
fuzzy control (e.g., methods for verifying that the closed-loop system performs
according to the specifications and provides for stable operation).

4. To show how a fuzzy system is a tunable nonlinearity, various methods for
tuning fuzzy systems, and how such approaches can be used in system identi-
fication, estimation, prediction, and adaptive and supervisory control.

5. To illustrate each of the fuzzy control approaches on a variety of challenging
applications, to draw clear connections between the theory and application of
fuzzy control (in this way we hope that you will be able to quickly apply the
techniques described in this book to your own control problems).

6. To illustrate how to construct general fuzzy decision-making systems that can
be used in a variety of applications.

7. To show clear connections between the field of fuzzy control and the other
areas in intelligent control, including neural networks, genetic algorithms, ex-
pert systems, planning systems, and general hierarchical intelligent autonomous
control.

The book includes many examples, applications, and case studies; and it is our
hope that these will serve to show both how to develop fuzzy control systems and
how they perform relative to conventional approaches. The problems at the ends
of the chapters provide exercises and a variety of interesting (and sometimes chal-
lenging) design problems, and are sometimes used to introduce additional topics.
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1.5 Summary
In this chapter we have provided an overview of the approaches to conventional
and fuzzy control system design and have showed how they are quite similar in
many respects. In this book our focus will be not only on introducing the basics
of fuzzy control, but also on performance evaluation of the resulting closed-loop
systems. Moreover, we will pay particular attention to the problem of assessing what
advantages fuzzy control methods have over conventional methods. Generally, this
must be done by careful comparative analyses involving modeling, mathematical
analysis, simulation, implementation, and a full engineering cost-benefit analysis
(which involves issues of cost, reliability, maintainability, flexibility, lead-time to
production, etc.). Some of our comparisons will involve many of these dimensions
while others will necessarily be more cursory.

Although it is not covered in this book, we would expect the reader to have as
prerequisite knowledge a good understanding of the basic ideas in conventional con-
trol (at least, those typically covered in a first course on control). Upon completing
this chapter, the reader should then understand the following:

• The distinction between a “truth model” and a “design model.”

• The basic definitions of performance objectives (e.g., stability and overshoot).

• The general procedure used for the design of conventional and fuzzy control sys-
tems, which often involves modeling, analysis, and performance evaluation.

• The importance of using modeling information in the design of fuzzy controllers
and when such information can be ignored.

• The idea that mathematical analysis provides proofs about the properties of the
mathematical model and not the physical control system.

• The importance, roles, and limitations of mathematical analysis, simulation-based
analysis, and experimental evaluations of performance for conventional and fuzzy
control systems.

• The basic components of the fuzzy controller and fuzzy control system.

• The need to incorporate more sophisticated reasoning strategies in controllers
and the subsequent motivation for adaptive and supervisory fuzzy control.

Essentially, this is a checklist for the major topics of this chapter. The reader
should be sure to understand each of the above concepts before proceeding to later
chapters, where the techniques of fuzzy control are introduced. We find that if you
have a solid high-level view of the design process and philosophical issues involved,
you will be more effective in developing control systems.
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1.6 For Further Study
The more that you understand about conventional control, the more you will be
able to appreciate some of the finer details of the operation of fuzzy control systems.
We realize that all readers may not be familiar with all areas of control, so next
we provide a list of books from which the major topics can be learned. There are
many good texts on classical control [54, 102, 55, 45, 41, 10]. State-space methods
and optimal and multivariable control can be studied in several of these texts and
also in [56, 31, 3, 12, 132]. Robust control is treated in [46, 249]. Nonlinear control
is covered in [90, 223, 13, 189, 217, 80]; stability analysis in [141, 140]; and adaptive
control in [77, 99, 180, 11, 60, 149]. System identification is treated in [127] (and
in the adaptive control texts), and optimal estimation and stochastic control are
covered in [101, 123, 122, 63]. A relatively complete treatment of the field of control
is in [121].

For more recent work in all these areas, see the proceedings of the IEEE
Conference on Decision and Control, the American Control Conference, the Eu-
ropean Control Conference, the International Federation on Automatic Control
World Congress, and certain conferences in chemical, aeronautical, and mechani-
cal engineering. Major journals to keep an eye on include the IEEE Transactions
on Automatic Control, IEEE Transactions on Control Systems Technology, IEEE
Control Systems Magazine, Systems and Control Letters, Automatica, Control En-
gineering Practice, International Journal of Control, and many others. Extensive
lists of references for fuzzy and intelligent control are provided at the ends of Chap-
ters 2–8.

1.7 Exercises
Exercise 1.1 (Modeling): This problem focuses on issues in modeling dynamic
systems.

(a) What do we mean by model complexity and representation accuracy? List
model features that affect the complexity of a model.

(b) What issues are of concern when determining how complex of a model to
develop for a plant that is to be controlled?

(c) Are stochastic effects always present in physical systems? Explain.

(d) Why do we use discrete-time models?

(e) What are the advantages and disadvantages of representing a system with
a linear model?

(f) Is a linear model of a physical system perfectly accurate? A nonlinear model?
Explain.

Exercise 1.2 (Control System Properties): In this problem you will define
the basic properties of systems that are used to quantify plant and closed-loop
system dynamics and hence some performance specifications.
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(a) Define, in words, bounded-input bounded-output (BIBO) stability, stability
in the sense of Lyapunov, asymptotic stability, controllability, observabil-
ity, rise-time, overshoot, and steady-state error (see [54, 31, 90] if you are
unfamiliar with some of these concepts).

(b) Give examples of the properties in (a) for the following systems: cruise con-
trol for an automobile, aircraft altitude control, and temperature control in
a house.

(c) Explain what disturbance rejection and sensitivity to plant parameter varia-
tions are, and identify disturbances and plant parameter variations for each
of the systems in (b) (to do this you should describe the process, draw the
control system for the process, show where the disturbance or plant param-
eter variation enters the system, and describe its effects on the closed-loop
system). (See, for example, [45] if you are unfamiliar with these concepts.)

Exercise 1.3 (Fuzzy Control Design Philosophy): In this problem we will
focus on the fuzzy control system design methodology.

(a) Is a model used in fuzzy control system design? If it is, when is it used, and
what type of model is it? Should a model be used? Why? Why not?

(b) Explain the roles of knowledge acquisition, modeling, analysis, and past
control designs in the construction of fuzzy control systems.

(c) What role does nonlinear analysis of stability play in fuzzy control system
design?

Exercise 1.4 (Analysis): In this problem we will focus on performance analysis
of control systems.

(a) Why are control engineers concerned with verifying that a control system
will meet its performance specifications?

(b) How do they make sure that they are met? Is there any way to be 100%
certain that the performance specifications can be met?

(c) What are the limitations of mathematical analysis, simulation-based analy-
sis, and experimental analysis? What are the advantages of each of these?

Exercise 1.5 (Control Engineering Cost-Benefit Analysis): In this prob-
lem we will focus on engineering cost-benefit analysis for control systems.

(a) List all of the issues that must be considered in deciding what is the best
approach to use for the control of a system (include in your list such issues
as cost, marketing, etc.).

(b) Which of these issues is most important and why? In what situations? Rank
the issues that must be considered in the order of priority for consideration,
and justify your order.
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Exercise 1.6 (Relations to Biological Intelligent Systems)�:1 In this prob-
lem you will be asked to relate systems and control concepts to intelligent bio-
logical systems.

(a) The fuzzy controller represents, very crudely, the human deductive process.
What features of the human deductive process seem to be ignored? Are these
important for controller emulation? How could they be incorporated?

(b) Define the human brain as a dynamic system with inputs and outputs (what
are they?). Define controllability, observability, and stability for both neu-
rological (bioelectrical) activity and cognitive activities (i.e., the hardware
and software of our brain).

(c) Do you think that it is possible to implement artificial intelligence in a cur-
rent microcomputer and hence achieve intelligent control? On any computer
or at any time in the future?

1. Reminder: Exercises or design problems that are particularly challenging (sometimes simply
considering how far along you are in the text) or that require you to help define part of the

problem are designated with a star (“�”).
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C H A P T E R 2

Fuzzy Control:
The Basics

A few strong instincts and a few plain rules suffice

us.

–Ralph Waldo Emerson

2.1 Overview
The primary goal of control engineering is to distill and apply knowledge about
how to control a process so that the resulting control system will reliably and
safely achieve high-performance operation. In this chapter we show how fuzzy logic
provides a methodology for representing and implementing our knowledge about
how best to control a process.

We begin in Section 2.2 with a “gentle” (tutorial) introduction, where we focus
on the construction and basic mechanics of operation of a two-input one-output
fuzzy controller with the most commonly used fuzzy operations. Building on our
understanding of the two-input one-output fuzzy controller, in Section 2.3 we pro-
vide a mathematical characterization of general fuzzy systems with many inputs
and outputs, and general fuzzification, inference, and defuzzification strategies. In
Section 2.4 we illustrate some typical steps in the fuzzy control design process via
a simple inverted pendulum control problem. We explain how to write a computer
program that will simulate the actions of a fuzzy controller in Section 2.5. More-
over, we discuss various issues encountered in implementing fuzzy controllers in
Section 2.6.

Then, in Chapter 3, after providing an overview of some design methodologies
for fuzzy controllers and computer-aided design (CAD) packages for fuzzy system
construction, we present several design case studies for fuzzy control systems. It
is these case studies that the reader will find most useful in learning the finer

23
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points about the fuzzy controller’s operation and design. Indeed, the best way to
really learn fuzzy control is to design your own fuzzy controller for one of the
plants studied in this or the next chapter, and simulate the fuzzy control system to
evaluate its performance. Initially, we recommend coding this fuzzy controller in a
high-level language such as C, Matlab, or Fortran. Later, after you have acquired
a firm understanding of the fuzzy controller’s operation, you can take shortcuts by
using a (or designing your own) CAD package for fuzzy control systems.

After completing this chapter, the reader should be able to design and simulate
a fuzzy control system. This will move the reader a long way toward implementation
of fuzzy controllers since we provide pointers on how to overcome certain practical
problems encountered in fuzzy control system design and implementation (e.g.,
coding the fuzzy controller to operate in real-time, even with large rule-bases).

This chapter provides a foundation on which the remainder of the book rests.
After our case studies in direct fuzzy controller design in Chapter 3, we will use
the basic definition of the fuzzy control system and study its fundamental dynamic
properties, including stability, in Chapter 4. We will use the same plants, and
others, to illustrate the techniques for fuzzy identification, fuzzy adaptive control,
and fuzzy supervisory control in Chapters 5, 6, and 7, respectively. It is therefore
important for the reader to have a firm grasp of the concepts in this and the next
chapter before moving on to these more advanced chapters.

Before skipping any sections or chapters of this book, we recommend that the
reader study the chapter summaries at the end of each chapter. In these summaries
we will highlight all the major concepts, approaches, and techniques that are covered
in the chapter. These summaries also serve to remind the reader what should be
learned in each chapter.

2.2 Fuzzy Control: A Tutorial Introduction
A block diagram of a fuzzy control system is shown in Figure 2.1. The fuzzy con-
troller1 is composed of the following four elements:

1. A rule-base (a set of If-Then rules), which contains a fuzzy logic quantification
of the expert’s linguistic description of how to achieve good control.

2. An inference mechanism (also called an “inference engine” or “fuzzy inference”
module), which emulates the expert’s decision making in interpreting and ap-
plying knowledge about how best to control the plant.

3. A fuzzification interface, which converts controller inputs into information that
the inference mechanism can easily use to activate and apply rules.

4. A defuzzification interface, which converts the conclusions of the inference
mechanism into actual inputs for the process.

1. Sometimes a fuzzy controller is called a “fuzzy logic controller” (FLC) or even a “fuzzy
linguistic controller” since, as we will see, it uses fuzzy logic in the quantification of linguistic

descriptions. In this book we will avoid these phrases and simply use “fuzzy controller.”
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FIGURE 2.1 Fuzzy controller.

We introduce each of the components of the fuzzy controller for a simple prob-
lem of balancing an inverted pendulum on a cart, as shown in Figure 2.2. Here, y
denotes the angle that the pendulum makes with the vertical (in radians), l is the
half-pendulum length (in meters), and u is the force input that moves the cart (in
Newtons). We will use r to denote the desired angular position of the pendulum.
The goal is to balance the pendulum in the upright position (i.e., r = 0) when
it initially starts with some nonzero angle off the vertical (i.e., y �= 0). This is a
very simple and academic nonlinear control problem, and many good techniques
already exist for its solution. Indeed, for this standard configuration, a simple PID
controller works well even in implementation.

In the remainder of this section, we will use the inverted pendulum as a con-
venient problem to illustrate the design and basic mechanics of the operation of a
fuzzy control system. We will also use this problem in Section 2.4 to discuss much
more general issues in fuzzy control system design that the reader will find useful
for more challenging applications (e.g., the ones in the next chapter).

y

2l

u

FIGURE 2.2 Inverted pendulum
on a cart.
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2.2.1 Choosing Fuzzy Controller Inputs and Outputs
Consider a human-in-the-loop whose responsibility is to control the pendulum, as
shown in Figure 2.3. The fuzzy controller is to be designed to automate how a
human expert who is successful at this task would control the system. First, the
expert tells us (the designers of the fuzzy controller) what information she or he
will use as inputs to the decision-making process. Suppose that for the inverted
pendulum, the expert (this could be you!) says that she or he will use

e(t) = r(t) − y(t)

and

d

dt
e(t)

as the variables on which to base decisions. Certainly, there are many other choices
(e.g., the integral of the error e could also be used) but this choice makes good
intuitive sense. Next, we must identify the controlled variable. For the inverted
pendulum, we are allowed to control only the force that moves the cart, so the
choice here is simple.

u y
Inverted

pendulum

r

FIGURE 2.3 Human controlling an
inverted pendulum on a cart.

For more complex applications, the choice of the inputs to the controller and
outputs of the controller (inputs to the plant) can be more difficult. Essentially, you
want to make sure that the controller will have the proper information available
to be able to make good decisions and have proper control inputs to be able to
steer the system in the directions needed to be able to achieve high-performance
operation. Practically speaking, access to information and the ability to effectively
control the system often cost money. If the designer believes that proper information
is not available for making control decisions, he or she may have to invest in another
sensor that can provide a measurement of another system variable. Alternatively,
the designer may implement some filtering or other processing of the plant outputs.
In addition, if the designer determines that the current actuators will not allow
for the precise control of the process, he or she may need to invest in designing
and implementing an actuator that can properly affect the process. Hence, while in
some academic problems you may be given the plant inputs and outputs, in many
practical situations you may have some flexibility in their choice. These choices
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affect what information is available for making on-line decisions about the control
of a process and hence affect how we design a fuzzy controller.

Once the fuzzy controller inputs and outputs are chosen, you must determine
what the reference inputs are. For the inverted pendulum, the choice of the reference
input r = 0 is clear. In some situations, however, you may want to choose r as
some nonzero constant to balance the pendulum in the off-vertical position. To do
this, the controller must maintain the cart at a constant acceleration so that the
pendulum will not fall.

After all the inputs and outputs are defined for the fuzzy controller, we can
specify the fuzzy control system. The fuzzy control system for the inverted pendu-
lum, with our choice of inputs and outputs, is shown in Figure 2.4. Now, within this
framework we seek to obtain a description of how to control the process. We see then
that the choice of the inputs and outputs of the controller places certain constraints
on the remainder of the fuzzy control design process. If the proper information is
not provided to the fuzzy controller, there will be little hope for being able to design
a good rule-base or inference mechanism. Moreover, even if the proper information
is available to make control decisions, this will be of little use if the controller is
not able to properly affect the process variables via the process inputs. It must be
understood that the choice of the controller inputs and outputs is a fundamentally
important part of the control design process. We will revisit this issue several times
throughout the remainder of this chapter (and book).

Inverted
pendulumd

dt

Σ
r e

u y
Fuzzy

controller

+

FIGURE 2.4 Fuzzy controller for an inverted pendulum on a cart.

2.2.2 Putting Control Knowledge into Rule-Bases
Suppose that the human expert shown in Figure 2.3 provides a description of how
best to control the plant in some natural language (e.g., English). We seek to take
this “linguistic” description and load it into the fuzzy controller, as indicated by
the arrow in Figure 2.4.
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Linguistic Descriptions

The linguistic description provided by the expert can generally be broken into
several parts. There will be “linguistic variables” that describe each of the time-
varying fuzzy controller inputs and outputs. For the inverted pendulum,

“error” describes e(t)
“change-in-error” describes d

dte(t)
“force” describes u(t)

Note that we use quotes to emphasize that certain words or phrases are linguistic
descriptions, and that we have added the time index to, for example, e(t), to em-
phasize that generally e varies with time. There are many possible choices for the
linguistic descriptions for variables. Some designers like to choose them so that they
are quite descriptive for documentation purposes. However, this can sometimes lead
to long descriptions. Others seek to keep the linguistic descriptions as short as pos-
sible (e.g., using “e(t)” as the linguistic variable for e(t)), yet accurate enough so
that they adequately represent the variables. Regardless, the choice of the linguistic
variable has no impact on the way that the fuzzy controller operates; it is simply
a notation that helps to facilitate the construction of the fuzzy controller via fuzzy
logic.

Just as e(t) takes on a value of, for example, 0.1 at t = 2 (e(2) = 0.1), linguistic
variables assume “linguistic values.” That is, the values that linguistic variables
take on over time change dynamically. Suppose for the pendulum example that
“error,” “change-in-error,” and “force” take on the following values:

“neglarge”
“negsmall”

“zero”
“possmall”
“poslarge”

Note that we are using “negsmall” as an abbreviation for “negative small in size”
and so on for the other variables. Such abbreviations help keep the linguistic de-
scriptions short yet precise. For an even shorter description we could use integers:

“−2” to represent “neglarge”
“−1” to represent “negsmall”

“0” to represent “zero”
“1” to represent “possmall”
“2” to represent “poslarge”

This is a particularly appealing choice for the linguistic values since the descriptions
are short and nicely represent that the variable we are concerned with has a numeric
quality. We are not, for example, associating “−1” with any particular number of
radians of error; the use of the numbers for linguistic descriptions simply quantifies
the sign of the error (in the usual way) and indicates the size in relation to the
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other linguistic values. We shall find the use of this type of linguistic value quite
convenient and hence will give it the special name, “linguistic-numeric value.”

The linguistic variables and values provide a language for the expert to express
her or his ideas about the control decision-making process in the context of the
framework established by our choice of fuzzy controller inputs and outputs. Recall
that for the inverted pendulum r = 0 and e = r − y so that

e = −y

and

d

dt
e = − d

dt
y

since d
dtr = 0. First, we will study how we can quantify certain dynamic behaviors

with linguistics. In the next subsection we will study how to quantify knowledge
about how to control the pendulum using linguistic descriptions.

For the inverted pendulum each of the following statements quantifies a different
configuration of the pendulum (refer back to Figure 2.2 on page 25):

• The statement “error is poslarge” can represent the situation where the pendulum
is at a significant angle to the left of the vertical.

• The statement “error is negsmall” can represent the situation where the pendulum
is just slightly to the right of the vertical, but not too close to the vertical to
justify quantifying it as “zero” and not too far away to justify quantifying it as
“neglarge.”

• The statement “error is zero” can represent the situation where the pendulum is
very near the vertical position (a linguistic quantification is not precise, hence we
are willing to accept any value of the error around e(t) = 0 as being quantified
linguistically by “zero” since this can be considered a better quantification than
“possmall” or “negsmall”).

• The statement “error is poslarge and change-in-error is possmall” can represent
the situation where the pendulum is to the left of the vertical and, since d

dty < 0,
the pendulum is moving away from the upright position (note that in this case
the pendulum is moving counterclockwise).

• The statement “error is negsmall and change-in-error is possmall” can represent
the situation where the pendulum is slightly to the right of the vertical and, since
d
dt

y < 0, the pendulum is moving toward the upright position (note that in this
case the pendulum is also moving counterclockwise).

It is important for the reader to study each of the cases above to understand how the
expert’s linguistics quantify the dynamics of the pendulum (actually, each partially
quantifies the pendulum’s state).
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Overall, we see that to quantify the dynamics of the process we need to have a
good understanding of the physics of the underlying process we are trying to control.
While for the pendulum problem, the task of coming to a good understanding of
the dynamics is relatively easy, this is not the case for many physical processes.
Quantifying the process dynamics with linguistics is not always easy, and certainly
a better understanding of the process dynamics generally leads to a better linguistic
quantification. Often, this will naturally lead to a better fuzzy controller provided
that you can adequately measure the system dynamics so that the fuzzy controller
can make the right decisions at the proper time.

Rules

Next, we will use the above linguistic quantification to specify a set of rules (a
rule-base) that captures the expert’s knowledge about how to control the plant. In
particular, for the inverted pendulum in the three positions shown in Figure 2.5,
we have the following rules (notice that we drop the quotes since the whole rule is
linguistic):

1. If error is neglarge and change-in-error is neglarge Then force is poslarge

This rule quantifies the situation in Figure 2.5(a) where the pendulum has a
large positive angle and is moving clockwise; hence it is clear that we should
apply a strong positive force (to the right) so that we can try to start the
pendulum moving in the proper direction.

2. If error is zero and change-in-error is possmall Then force is negsmall

This rule quantifies the situation in Figure 2.5(b) where the pendulum has
nearly a zero angle with the vertical (a linguistic quantification of zero does not
imply that e(t) = 0 exactly) and is moving counterclockwise; hence we should
apply a small negative force (to the left) to counteract the movement so that it
moves toward zero (a positive force could result in the pendulum overshooting
the desired position).

3. If error is poslarge and change-in-error is negsmall Then force is negsmall

This rule quantifies the situation in Figure 2.5(c) where the pendulum is far to
the left of the vertical and is moving clockwise; hence we should apply a small
negative force (to the left) to assist the movement, but not a big one since the
pendulum is already moving in the proper direction.

Each of the three rules listed above is a “linguistic rule” since it is formed
solely from linguistic variables and values. Since linguistic values are not precise
representations of the underlying quantities that they describe, linguistic rules are
not precise either. They are simply abstract ideas about how to achieve good control
that could mean somewhat different things to different people. They are, however, at
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FIGURE 2.5 Inverted pendulum in various positions.

a level of abstraction that humans are often comfortable with in terms of specifying
how to control a process.

The general form of the linguistic rules listed above is

If premise Then consequent

As you can see from the three rules listed above, the premises (which are sometimes
called “antecedents”) are associated with the fuzzy controller inputs and are on
the left-hand-side of the rules. The consequents (sometimes called “actions”) are
associated with the fuzzy controller outputs and are on the right-hand-side of the
rules. Notice that each premise (or consequent) can be composed of the conjunction
of several “terms” (e.g., in rule 3 above “error is poslarge and change-in-error is
negsmall” is a premise that is the conjunction of two terms). The number of fuzzy
controller inputs and outputs places an upper limit on the number of elements
in the premises and consequents. Note that there does not need to be a premise
(consequent) term for each input (output) in each rule, although often there is.

Rule-Bases

Using the above approach, we could continue to write down rules for the pendulum
problem for all possible cases (the reader should do this for practice, at least for
a few more rules). Note that since we only specify a finite number of linguistic
variables and linguistic values, there is only a finite number of possible rules. For
the pendulum problem, with two inputs and five linguistic values for each of these,
there are at most 52 = 25 possible rules (all possible combinations of premise
linguistic values for two inputs).

A convenient way to list all possible rules for the case where there are not too
many inputs to the fuzzy controller (less than or equal to two or three) is to use a
tabular representation. A tabular representation of one possible set of rules for the
inverted pendulum is shown in Table 2.1. Notice that the body of the table lists the
linguistic-numeric consequents of the rules, and the left column and top row of the
table contain the linguistic-numeric premise terms. Then, for instance, the (2,−1)
position (where the “2” represents the row having “2” for a numeric-linguistic value
and the “−1” represents the column having “−1” for a numeric-linguistic value)
has a −1 (“negsmall”) in the body of the table and represents the rule
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If error is poslarge and change-in-error is negsmall Then force is negsmall

which is rule 3 above. Table 2.1 represents abstract knowledge that the expert has
about how to control the pendulum given the error and its derivative as inputs.

TABLE 2.1 Rule Table for the Inverted Pendulum

“force” “change-in-error” ė
u −2 −1 0 1 2

−2 2 2 2 1 0
“error” −1 2 2 1 0 −1

e 0 2 1 0 −1 −2
1 1 0 −1 −2 −2
2 0 −1 −2 −2 −2

The reader should convince him- or herself that the other rules are also valid and
take special note of the pattern of rule consequents that appears in the body of the
table: Notice the diagonal of zeros and viewing the body of the table as a matrix
we see that it has a certain symmetry to it. This symmetry that emerges when
the rules are tabulated is no accident and is actually a representation of abstract
knowledge about how to control the pendulum; it arises due to a symmetry in the
system’s dynamics. We will actually see later that similar patterns will be found
when constructing rule-bases for more challenging applications, and we will show
how to exploit this symmetry in implementing fuzzy controllers.

2.2.3 Fuzzy Quantification of Knowledge
Up to this point we have only quantified, in an abstract way, the knowledge that
the human expert has about how to control the plant. Next, we will show how to
use fuzzy logic to fully quantify the meaning of linguistic descriptions so that we
may automate, in the fuzzy controller, the control rules specified by the expert.

Membership Functions

First, we quantify the meaning of the linguistic values using “membership func-
tions.” Consider, for example, Figure 2.6. This is a plot of a function µ versus e(t)
that takes on special meaning. The function µ quantifies the certainty2 that e(t)
can be classified linguistically as “possmall.” To understand the way that a mem-
bership function works, it is best to perform a case analysis where we show how to
interpret it for various values of e(t):

2. The reader should not confuse the term “certainty” with “probability” or “likelihood.” The
membership function is not a probability density function, and there is no underlying probability

space. By “certainty” we mean “degree of truth.” The membership function does not quantify
random behavior; it simply makes more accurate (less fuzzy) the meaning of linguistic

descriptions.
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• If e(t) = −π/2 then µ(−π/2) = 0, indicating that we are certain that e(t) = −π/2
is not “possmall.”

• If e(t) = π/8 then µ(π/8) = 0.5, indicating that we are halfway certain that
e(t) = π/8 is “possmall” (we are only halfway certain since it could also be
“zero” with some degree of certainty—this value is in a “gray area” in terms of
linguistic interpretation).

• If e(t) = π/4 then µ(π/4) = 1.0, indicating that we are absolutely certain that
e(t) = π/4 is what we mean by “possmall.”

• If e(t) = π then µ(π) = 0, indicating that we are certain that e(t) = π is not
“possmall” (actually, it is “poslarge”).

1.0

0.5

µ

e(t), (rad.)

“possmall”

π
4

π
2

FIGURE 2.6 Membership function for
linguistic value “possmall.”

The membership function quantifies, in a continuous manner, whether values of
e(t) belong to (are members of) the set of values that are “possmall,” and hence it
quantifies the meaning of the linguistic statement “error is possmall.” This is why it
is called a membership function. It is important to recognize that the membership
function in Figure 2.6 is only one possible definition of the meaning of “error is
possmall”; you could use a bell-shaped function, a trapezoid, or many others.

For instance, consider the membership functions shown in Figure 2.7. For some
application someone may be able to argue that we are absolutely certain that any
value of e(t) near π

4 is still “possmall” and only when you get sufficiently far from
π
4 do we lose our confidence that it is “possmall.” One way to characterize this un-
derstanding of the meaning of “possmall” is via the trapezoid-shaped membership
function in Figure 2.7(a). For other applications you may think of membership in
the set of “possmall” values as being dictated by the Gaussian-shaped member-
ship function (not to be confused with the Gaussian probability density function)
shown in Figure 2.7(b). For still other applications you may not readily accept
values far away from π

4 as being “possmall,” so you may use the membership func-
tion in Figure 2.7(c) to represent this. Finally, while we often think of symmetric
characterizations of the meaning of linguistic values, we are not restricted to these
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symmetric representations. For instance, in Figure 2.7(d) we represent that we be-
lieve that as e(t) moves to the left of π

4 we are very quick to reduce our confidence
that it is “possmall,” but if we move to the right of π

4 our confidence that e(t) is
“possmall,” diminishes at a slower rate.
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(a) Trapezoid. (b) Gaussian.

(c) Sharp peak. (d) Skewed triangle.

π
4
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FIGURE 2.7 A few membership function choices for representing “error is
possmall.”

In summary, we see that depending on the application and the designer (ex-
pert), many different choices of membership functions are possible. We will further
discuss other ways to define membership functions in Section 2.3.2 on page 55. It is
important to note here, however, that for the most part the definition of a member-
ship function is subjective rather than objective. That is, we simply quantify it in
a manner that makes sense to us, but others may quantify it in a different manner.

The set of values that is described by µ as being “positive small” is called
a “fuzzy set.” Let A denote this fuzzy set. Notice that from Figure 2.6 we are
absolutely certain that e(t) = π

4 is an element of A, but we are less certain that
e(t) = π

16
is an element of A. Membership in the set, as specified by the membership

function, is fuzzy; hence we use the term “fuzzy set.” We will give a more precise
description of a fuzzy set in Section 2.3.2 on page 55.

A “crisp” (as contrasted to “fuzzy”) quantification of “possmall” can also be
specified, but via the membership function shown in Figure 2.8. This membership
function is simply an alternative representation for the interval on the real line
π/8 ≤ e(t) ≤ 3π/8, and it indicates that this interval of numbers represents “poss-
mall.” Clearly, this characterization of crisp sets is simply another way to represent
a normal interval (set) of real numbers.

While the vertical axis in Figure 2.6 represents certainty, the horizontal axis is
also given a special name. It is called the “universe of discourse” for the input e(t)
since it provides the range of values of e(t) that can be quantified with linguistics
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FIGURE 2.8 Membership function for a
crisp set.

and fuzzy sets. In conventional terminology, a universe of discourse for an input or
output of a fuzzy system is simply the range of values the inputs and outputs can
take on.

Now that we know how to specify the meaning of a linguistic value via a mem-
bership function (and hence a fuzzy set), we can easily specify the membership
functions for all 15 linguistic values (five for each input and five for the output)
of our inverted pendulum example. See Figure 2.9 for one choice of membership
functions.

Notice that (for our later convenience) we list both the linguistic values and
the linguistic-numeric values associated with each membership function. Hence,
we see that the membership function in Figure 2.6 for “possmall” is embedded
among several others that describe other sizes of values (so that, for instance, the
membership function to the right of the one for “possmall” is the one that represents
“error is poslarge”). Note that other similarly shaped membership functions make
sense (e.g., bell-shaped membership functions). We will discuss the multitude of
choices that are possible for membership functions in Section 2.3.2 on page 55.

The membership functions at the outer edges in Figure 2.9 deserve special
attention. For the inputs e(t) and d

dte(t) we see that the outermost membership
functions “saturate” at a value of one. This makes intuitive sense as at some point
the human expert would just group all large values together in a linguistic de-
scription such as “poslarge.” The membership functions at the outermost edges
appropriately characterize this phenomenon since they characterize “greater than”
(for the right side) and “less than” (for the left side). Study Figure 2.9 and convince
yourself of this.

For the output u, the membership functions at the outermost edges cannot be
saturated for the fuzzy system to be properly defined (more details on this point
will be provided in Section 2.2.6 on page 44 and Section 2.3.5 on page 65). The basic
reason for this is that in decision-making processes of the type we study, we seek to
take actions that specify an exact value for the process input. We do not generally
indicate to a process actuator, “any value bigger than, say, 10, is acceptable.”

It is important to have a clear picture in your mind of how the values of the
membership functions change as, for example, e(t) changes its value over time.
For instance, as e(t) changes from −π/2 to π/2 we see that various membership
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FIGURE 2.9 Membership functions for an inverted pendulum on
a cart.

functions will take on zero and nonzero values indicating the degree to which the
linguistic value appropriately describes the current value of e(t). For example, at
e(t) = −π/2 we are certain that the error is “neglarge,” and as the value of e(t)
moves toward −π/4 we become less certain that it is “neglarge” and more certain
that it is “negsmall.” We see that the membership functions quantify the meaning
of linguistic statements that describe time-varying signals.

Finally, note that often we will draw all the membership functions for one input
or output variable on one graph; hence, we often omit the label for the vertical
axis with the understanding that the plotted functions are membership functions
describing the meaning of their associated linguistic values. Also, we will use the
notation µzero to represent the membership function associated with the linguistic
value “zero” and a similar notation for the others.

The rule-base of the fuzzy controller holds the linguistic variables, linguistic
values, their associated membership functions, and the set of all linguistic rules
(shown in Table 2.1 on page 32), so we have completed the description of the
simple inverted pendulum. Next we describe the fuzzification process.
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Fuzzification

It is actually the case that for most fuzzy controllers the fuzzification block in
Figure 2.1 on page 25 can be ignored since this process is so simple. In Section 2.3.3
on page 61 we will explain the exact operations of the fuzzification process and also
explain why it can be simplified and under certain conditions virtually ignored.
For now, the reader should simply think of the fuzzification process as the act of
obtaining a value of an input variable (e.g., e(t)) and finding the numeric values
of the membership function(s) that are defined for that variable. For example, if
e(t) = π/4 and d

dte(t) = π/16, the fuzzification process amounts to finding the
values of the input membership functions for these. In this case

µpossmall(e(t)) = 1

(with all others zero) and

µzero

(
d

dt
e(t)

)
= µpossmall

(
d

dt
e(t)

)
= 0.5.

Some think of the membership function values as an “encoding” of the fuzzy con-
troller numeric input values. The encoded information is then used in the fuzzy
inference process that starts with “matching.”

2.2.4 Matching: Determining Which Rules to Use
Next, we seek to explain how the inference mechanism in Figure 2.1 on page 25
operates. The inference process generally involves two steps:

1. The premises of all the rules are compared to the controller inputs to determine
which rules apply to the current situation. This “matching” process involves
determining the certainty that each rule applies, and typically we will more
strongly take into account the recommendations of rules that we are more
certain apply to the current situation.

2. The conclusions (what control actions to take) are determined using the rules
that have been determined to apply at the current time. The conclusions are
characterized with a fuzzy set (or sets) that represents the certainty that the
input to the plant should take on various values.

We will cover step 1 in this subsection and step 2 in the next.

Premise Quantification via Fuzzy Logic

To perform inference we must first quantify each of the rules with fuzzy logic. To do
this we first quantify the meaning of the premises of the rules that are composed of
several terms, each of which involves a fuzzy controller input. Consider Figure 2.10,
where we list two terms from the premise of the rule

If error is zero and change-in-error is possmall Then force is negsmall
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Above, we had quantified the meaning of the linguistic terms “error is zero” and
“change-in-error is possmall” via the membership functions shown in Figure 2.9.
Now we seek to quantify the linguistic premise “error is zero and change-in-error
is possmall.” Hence, the main item to focus on is how to quantify the logical “and”
operation that combines the meaning of two linguistic terms. While we could use
standard Boolean logic to combine these linguistic terms, since we have quantified
them more precisely with fuzzy sets (i.e., the membership functions), we can use
these.
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4
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0

zeroµ
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“possmall”

4
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1

π
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FIGURE 2.10 Membership functions of premise terms.

To see how to quantify the “and” operation, begin by supposing that e(t) = π/8
and d

dte(t) = π/32, so that using Figure 2.9 (or Figure 2.10) we see that

µzero(e(t)) = 0.5

and

µpossmall

(
d

dt
e(t)

)
= 0.25

What, for these values of e(t) and d
dte(t), is the certainty of the statement

“error is zero and change-in-error is possmall”

that is the premise from the above rule? We will denote this certainty by µpremise.
There are actually several ways to define it:

• Minimum: Define µpremise = min{0.5, 0.25} = 0.25, that is, using the minimum
of the two membership values.

• Product: Define µpremise = (0.5)(0.25) = 0.125, that is, using the product of the
two membership values.

Do these quantifications make sense? Notice that both ways of quantifying the
“and” operation in the premise indicate that you can be no more certain about
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the conjunction of two statements than you are about the individual terms that
make them up (note that 0 ≤ µpremise ≤ 1 for either case). If we are not very cer-
tain about the truth of one statement, how can we be any more certain about the
truth of that statement “and” the other statement? It is important that you con-
vince yourself that the above quantifications make sense. To do so, we recommend
that you consider other examples of “anding” linguistic terms that have associated
membership functions.

While we have simply shown how to quantify the “and” operation for one value
of e(t) and d

dte(t), if we consider all possible e(t) and d
dte(t) values, we will obtain a

multidimensional membership function µpremise

(
e(t), d

dte(t)
)

that is a function of
e(t) and d

dte(t) for each rule. For our example, if we choose the minimum operation
to represent the “and” in the premise, then we get the multidimensional membership
function µpremise

(
e(t), d

dt
e(t)

)
shown in Figure 2.11. Notice that if we pick values for

e(t) and d
dte(t), the value of the premise certainty µpremise

(
e(t), d

dte(t)
)

represents
how certain we are that the rule

If error is zero and change-in-error is possmall Then force is negsmall

is applicable for specifying the force input to the plant. As e(t) and d
dt

e(t) change,
the value of µpremise

(
e(t), d

dt
e(t)

)
changes according to Figure 2.11, and we become

less or more certain of the applicability of this rule.
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FIGURE 2.11 Membership function of the premise for a
single rule.

In general we will have a different premise membership function for each of the
rules in the rule-base, and each of these will be a function of e(t) and d

dt
e(t) so that

given specific values of e(t) and d
dt

e(t) we obtain a quantification of the certainty
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that each rule in the rule-base applies to the current situation. It is important you
picture in your mind the situation where e(t) and d

dte(t) change dynamically over
time. When this occurs the values of µpremise

(
e(t), d

dte(t)
)

for each rule change,
and hence the applicability of each rule in the rule-base for specifying the force
input to the pendulum, changes with time.

Determining Which Rules Are On

Determining the applicability of each rule is called “matching.” We say that a rule
is “on at time t” if its premise membership function µpremise(e(t), d

dt
e(t)) > 0.

Hence, the inference mechanism seeks to determine which rules are on to find out
which rules are relevant to the current situation. In the next step, the inference
mechanism will seek to combine the recommendations of all the rules to come up
with a single conclusion.

Consider, for the inverted pendulum example, how we compute the rules that
are on. Suppose that

e(t) = 0

and

d

dt
e(t) = π/8 − π/32 (= 0.294)

Figure 2.12 shows the membership functions for the inputs and indicates with thick
black vertical lines the values above for e(t) and d

dt
e(t). Notice that µzero(e(t)) =

1 but that the other membership functions for the e(t) input are all “off” (i.e.,
their values are zero). For the d

dte(t) input we see that µzero

(
d
dte(t)

)
= 0.25 and

µpossmall

(
d
dte(t)

)
= 0.75 and that all the other membership functions are off. This

implies that rules that have the premise terms

“error is zero”
“change-in-error is zero”

“change-in-error is possmall”

are on (all other rules have µpremise

(
e(t), d

dt
e(t)

)
= 0. So, which rules are these?

Using Table 2.1 on page 32, we find that the rules that are on are the following:

1. If error is zero and change-in-error is zero Then force is zero

2. If error is zero and change-in-error is possmall Then force is negsmall

Note that since for the pendulum example we have at most two membership func-
tions overlapping, we will never have more than four rules on at one time (this
concept generalizes to many inputs and will be discussed in more detail in Sec-
tions 2.3 and 2.6). Actually, for this system we will either have one, two, or four
rules on at any one time. To get only one rule on choose, for example, e(t) = 0
and d

dte(t) = π
8 so that only rule 2 above is on. What values would you choose for
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e(t) and d
dte(t) to get four rules on? Why is it impossible, for this system, to have

exactly three rules on?
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FIGURE 2.12 Input membership functions with input values.

It is useful to consider pictorially which rules are on. Consider Table 2.2, which
is a copy of Table 2.1 on page 32 with boxes drawn around the consequents of the
rules that are on (notice that these are the same two rules listed above). Notice
that since e(t) = 0 (e(t) is directly in the middle between the membership functions
for “possmall” and “negsmall”) both these membership functions are off. If we
perturbed e(t) slightly positive (negative), then we would have the two rules below
(above) the two highlighted ones on also. With this, you should picture in your

TABLE 2.2 Rule Table for the Inverted Pendulum
with Rules That Are “On” Highlighted.

“force” “change-in-error” ė
u −2 −1 0 1 2

−2 2 2 2 1 0
“error” −1 2 2 1 0 −1

e 0 2 1 0 −1 −2

1 1 0 −1 −2 −2
2 0 −1 −2 −2 −2

mind how a region of rules that are on (that involves no more than four cells in
the body of Table 2.2 due to how we define the input membership functions) will
dynamically move around in the table as the values of e(t) and d

dte(t) change. This
completes our description of the “matching” phase of the inference mechanism.
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2.2.5 Inference Step: Determining Conclusions
Next, we consider how to determine which conclusions should be reached when
the rules that are on are applied to deciding what the force input to the cart
carrying the inverted pendulum should be. To do this, we will first consider the
recommendations of each rule independently. Then later we will combine all the
recommendations from all the rules to determine the force input to the cart.

Recommendation from One Rule

Consider the conclusion reached by the rule

If error is zero and change-in-error is zero Then force is zero

which for convenience we will refer to as “rule (1).” Using the minimum to represent
the premise, we have

µpremise(1) = min{0.25, 1} = 0.25

(the notation µpremise(1) represents µpremise for rule (1)) so that we are 0.25 certain
that this rule applies to the current situation. The rule indicates that if its premise
is true then the action indicated by its consequent should be taken. For rule (1) the
consequent is “force is zero” (this makes sense, for here the pendulum is balanced,
so we should not apply any force since this would tend to move the pendulum
away from the vertical). The membership function for this consequent is shown in
Figure 2.13(a). The membership function for the conclusion reached by rule (1),
which we denote by µ(1), is shown in Figure 2.13(b) and is given by

µ(1)(u) = min{0.25, µzero(u)}

This membership function defines the “implied fuzzy set”3 for rule (1) (i.e., it is the
conclusion that is implied by rule (1)). The justification for the use of the minimum
operator to represent the implication is that we can be no more certain about our
consequent than our premise. You should convince yourself that we could use the
product operation to represent the implication also (in Section 2.2.6 we will do an
example where we use the product).

Notice that the membership function µ(1)(u) is a function of u and that the
minimum operation will generally “chop off the top” of the µzero(u) membership
function to produce µ(1)(u). For different values of e(t) and d

dte(t) there will be
different values of the premise certainty µpremise(1)

(
e(t), d

dt
e(t)

)
for rule (1) and

hence different functions µ(1)(u) obtained (i.e., it will chop off the top at different
points).

3. This term has been used in the literature for a long time; however, there is no standard

terminology for this fuzzy set. Others have called it, for example, a “consequent fuzzy set” or an
“output fuzzy set” (which can be confused with the fuzzy sets that quantify the consequents of

the rules). We use “implied fuzzy set” so that there is no ambiguity and to help to distinguish it
from the “overall implied fuzzy set” that is introduced in Section 2.3.
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We see that µ(1)(u) is in general a time-varying function that quantifies how
certain rule (1) is that the force input u should take on certain values. It is most
certain that the force input should lie in a region around zero (see Figure 2.13(b)),
and it indicates that it is certain that the force input should not be too large in either
the positive or negative direction—this makes sense if you consider the linguistic
meaning of the rule. The membership function µ(1)(u) quantifies the conclusion
reached by only rule (1) and only for the current e(t) and d

dte(t). It is important
that the reader be able to picture how the shape of the implied fuzzy set changes
as the rule’s premise certainty changes over time.
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FIGURE 2.13 (a) Consequent membership function and (b)
implied fuzzy set with membership function µ(1)(u) for rule (1).
Recall that the units for u(t) are Newtons (N).

Recommendation from Another Rule

Next, consider the conclusion reached by the other rule that is on,

If error is zero and change-in-error is possmall Then force is negsmall

which for convenience we will refer to as “rule (2).” Using the minimum to represent
the premise, we have

µpremise(2) = min{0.75, 1} = 0.75

so that we are 0.75 certain that this rule applies to the current situation. Notice
that we are much more certain that rule (2) applies to the current situation than
rule (1). For rule (2) the consequent is “force is negsmall” (this makes sense, for here
the pendulum is perfectly balanced but is moving in the counterclockwise direction
with a small velocity). The membership function for this consequent is shown in
Figure 2.14(a). The membership function for the conclusion reached by rule (2),
which we denote by µ(2), is shown in Figure 2.14(b) (the shaded region) and is
given by

µ(2)(u) = min{0.75, µnegsmall(u)}

This membership function defines the implied fuzzy set for rule (2) (i.e., it is the
conclusion that is reached by rule (2)). Once again, for different values of e(t)
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and d
dte(t) there will be different values of µpremise(2)

(
e(t), d

dte(t)
)

for rule (2) and
hence different functions µ(2)(u) obtained. The reader should carefully consider the
meaning of the implied fuzzy set µ(2)(u). Rule (2) is quite certain that the control
output (process input) should be a small negative value. This makes sense since if
the pendulum has some counterclockwise velocity then we would want to apply a
negative force (i.e., one to the left). As rule (2) has a premise membership function
that has higher certainty than for rule (1), we see that we are more certain of the
conclusion reached by rule (2).

u(t), (N)-20

“negsmall”
-1
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(a)
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FIGURE 2.14 (a) Consequent membership function and (b)
implied fuzzy set with membership function µ(2)(u) for rule (2).

This completes the operations of the inference mechanism in Figure 2.1 on
page 25. While the input to the inference process is the set of rules that are on, its
output is the set of implied fuzzy sets that represent the conclusions reached by all
the rules that are on. For our example, there are at most four conclusions reached
since there are at most four rules on at any one time. (In fact, you could say that
there are always four conclusions reached for our example, but that the implied
fuzzy sets for some of the rules may have implied membership functions that are
zero for all values.)

2.2.6 Converting Decisions into Actions
Next, we consider the defuzzification operation, which is the final component of
the fuzzy controller shown in Figure 2.1 on page 25. Defuzzification operates on
the implied fuzzy sets produced by the inference mechanism and combines their
effects to provide the “most certain” controller output (plant input). Some think of
defuzzification as “decoding” the fuzzy set information produced by the inference
process (i.e., the implied fuzzy sets) into numeric fuzzy controller outputs.

To understand defuzzification, it is best to first draw all the implied fuzzy sets
on one axis as shown in Figure 2.15. We want to find the one output, which we
denote by “ucrisp,” that best represents the conclusions of the fuzzy controller that
are represented with the implied fuzzy sets. There are actually many approaches
to defuzzification. We will consider two here and several others in Section 2.3.5 on
page 65.
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FIGURE 2.15 Implied fuzzy sets.

Combining Recommendations

Due to its popularity, we will first consider the “center of gravity” (COG) defuzzi-
fication method for combining the recommendations represented by the implied
fuzzy sets from all the rules. Let bi denote the center of the membership function
(i.e., where it reaches its peak for our example) of the consequent of rule (i). For
our example we have

b1 = 0.0

and

b2 = −10

as shown in Figure 2.15. Let ∫
µ(i)

denote the area under the membership function µ(i). The COG method computes
ucrisp to be

ucrisp =
∑

i bi

∫
µ(i)∑

i

∫
µ(i)

(2.1)

This is the classical formula for computing the center of gravity. In this case it is
for computing the center of gravity of the implied fuzzy sets. Three items about
Equation (2.1) are important to note:

1. Practically, we cannot have output membership functions that have infinite
area since even though they may be “chopped off” in the minimum operation
for the implication (or scaled for the product operation) they can still end up
with infinite area. This is the reason we do not allow infinite area membership
functions for the linguistic values for the controller output (e.g., we did not
allow the saturated membership functions at the outermost edges as we had
for the inputs shown in Figure 2.9 on page 36).
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2. You must be careful to define the input and output membership functions so
that the sum in the denominator of Equation (2.1) is not equal to zero no
matter what the inputs to the fuzzy controller are. Essentially, this means that
we must have some sort of conclusion for all possible control situations we may
encounter.

3. While at first glance it may not appear so,
∫

µ(i) is easy to compute for our
example. For the case where we have symmetric triangular output membership
functions that peak at one and have a base width of w, simple geometry can
be used to show that the area under a triangle “chopped off” at a height of h
(such as the ones in Figures 2.13 and 2.14) is equal to

w

(
h − h2

2

)

Given this, the computations needed to compute ucrisp are not too significant.

We see that the property of membership functions being symmetric for the
output is important since in this case no matter whether the minimum or product
is used to represent the implication, it will be the case that the center of the implied
fuzzy set will be the same as the center of the consequent fuzzy set from which it
is computed. If the output membership functions are not symmetric, then their
centers, which are needed in the computation of the COG, will change depending
on the membership value of the premise. This will result in the need to recompute
the center at each time instant.

Using Equation (2.1) with Figure 2.15 we have

ucrisp =
(0)(4.375) + (−10)(9.375)

4.375 + 9.375
= −6.81

as the input to the pendulum for the given e(t) and d
dte(t).

Does this value for a force input (i.e., 6.81 Newtons to the left) make sense?
Consider Figure 2.16, where we have taken the implied fuzzy sets from Figure 2.15
and simply added an indication of what number COG defuzzification says is the
best representation of the conclusions reached by the rules that are on. Notice that
the value of ucrisp is roughly in the middle of where the implied fuzzy sets say they
are most certain about the value for the force input. In fact, recall that we had

e(t) = 0

and

d

dt
e(t) = π/8 − π/32 (= 0.294)

so the pendulum is in the inverted position but is moving counterclockwise with a
small velocity; hence it makes sense to pull on the cart, and the fuzzy controller
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does this.
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FIGURE 2.16 Implied fuzzy sets.

It is interesting to note that for our example it will be the case that

−20 ≤ ucrisp ≤ 20

To see this, consider Figure 2.17, where we have drawn the output membership
functions. Notice that even though we have extended the membership functions at
the outermost edges past −20 and +20 (see the shaded regions), the COG method
will never compute a value outside this range.

u(t), (N)

“possmall”

30-20

“zero”“negsmall”“neglarge”
-1-2 0 1 2

“poslarge”

-10 2010-30

FIGURE 2.17 Output membership functions.

The reason for this comes directly from the definition of the COG method in
Equation (2.1). The center of gravity for these shapes simply cannot extend beyond
−20 and +20. Practically speaking, this ability to limit the range of inputs to the
plant is useful; it may be the case that applying a force of greater than 20 Newtons
is impossible for this plant. Thus we see that in defining the membership functions
for the fuzzy controller, we must take into account what method is going to be used
for defuzzification.
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Other Ways to Compute and Combine Recommendations

As another example, it is interesting to consider how to compute, by hand, the
operations that the fuzzy controller takes when we use the product to represent the
implication or the “center-average” defuzzification method.

First, consider the use of the product. Consider Figure 2.18, where we have
drawn the output membership functions for “negsmall” and “zero” as dotted lines.
The implied fuzzy set from rule (1) is given by the membership function

µ(1)(u) = 0.25µzero(u)

shown in Figure 2.18 as the shaded triangle; and the implied fuzzy set for rule (2)
is given by the membership function

µ(2)(u) = 0.75µnegsmall(u)

shown in Figure 2.18 as the dark triangle. Notice that computation of the COG is
easy since we can use 1

2wh as the area for a triangle with base width w and height
h. When we use product to represent the implication, we obtain

ucrisp =
(0)(2.5) + (−10)(7.5)

2.5 + 7.5
= −7.5

which also makes sense.
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FIGURE 2.18 Implied fuzzy sets when the product is used to
represent the implication.

Next, as another example of how to combine recommendations, we will intro-
duce the “center-average” method for defuzzification. For this method we let

ucrisp =

∑
i biµpremise(i)∑
i µpremise(i)

(2.2)

where to compute µpremise(i) we use, for example, minimum. We call it the “center-
average” method since Equation (2.2) is a weighted average of the center values
of the output membership function centers. Basically, the center-average method
replaces the areas of the implied fuzzy sets that are used in COG with the values
of µpremise(i) . This is a valid replacement since the area of the implied fuzzy set
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is generally proportional to µpremise(i) since µpremise(i) is used to chop the top off
(minimum) or scale (product) the triangular output membership function when
COG is used for our example. For the above example, we have

ucrisp =
(0)(0.25) + (−10)(0.75)

0.25 + 0.75
= −7.5

which just happens to be the same value as above. Some like the center-average
defuzzification method because the computations needed are simpler than for COG
and because the output membership functions are easy to store since the only
relevant information they provide is their center values (bi) (i.e., their shape does
not matter, just their center value).

Notice that while both values computed for the different inference and defuzzi-
fication methods provide reasonable command inputs to the plant, it is difficult to
say which is best without further investigations (e.g., simulations or implementa-
tion). This ambiguity about how to define the fuzzy controller actually extends to
the general case and also arises in the specification of all the other fuzzy controller
components, as we discuss below. Some would call this “ambiguity” a design flexibil-
ity, but unfortunately there are not too many guidelines on how best to choose the
inference strategy and defuzzification method, so such flexibility is of questionable
value.

2.2.7 Graphical Depiction of Fuzzy Decision Making
For convenience, we summarize the procedure that the fuzzy controller uses to com-
pute its outputs given its inputs in Figure 2.19. Here, we use the minimum operator
to represent the “and” in the premise and the implication and COG defuzzification.
The reader is advised to study each step in this diagram to gain a fuller understand-
ing of the operation of the fuzzy controller. To do this, develop a similar diagram for
the case where the product operator is used to represent the “and” in the premise
and the implication, and choose values of e(t) and d

dte(t) that will result in four rules
being on. Then, repeat the process when center-average defuzzification is used with
either minimum or product used for the premise. Also, learn how to picture in your
mind how the parameters of this graphical representation of the fuzzy controller
operations change as the fuzzy controller inputs change.

This completes the description of the operation of a simple fuzzy controller.
You will find that while we will treat the fully general fuzzy controller in the next
section, there will be little that is conceptually different from this simple example.
We simply show how to handle the case where there are more inputs and outputs
and show a fuller range of choices that you can make for the various components
of the fuzzy controller.

As evidenced by the different values obtained by using the minimum, product,
and defuzzification operations, there are many ways to choose the parameters of
the fuzzy controller that make sense. This presents a problem since it is almost
always difficult to know how to first design a fuzzy controller. Basically, the choice
of all the components for the fuzzy controller is somewhat ad hoc. What are the
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FIGURE 2.19 Graphical representation of fuzzy controller operations.

best membership functions? How many linguistic values and rules should there be?
Should the minimum or product be used to represent the “and” in the premise—and
which should be used to represent the implication? What defuzzification method
should be chosen? These are all questions that must be addressed if you want to
design a fuzzy controller.

We will show how to answer some of these questions by going through a design
procedure for the inverted pendulum in Section 2.4 on page 77. After this, we will
discuss how to write a computer program to simulate a fuzzy control system and
how to do a real-time implementation of the fuzzy controller. Ultimately, however,
the answers to the above questions are best found by studying how to design fuzzy
controllers for a wide range of applications that present more challenging charac-
teristics than the inverted pendulum. This is what we do in the case studies in
Chapter 3.

2.2.8 Visualizing the Fuzzy Controller’s Dynamical Operation
The figure on the cover of the book can serve as a nice visual depiction of how a fuzzy
system operates dynamically over time. The figure represents a fuzzy system with
two inputs, for example, e, and ė, and one output. There are triangular membership
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functions on the two input universes of discourse, and minimum is used to represent
the conjunction in the premise. The blue pyramids represent the premise certainties
of the rules in a rule-base with 49 rules. Note that for simplicity of the graphic,
the outermost membership functions do not saturate in this fuzzy controller; hence
if e or ė goes outside the range it appears that there will be no rules on, so the
defuzzification will fail. Actually, the pyramids should be viewed as part of a rule-
base with many more rules, and only the central ones for the rule-base are shown
for simplicity.

The shading from blue, to red, to yellow, on the pyramids indicates progression
in time of rules that were (are) on (i.e., the pyramids describing their premises had
nonzero certainties) and the two in the middle that are fully shaded in yellow are
the two rules that are on now. The pyramids with some blue on them, and some
red, are ones that were on some time ago. The ones with red, and some yellow, were
on more recently, while the ones that have a little less red shading and more yellow
were on even more recently. The pyramids that are entirely blue, either were never
turned on, or they were on a long time ago. Hence, the path of color (blue to red
to yellow) could have traveled all over a large landscape of blue pyramids. At this
time the path has come very near the e = 0, ė = 0 location in the rule-base and
this is normally where you want it to be (for a tracking problem where e = r − y
where r is the reference input and y is the plant output we want e = 0 if y is to
track r).

The colored vertical beam holds the four numbers that are the premise cer-
tainties for the four rules that are on now. Note that two of the rules that are on,
are on with a certainty of zero, so really they are off and this is why they go to
the output universe of discourse (top horizontal axis) at the zero level of certainty
(see the top figure with the tan-colored output membership functions). The colored
vertical beam contains only green and orange since these represent the values of
the premise certainties from the two rules that are on. The beam does not have
any purple or pink in it as these colors represent the zero values of the premises of
the two rules that are off (we have constructed the rule-base so that there are at
most four rules on at any time). The green and orange values chop the tops off two
triangular output membership functions that then become the implied fuzzy sets
(i.e., we use minimum to represent the implication). The defuzzified value is shown
as the arrow at the top (it looks like a COG defuzzification).

2.3 General Fuzzy Systems
In the previous section we provided an intuitive overview of fuzzy control via a
simple example. In this section we will take a step back and examine the more
general fuzzy system to show the range of possibilities that can be used in defining
a fuzzy system and to solidify your understanding of fuzzy systems.4 In particular,

4. Note that we limit our range of definition of the general fuzzy system (controller) to those

that have found some degree of use in practical control applications. The reader interested in
studying the more general mathematics of fuzzy sets, fuzzy logic, and fuzzy systems should

consult [95, 250].
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we will consider the case where there are many fuzzy controller inputs and outputs
and where there are more general membership functions, fuzzification procedures,
inference strategies, and defuzzification methods. Moreover, we introduce a class
of “functional fuzzy systems” that have been found to be useful in some applica-
tions and characterize the general capabilities of fuzzy systems via the “universal
approximation property.”

This section is written to build on the previous one in the sense that we rely
on our intuitive explanations for many of the concepts and provide a more mathe-
matical and complete exposition on the details of the operation of fuzzy systems.
The astute reader will actually see intuitively how to extend the basic fuzzy con-
troller to the case where there are more than two inputs. While an understanding
of how to define other types of membership functions (Section 2.3.2) is important
since they are often used in practical applications, the remainder of the material
in Sections 2.3.2– 2.3.5 and 2.3.8 can simply be viewed as a precise mathematical
characterization and generalization of what you have already learned in Section 2.2.
Section 2.3.6, and hence much of this section, is needed if you want to understand
Chapter 5. Section 2.3.7 on page 73 is important to cover if you wish to understand
all of Section 4.3 in Chapter 4, Chapter 5 (except Section 5.6), all of Section 7.2.2
in Chapter 7, and other ideas in the literature. In fact, Section 2.3.7, particularly
the “Takagi-Sugeno fuzzy system,” is one of the most important new concepts in
this section.

Hence, if you are only concerned with gaining a basic understanding of fuzzy
control you can skim the part in Section 2.3.2 on membership functions, teach
yourself Section 2.3.7, and skip the remainder of this section on a first reading and
come back to it later to deepen your understanding of fuzzy systems and the wide
variety of ways that their basic components can be defined.

2.3.1 Linguistic Variables, Values, and Rules
A fuzzy system is a static nonlinear mapping between its inputs and outputs (i.e.,
it is not a dynamic system).5 It is assumed that the fuzzy system has inputs ui ∈ Ui

where i = 1, 2, . . . , n and outputs yi ∈ Yi where i = 1, 2, . . . , m, as shown in Fig-
ure 2.20. The inputs and outputs are “crisp”—that is, they are real numbers, not
fuzzy sets. The fuzzification block converts the crisp inputs to fuzzy sets, the infer-
ence mechanism uses the fuzzy rules in the rule-base to produce fuzzy conclusions
(e.g., the implied fuzzy sets), and the defuzzification block converts these fuzzy
conclusions into the crisp outputs.

Universes of Discourse

The ordinary (“crisp”) sets Ui and Yi are called the “universes of discourse” for
ui and yi, respectively (in other words, they are their domains). In practical ap-

5. Some people include the preprocessing of the inputs to the fuzzy system (e.g., differentiators

or integrators) in the definition of the fuzzy system and thereby obtain a “fuzzy system” that is
dynamic. Here, we adopt the convention that such preprocessing is not part of the fuzzy system,

and hence the fuzzy system will always be a memoryless nonlinear map.
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plications, most often the universes of discourse are simply the set of real numbers
or some interval or subset of real numbers. Note that sometimes for convenience
we will refer to an “effective” universe of discourse [α, β] where α and β are the
points at which the outermost membership functions saturate for input universes
of discourse, or the points beyond which the outputs will not move for the output
universe of discourse. For example, for the e(t) universe of discourse in Figure 2.12
on page 41 we have α = −π

2 and β = π
2 ; or for the u(t) universe of discourse in

Figure 2.17 on page 47, we have α = −20 and β = 20. However, the actual universe
of discourse for both the input and output membership functions for the inverted
pendulum is the set of all real numbers. When we refer to effective universes of
discourse, we will say that the “width” of the universe of discourse is |β − α|.
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FIGURE 2.20 Fuzzy system (controller).

Linguistic Variables

To specify rules for the rule-base, the expert will use a “linguistic description”;
hence, linguistic expressions are needed for the inputs and outputs and the char-
acteristics of the inputs and outputs. We will use “linguistic variables” (constant
symbolic descriptions of what are in general time-varying quantities) to describe
fuzzy system inputs and outputs. For our fuzzy system, linguistic variables denoted
by ũi are used to describe the inputs ui. Similarly, linguistic variables denoted by
ỹi are used to describe outputs yi. For instance, an input to the fuzzy system may
be described as ũ1 =“position error” or ũ2 =“velocity error,” and an output from
the fuzzy system may be ỹ1 =“voltage in.”

Linguistic Values

Just as ui and yi take on values over each universe of discourse Ui and Yi, respec-
tively, linguistic variables ũi and ỹi take on “linguistic values” that are used to
describe characteristics of the variables. Let Ãj

i denote the jth linguistic value of
the linguistic variable ũi defined over the universe of discourse Ui. If we assume
that there exist many linguistic values defined over Ui, then the linguistic variable
ũi takes on the elements from the set of linguistic values denoted by

Ãi = {Ãj
i : j = 1, 2, . . . , Ni}
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(sometimes for convenience we will let the j indices take on negative integer values,
as in the inverted pendulum example where we used the linguistic-numeric values).
Similarly, let B̃j

i denote the jth linguistic value of the linguistic variable ỹi defined
over the universe of discourse Yi. The linguistic variable ỹi takes on elements from
the set of linguistic values denoted by

B̃i = {B̃p
i : p = 1, 2, . . . , Mi}

(sometimes for convenience we will let the p indices take on negative integer values).
Linguistic values are generally descriptive terms such as “positive large,” “zero,”
and “negative big” (i.e., adjectives). For example, if we assume that ũ1 denotes the
linguistic variable “speed,” then we may assign Ã1

1 = “slow,” Ã2
1 = “medium,” and

Ã3
1 = “fast” so that ũ1 has a value from Ã1 = {Ã1

1, Ã
2
1, Ã

3
1}.

Linguistic Rules

The mapping of the inputs to the outputs for a fuzzy system is in part characterized
by a set of condition → action rules, or in modus ponens (If-Then) form,

If premise Then consequent. (2.3)

Usually, the inputs of the fuzzy system are associated with the premise, and the
outputs are associated with the consequent. These If-Then rules can be represented
in many forms. Two standard forms, multi-input multi-output (MIMO) and multi-
input single-output (MISO), are considered here. The MISO form of a linguistic
rule is

If ũ1 is Ãj
1 and ũ2 is Ãk

2 and, . . . , and ũn is Ãl
n Then ỹq is B̃p

q (2.4)

It is an entire set of linguistic rules of this form that the expert specifies on how
to control the system. Note that if ũ1 =“velocity error” and Ãj

1 =“positive large,”
then “ũ1 is Ãj

1,” a single term in the premise of the rule, means “velocity error is
positive large.” It can be easily shown that the MIMO form for a rule (i.e., one with
consequents that have terms associated with each of the fuzzy controller outputs)
can be decomposed into a number of MISO rules using simple rules from logic. For
instance, the MIMO rule with n inputs and m = 2 outputs

If ũ1 is Ãj
1 and ũ2 is Ãk

2 and, . . . , and ũn is Ãl
n Then ỹ1 is B̃r

1 and ỹ2 is B̃s
2

is linguistically (logically) equivalent to the two rules

If ũ1 is Ãj
1 and ũ2 is Ãk

2 and, . . . , and ũn is Ãl
n Then ỹ1 is B̃r

1

If ũ1 is Ãj
1 and ũ2 is Ãk

2 and, . . . , and ũn is Ãl
n Then ỹ2 is B̃s

2



2.3 General Fuzzy Systems 55

This is the case since the logical “and” in the consequent of the MIMO rule is still
represented in the two MISO rules since we still assert that both the first “and”
second rule are valid. For implementation, we would specify two fuzzy systems, one
with output y1 and the other with output y2. The logical “and” in the consequent
of the MIMO rule is still represented in the MISO case since by implementing two
fuzzy systems we are asserting that ones set of rules is true “and” another is true.

We assume that there are a total of R rules in the rule-base numbered 1, 2, . . . , R,
and we naturally assume that the rules in the rule-base are distinct (i.e., there are
no two rules with exactly the same premises and consequents); however, this does
not in general need to be the case. For simplicity we will use tuples

(j, k, . . . , l; p, q)i

to denote the ith MISO rule of the form given in Equation (2.4). Any of the terms
associated with any of the inputs for any MISO rule can be included or omitted.
For instance, suppose a fuzzy system has two inputs and one output with ũ1 =
“position,” ũ2 = “velocity,” and ỹ1 = “force.” Moreover, suppose each input is
characterized by two linguistic values Ã1

i = “small” and Ã2
i = “large” for i = 1, 2.

Suppose further that the output is characterized by two linguistic values B̃1
1 =

“negative” and B̃2
1 = “positive.” A valid If-Then rule could be

If position is large Then force is positive

even though it does not follow the format of a MISO rule given above. In this case,
one premise term (linguistic variable) has been omitted from the If-Then rule. We
see that we allow for the case where the expert does not use all the linguistic terms
(and hence the fuzzy sets that characterize them) to state some rules.6

Finally, we note that if all the premise terms are used in every rule and a rule
is formed for each possible combination of premise elements, then there are

n∏
i=1

Ni = N1 ·N2 · . . . · Nn

rules in the rule-base. For example, if n = 2 inputs and we have Ni = 11 membership
functions on each universe of discourse, then there are 11×11 = 121 possible rules.
Clearly, in this case the number of rules increases exponentially with an increase in
the number of fuzzy controller inputs or membership functions.

2.3.2 Fuzzy Sets, Fuzzy Logic, and the Rule-Base
Fuzzy sets and fuzzy logic are used to heuristically quantify the meaning of linguistic
variables, linguistic values, and linguistic rules that are specified by the expert. The
concept of a fuzzy set is introduced by first defining a “membership function.”

6. Note, however, that we could require the rules to each have every premise term. Then we can

choose a special membership function that is unity over the entire universe of discourse and
associate it with any premise term that we want to omit. This achieves the same objective as

simply ignoring a premise term. Why?
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Membership Functions

Let Ui denote a universe of discourse and Ãj
i ∈ Ãi denote a specific linguistic value

for the linguistic variable ũi. The function µ(ui) associated with Ãj
i that maps Ui

to [0, 1] is called a “membership function.” This membership function describes the
“certainty” that an element of Ui, denoted ui, with a linguistic description ũi, may
be classified linguistically as Ãj

i . Membership functions are subjectively specified in
an ad hoc (heuristic) manner from experience or intuition.

For instance, if Ui = [−150, 150], ũi =“velocity error,” and Ãj
i =“positive

large,” then µ(ui) may be a bell-shaped curve that peaks at one at ui = 75 and
is near zero when ui < 50 or ui > 100. Then if ui = 75, µ(75) = 1, so we are
absolutely certain that ui is “positive large.” If ui = −25 then µ(−25) is very near
zero, which represents that we are very certain that ui is not “positive large.”

Clearly, many other choices for the shape of the membership function are possi-
ble (e.g., triangular and trapezoidal shapes), and these will each provide a different
meaning for the linguistic values that they quantify. See Figure 2.21 for a graph-
ical illustration of a variety of membership functions and Tables 2.3 and 2.4 for
a mathematical characterization of the triangular and Gaussian membership func-
tions (other membership functions can be characterized with mathematics using
a similar approach).7 For practice, you should sketch the membership functions
that are described in Tables 2.3 and 2.4. Notice that for Table 2.3 cL specifies the
“saturation point” and wL specifies the slope of the nonunity and nonzero part of
µL. Similarly, for µR. For µC notice that c is the center of the triangle and w is
the base-width. Analogous definitions are used for the parameters in Table 2.4. In
Table 2.4, for the “centers” case note that this is the traditional definition for the
Gaussian membership function. This definition is clearly different from a standard
Gaussian probability density function, in both the meaning of c and σ, and in the
scaling of the exponential function. Recall that it is possible that a Gaussian prob-
ability density function has a maximum value achieved at a value other than one;
the standard Gaussian membership function always has its peak value at one.

µ

ui

FIGURE 2.21 Some typical membership functions.

7. The reader should not fall into the trap of calling a membership function a “probability

density function.” There is nothing stochastic about the fuzzy system, and membership
functions are not restricted to obey the laws of probability (consider, for example, the

membership functions in Figure 2.21).
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TABLE 2.3 Mathematical Characterization of
Triangular Membership Functions

Triangular membership functions

Left µL(u) =

{
1 if u ≤ cL

max
{

0, 1 + cL−u
0.5wL

}
otherwise

Centers µC(u) =

{
max

{
0, 1 + u−c

0.5w

}
if u ≤ c

max
{
0, 1 + c−u

0.5w

}
otherwise

Right µR(u) =

{
max

{
0, 1 + u−cR

0.5wR

}
if u ≤ cR

1 otherwise

TABLE 2.4 Mathematical Characterization of
Gaussian Membership Functions

Gaussian membership functions

Left µL(u) =




1 if u ≤ cL

exp

(
− 1

2

(
u−cL

σL

)2
)

otherwise

Centers µ(u) = exp
(
− 1

2

(
u−c

σ

)2
)

Right µR(u) =


 exp

(
− 1

2

(
u−cR

σR

)2
)

if u ≤ cR

1 otherwise

Fuzzy Sets

Given a linguistic variable ũi with a linguistic value Ãj
i defined on the universe of

discourse Ui, and membership function µAj
i
(ui) (membership function associated

with the fuzzy set Aj
i ) that maps Ui to [0, 1], a “fuzzy set” denoted with Aj

i is
defined as

Aj
i = {(ui, µAj

i
(ui)) : ui ∈ Ui} (2.5)

(notice that a fuzzy set is simply a crisp set of pairings of elements of the universe of
discourse coupled with their associated membership values). For example, suppose
we assign a linguistic variable ũ1 = “temperature” and the linguistic value Ã1

1 =
“hot,” then A1

1 is a fuzzy set whose membership function describes the degree of
certainty that the numeric value of the temperature, u1 ∈ U1, possesses the property
characterized by Ã1

1 (see the pendulum example in the previous section for other
examples of fuzzy sets).

Additional concepts related to membership functions and fuzzy sets are cov-
ered in Exercise 2.5 on page 104 and Exercise 2.6 on page 105. These include the
following:
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• “Support of a fuzzy set”: The set of points on the universe of discourse where the
membership function value is greater than zero.

• “α-cut”: The set of points on the universe of discourse where the membership
function value is greater than α.

• “Height” of a fuzzy set or membership function: The peak value reached by the
membership function.

• “Normal” fuzzy sets: Ones with membership functions that reach one for at least
one point on the universe of discourse.

• “Convex fuzzy sets”: Ones that satisfy a certain type of convexity condition that
is given in Equation (2.29) on page 104,

• “Linguistic hedges”: Mathematical operations on membership functions of fuzzy
sets that can be used to change the meaning of the underlying linguistics.

• “Extension principle”: If you are given a function that maps some domain into
some range and you have membership functions defined on the domain, the ex-
tension principle shows how to map the membership functions on the domain to
the range.

Fuzzy Logic

Next, we specify some set-theoretic and logical operations on fuzzy sets. The reader
should first understand the conventional counterparts to each of these; the fuzzy
versions will then be easier to grasp as they are but extensions of the corresponding
conventional notions. Also, we recommend that the reader sketch the fuzzy sets
that result from the following operations.

Fuzzy Subset: Given fuzzy sets A1
i and A2

i associated with the universe of dis-
course Ui (Ni = 2), with membership functions denoted µA1

i
(ui) and µA2

i
(ui), re-

spectively, A1
i is defined to be a “fuzzy subset” of A2

i , denoted by A1
i ⊂ A2

i , if
µA1

i
(ui) ≤ µA2

i
(ui) for all ui ∈ Ui.

Fuzzy Complement: The complement (“not”) of a fuzzy set A1
i with a mem-

bership function µA1
i
(ui) has a membership function given by 1 − µA1

i
(ui).

Fuzzy Intersection (AND): The intersection of fuzzy sets A1
i and A2

i , which
are defined on the universe of discourse Ui, is a fuzzy set denoted by A1

i ∩A2
i , with

a membership function defined by either of the following two methods:

1. Minimum: Here, we find the minimum of the membership values as in

µA1
i
∩A2

i
= min{µA1

i
(ui), µA2

i
(ui) : ui ∈ Ui} (2.6)
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2. Algebraic Product: Here, we find the product of the membership values as in

µA1
i
∩A2

i
= {µA1

i
(ui)µA2

i
(ui) : ui ∈ Ui} (2.7)

Other methods can be used to represent intersection (and) [95, 250], such as the
ones given in Exercise 2.7 on page 105, but the two listed above are the most
commonly used. Suppose that we use the notation x ∗ y = min{x, y}, or at other
times we will use it to denote the product x ∗ y = xy (∗ is sometimes called
the “triangular norm”). Then µA1

i
(ui) ∗ µA2

i
(ui) is a general representation for the

intersection of two fuzzy sets. In fuzzy logic, intersection is used to represent the
“and” operation. For example, if we use minimum to represent the “and” operation,
then the shaded membership function in Figure 2.22 is µA1

i
∩A2

i
, which is formed

from the two others (µA1
i
(ui) and µA2

i
(ui)). This quantification of “and” provides

the fundamental justification for our representation of the “and” in the premise of
the rule.

color

“blue” “green”

“blue and green”

FIGURE 2.22 A membership function for
the “and” of two membership functions.

Fuzzy Union (OR): The union of fuzzy sets A1
i and A2

i , which are defined on
the universe of discourse Ui, is a fuzzy set denoted by A1

i ∪A2
i , with a membership

function defined by either one of the following methods:

1. Maximum: Here, we find the maximum of the membership values as in

µA1
i
∪A2

i
(ui) = max{µA1

i
(ui), µA2

i
(ui) : ui ∈ Ui} (2.8)

2. Algebraic Sum: Here, we find the algebraic sum of the membership values as in

µA1
i∪A2

i
(ui) = {µA1

i
(ui) + µA2

i
(ui) − µA1

i
(ui)µA2

i
(ui) : ui ∈ Ui}. (2.9)

Other methods can be used to represent union (or) [95, 250], such as the ones given
in Exercise 2.7 on page 105, but the two listed above are the most commonly used.
Suppose that we use the notation x ⊕ y = max{x, y}, or at other times we will use
it to denote x ⊕ y = x + y − xy (⊕ is sometimes called the “triangular co-norm”).
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Then µA1
i
(ui)⊕ µA2

i
(ui) is a general representation for the union of two fuzzy sets.

In fuzzy logic, union is used to represent the “or” operation. For example, if we use
maximum to represent the “or” operation, then the shaded membership function in
Figure 2.23, is µA1

i∪A2
i
, which is formed from the two others (µA1

i
(ui) and µA2

i
(ui)).

This quantification of “or” provides the fundamental justification for the “or” that
inherently lies between the rules in the rule-base (note that we interpret the list
of rules in the rule-base as “If premise-1 Then consequent-1” or “If premise-2
Then consequent-2,” or so on). Note that in the case where we form the “overall
implied fuzzy set” (to be defined more carefully below) this “or” between the rules
is quantified directly with “⊕” as it is described above. If we use only the implied
fuzzy sets (as we did for the inverted pendulum problem in the last section), then
the “or” between the rules is actually quantified with the way the defuzzification
operation works (consider the way that the COG defuzzification method combines
the effects of all the individual implied fuzzy sets).

color

“blue” “green”

“blue or green”

FIGURE 2.23 A membership function for
the “or” of two membership functions.

Fuzzy Cartesian Product: The intersection and union above are both defined
for fuzzy sets that lie on the same universe of discourse. The fuzzy Cartesian product
is used to quantify operations on many universes of discourse. If Aj

1, A
k
2 , . . . , A

l
n are

fuzzy sets defined on the universes of discourse U1,U2, . . . ,Un, respectively, their
Cartesian product is a fuzzy set (sometimes called a “fuzzy relation”), denoted by
Aj

1 × Ak
2 × · · · × Al

n, with a membership function defined by

µAj
1×Ak

2×···×Al
n
(u1, u2, . . . , un) = µAj

1
(u1) ∗ µAk

2
(u2) ∗ · · · ∗ µAl

n
(un)

The reader may wonder why the “∗” operation is used here. Basically, it arises
from our interpretation of a standard Cartesian product, which is formed by taking
an element from the first element of the product “and” the second element of the
product “and” so on. Clearly, in light of this interpretation, the use of “∗” and hence
“and” makes sense. Note that the “ands” used in the Cartesian product actually
represent the “ands” used in the rule premises since normally each of the terms in
a premise comes from a different universe of discourse.
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Fuzzy Quantification of Rules: Fuzzy Implications

Next, we show how to quantify the linguistic elements in the premise and consequent
of the linguistic If-Then rule with fuzzy sets. For example, suppose we are given
the If-Then rule in MISO form in Equation (2.4). We can define the fuzzy sets as
follows:

Aj
1 = {(u1, µA

j
1
(u1)) : u1 ∈ U1}

Ak
2 = {(u2, µAk

2
(u2)) : u2 ∈ U2}

... (2.10)
Al

n = {(un, µAl
n
(un)) : un ∈ Un}

Bp
q = {(yq, µBp

q
(yq)) : yq ∈ Yq}

These fuzzy sets quantify the terms in the premise and the consequent of the given
If-Then rule, to make a “fuzzy implication” (which is a fuzzy relation)

If Aj
1 and Ak

2 and, . . . , and Al
n Then Bp

q (2.11)

where the fuzzy sets Aj
1, A

k
2 , . . . , A

l
n, and Bp

q are defined in Equation (2.10). There-
fore, the fuzzy set Aj

1 is associated with, and quantifies the meaning of the linguistic
statement “ũ1 is Ãj

1,” and Bp
q quantifies the meaning of “ỹq is B̃p

q .” Each rule in
the rule-base, which we denote by (j, k, . . . , l; p, q)i, i = 1, 2, . . . , R, is represented
with such a fuzzy implication (a fuzzy quantification of the linguistic rule).

There are two general properties of fuzzy logic rule-bases that are sometimes
studied. These are “completeness” (i.e., whether there are conclusions for every
possible fuzzy controller input) and “consistency” (i.e., whether the conclusions
that rules make conflict with other rules’ conclusions). These two properties are
covered in Exercise 2.8 on page 106.

2.3.3 Fuzzification
Fuzzy sets are used to quantify the information in the rule-base, and the inference
mechanism operates on fuzzy sets to produce fuzzy sets; hence, we must specify
how the fuzzy system will convert its numeric inputs ui ∈ Ui into fuzzy sets (a
process called “fuzzification”) so that they can be used by the fuzzy system.

Let U∗
i denote the set of all possible fuzzy sets that can be defined on Ui. Given

ui ∈ Ui, fuzzification transforms ui to a fuzzy set denoted by8 Âfuz
i defined on

the universe of discourse Ui. This transformation is produced by the fuzzification
operator F defined by

F : Ui → U∗
i

8. In this section, as we introduce various fuzzy sets we will always use a hat over any fuzzy set

whose membership function changes dynamically over time as the ui change.
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where

F(ui) = Âfuz
i

Quite often “singleton fuzzification” is used, which produces a fuzzy set Âfuz
i ∈ U∗

i

with a membership function defined by

µ
Âfuz

i

(x) =
{

1 x = ui

0 otherwise

Any fuzzy set with this form for its membership function is called a “singleton.”
For a picture of a singleton membership function, see the single vertical line shown
in Figure 2.21 on page 56. Note that the discrete impulse function can be used to
represent the singleton membership function.

Basically, the reader should simply think of the singleton fuzzy set as a dif-
ferent representation for the number ui. Singleton fuzzification is generally used
in implementations since, without the presence of noise, we are absolutely certain
that ui takes on its measured value (and no other value), and since it provides
certain savings in the computations needed to implement a fuzzy system (relative
to, for example, “Gaussian fuzzification,” which would involve forming bell-shaped
membership functions about input points, or triangular fuzzification, which would
use triangles).

Since most practical work in fuzzy control uses singleton fuzzification, we will
also use it throughout the remainder of this book. The reasons other fuzzification
methods have not been used very much are (1) they add computational complexity
to the inference process and (2) the need for them has not been that well justified.
This is partly due to the fact that very good functional capabilities can be achieved
with the fuzzy system when only singleton fuzzification is used.

2.3.4 The Inference Mechanism
The inference mechanism has two basic tasks: (1) determining the extent to which
each rule is relevant to the current situation as characterized by the inputs ui,
i = 1, 2, . . . , n (we call this task “matching”); and (2) drawing conclusions using
the current inputs ui and the information in the rule-base (we call this task an
“inference step”). For matching note that Aj

1 × Ak
2 × · · · × Al

n is the fuzzy set
representing the premise of the ith rule (j, k, . . . , l; p, q)i (there may be more than
one such rule with this premise).

Matching

Suppose that at some time we get inputs ui, i = 1, 2, . . . , n, and fuzzification pro-
duces

Âfuz
1 , Âfuz

2 , . . . , Âfuz
n

the fuzzy sets representing the inputs. There are then two basic steps to matching.
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Step 1: Combine Inputs with Rule Premises: The first step in matching
involves finding fuzzy sets Âj

1, Â
k
2 , . . . , Â

l
n with membership functions

µÂj
1
(u1) = µAj

1
(u1) ∗ µ

Âfuz
1

(u1)

µÂk
2
(u2) = µAk

2
(u2) ∗ µ

Âfuz
2

(u2)

...
µÂl

n
(un) = µAl

n
(un) ∗ µ

Âfuz
n

(un)

(for all j, k, . . . , l) that combine the fuzzy sets from fuzzification with the fuzzy
sets used in each of the terms in the premises of the rules. If singleton fuzzification
is used, then each of these fuzzy sets is a singleton that is scaled by the premise
membership function (e.g., µÂj

1
(ū1) = µAj

1
(ū1) for ū1 = u1 and µÂj

1
(ū1) = 0 for

ū1 �= u1). That is, with singleton fuzzification we have µ
Âfuz

i

(ui) = 1 for all i =

1, 2, . . . , n for the given ui inputs so that

µÂj
1
(u1) = µAj

1
(u1)

µÂk
2
(u2) = µAk

2
(u2)

...
µÂl

n
(un) = µAl

n
(un)

We see that when singleton fuzzification is used, combining the fuzzy sets that were
created by the fuzzification process to represent the inputs with the premise mem-
bership functions for the rules is particularly simple. It simply reduces to computing
the membership values of the input fuzzy sets for the given inputs u1, u2, . . . , un

(as we had indicated at the end of Section 2.2.3 for the inverted pendulum).

Step 2: Determine Which Rules Are On: In the second step, we form mem-
bership values µi(u1, u2, . . . , un) for the ith rule’s premise (what we called µpremise

in the last section on the inverted pendulum) that represent the certainty that each
rule premise holds for the given inputs. Define

µi(u1, u2, . . . , un) = µÂj
1
(u1) ∗ µÂk

2
(u2) ∗ · · · ∗ µÂl

n
(un) (2.12)

which is simply a function of the inputs ui. When singleton fuzzification is used (as
it is throughout this entire book), we have

µi(u1, u2, . . . , un) = µA
j
1
(u1) ∗ µAk

2
(u2) ∗ · · · ∗ µAl

n
(un) (2.13)

We use µi(u1, u2, . . . , un) to represent the certainty that the premise of rule i
matches the input information when we use singleton fuzzification. This µi(u1, u2, . . . , un)
is simply a multidimensional certainty surface, a generalization of the surface shown
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in Figure 2.11 on page 39 for the inverted pendulum example. It represents the cer-
tainty of a premise of a rule and thereby represents the degree to which a particular
rule holds for a given set of inputs.

Finally, we would remark that sometimes an additional “rule certainty” is mul-
tiplied by µi. Such a certainty could represent our a priori confidence in each rule’s
applicability and would normally be a number between zero and one. If for rule i
its certainty is 0.1, we are not very confident in the knowledge that it represents;
while if for some rule j we let its certainty be 0.99, we are quite certain that the
knowledge it represents is true. In this book we will not use such rule certainty
factors.

This concludes the process of matching input information with the premises of
the rules.

Inference Step

There are two standard alternatives to performing the inference step, one that
involves the use of implied fuzzy sets (as we did for the pendulum earlier) and the
other that uses the overall implied fuzzy set.

Alternative 1: Determine Implied Fuzzy Sets: Next, the inference step is
taken by computing, for the ith rule (j, k, . . . , l; p, q)i, the “implied fuzzy set” B̂i

q

with membership function

µB̂i
q
(yq) = µi(u1, u2, . . . , un) ∗ µBp

q
(yq) (2.14)

The implied fuzzy set B̂i
q specifies the certainty level that the output should be a

specific crisp output yq within the universe of discourse Yq, taking into consideration
only rule i. Note that since µi(u1, u2, . . . , un) will vary with time, so will the shape
of the membership functions µB̂i

q
(yq) for each rule. An example of an implied fuzzy

set can be seen in Figure 2.13(b) on page 43 for the inverted pendulum example.

Alternative 2: Determine the Overall Implied Fuzzy Set: Alternatively,
the inference mechanism could, in addition, compute the “overall implied fuzzy set”
B̂q with membership function

µB̂q
(yq) = µB̂1

q
(yq) ⊕ µB̂2

q
(yq) ⊕ · · · ⊕ µB̂R

q
(yq) (2.15)

that represents the conclusion reached considering all the rules in the rule-base
at the same time (notice that determining B̂q can, in general, require significant
computational resources). Notice that we did not consider this possibility for the
inverted pendulum example for reasons that will become clearer in the next sub-
section. Instead, our COG or center-average defuzzification method performed the
aggregation of the conclusions of all the rules that are represented by the implied
fuzzy sets.
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Discussion: Compositional Rule of Inference Using the mathematical ter-
minology of fuzzy sets, the computation of µB̂q

(yq) is said to be produced by a “sup-
star compositional rule of inference.” The “sup” in this terminology corresponds
to the ⊕ operation, and the “star” corresponds to ∗. “Zadeh’s compositional rule
of inference” [245, 246, 95] is the special case of the sup-star compositional rule
of inference when maximum is used for ⊕ and minimum is used for ∗. The overall
justification for using the above operations to represent the inference step lies in
the fact that we can be no more certain about our conclusions than we are about
our premises. The operations performed in taking an inference step adhere to this
principle. To see this, you should study Equation (2.14) and note that the scaling
from µi(u1, u2, . . . , un) that is produced by the premise matching process will al-
ways ensure that supyq

{µB̂i
q
(yq)} ≤ µi(u1, u2, . . . , un). The fact that we are no more

certain of our consequents than our premises is shown graphically in Figure 2.19
on page 50 where the heights of the implied fuzzy sets are always less than the
certainty values for all the premise terms.

Up to this point, we have used fuzzy logic to quantify the rules in the rule-
base, fuzzification to produce fuzzy sets characterizing the inputs, and the inference
mechanism to produce fuzzy sets representing the conclusions that it reaches after
considering the current inputs and the information in the rule-base. Next, we look
at how to convert this fuzzy set quantification of the conclusions to a numeric value
that can be input to the plant.

2.3.5 Defuzzification
A number of defuzzification strategies exist, and it is not hard to invent more. Each
provides a means to choose a single output (which we denote with y

crisp
q ) based

on either the implied fuzzy sets or the overall implied fuzzy set (depending on the
type of inference strategy chosen, “Alternative 1 or 2,” respectively, in the previous
section).

Defuzzification: Implied Fuzzy Sets

As they are more common, we first specify typical defuzzification techniques for the
implied fuzzy sets B̂i

q :

• Center of gravity (COG): A crisp output y
crisp
q is chosen using the center of area

and area of each implied fuzzy set, and is given by

ycrisp
q =

∑R
i=1 bq

i

∫
Yq

µB̂i
q
(yq)dyq∑R

i=1

∫
Yq

µB̂i
q
(yq)dyq

where R is the number of rules, bq
i is the center of area of the membership function

of Bp
q associated with the implied fuzzy set B̂i

q for the ith rule (j, k, . . . , l; p, q)i,
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and ∫
Yq

µB̂i
q
(yq)dyq

denotes the area under µB̂i
q
(yq). Notice that COG can be easy to compute since

it is often easy to find closed-form expressions for
∫
Yq

µB̂i
q
(yq)dyq , which is the

area under a membership function (see the pendulum example in Section 2.2.6
on page 44 where this amounts to finding the area of a triangle or a triangle with
its top chopped off). Notice that the area under each implied fuzzy set must be
computable, so the area under each of the output membership functions (that
are used in the consequent of a rule) must be finite (this is why we cannot “sat-
urate” the membership functions at the outermost edges of the output universe
of discourse). Also, notice that the fuzzy system must be defined so that

R∑
i=1

∫
Yq

µB̂i
q
(yq)dyq �= 0

for all ui or y
crisp
q will not be properly defined. This value will be nonzero if there

is a rule that is on for every possible combination of the fuzzy system inputs and
the consequent fuzzy sets all have nonzero area.

• Center-average: A crisp output y
crisp
q is chosen using the centers of each of the

output membership functions and the maximum certainty of each of the conclu-
sions represented with the implied fuzzy sets, and is given by

ycrisp
q =

∑R
i=1 bq

i supyq
{µB̂i

q
(yq)}∑R

i=1 supyq
{µB̂i

q
(yq)}

where “sup” denotes the “supremum” (i.e., the least upper bound which can often
be thought of as the maximum value). Hence, supx{µ(x)} can simply be thought
of as the highest value of µ(x) (e.g., supu{µ(1)(u)} = 0.25 for µ(1) when product
is used to represent the implication, as shown in Figure 2.18 on page 48). Also, bq

i

is the center of area of the membership function of Bp
q associated with the implied

fuzzy set B̂i
q for the ith rule (j, k, . . . , l; p, q)i. Notice that the fuzzy system must

be defined so that

R∑
i=1

sup
yq

{µB̂i
q
(yq)} �= 0

for all ui. Also, note that supyq
{µB̂i

q
(yq)} is often very easy to compute since if

µBp
q
(yq) = 1 for at least one yq (which is the normal way to define consequent
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membership functions), then for many inference strategies, using Equation (2.14),
we have

sup
yq

{µB̂i
q
(yq)} = µi(u1, u2, . . . , un)

which has already been computed in the matching process. Moreover, the formula
for defuzzification is then given by

ycrisp
q =

∑R
i=1 bq

i µi(u1, u2, . . . , un)∑R
i=1 µi(u1, u2, . . . , un)

(2.16)

where we must ensure that
∑R

i=1 µi(u1, u2, . . . , un) �= 0 for all ui. Also note that
this implies that the shape of the membership functions for the output fuzzy sets
does not matter; hence, you can simply use singletons centered at the appropriate
positions. Convince yourself of this.

Defuzzification: The Overall Implied Fuzzy Set

Next, we present typical defuzzification techniques for the overall implied fuzzy set
B̂q :

• Max criterion: A crisp output y
crisp
q is chosen as the point on the output universe

of discourse Yq for which the overall implied fuzzy set B̂q achieves a maximum—
that is,

ycrisp
q ∈

{
arg sup

Yq

{
µB̂q

(yq)
}}

Here, “arg supx{µ(x)}” returns the value of x that results in the supremum of the
function µ(x) being achieved. For example, suppose that µoverall(u) denotes the
membership function for the overall implied fuzzy set that is obtained by taking
the maximum of the certainty values of µ(1) and µ(2) over all u in Figure 2.18
on page 48 (i.e., µoverall(u) = maxu{µ(1)(u), µ(2)(u)} per Equation (2.15)). In
this case, arg supu{µoverall(u)} = −10, which is the defuzzified value via the max
criterion.

Sometimes the supremum can occur at more than one point in Yq (e.g.,
consider the use of the max criterion for the case where minimum is used to
represent the implication, and triangular membership functions are used on the
output universe of discourse, such as in Figure 2.19 on page 50). In this case you

also need to specify a strategy on how to pick only one point for y
crisp
q (e.g.,

choosing the smallest value). Often this defuzzification strategy is avoided due to
this ambiguity; however, the next defuzzification method does offer a way around
it.
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• Mean of maximum: A crisp output y
crisp
q is chosen to represent the mean value

of all elements whose membership in B̂q is a maximum. We define b̂max
q as the

supremum of the membership function of B̂q over the universe of discourse Yq.
Moreover, we define a fuzzy set B̂∗

q ∈ Yq with a membership function defined as

µB̂∗
q
(yq) =

{
1 µB̂q

(yq) = b̂max
q

0 otherwise

then a crisp output, using the mean of maximum method, is defined as

ycrisp
q =

∫
Yq

yqµB̂∗
q
(yq)dyq∫

Yq
µB̂∗

q
(yq)dyq

(2.17)

where the fuzzy system must be defined so that
∫
Yq

µB̂∗
q
(yq)dyq �= 0 for all ui.

As an example, suppose that for Figure 2.19 on page 50 the two implied fuzzy
sets are used to form an overall implied fuzzy set by taking the maximum of the
two certainty values over all of u (i.e., µoverall(u) = maxu{µ(1)(u), µ(2)(u)} per
Equation (2.15)). In this case there is an interval of u values around −10 where
the overall implied fuzzy set is at its maximum value, and hence there is an
ambiguity about which is the best defuzzified value. The mean of the maximum
method would pick the value in the middle of the interval as the defuzzified value,
so it would choose −10.

Note that the integrals in Equation (2.17) must be computed at each time
instant since they depend on B̂q , which changes with time. This can require exces-
sive computational resources for continuous universes of discourse. For some types
of membership functions, simple ideas from geometry can be used to simplify the
calculations; however, for some choices of membership functions, there may be
many subintervals spread across the universe of discourse where the maximum is
achieved. In these cases it can be quite difficult to compute the defuzzified value
unless the membership functions are discretized. Complications such as these
often cause designers to choose other defuzzification methods.

• Center of area (COA): A crisp output y
crisp
q is chosen as the center of area for

the membership function of the overall implied fuzzy set B̂q . For a continuous
output universe of discourse Yq , the center of area output is denoted by

ycrisp
q =

∫
Yq

yqµB̂q
(yq)dyq∫

Yq
µB̂q

(yq)dyq

The fuzzy system must be defined so that
∫
Yq

µB̂q
(yq)dyq �= 0 for all ui. Note that,

similar to the mean of the maximum method, this defuzzification approach can
be computationally expensive. For instance, we leave it to the reader to compute
the area of the overall implied fuzzy set µoverall(u) = maxu{µ(1)(u), µ(2)(u)} for



2.3 General Fuzzy Systems 69

Figure 2.19 on page 50. Notice that in this case the computation is not as easy as
just adding the areas of the two chopped-off triangles that represent the implied
fuzzy sets. Computation of the area of the overall implied fuzzy set does not count
the area that the implied fuzzy sets overlap twice; hence, the area of the overall
implied fuzzy set can in general be much more difficult to compute in real time.

It is important to note that each of the above equations for defuzzification actually
provides a mathematical quantification of the operation of the entire fuzzy system
provided that each of the terms in the descriptions are fully defined. We discuss
this in more detail in the next section.

Overall, we see that using the overall implied fuzzy set in defuzzification is often
undesirable for two reasons: (1) the overall implied fuzzy set B̂q is itself difficult
to compute in general, and (2) the defuzzification techniques based on an inference
mechanism that provides B̂q are also difficult to compute. It is for this reason that
most existing fuzzy controllers (including the ones in this book) use defuzzification
techniques based on the implied fuzzy sets, such as center-average or COG.

2.3.6 Mathematical Representations of Fuzzy Systems
Notice that each formula for defuzzification in the previous section provides a math-
ematical description of a fuzzy system. There are many ways to represent the oper-
ations of a fuzzy system with mathematical formulas. Next, we clarify how to con-
struct and interpret such mathematical formulas for the case where center-average
defuzzification is used for MISO fuzzy systems. Similar ideas apply for some of the
other defuzzification strategies, MIMO fuzzy systems, and the Takagi-Sugeno fuzzy
systems that we discuss in the next section.

Assume that we use center-average defuzzification so that the formula describ-
ing how to compute the output is

y =
∑R

i=1 biµi∑R
i=1 µi

(2.18)

Notice that we removed the “crisp” superscript and “q” subscript from y (compare
to Equation (2.16)). Also, we removed the “q” superscript from bi. The q index
is no longer needed in both cases since we are considering MISO systems, so that
while there can be many inputs, there is only one output.

To be more explicit in Equation (2.18), we need to first define the premise mem-
bership functions µi in terms of the individual membership functions that describe
each of the premise terms. Suppose that we use product to represent the conjunc-
tions in the premise of each rule. Suppose that we use the triangular membership
functions in Table 2.3 on page 57 where we suppose that µL

j (uj) (µR
j (uj)) is the

“left-” (“right-”) most membership function on the jth input universe of discourse.
In addition, let µCi

j (uj) be the ith “center” membership function for the jth input
universe of discourse. In this case, to define µL

j (uj) we simply add a “j” subscript
to the parameters of the “left” membership function from Table 2.3. In particular,
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we use cL
j and wL

j to denote the jth values of these parameters. We take a similar
approach for the µR

j (uj), j = 1, 2, . . . , n. For µCi

j (uj) we use ci
j (wi

j) to denote the
ith triangle center (triangle base width) on the jth input universe of discourse.

Suppose that we use all possible combinations of input membership functions
to form the rules, and that each premise has a term associated with each and every
input universe of discourse. A more detailed description of the fuzzy system in
Equation (2.18) is given by

y =
b1

∏n
j=1 µL

j (uj) + b2µ
C1
1 (u1)

∏n
j=2 µL

j (uj) + · · ·∏n
j=1 µL

j (uj) + µC1
1 (u1)

∏n
j=2 µL

j (uj) + · · ·

The first term in the numerator is b1µ1 in Equation (2.18). Here, we have called
the “first rule” the one that has premise terms all described by the membership
functions µL

j (uj), j = 1, 2, . . . , n. The second term in the numerator is b2µ2 and it
uses µC1

1 (u1) on the first universe of discourse and the leftmost ones on the other
universes of discourse (i.e., j = 2, 3, . . . , n). Continuing in a similar manner, the sum
in the numerator (and denominator) extends to include all possible combinations
of products of the input membership functions, and this fully defines the µi in
Equation (2.18).

Overall, we see that because we need to define rules resulting from all possible
combinations of given input membership functions, of which there are three kinds
(left, center, right), the explicit mathematical representation of the fuzzy system is
somewhat complicated. To avoid some of the complications, we first specify a single
function that represents all three types of input membership functions. Suppose that
on the jth input universe of discourse we number the input membership functions
from left to right as 1, 2, . . . , Nj, where Nj is the number of input membership
functions on the jth input universe of discourse. A single membership function that
represents all three in Table 2.3 is

µi
j(uj) =




1 if uj ≤ c1
j or uj ≥ c

Nj

j

max
{
0, 1 + uj−ci

j

0.5wi
j

}
if uj ≤ ci

j and (uj > c1
j and uj < c

Nj

j )

max
{
0, 1 + ci

j−uj

0.5wi
j

}
if uj > ci

j and (uj > c1
j and uj < c

Nj

j )

A similar approach can be used for the Gaussian membership functions in Table 2.4.
Recall that we had used

(j, k, . . . , l; p, q)i

to denote the ith rule. In this notation the indices in (the “tuple”) (j, k, . . . , l)
range over 1 ≤ j ≤ N1, 1 ≤ k ≤ N2, . . ., 1 ≤ l ≤ Nn, and specify which linguistic
value is used on each input universe of discourse. Correspondingly, each index in the
tuple (j, k, . . . , l) also specifies the linguistic-numeric value of the input membership
function used on each input universe of discourse.
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Let

b(j,k,...,l;p,q)i

denote the output membership function (a singleton) center for the ith rule (of
course, q = 1 in our MISO case). Note that we use “i” in the notation (j, k, . . . , l; p, q)i

simply as a label for each rule (i.e., we number the rules in the rule-base, and i is
this number). Hence, when we are given i, we know the values of j, k, . . ., l, p, and
q. Because of this, an explicit description of the fuzzy system in Equation (2.18) is
given by

y =
∑R

i=1 b(j,k,...,l;p,q)iµj
1µ

k
2 · · ·µl

n∑R
i=1 µj

1µ
k
2 · · ·µl

n

(2.19)

This formula clearly shows the use of the product to represent the premise. Notice
that since we use all possible combinations of input membership functions to form
the rules there are

R =
n∏

j=1

Nj

rules, and hence it takes

n∑
j=1

2Nj +
n∏

j=1

Nj (2.20)

parameters to describe the fuzzy system since there are two parameters for each
input membership function and R output membership function centers. For some
applications, however, all the output membership functions are not distinct. For
example, consider the pendulum example where five output membership function
centers are defined, and there are R = 25 rules. To define the center positions
b(j,k,...,l;p,q)i so that they take on only a fixed number of given values, that is less
than R, one approach is to specify them as a function of the indices of the input
membership functions. What is this function for the pendulum example?

A different approach to avoiding some of the complications encountered in
specifying a fuzzy system mathematically is to use a different notation, and hence
a different definition for the fuzzy system. For this alternative approach, for the
sake of variety, we will use Gaussian input membership functions. In particular, for
simplicity, suppose that for the input universes of discourse we only use membership
functions of the “center” Gaussian form shown in Table 2.4. For the ith rule, suppose
that the input membership function is

exp


−1

2

(
uj − ci

j

σi
j

)2


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for the jth input universe of discourse. Hence, even though we use the same notation
for the membership function, these centers ci

j are different from those used above,
both because we are using Gaussian membership functions here, and because the “i”
in ci

j is the index for the rules, not the membership function on the jth input universe
of discourse. Similar comments can be made about the σi

j, i = 1, 2, . . . , R, j =
1, 2, . . . , n. If we let bi, i = 1, 2, . . . , R, denote the center of the output membership
function for the ith rule, use center-average defuzzification, and product to represent
the conjunctions in the premise, then

y =

∑R
i=1 bi

∏n
j=1 exp

(
−1

2

(
uj−ci

j

σi
j

)2
)

∑R
i=1

∏n
j=1 exp

(
−1

2

(
uj−ci

j

σi
j

)2
) (2.21)

is an explicit representation of a fuzzy system. Note that we do not use the “left”
and “right” versions of the Gaussian membership functions in Table 2.4 as this
complicates the notation (how?). There are nR input membership function centers,
nR input membership function spreads, and R output membership function centers.
Hence, we need a total of

R(2n + 1)

parameters to describe this fuzzy system.
Now, while the fuzzy systems in Equations (2.19) and (2.21) are in general

different, it is interesting to compare the number of parameters needed to describe
a fuzzy system using each approach. In practical situations, we often have Nj ≥ 3
for each j = 1, 2, . . . , n, and sometimes the number of membership functions on
each input universe of discourse can be quite large. From Equation (2.20) we can
clearly see that large values of n will result in a fuzzy system with many parameters
(there is an exponential increase in the number of rules). On the other hand, using
the fuzzy system in Equation (2.21) the user specifies the number of rules and this,
coupled with the number of inputs n, specifies the total number of parameters.
There is not an exponential growth in the number of parameters in Equation (2.21)
in the same way as there is in the fuzzy system in Equation (2.19) so you may be
tempted to view the definition in Equation (2.21) as a better one. Such a conclusion,
can, however be erroneous for several reasons.

First, the type of fuzzy system defined by Equation (2.19) is sometimes more
natural in control design when you use triangular membership functions since you
often need to make sure that there will be no point on any input universe of discourse
where there is no membership function with a nonzero value (why?). Of course, if
you are careful, you can avoid this problem with the fuzzy system represented by
Equation (2.21) also. Second, suppose that the number of rules for Equation (2.21)
is the same as that for Equation (2.19). In this case, the number of parameters
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needed to describe the fuzzy system in Equation (2.21) is
 n∏

j=1

Nj


 (2n + 1)

Now, comparing this to Equation (2.20) you see that for many values of Nj ,
j = 1, 2, . . . , n, and number of inputs n, it is possible that the fuzzy system in
Equation (2.21) will require many more parameters to specify it than the fuzzy
system in Equation (2.19). Hence, the inefficiency in the representation in Equa-
tion (2.19) lies in having all possible combinations of output membership function
centers, which results in exponential growth in the number of parameters needed to
specify the fuzzy system. The inefficiency in the representation in Equation (2.21)
lies in the fact that, in a sense, membership functions on the input universes of
discourse are not re-used by each rule. There are new input membership functions
for every rule.

Generally, it is difficult to know which is the best fuzzy system for a particular
problem. In this book, we will sometimes (e.g., in Chapter 5) use the mathematical
representation in Equation (2.21) because it is somewhat simpler, and possesses
some properties that we will exploit. At other times we will be implicitly using the
representation in Equation (2.19) because it will lend to the development of certain
techniques (e.g., in Chapter 6). In every case, however, that we use Equation (2.21)
(Equation (2.19)) you may want to consider how the concepts, approaches, and
results change (or do not change) if the form of the fuzzy system in Equation (2.19)
(Equation (2.21)) is used.

Finally, we would like to recommend that you practice creating mathematical
representations of fuzzy systems. For instance, it is good practice to create a math-
ematical representation of the fuzzy controller for the inverted pendulum of the
form of Equation (2.19), then also use Equation (2.21) to specify the same fuzzy
system. Comparing these two approaches, and resolving the issues in specifying the
output centers for the Equation (2.19) case, will help clarify the issues discussed in
this section.

2.3.7 Takagi-Sugeno Fuzzy Systems
The fuzzy system defined in the previous sections will be referred to as a “standard
fuzzy system.” In this section we will define a “functional fuzzy system,” of which
the Takagi-Sugeno fuzzy system [207] is a special case.

For the functional fuzzy system, we use singleton fuzzification, and the ith

MISO rule has the form

If ũ1 is Ãj
1 and ũ2 is Ãk

2 and, . . . , and ũn is Ãl
n Then bi = gi(·)

where “·” simply represents the argument of the function gi and the bi are not
output membership function centers. The premise of this rule is defined the same as
it is for the MISO rule for the standard fuzzy system in Equation (2.4) on page 54.
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The consequents of the rules are different, however. Instead of a linguistic term
with an associated membership function, in the consequent we use a function bi =
gi(·) (hence the name “functional fuzzy system”) that does not have an associated
membership function. Notice that often the argument of gi contains the terms
ui, i = 1, 2, . . . , n, but other variables may also be used. The choice of the function
depends on the application being considered. Below, we will discuss linear and affine
functions but many others are possible. For instance, you may want to choose

bi = gi(·) = ai,0 + ai,1(u1)2 + · · ·+ ai,n(un)2

or

bi = gi(·) = exp [ai,1sin(u1) + · · ·+ ai,nsin(un)]

Virtually any function can be used (e.g., a neural network mapping or another fuzzy
system), which makes the functional fuzzy system very general.

For the functional fuzzy system we can use an appropriate operation for rep-
resenting the premise (e.g., minimum or product), and defuzzification may be ob-
tained using

y =
∑R

i=1 biµi∑R
i=1 µi

(2.22)

where µi is defined in Equation (2.13). It is assumed that the functional fuzzy
system is defined so that no matter what its inputs are, we have

∑R
i=1 µi �= 0. One

way to view the functional fuzzy system is as a nonlinear interpolator between the
mappings that are defined by the functions in the consequents of the rules.

An Interpolator Between Linear Mappings

In the case where

bi = gi(·) = ai,0 + ai,1u1 + · · ·+ ai,nun

(where the ai,j are real numbers) the functional fuzzy system is referred to as
a “Takagi-Sugeno fuzzy system.” If ai,0 = 0, then the gi(·) mapping is a linear
mapping and if ai,0 �= 0, then the mapping is called “affine.” Often, however, as is
standard, we will refer to the affine mapping as a linear mapping for convenience.
Overall, we see that the Takagi-Sugeno fuzzy system essentially performs a nonlinear
interpolation between linear mappings.

As an example, suppose that n = 1, R = 2, and that we have rules

If ũ1 is Ã1
1 Then b1 = 2 + u1

If ũ1 is Ã2
1 Then b2 = 1 + u1
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with the universe of discourse for u1 given in Figure 2.24 so that µ1 represents Ã1
1

and µ2 represents Ã2
1. We have

y =
b1µ1 + b2µ2

µ1 + µ2
= b1µ1 + b2µ2

We see that for u1 > 1, µ1 = 0, so y = 1 + u1, which is a line. If u1 < −1, µ2 = 0,
so y = 2 + u1, which is a different line. In between −1 ≤ u1 ≤ 1, the output y is an
interpolation between the two lines. Plot y versus u1 to show how this interpolation
is achieved.

-1 1 u 1

µ µ1 2
1

FIGURE 2.24 Membership
functions for Takagi-Sugeno fuzzy
system example.

Finally, it is interesting to note that if we pick

gi = ai,0

(i.e., ai,j = 0 for j > 0), then the Takagi-Sugeno fuzzy system is equivalent to
a standard fuzzy system that uses center-average defuzzification with singleton
output membership functions at ai,0. It is in this sense that the Takagi-Sugeno fuzzy
system—or, more generally, the functional fuzzy system—is sometimes referred to
as a “general fuzzy system.”

An Interpolator Between Linear Systems

It is important to note that a Takagi-Sugeno fuzzy system may have any linear
mapping (affine mapping) as its output function, which also contributes to its gen-
erality. One mapping that has proven to be particularly useful is to have a linear
dynamic system as the output function so that the ith rule has the form

If z̃1 is Ãj
1 and z̃2 is Ãk

2 and, . . . , and z̃p is Ãl
p Then ẋi(t) = Aix(t) + Biu(t)

Here, x(t) = [x1(t), x2(t), . . . , xn(t)]� is the n-dimensional state (now n is not neces-
sarily the number of inputs); u(t) = [u1(t), u2(t), . . . , um(t)]� is the m-dimensional
model input; Ai and Bi, i = 1, 2, . . . , R are the state and input matrices of appro-
priate dimension; and z(t) = [z1(t), z2(t), . . . , zp(t)]� is the p-dimensional input to
the fuzzy system. This fuzzy system can be thought of as a nonlinear interpolator
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between R linear systems. It takes the input z(t) and has an output

ẋ(t) =
∑R

i=1(Aix(t) + Biu(t))µi(z(t))∑R
i=1 µi(z(t))

or

ẋ(t) =

(
R∑

i=1

Aiξi(z(t))

)
x(t) +

(
R∑

i=1

Biξi(z(t))

)
u(t) (2.23)

where

ξ� = [ξ1, . . . , ξR] =

[
1∑R

i=1 µi

]
[µ1, . . . , µR]

If R = 1, we get a standard linear system. Generally, for R > 1 and a given
value of z(t), only certain rules will turn on and contribute to the output. Many
choices are possible for z(t). For instance, we often choose z(t) = x(t), or sometimes
z(t) = [x�(t), u�(t)]�.

As an example, suppose that z(t) = x(t), p = n = m = 1, and R = 2 with rules

If x̃1 is Ã1
1 Then ẋ1 = −x1 + 2u1

If x̃1 is Ã2
1 Then ẋ2 = −2x1 + u1.

Suppose that we use µ1 and µ2 from Figure 2.24 as the membership functions for
Ã1

1 and Ã2
1, respectively (i.e., we relabel the horizontal axis of Figure 2.24 with x1).

In this case Equation (2.23) becomes

ẋ1(t) = (−µ1 − 2µ2)x1(t) + (2µ1 + µ2)u1(t)

If x1(t) > 1, then µ1 = 0 and µ2 = 1, so the behavior of the nonlinear system
is governed by

ẋ1(t) = −2x1(t) + u1(t)

which is the linear system specified by the second rule above. However, if x1(t) <
−1, then µ1 = 1 and µ2 = 0, so the behavior of the nonlinear system is governed
by

ẋ1(t) = −x1(t) + 2u1(t)

which is the linear system specified by the first rule above. For −1 ≤ x1(t) ≤ 1, the
Takagi-Sugeno fuzzy system interpolates between the two linear systems. We see
that for changing values of x1(t), the two linear systems that are in the consequents
of the rules contribute different amounts.
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We think of one linear system being valid on a region of the state space that
is quantified via µ1 and another on the region quantified by µ2 (with a “fuzzy
boundary” in between). For the higher-dimensional case, we have premise member-
ship functions for each rule quantify whether the linear system in the consequent is
valid for a specific region on the state space. As the state evolves, different rules turn
on, indicating that other combinations of linear models should be used. Overall, we
find that the Takagi-Sugeno fuzzy system provides a very intuitive representation
of a nonlinear system as a nonlinear interpolation between R linear models.

2.3.8 Fuzzy Systems Are Universal Approximators
Fuzzy systems have very strong functional capabilities. That is, if properly con-
structed, they can perform very complex operations (e.g., much more complex than
those performed by a linear mapping). Actually, many fuzzy systems are known to
satisfy the “universal approximation property” [227].

For example, suppose that we use center-average defuzzification, product for
the premise and implication, and Gaussian membership functions. Name this fuzzy
system f(u). Then, for any real continuous function ψ(u) defined on a closed and
bounded set and an arbitrary ε > 0, there exists a fuzzy system f(u) such that

sup
u

|f(u) − ψ(u)| < ε .

Note, however, that all this “universal approximation property” does is guar-
antee that there exists a way to define the fuzzy system f(u) (e.g., by picking the
membership function parameters). It does not say how to find the fuzzy system,
which can, in general, be very difficult. Furthermore, for arbitrary accuracy you
may need an arbitrarily large number of rules.

The value of the universal approximation property for fuzzy systems is simply
that it shows that if you work hard enough at tuning, you should be able to make the
fuzzy system do what you are trying to get done. For control, practically speaking,
it means that there is great flexibility in tuning the nonlinear function implemented
by the fuzzy controller. Generally, however, there are no guarantees that you will
be able to meet your stability and performance specifications by properly tuning
a given fuzzy controller. You also have to choose the appropriate controller inputs
and outputs, and there will be fundamental limitations imposed by the plant that
may prohibit achieving certain control objectives no matter how you tune the fuzzy
controller (e.g., a nonminimum phase system may provide certain limits on the
quality of the performance that can be achieved).

2.4 Simple Design Example: The Inverted
Pendulum

As there is no general systematic procedure for the design of fuzzy controllers that
will definitely produce a high-performance fuzzy control system for a wide variety
of applications, it is necessary to learn about fuzzy controller design via examples.
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Here, we continue with the inverted pendulum example to provide an introduction
to the typical procedures used in the design (and redesign) of a fuzzy controller.
After reading the next section, on simulation of fuzzy control systems, the reader
can follow this section more carefully by fully reproducing our design steps. For a
first reading, however, we recommend that you not worry about how the simulations
were produced; rather, focus on their general characteristics as they are related to
design.

To simulate the fuzzy control system shown in Figure 2.4 on page 27 it is nec-
essary to specify a mathematical model of the inverted pendulum. Note that we
did not need the model for the initial design of the fuzzy controller in Section 2.2.1;
but to accurately assess the quality of a design, we need either a model for mathe-
matical analysis or simulation-based studies, or an experimental test bed in which
to evaluate the design. Here, we will study simulation-based evaluations for design,
while in Chapter 4 we will study the use of mathematical analysis to verify the
quality of a design (and to assist in redesign). Throughout the book we will also
show actual implementation results that are used to assess the performance of fuzzy
controllers.

One model for the inverted pendulum shown in Figure 2.2 on page 25 is given
by

ÿ =
9.8 sin(y) + cos(y)

[
−ū−0.25ẏ2 sin(y)

1.5

]
0.5

[
4
3 − 1

3 cos2(y)
] (2.24)

˙̄u = −100ū + 100u.

The first order filter on u to produce ū represents an actuator. Given this and
the fuzzy controller developed in Section 2.2.1 (the one that uses the minimum
operator to represent both the “and” in the premise and the implication and COG
defuzzification), we can simulate the fuzzy control system shown in Figure 2.4 on
page 27. We let the initial condition be y(0) = 0.1 radians (= 5.73 deg.), ẏ(0) = 0,
and the initial condition for the actuator state is zero. The results are shown in
Figure 2.25, where we see in the upper plot that the output appropriately moves
toward the inverted position, and the force input in the lower plot that moves back
and forth to achieve this.9

2.4.1 Tuning via Scaling Universes of Discourse
Suppose that the rate at which the pendulum balances in Figure 2.25 is consid-
ered to be unacceptably slow and that there is too much control action. To solve
these problems, we use standard ideas from control engineering to conclude that
we ought to try to tune the “derivative gain.” To do this we introduce gains on the

9. If you attempt to reproduce these results, you should be cautioned that, as always, inaccurate
results can be obtained if a small enough integration step size is not chosen for numerical

simulation. For all the simulation results of this section, we use the fourth-order Runge-Kutta
method and an integration step size of 0.001. The plots of this subsection were produced by

Scott C. Brown.
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FIGURE 2.25 Fuzzy controller balancing an
inverted pendulum, first design.

proportional and derivative terms, as shown in Figure 2.26, and at the same time
we also put a gain h between the fuzzy controller and the inverted pendulum.

Inverted
pendulumd

dt

Σ
r e

u y

Fuzzy controller

g
0

g1

h

FIGURE 2.26 Fuzzy controller for inverted pendulum with
scaling gains g0, g1, and h.

Choose g0 = 1, g1 = 0.1, and h = 1. To see the effect of this gain change, see
Figure 2.27, where we see that the output angle reacts much faster and the control
input is smoother.

If we still find the response of the pendulum rather slow, we may decide, using
standard ideas from control engineering, that the proportional gain should be in-
creased (often raising the “loop-gain” can speed up the system). Suppose next that
we choose g0 = 2, g1 = 0.1, and h = 1—that is, we double the proportional gain.
Figure 2.28 shows the resulting behavior of the fuzzy control system, where we see
that the response is made significantly faster than in Figure 2.27. Actually, a similar
effect to increasing the proportional gain can be achieved by increasing the output
gain h. Choose g0 = 2, g1 = 0.1, and h = 5, and see Figure 2.29, where we see that
the response is made even faster than in Figure 2.28. Indeed, as this is just a simu-
lation study, we can increase h further and get even faster balancing provided that
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FIGURE 2.27 Fuzzy controller balancing an
inverted pendulum with g0 = 1, g1 = 0.1, and h = 1.

we simulate the system properly by having a small enough integration step size.
However, the reader must be cautioned that this may stretch the simulation model
beyond its range of validity. For instance, further increases in h will generally result
in faster balancing at the expense of a large control input, and for a big enough
h the input may be larger than what is allowed in the physical system. At that
point the simulation would not reflect reality since if the controller were actually
implemented, the plant input would saturate and the proper balancing behavior
may not be achieved.
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FIGURE 2.28 Fuzzy controller balancing an
inverted pendulum with g0 = 2, g1 = 0.1, and h = 1.
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FIGURE 2.29 Fuzzy controller balancing an
inverted pendulum with g0 = 2, g1 = 0.1, and h = 5.

We see that the change in the scaling gains at the input and output of the
fuzzy controller can have a significant impact on the performance of the resulting
fuzzy control system, and hence they are often a convenient parameter for tuning.
Because they are frequently used for tuning fuzzy controllers, it is important to
study exactly what happens when these scaling gains are tuned.

Input Scaling Gains

First, consider the effect of the input scaling gains g0 and g1. Notice that we can
actually achieve the same effect as scaling via g1 by simply changing the labeling
of the d

dt
e(t) axis for the membership functions of that input. The case where

g0 = g1 = h = 1.0 corresponds to our original choice for the membership functions
in Figure 2.9 on page 36. The choice of g1 = 0.1 as a scaling gain for the fuzzy
controller with these membership functions is equivalent to having the membership
functions shown in Figure 2.30 with a scaling gain of g1 = 1.

e(t), (rad/sec)

“possmall”

4
ππ π

4

“zero”“negsmall”“neglarge”
-1-2 0 1 2

“poslarge”

8
π
8 dt

d10 10-10-10

FIGURE 2.30 Scaled membership functions for d
dt

e(t).

We see that the choice of a scaling gain g1 results in scaling the horizontal axis
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of the membership functions by 1
g1

. Generally, the scaling gain g1 has the following
effects:

• If g1 = 1, there is no effect on the membership functions.

• If g1 < 1, the membership functions are uniformly “spread out” by a factor of 1
g1

(notice that multiplication of each number on the horizontal axis of Figure 2.9
on page 36 by 10 produces Figure 2.30).

• If g1 > 1, the membership functions are uniformly “contracted” (to see this,
choose g1 = 10 and notice that the numbers on the horizontal axis of the new
membership functions that we would obtain by collapsing the gain into the choice
of the membership functions, would be scaled by 0.1).

The expansion and contraction of the horizontal axes by the input scaling gains is
sometimes described as similar to how an accordion operates, especially for trian-
gular membership functions. Notice that the membership functions for the other
input to the fuzzy controller will be affected in a similar way by the gain g0.

Now that we see how we can either use input scaling gains or simply redefine
the horizontal axis of the membership functions, it is interesting to consider how
the scaling gains actually affect the meaning of the linguistics that form the basis
for the definition of the fuzzy controller. Notice that

• If g1 = 1, there is no effect on the meaning of the linguistic values.

• If g1 < 1, since the membership functions are uniformly “spread out,” this changes
the meaning of the linguistics so that, for example, “poslarge” is now characterized
by a membership function that represents larger numbers.

• If g1 > 1, since the membership functions are uniformly “contracted,” this
changes the meaning of the linguistics so that, for example, “poslarge” is now
characterized by a membership function that represents smaller numbers.

Similar statements can be made about all the other membership functions and their
associated linguistic values. Overall, we see that the input scaling factors have an
inverse relationship in terms of their ultimate effect on scaling (larger g1 that is
greater than 1 corresponds to changing the meaning of the linguistics so that they
quantify smaller numbers). While such an inverse relationship exists for the input
scaling gains, just the opposite effect is seen for the output scaling gains, as we shall
see next.

Output Scaling Gain

Similar to what you can do to the input gains, you can collapse the output scaling
gain into the definition of the membership functions on the output. In particular,

• If h = 1, there is no effect on the output membership functions.
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• If h < 1, there is the effect of contracting the output membership functions
and hence making the meaning of their associated linguistics quantify smaller
numbers.

• If h > 1, there is the effect of spreading out the output membership functions and
hence making the meaning of their associated linguistics quantify larger numbers.

There is a proportional effect between the scaling gain h and the output member-
ship functions. As an example, for the inverted pendulum the output membership
functions are scaled by h as shown in Figure 2.31. The reader should verify the
effect of h by considering how the membership functions shown in Figure 2.31 will
move for varying values of h.

u(t), (N)

“possmall”

30h-20h

“zero”“negsmall”“neglarge”

-1-2 0 1 2
“poslarge”

-10h 20h10h-30h

FIGURE 2.31 The effect of scaling gain h on the spacing of
the output membership functions.

Overall, the tuning of scaling gains for fuzzy systems is often referred to as
“scaling a fuzzy system.” Notice that if for the pendulum example the effective
universes of discourse for all inputs and outputs are [−1, +1] (i.e., the input (output)
left-most membership function saturates (peaks) at −1 and the right-most input
(output) membership function saturates (peaks) at +1), then we say that the fuzzy
controller is “normalized.” Clearly, scaling gains can be used to normalize the given
fuzzy controllers for the pendulum. What gains g0, g1, and h will do this?

2.4.2 Tuning Membership Functions
It is important to realize that the scaling gains are not the only parameters that
can be tuned to improve the performance of the fuzzy control system. Indeed,
sometimes it is the case that for a given rule-base and membership functions you
cannot achieve the desired performance by tuning only the scaling gains. Often,
what is needed is a more careful consideration of how to specify additional rules or
better membership functions.

The problem with this is that there are often too many parameters to tune (e.g.,
membership function shapes, positioning, and number and type of rules) and often
there is not a clear connection between the design objectives (e.g., better rise-time)
and a rationale and method that should be used to tune these parameters. There
are, however, certain methods to overcome this problem, and here we will examine
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one of these that has been found to be very useful for real implementations of fuzzy
control systems for challenging applications.

Output Membership Function Tuning

In this method we will tune the positioning of the output membership functions
(assume that they are all symmetric and equal to one only at one point) by char-
acterizing their centers by a function. Suppose that we use ci, i = −2,−1, 0, 1, 2, to
denote the centers of the output membership functions for the fuzzy controller for
the inverted pendulum, where the indices i for the ci are the linguistic-numeric val-
ues used for the output membership functions (see Figure 2.9 on page 36). (This is a
different notation from that used for the centers in our discussion on defuzzification
in Section 2.3.5 since there the index referred to the rule.) If h = 1 then

ci = 10i

describes the positioning of the centers of the output membership functions shown
in Figure 2.9 on page 36 and if we scale by h then

ci = 10hi

describes the position centers as shown in Figure 2.31. We see that a linear rela-
tionship in the ci equation produces a linear (uniform) spacing of the membership
functions. Suppose that we instead choose

ci = 5hsign(i)i2 (2.25)

(sign(x) returns the sign of the number x and sign(0) = 1), then this will have
the effect of making the output membership function centers near the origin be
more closely spaced than the membership functions farther out on the horizontal
axis. The effect of this is to make the “gain” of the fuzzy controller smaller when
the signals are small and larger as the signals grow larger (up to the point where
there is a saturation, as usual). Hence, the use of Equation (2.25) for the centers
indicates that if the error and change-in-error for the pendulum are near where
they should be, then do not make the force input to the plant too big, but if the
error and change-in-error are large, then the force input should be much bigger
so that it quickly returns the pendulum to near the balanced position (note that
a cubic function ci = 5hi3 will provide a similar effect as the sign(i)i2 term in
Equation (2.25)).

Effect on Performance

At this point the reader should wonder why we would even bother with more com-
plex tuning of the fuzzy controller for the inverted pendulum since the performance
seen in our last design iteration, in Figure 2.29 on page 81, was quite successful.
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Consider, however, the effect of a disturbance such that during the previous simu-
lation in Figure 2.29 on page 81 we let

u′ = u + 600

for t such that 0.99 < t < 1.01 sec where u′ is now the force input to the pendulum
and u is as before the output of the fuzzy controller (for t ≤ 0.99 and t ≥ 1.01, we
let u′ = u). This corresponds to a 600 Newton pulse on the input to the pendulum,
and simulates the effect of someone bumping the cart so that we can study the
ability of the controller to then rebalance the pendulum. The performance of our
best controller up till now, shown in Figure 2.29 on page 81, is shown in Figure 2.32,
where we see that the fuzzy controller fails to rebalance the pendulum when the
cart is bumped.
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FIGURE 2.32 Effect of a disturbance (a bump to
the cart of the pendulum) on the balancing
capabilities of the fuzzy controller.

Suppose that to overcome this problem we decide that while the design in
Figure 2.29 on page 81 was good for small-angle perturbations, something needs to
be done for larger perturbations. In particular, let us attempt to use the fact that
if there is a large variation from the inverted position there had better be a large
enough input to get the pendulum closer to its inverted position so that it will not
fall. To do this, we will use the above approach and choose

ci = 5hsign(i)i2

where h = 10.0 (we keep g0 = 2.0 and g1 = 0.1). If you were to simulate the
resulting fuzzy control system for the case where there is no disturbance, you would
find a performance that is virtually identical to that of the design that resulted in
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Figure 2.29 on page 81. The reason for this can be explained as follows: Notice that
for Figure 2.29 on page 81 the gains were g0 = 2.0 and g1 = 0.1 and that we have
the output membership function centers given by

ci = 5hi

where h = 10. Notice that for both controllers, if i = 0 or i = 1 we get the same
positions of the output membership functions. Hence, if the signals are small, we
will get nearly the same effect from both fuzzy controllers. However, if, for example,
i = 2 then the center resulting from the controller with ci = 5hsign(i)i2 will have
a membership function that is much farther out, which says that the input to the
plant should be larger. The effect of this will be to have the fuzzy controller provide
very large force inputs when the pendulum is not near its inverted position. To see
this, consider Figure 2.33, where we see that the newly redesigned fuzzy controller
can in fact rebalance the pendulum in the presence of the disturbance (and it
performs similarly to the best previous one, shown in Figure 2.29 on page 81, in
response to smaller perturbations from the inverted position, as is illustrated by
how it recovers from the initial condition). Notice, however, that it used a large
input force to counteract the bump to the pendulum.
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FIGURE 2.33 Effect of a disturbance (a bump to
the cart of the pendulum) on the balancing
capabilities of the fuzzy controller.

You may wonder why we did not just increase the gain on the fuzzy controller
depicted in Figure 2.29 on page 81 to the point where it would be able to recover
similarly to this new control system. However, if we did this, we would also raise
the gain of the controller when its input signals are small, which can have adverse
effects of amplifying noise in a real implementation. Besides, our redesign above
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was used simply to illustrate the design approach. In the applications studied in
Chapter 3, we will use a similar design approach where the need for the nonlinear
spacing of the output membership functions is better motivated due to the fact
that a more challenging application dictates this.

2.4.3 The Nonlinear Surface for the Fuzzy Controller
Ultimately, the goal of tuning is to shape the nonlinearity that is implemented by
the fuzzy controller. This nonlinearity, sometimes called the “control surface,” is
affected by all the main fuzzy controller parameters. Consider, for example, the
control surface for the fuzzy controller that resulted in the response shown in Fig-
ure 2.29 on page 81 (i.e., g0 = 2.0, g1 = 0.1, and h = 5), which is shown in
Figure 2.34, where the output of the fuzzy controller is now plotted against its two
inputs. Notice that the surface represents in a compact way all the information in
the fuzzy controller (but of course this representation is limited in that if there
are more than two inputs it becomes difficult to visualize the surface). To convince
yourself of this, you should pick a value for e and d

dte(t), read the corresponding
fuzzy controller output value off the surface, and determine if the rule-base would
indicate that the controller should behave in this way. Figure 2.34 simply represents
the range of possible defuzzified values for all possible inputs e and d

dt
e(t).
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FIGURE 2.34 Control surface of the fuzzy
controller for g0 = 2.0, g1 = 0.1, and h = 5.

Note that the control surface for a simple proportional-derivative (PD) con-
troller is a plane in three dimensions. With the proper choice of the PD gains, the
linear PD controller can easily be made to have the same shape as the fuzzy con-
troller near the origin. Hence, in this case the fuzzy controller will behave similarly
to the PD controller provided its inputs are small. However, notice that there is
no way that the linear PD controller can achieve a nonlinear control surface of
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the shape shown in Figure 2.34 (this is not surprising considering the complexity
difference of the two controllers).

Next, notice changing the gains g0 and g1 will rescale the axis, which will change
the slope of the surface. Increasing g0 is analogous to increasing the proportional
gain in a PD controller (i.e., it will often make the system respond faster). Increasing
the gain g1 is analogous to increasing the derivative gain in a PD controller. Notice,
also, that changing h will scale the vertical axis of the controller surface plot. Hence,
for instance, increasing h will make the entire surface have a higher slope and make
the output saturate at higher values.

It is useful to notice that there is a type of interpolation that is performed
by the fuzzy controller that is nicely illustrated in Figure 2.34. If you study the
plot carefully, you will notice that the rippled surface is created by the rules and
membership functions. For instance, if we kept a similar uniform distribution of
membership functions for the input and outputs of the fuzzy system, but increased
the number of membership functions, the ripples would correspondingly increase
in number and the amplitude of the ripple would decrease (indeed, in the limit,
as more and more membership functions are added in this way, the controller can
be made to approximate a plane in a larger and larger region—but this may not
occur for other membership function distributions and rule-base choices). What is
happening is that there is an interpolation between the rules. The output is an
interpolation of the effects of the four rules that are on for the inverted pendulum
fuzzy controller. For more general fuzzy controllers, it is important to keep in mind
that this sort of interpolation is often occurring (but not always—it depends on
your choice of the membership functions).

When we tune the fuzzy controller, it changes the shape of the control surface,
which in turn affects the behavior of the closed-loop control system. Changing the
scaling gains changes the slope of the surface and hence the “gain” of the fuzzy
controller as we discussed above and as we will discuss in Chapter 4 in more detail.
The output membership function centers will also affect the shape of the surface.
For instance, the control surface for the fuzzy controller that had

ci = 5hsign(i)i2

where h = 10.0, g0 = 2.0, and g1 = 0.1 is shown in Figure 2.35. You must carefully
compare this surface to the one in Figure 2.34 to assess the effects of using the
nonlinear spacing of the output membership function centers. Notice that near the
center of the plot (i.e., where the inputs are zero) the shape of the two plots is
nearly the same (i.e., as explained above, the two controllers will behave similarly
for small input signals). Notice, however, that the slope of the surface is greater for
larger signals in Figure 2.35 than in Figure 2.34. This further illustrates the effect
of the choice of the nonlinear spacing for the output membership function centers.

This concludes the design process for the fuzzy controller for the pendulum.
Certainly, if you were concerned with the design of a fuzzy controller for an indus-
trial control problem, many other issues besides the ones addressed above would
have to be considered. Here, we simply use the inverted pendulum as a convenient
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FIGURE 2.35 Control surface of the fuzzy controller
for ci = 5hsign(i)i2 , h = 10.0, g0 = 2.0, and g1 = 0.1.

example to illustrate the design procedures that are often used for fuzzy control
systems. In Chapter 3 we will study several more fuzzy control design problems,
several of which are much more challenging (and interesting) than the inverted
pendulum studied here.

2.4.4 Summary: Basic Design Guidelines
This section summarizes the main features of the design process from the previous
subsection. The goal is to try to provide some basic design guidelines that are
generic to all fuzzy controllers. In this spirit, we list some basic design guidelines
for (nonadaptive) fuzzy controllers:

1. Begin by trying a simple conventional PID controller. If this is successful, do
not even try a fuzzy controller. The PID is computationally simpler and very
easy to understand.

2. Perhaps you should also try some other conventional control approaches (e.g.,
a lead-lag compensator or state feedback) if it seems that these may offer a
good solution.

3. For a variety of reasons, you may choose to try a fuzzy controller (for a discus-
sion of these reasons, see Chapter 1). Be careful to choose the proper inputs to
the fuzzy controller. Carefully assess whether you need proportional, integral,
and derivative inputs (using standard control engineering ideas). Consider pro-
cessing plant data into a form that you believe would be most useful for you
to control the system if you were actually a “human-in-the-loop.” Specify your
best guess at as simple a fuzzy controller as possible (do not add inputs, rules,
or membership functions until you know you need them).



90 Chapter 2 / Fuzzy Control: The Basics

4. Try tuning the fuzzy controller using the scaling gains, as we discussed in the
previous section.

5. Try adding or modifying rules and membership functions so that you more
accurately characterize the best way to control the plant (this can sometimes
require significant insight into the physics of the plant).

6. Try to incorporate higher-level ideas about how best to control the plant. For
instance, try to shape the nonlinear control surface using a nonlinear function
of the linguistic-numeric values, as explained in the previous section.

7. If there is unsmooth or chattering behavior, you may have a gain set too high
on an input to the fuzzy controller (or perhaps the output gain is too high).
Setting the input gain too high makes it so that the membership functions
saturate for very low values, which can result in oscillations (i.e., limit cycles).

8. Sometimes the addition of more membership functions and rules can help. These
can provide for a “finer” (or “higher-granularity”) control, which can sometimes
reduce chattering or oscillations.

9. Sometimes it is best to first design a linear controller, then choose the scaling
gains, membership functions, and rule-base so that near the origin (i.e., for
small controller inputs) the slope of the control surface will match the slope of
the linear controller. In this way we can incorporate all of the good ideas that
have gone into the design of the linear controller (about an operating point)
into the design of the fuzzy controller. After this, the designer should seek to
shape the nonlinearity for the case where the input signals are not near the
origin using insights about the plant. This design approach will be illustrated
in Chapter 3 when we investigate case studies in fuzzy control system design.

Generally, you do not tune the fuzzy controller by evaluating all possibilities
for representing the “and” in the premise or for the implication (e.g., minimum or
product operations) or by studying different defuzzification strategies. While there
are some methods for tuning fuzzy controllers this way, these methods most often
do not provide insights into how these parameters ultimately affect the performance
that we are trying to achieve (hence it is difficult to know how to tune them to
get the desired performance). We must emphasize that the above guidelines do not
constitute a systematic design procedure. As with conventional control design, a
process of trial and error is generally needed.

Generally, we have found that if you are having trouble coming up with a good
fuzzy controller, you probably need to gain a better understanding of the physics
of the process you are trying to control, and you then need to get the knowledge of
how to properly affect the plant dynamics into the fuzzy controller.
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2.5 Simulation of Fuzzy Control Systems
Often, before you implement a fuzzy controller, there is a need to perform a
simulation-based evaluation of its performance. As we saw in Section 2.4, where
we studied the inverted pendulum, these simulation-based investigations can help
to provide insight into how to improve the design of the fuzzy controller and verify
that it will operate properly when it is implemented. To perform a simulation, we
will need a model of the plant and a computer program that will simulate the fuzzy
control system (i.e., a program to simulate a nonlinear dynamic system).

2.5.1 Simulation of Nonlinear Systems
In the next subsection we will explain how to write a subroutine that will simulate a
fuzzy controller. First, however, we will briefly explain how to simulate a nonlinear
system since every fuzzy control system is a nonlinear system (even if the plant is
linear, the fuzzy controller and hence fuzzy control system is nonlinear). Suppose
that we denote the fuzzy controller in Figure 2.4 on page 27 by f(e, ė). Suppose
that the fuzzy control system in Figure 2.4 can be represented by the ordinary
differential equation

ẋ(t) = F (x(t), r(t)) (2.26)
y = G(x(t), r(t))

where x = [x1, x2, . . . , xn]� is a state vector, F = [F1, F2, . . . , Fn]� is a vector of
nonlinear functions, G is a nonlinear function that maps the states and reference
input to the output of the system, and x(0) is the initial state. To simulate a
nonlinear system, we will assume that the nonlinear ordinary differential equations
are put into the form in Equation (2.26).

To see how to put a given ordinary differential equation into the form given
in Equation (2.26), consider the inverted pendulum example. For our pendulum
example, define the state

x = [x1, x2, x3]� = [y, ẏ, ū]�

Then, using Equation (2.25) on page 78 we have

ẋ1 = x2 = F1(x, r)

ẋ2 =
9.8 sin(x1) + cos(x1)

[
−x3−0.25x2

2 sin(x1)
1.5

]
0.5

[
4
3 − 1

3 cos2(x1)
] = F2(x, r)

ẋ3 = −100x3 + 100f(−x1,−x2) = F3(x, r)

since u = f(e, ė), e = r−y, r = 0, and ė = −ẏ. Also, we have y = G(x, r) = x1. This
puts the fuzzy control system for the nonlinear inverted pendulum in the proper
form for simulation.
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Now, to simulate Equation (2.26), we could simply use Euler’s method to
approximate the derivative ẋ in Equation (2.26) as

x(kh + h) − x(kh)
h

= F (x(kh), r(kh), kh) (2.27)

y = G(x(kh), r(kh), kh)

Here, h is a parameter that is referred to as the “integration step size” (not to be
confused with the scaling gain h used earlier). Notice that any element of the vector

x(kh + h) − x(kh)
h

is simply an approximation of the slope of the corresponding element in the time
varying vector x(t) at t = kh (i.e., an approximation of the derivative). For small
values of h, the approximation will be accurate provided that all the functions and
variables are continuous. Equation (2.27) can be rewritten as

x(kh + h) = x(kh) + hF (x(kh), r(kh), kh)
y = G(x(kh), r(kh), kh)

for k = 0, 1, 2, . . . . The value of the vector x(0) is the initial condition and is
assumed to be given. Simulation of the nonlinear system proceeds recursively by
computing x(h), x(2h), x(3h), and so on, to generate the response of the system
for the input r(kh). For practice the reader should place the pendulum differential
equations developed above into the form for simulation via the Euler method given
in Equation (2.27). Using this, and provided that you pick your integration step
size h small enough, the Euler method can be used to reproduce all the simulation
results of the previous section.

Note that by choosing h small, we are trying to simulate the continuous-time
nonlinear system. If we want to simulate the way that a digital control system would
be implemented on a computer in the laboratory, we can simulate a controller
that only samples its inputs every T seconds (T is not the same as h; it is the
“sampling interval” for the computer in the laboratory) and only updates its control
outputs every T seconds (and it would hold them constant in between). Normally,
you would choose T = αh where α > 0 is some positive integer. In this way we
simulate the plant as a continuous-time system that interacts with a controller that
is implemented on a digital computer.

While Euler’s method is easy to understand and implement in code, sometimes
to get good accuracy the value of h must be chosen to be very small. Most often,
to get good simulation accuracy, more sophisticated methods are used, such as the
Runge-Kutta method with adaptive step size or predictor-corrector methods. In
the fourth-order Runge-Kutta method, we begin with Equation (2.26) and a given
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x(0) and let

x(kh + h) = x(kh) +
1
6

(k1 + 2k2 + 2k3 + k4) (2.28)

where the four vectors

k1 = hF (x(kh), r(kh), kh)

k2 = hF

(
x(kh) +

k1

2
, r

(
kh +

h

2

)
, kh +

h

2

)

k3 = hF

(
x(kh) +

k2

2
, r

(
kh +

h

2

)
, kh +

h

2

)
k4 = hF (x(kh) + k3, r(kh + h), kh + h)

These extra calculations are used to achieve a better accuracy than the Euler
method. We see that the Runge-Kutta method is very easy to use; it simply in-
volves computing the four vectors k1 to k4, and plugging them into Equation (2.28).
Suppose that you write a computer subroutine to compute the output of a fuzzy
controller given its inputs (in some cases these inputs could include a state of the
closed-loop system). In this case, to calculate the four vectors, k1 to k4, you will
need to use the subroutine four times, once for the calculation of each of the vectors,
and this can increase the computational complexity of the simulation. To simplify
the complexity of the simulation you can simulate the fuzzy controller as if it were
implemented on a digital computer in the laboratory with a sampling interval of
T = h (i.e., α = 1 in our discussion above). Now, you may not be concerned with
implementation of the fuzzy controller on a digital computer in the laboratory, or
your choice of h may not actually correspond to a reasonable choice of a sampling
period in the laboratory; however, using this approach you typically can simplify
computations. The savings come from assuming that over the length of time cor-
responding to an integration step size, you hold the value of the fuzzy controller
output constant. Hence, this approach to simplifying computations is really simply
based on making an approximation to the fuzzy controller output over the amount
of time corresponding to an integration step size.

Generally, if the Runge-Kutta method has a small enough value of h, it is
sufficiently accurate for the simulation of most fuzzy control systems (and if an
adaptive step size method [59, 215] is used, then even more accuracy can be obtained
if it is needed). We invite the reader to code the Runge-Kutta method on the
problems at the end of the chapter.10

Clearly, the above approaches are complete only if we can compute the fuzzy
controller outputs given its inputs. That is, we need a subroutine to compute u =
f(e, ė). This is what we study next.

10. The reader can, however, download the code for a Runge-Kutta algorithm for simulating an

nth order nonlinear ordinary differential equation from the web site or ftp site listed in the
Preface.
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2.5.2 Fuzzy Controller Arrays and Subroutines
The fuzzy controller can be programmed in C, Fortran, Matlab, or virtually any
other programming language. There may be some advantage to programming it in
C since it is then sometimes easier to transfer the code directly to an experimen-
tal setting for use in real-time control. At other times it may be advantageous to
program it in Matlab since plotting capabilities and other control computations
may be easier to perform there. Here, rather than discussing the syntax and char-
acteristics of the multitude of languages that we could use to simulate the fuzzy
controller, we will develop a computer program “pseudocode” that will be useful in
developing the computer program in virtually any language. For readers who are
not interested in learning how to write a program to simulate the fuzzy controller,
this section will provide a nice overview of the steps used by the fuzzy controller to
compute its outputs given some inputs.

We will use the inverted pendulum example of the last section to illustrate
the basic concepts on how to program the fuzzy controller, and for that example
we will use the minimum operation to represent both the “and” in the premise
and the implication (it will be obvious how to switch to using, for example, the
product). At first we will make no attempt to code the fuzzy controller so that
it will minimize execution time or minimize the use of memory. However, after
introducing the pseudocode, we will address these issues.

First, suppose that for convenience we use a different set of linguistic-numeric
descriptions for the input and output membership functions than we used up till
now. Rather than numbering them

−2,−1, 0, 1, 2

we will renumber them as

0, 1, 2, 3, 4

so that we can use these as indices for arrays in the program (if your language
does not allow for the use of “0” as an index, simply renumber them as 1, 2, 3, 4, 5).
Suppose that we let the computer variable x1 denote (notice that a different typeface
is used for all computer variables) e(t), which we will call the first input, and x2
denote d

dte(t), which we will call the second input. Next, we define the following
arrays and functions:

• Let mf1[i] (mf2[j]) denote the value of the membership function associated
with input 1 (2) and linguistic-numeric value i (j). In the computer program
mf1[i] could be a subroutine that computes the membership value for the ith

membership function given a numeric value for the first input x1 (note that
in the subroutine we can use simple equations for lines to represent triangular
membership functions). Similarly for mf2[j].

• Let rule[i,j] denote the index of the consequent of the rule that has linguistic-
numeric value “i” as the first term in its premise and “j” as the second term in
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its premise. Hence rule[i,j] is essentially a matrix that holds the body of the
rule-base table shown in Table 2.1 with the appropriate changes to the linguistic-
numeric values (i.e., switching from the use of −2,−1, 0, 1, 2 to 0, 1, 2, 3, 4). In
particular, for the inverted pendulum we have

rule[i, j] =




4 4 4 3 2
4 4 3 2 1
4 3 2 1 0
3 2 1 0 0
2 1 0 0 0




• Let prem[i,j] denote the certainty of the premise of the rule that has linguistic-
numeric value “i” as the first term in its premise and “j” as the second term in
its premise given the inputs x1 and x2.

• Let center[k] denote the center of the kth output membership function. For the
inverted pendulum k = 0, 1, 2, 3, 4 and the centers are at the points where the
triangles reach their peak.

• Let areaimp[k,h] denote the area under the kth output membership function
(where for the inverted pendulum k = 0, 1, 2, 3, 4) that has been chopped off at a
height of h by the minimum operator. Hence, we can think of areaimp[k,h] as
a subroutine that is used to compute areas under the membership functions for
the implied fuzzy sets.

• Let imps[i,j] denote the areas under the membership functions for the implied
fuzzy sets for the rule that has linguistic-numeric value “i” as the first term in
its premise, and “j” as the second term in its premise given the inputs x1 and
x2.

2.5.3 Fuzzy Controller Pseudocode
Using these definitions, consider the pseudocode for a simple fuzzy controller that
is used to compute the fuzzy controller output given its two inputs:

1. Obtain x1 and x2 values
(Get inputs to fuzzy controller)

2. Compute mf1[i] and mf2[j] for all i, j
(Find the values of all membership functions given the values for
x1 and x2)

3. Compute prem[i,j]=min[mf1[i],mf2[j]] for all i, j
(Find the values for the premise membership functions for a given
x1 and x2 using the minimum operation)
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4. Compute imps[i,j]=areaimp[rule[i,j],prem[i,j]] for all i, j
(Find the areas under the membership functions for all
possible implied fuzzy sets)

5. Let num=0, den=0
(Initialize the COG numerator and denominator values)

6. For i=0 to 4, For j=0 to 4,
(Cycle through all areas to determine COG)

num=num+imps[i,j]*center[rule[i,j]]
(Compute numerator for COG)

den=den+imps[i,j]
(Compute denominator for COG)

7. Next i, Next j

8. Output ucrisp=num/den
(Output the value computed by the fuzzy controller)

9. Go to Step 1.

To learn how this code operates, the reader should define each of the functions
and arrays for the inverted pendulum example and show how to compute the fuzzy
controller output for the same (and some different) inputs used in Section 2.4.
Following this, the reader should develop the computer code to simulate the fuzzy
controller for the inverted pendulum and verify that the computations made by the
computer match the ones made by hand.11

We do not normally recommend that initially you use only the computer-aided
design (CAD) packages for fuzzy systems since these tend to remove you from
understanding the real details behind the operation of the fuzzy controller. However,
after you have developed your own code and fully understand the details of fuzzy
control, we do advise that you use (or develop) the tools you believe are necessary
to automate the process of constructing fuzzy controllers.

Aside from the effort that you must put into writing the code for the fuzzy
controller, there are the additional efforts that you must take to initially type in the
rule-base and membership functions and possibly modify them later (which might
be necessary if you need to perform redesigns of the fuzzy controller). For large
rule-bases, this effort could be considerable, especially for initially typing the rule-
base into the computer. While some CAD packages may help solve this problem, it
is not hard to write a computer program to generate the rule-base, because there
are often certain regular patterns in the rule-base. For example, a very common
pattern found in rule-bases is the “diagonal” one shown in Table 2.1 on page 32.
Here, the linguistic-numeric indices in the row at the top and the column on the

11. One way to start with the coding of the fuzzy controller is to start with the code that is
available for downloading at the web site or ftp site described in the Preface.
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left are simply added, and the sum is multiplied by minus one and saturated so
that it does not grow beyond the available indices for the consequent membership
functions (i.e., below −2 or above 2).

Also notice that since there is a proportional correspondence between the input
linguistic-numeric values and the values of the inputs, you will often find it easy to
express the input membership functions as a nonlinear function of their linguistic-
numeric values. Another trick that is used to make the adjustment of rule-bases
easier is to make the centers of the output membership functions a function of their
linguistic-numeric indices, as we discussed in Section 2.4.2.

2.6 Real-Time Implementation Issues
When it comes to implementing a fuzzy controller, you often want to try to mini-
mize the amount of memory used and the time that it takes to compute the fuzzy
controller outputs given some inputs. The pseudocode in the last section was not
written to exploit certain characteristics of the fuzzy controller that we had devel-
oped for the inverted pendulum; hence, if we were to actually implement this fuzzy
controller and we had severe implementation constraints, we could try to optimize
the code with respect to memory and computation time.

2.6.1 Computation Time
First, we will focus on reducing the amount of time it takes to compute the outputs
for some given inputs. Notice the following about the pseudocode:

• We compute prem[i,j] for all values of i and j (25 values) when for our fuzzy
controller for the inverted pendulum, since there are never more than two mem-
bership functions overlapping, there will be at most four values of prem[i,j]
needed (the rest will have zero values and hence will have no impact on the
ultimate computation of the output).

• In a similar manner, while we compute imps[i,j] for all i and j, we only need
four of these values.

• If we compute only four values for imps[i,j], we will have at most four values
to sum up in the numerator and denominator of the COG computation (and not
25 for each).

At this point, from the view of computational complexity, the reader may wonder
why we even bothered with the pseudocode of the last section since it appears to
be so inefficient. However, the code is only inefficient for the chosen form for the
fuzzy controller. If we had chosen Gaussian-shaped (i.e., bell-shaped) membership
functions for the input membership functions, then no matter what the input was
to the fuzzy controller, all the rules would be on so all the computations shown in
the pseudocode were necessary and not too much could be done to improve on the
computation time needed. Hence, we see that if you are concerned with real-time
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implementation of your fuzzy controller, you may want to put constraints on the
type of fuzzy controller (e.g., membership functions) you construct.

It is important to note that the problems with the efficiency of the pseudocode
highlighted above become particularly acute when there are many inputs to the
fuzzy controller and many membership functions for each input, since the number
of rules increases exponentially with an increase in the number of inputs (assuming
all possible rules are used, which is often the case). For example, if you have a
two-input fuzzy controller with 11 membership functions for each input, you will
have 112 = 121 rules, and you can see that if you increase the number of inputs,
this number will quickly increase.

How do we overcome this problem? Assume that you have defined your fuzzy
controller so that at most two input membership functions overlap at any one point,
as we had for the inverted pendulum example. The trick is to modify your code so
that it will compute only four values for the premise membership functions, only
four values for areas of implied fuzzy sets, and hence have only four additions in the
numerator and denominator of the COG computation. There are many ways to do
this. For instance, you can have the program scan mf1[i] beginning at position zero
until a nonzero membership value is obtained. Call the index of the first nonzero
membership value “istar.” Repeat this process for mf2[j] to find a corresponding
“jstar.” The rules that are on are the following:

rule[istar,jstar]
rule[istar,jstar+1]
rule[istar+1,jstar]

rule[istar+1,jstar+1]

provided that the indicated indices are not out of range. If only the rules identified
by the indices of the premises of these rules are used in the computations, then
we will reduce the number of required computations significantly, because we will
not be computing values that will be zero anyway (notice that for the inverted
pendulum example, there will be one, two, or four rules on at any one time, so
there could still be a few wasted computations). Notice that even in the case where
there are many inputs to the fuzzy controller the problem of how to code efficiently
reduces to a problem of how to determine the set of indices for the rules that are on.
So that you may fully understand the issues in coding the controller in an efficient
manner, we challenge you to develop the code for an n-input fuzzy controller that
will exploit the fact that only a hypercubical block of 2n rules will be on at any one
time (provided that at most two input membership functions overlap at any one
point).

2.6.2 Memory Requirements
Next, we consider methods for reducing memory requirements. Basically, this can
be done by recognizing that it may be possible to compute the rule-base at each
time instant rather than using a stored one. Notice that there is a regular pattern
to the rule-base for the inverted pendulum; since there are at most four rules on
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at any one time, it would not be hard to write the code so that it would actually
generate the rules while it computes the controller outputs. It may also be possible
to use a memory-saving scheme for the output membership functions. Rather than
storing their positions, there may be a way to specify their spacing with a function
so that it can be computed in real-time. For large rule-bases, these approaches can
bring a huge savings in memory (however, if you are working with adaptive fuzzy
systems where you automatically tune membership functions, then it may not be
possible to use this memory-saving scheme). We are, however, gaining this savings
in memory at the expense of possibly increasing computation time.

Finally, note that while we focus here on the real-time implementation issues
by discussing the optimization of software, you could consider redesigning the hard-
ware to make real-time implementation possible. Implementation prospects could
improve by using a better microprocessor or signal processing chip. An alternative
would be to investigate the advantages and disadvantages of using a “fuzzy pro-
cessor” (i.e., a processor designed specifically for implementing fuzzy controllers).
Of course, many additional issues must be taken into consideration when trying to
decide if a switch in computing technology is needed. Not the least among these
are cost, durability, and reliability.

2.7 Summary
In this chapter we have provided a “tutorial introduction” to direct fuzzy control. In
our tutorial introduction we provided a step-by-step overview of the operations of
the fuzzy controller. We provided an inverted pendulum problem for which we dis-
cussed several basic issues in the design of fuzzy controllers. Moreover, we discussed
simulation and implementation via the use of a pseudocode for a fuzzy controller.
Our introduction is designed to provide the reader with an intuitive understanding
of the mechanics of the operation of the fuzzy controller.

Our mathematical characterization served to show how the fuzzy controller can
handle more inputs and outputs, the range of possibilities for the definition of uni-
verses of discourse, the membership functions, the rules, the inference mechanism,
and defuzzification methods. The reader who studies the mathematical characteri-
zation of fuzzy systems will gain a deeper understanding of fuzzy systems.

The design example for the inverted pendulum problem is meant to be an
introduction to basic design methods for fuzzy controllers. The section on coding
is meant to help the reader bridge the gap between theory and application so that
you can quickly get a fuzzy controller implemented.

Upon completing this chapter, the reader should understand the following top-
ics:

• Issues in the choice of the inputs and outputs of the fuzzy controller.

• Linguistic variables.

• Linguistic values (and linguistic-numeric values).
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• Linguistic rules (MISO, MIMO, and ones that do not use all their premise or
consequent terms).

• Membership functions (in terms of how they quantify linguistics and their math-
ematical definition).

• Fuzzy sets (mathematical definition and relation to crisp sets).

• Operations on fuzzy sets (subset, complement, union, intersection, and relations
to representation of the logical “and” and “or”).

• Fuzzy Cartesian product and its use in representation of the premise.

• The multidimensional premise membership function that represents the conjunc-
tion of terms in the premise.

• Fuzzification (singleton and more general forms).

• Inference mechanism (three stages: matching, selection of rules that are on, and
taking the actions specified by the applicable rules).

• Implied fuzzy sets.

• Overall implied fuzzy sets (and the differences from the implied fuzzy sets).

• Sup-star and Zadeh’s compositional rule of inference.

• Defuzzification methods (including those for the implied fuzzy sets and overall
implied fuzzy set).

• The method of providing a graphical explanation of the inference process that
was given at the end of Section 2.2.1.

• Mathematical representations of fuzzy systems, including issues related to the
number of parameters needed to represent a fuzzy system.

• Functional fuzzy systems (and Takagi-Sugeno fuzzy systems).

• The universal approximation property and its implications.

• Basic approaches to the design of the fuzzy controller, including the use of pro-
portional, integral, and derivative terms.

• The value of getting the best knowledge about how to achieve good control into
the rule-base and methods for doing this (e.g., the use of functions mapping the
linguistic-numeric indices to the centers of the output membership functions).

• The manner in which a fuzzy controller implements a nonlinearity and connec-
tions between the choice of controller parameters (e.g., scaling gains) and the
shape of this nonlinearity.
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• How to simulate a nonlinear system.

• How to simulate a fuzzy system and a fuzzy control system.

• Methods to optimize the code that implements a fuzzy controller (with respect
to both time and memory).

Essentially, this is a checklist for the major topics of this chapter. The reader
should be sure to understand each of the above concepts or approaches before
moving on to later chapters.

2.8 For Further Study
There are many conferences and journals that cover issues in fuzzy systems and
control. Some journals to consider include the following: (1) IEEE Transactions
on Fuzzy Systems, (2) IEEE Control Systems Magazine, (3) IEEE Transactions on
Systems, Man, and Cybernetics, and (4) Fuzzy Sets and Systems. The field of fuzzy
sets and logic was first introduced by Lotfi Zadeh [245, 246], and fuzzy control
was first introduced by E. Mamdani [135, 134]. There are many books on the
mathematics of fuzzy sets, fuzzy logic, and fuzzy systems; a few that the reader may
want to study include [95, 94, 250, 48, 87] or the article [138]. There are also several
books that provide introductions to the area of fuzzy control [47, 230, 238, 229, 167].
Other sources for introductory material on fuzzy control are in [165, 115].

An early version of the mathematical introduction to fuzzy control given in this
chapter is given in [107, 110] and a more developed one, that was the precursor to
Section 2.3 is in [165]. While in most applications singleton fuzzification is used,
there have been some successful uses of nonsingleton fuzzification [146]. For more
details on how to simulate nonlinear systems, see [59, 215]. The ball-suspension
system problem at the end of the chapter was taken from [103]. The automated
highway system problem was taken from [200].

2.9 Exercises
Exercise 2.1 (Defining Membership Functions: Single Universe of Dis-
course): In this problem you will study how to represent various concepts and
quantify various relations with membership functions. For each part below, there
is more than one correct answer. Provide one of these and justify your choice in
each case.

(a) Draw a membership function (and hence define a fuzzy set) that quantifies
the set of all people of medium height.

(b) Draw a membership function that quantifies the set of all short people.

(c) Draw a membership function that quantifies the set of all tall people.

(d) Draw a membership function that quantifies the statement “the number x
is near 10.”
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(e) Draw a membership function that quantifies the statement “the number x
is less than 10.”

(f) Draw a membership function that quantifies the statement “the number x
is greater than 10.”

(g) Repeat (d)–(f) for −5 rather than 10.

Exercise 2.2 (Defining Membership Functions: Multiple Universes of
Discourse): In this problem you will study how to represent various concepts
and quantify various relations with membership functions when there is more
than one universe of discourse. Use minimum to quantify the “and.” For each
part below, there is more than one correct answer. Provide one of these and
justify your choice in each case. Also, in each case draw the three-dimensional
plot of the membership function.

(a) Draw a membership function (and hence define a fuzzy set) that quantifies
the set of all people of medium height who are “tan” in color (i.e., tan and
medium-height people). Think of peoples’ colors being on a spectrum from
white to black.

(b) Draw a membership function (and hence define a fuzzy set) that quantifies
the set of all short people who are “white” in color (i.e., short and white
people).

(c) Draw a membership function (and hence define a fuzzy set) that quantifies
the set of all tall people who are “black” in color (i.e., tall and black people).

(d) Draw a membership function that quantifies the statement “the number x
is near 10 and the number y is near 2.”

(e) Draw a membership function that quantifies the statement “the number x
is less than 10 and the number y is near 2.”

(f) Draw a membership function that quantifies the statement “the number x
is greater than 10 and the number y is near 2.”

(g) Repeat (d)–(f) for −5 rather than 10 and −1 rather than 2.

(h) Repeat (d)–(f) using product rather than minimum to represent the “and.”

Exercise 2.3 (Inverted Pendulum: Gaussian Membership Functions):
Suppose that for the inverted pendulum example, we use Gaussian membership
functions as defined in Table 2.4 on page 57 rather than the triangular member-
ship functions. To do this, use the same center values as we had for the triangular
membership functions, use the “left” and “right” membership functions shown
in Table 2.4 for the outer edges of the input universes of discourse, and choose
the widths of all the membership functions to get a uniform distribution of the
membership functions and to get adjacent membership functions to cross over
with their neighboring membership functions at a certainty of 0.5.
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(a) Draw the membership functions for the input and output universes of dis-
course. Be sure to label all the axes and include both the linguistic values
and the linguistic-numeric values. Explain why this choice of membership
functions also properly represents the linguistic values.

(b) Assuming that we use the same rules as earlier, use a computer program to
plot the membership function for the premise of a rule when you use the
minimum operation to represent the “and” between the two elements in the
premise. For this plot you will have e and d

dt
e on the x and y axes and the

value of the premise membership function on the z axis. Use the rule

If error is zero and change-in-error is possmall Then force is negsmall

as was done when we used triangular membership functions (see its premise
membership function in Figure 2.11 on page 39).

(c) Repeat (b) for the case where the product operation is used. Compare the
results of (b) and (c).

(d) Suppose that e(t) = 0 and d
dte(t) = π/8 − π/32 (= 0.294). Which rules are

on? Assume that minimum is used to represent the premise and implication.
Provide a plot of the implied fuzzy sets for the two rules that result in the
highest peak on their implied fuzzy sets (i.e., the two rules that are “on”
the most).

(e) Repeat (d) for the case where e(t) = π/4 and d
dte(t) = π/8. Assume that

the product is used to represent the implication and minimum is used for
the premise. However, plot only the one implied fuzzy set that reaches the
highest value.

(f) For (d) use COG defuzzification and find the output of the fuzzy controller.
First, compute the output assuming that only the two rules found in (d) are
on. Next, use the implied fuzzy sets from all the rules that are on (note that
more than two rules are on). Note that for computation of the area under a
Gaussian curve, you will need to write a simple numerical integration routine
(e.g., based on a trapezoidal approximation) since there is no closed-form
solution for the area under a Gaussian curve.

(g) Repeat (f) for the case in (e).

(h) Assume that the minimum operation is used to represent the premise and
implication. Plot the control surface for the fuzzy controller.

(i) Repeat (h) for the case where the product operation is used for the premise
and implication. Compare (h) and (i).

Exercise 2.4 (Inverted Pendulum:Rule-Base Modifications): In this prob-
lem we will study the effects of adding rules to the rule-base. Suppose that we use
seven triangular membership functions on each universe of discourse and make
them uniformly distributed in the same manner as how we did in Exercise 2.3. In
particular, make the points at which the outermost input membership functions



104 Chapter 2 / Fuzzy Control: The Basics

for e saturate at ±π
2 and for ė at ±π

4 . For u make the outermost ones have their
peaks at ±20.

(a) Define a rule-base (i.e., membership functions and rules) that uses all pos-
sible rules, and provide a rule-base table to list all of the rules (make an
appropriate choice of the linguistic-numeric values for the premise terms
and consequents). There should be 49 rules.

(b) Use triangular membership functions and repeat Exercise 2.3 (a), (b), (c),
(d), (e) (but provide the implied fuzzy sets for the four rules that are on),
(f), (g) (but use all four implied fuzzy sets in the COG computation), (h),
and (i).

Exercise 2.5 (Fuzzy Sets): There are many concepts that are used in fuzzy
sets that sometimes become useful when studying fuzzy control. The following
problems introduce some of the more popular fuzzy set concepts that were not
treated earlier in the chapter.

(a) The “support” of a fuzzy set with membership function µ(x) is the (crisp)
set of all points x on the universe of discourse such that µ(x) > 0 and
the “α-cut” is the (crisp) set of all points on the universe of discourse such
that µ(x) > α. What is the support and 0.5-cut for the fuzzy set shown in
Figure 2.6 on page 33?

(b) The “height” of a fuzzy set with membership function µ(x) is the highest
value that µ(x) reaches on the universe of discourse on which it is defined.
A fuzzy set is said to be “normal” if its height is equal to one. What is the
height of the fuzzy set shown in Figure 2.6 on page 33? Is it normal? Give
an example of a fuzzy set that is not normal.

(c) A fuzzy set with membership function µ(x) where the universe of discourse
is the set of real numbers is said to be “convex” if and only if

µ(λx1 + (1 − λ)x2) ≥ min{µ(x1), µ(x2)} (2.29)

for all x1 and x2 and all λ ∈ [0, 1]. Note that just because a fuzzy set is
said to be convex does not mean that its membership function is a convex
function in the usual sense. Prove that the fuzzy set shown in Figure 2.6
on page 33 is convex. Prove that the Gaussian membership function is not
convex. Give an example (besides the fuzzy set with a Gaussian membership
function) of a fuzzy set that is not convex.

(d) A linguistic “hedge” is a modifier to a linguistic value such as “very” or
“more or less.” When we use linguistic hedges for linguistic values that al-
ready have membership functions, we can simply modify these membership
functions so that they represent the modified linguistic values. Consider
the membership function in Figure 2.6 on page 33. Suppose that we obtain
the membership function for “error is very possmall” from the one for “poss-
mall” by squaring the membership values (i.e., µverypossmall = (µpossmall)2).
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Sketch the membership function for “error is very possmall.” For “error is
more or less possmall” we could use µmoreorlesspossmall = √

µpossmall . Sketch
the membership function for “error is more or less possmall.”

Exercise 2.6 (The Extension Principle): A method for fuzzifying crisp func-
tions is called an “extension principle.” If X is a universe of discourse, let X∗

denote the “fuzzy power set” of X, which is the set of all fuzzy sets that can
be defined on X (since there are many ways to define membership functions,
X∗ is normally a large set—e.g., if X is the set of real numbers, then there is a
continuum number of elements in X∗). Suppose that X and Y are two sets. The
“extension principle” states that any function

f : X → Y

induces two functions,

f : X∗ → Y ∗

and

f−1 : Y ∗ → X∗

which are defined by

[f(A)](y) = sup
{x:y=f(x)}

µA(x)

for all fuzzy sets A defined on X∗ that have membership functions denoted by
µA(x) (we use [f(A)](y) to denote the membership function produced by the
mapping f and defined on the range of f) and

[f−1(B)](x) = µB(f(x))

for all fuzzy sets B defined on Y ∗ that have membership functions denoted by
µB(x) (we use [f−1(B)](x) to denote the membership function produced by the
mapping f−1 and defined on the domain of f).

(a) Suppose that X = [0,∞), Y = [0,∞) and y = f(x) = x3. Find [f(A)](y).

(b) Repeat (a) for y = f(x) = x2.

Exercise 2.7 (Fuzzy Logic): There are many concepts that are used in fuzzy
logic that sometimes become useful when studying fuzzy control. The following
problems introduce some of the more popular fuzzy logic concepts that were not
treated earlier in the chapter or were treated only briefly.



106 Chapter 2 / Fuzzy Control: The Basics

(a) The complement (“not”) of a fuzzy set with a membership function µ has a
membership function given by µ̄(x) = 1 − µ(x). Sketch the complement of
the fuzzy set shown in Figure 2.6 on page 33.

(b) There are other ways to define the “triangular norm” for representing the
intersection operation (“and”) on fuzzy sets, different from the ones intro-
duced in the chapter. Two more are given by defining “∗” as a “bounded
difference” (i.e., x∗y = max{0, x+y−1}) and “drastic intersection” (where
x∗y is x when y = 1, y when x = 1, and zero otherwise). Consider the mem-
bership functions shown in Figure 2.9 on page 36. Sketch the membership
function for the premise “error is zero and change-in-error is possmall” when
the bounded difference is used to represent this conjunction (premise). Do
the same for the case when we use the drastic intersection. Compare these
to the case where the minimum operation and the product were used (i.e.,
plot these also and compare all four).

(c) There are other ways to define the “triangular co-norm” for representing the
union operation (“or”) on fuzzy sets, different from the ones introduced in
the chapter. Two more are given by defining “⊕” as a “bounded sum” (i.e.,
x⊕ y = min{1, x+ y}) and “drastic union” (where x⊕ y is x when y = 0, y
when x = 0, and one otherwise). Consider the membership functions shown
in Figure 2.9 on page 36. Sketch the membership function for “error is zero
or change-in-error is possmall” when the bounded sum is used. Do the same
for the case when we use the drastic union. Compare these to the case where
the maximum operation and the algebraic sum were used (i.e., plot these
also and compare all four).

Exercise 2.8 (Rule-Base Completeness and Consistency): A system of
logic is “complete” if everything that is true that can be derived can in fact be
derived. It is “consistent” if only true things can be derived according to the
system of logic. We consider a rule-base to be “complete” if for every possible
combination of inputs to the fuzzy system, the fuzzy system can infer a response
and generate an output. We consider it to be consistent if there are no rules that
have the same premise and different consequents.

(a) Is the rule-base for the inverted pendulum example shown in Table 2.1 on
page 32 with membership functions shown in Figure 2.9 on page 36 com-
plete? Consistent?

(b) Suppose that any one rule is removed from the rule-base shown in Table 2.1
on page 32. Is it still complete and consistent? If it is complete and con-
sistent, explain why. If it is not, explain this also. In particular, if it is not
complete, provide the values of the fuzzy controller inputs that will result in
the fuzzy controller failing to provide an output for the rule that you choose
to omit. Also, provide the rule that you choose to omit.

(c) Suppose that you replace the triangular membership functions in the in-
verted pendulum problem with Gaussian ones, as explained in Exercise 2.3.
Repeat parts (a) and (b).
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(d) Suppose that for the inverted pendulum problem (with triangular member-
ship functions) we remove the membership functions associated with “zero”
and “possmall” on the e universe of discourse, which are shown in Figure 2.9
on page 36, and all rules that use these two membership functions in their
premises. Show the resulting rule-base table. Is the resulting rule-base com-
plete and consistent? Explain why.

(e) Suppose you designed a slightly different pattern of consequent linguistic-
numeric values than those shown in Table 2.1 on page 32 (but with the same
triangular membership functions and the same number of rules). Further-
more, suppose that we used your rules and the rules shown in Table 2.1
in the new fuzzy controller (i.e., a rule-base that has twice as many rules,
with many of the rules you created inconsistent with the ones in Table 2.1).
Essentially, this scheme will provide an interpolation between your fuzzy
controller design and the one in Table 2.1. Why? Will the fuzzy system
still provide a plant input for every possible combination of fuzzy controller
inputs?

Exercise 2.9 (Normalized Fuzzy Systems): Sometimes when we use the scal-
ing gains for the inputs and outputs of the fuzzy controller, we refer to the re-
sulting fuzzy system, with the gains, as a “scaled fuzzy system.” When a fuzzy
system is scaled so that the left-most membership function saturates (peaks) at
−1 and the right-most one at +1 for both the input and output universes of
discourse, we call this a “normalized fuzzy system.” Often in computer imple-
mentations you will work with a subroutine for a fuzzy system that makes its
computations for a normalized fuzzy system, and scaling factors are then used
outside the subroutine to obtain appropriately scaled universes of discourse (in
this way a single subroutine can be used for many choices of the scaling gains).

(a) For the inverted pendulum problem, what are the scaling factors for the
input and output universes of discourse that will achieve normalization of
the fuzzy controller? (Use the fuzzy controller that is defined via Table 2.1
on page 32 with membership functions in Figure 2.9 on page 36.)

(b) Given that the fuzzy controller for the inverted pendulum was normalized,
what are the scaling gains that should be used to get the universes of dis-
course shown in Figure 2.9 on page 36?

(c) Suppose that you are given the fuzzy controller that is defined via Table 2.1
on page 32 with membership functions in Figure 2.9 on page 36, but that you
would like the universes of discourse to be on a different scale. In particular,
you would like the effective universes of discourse to be [−10, 10] for e, [−5, 5]
for ė, and [−2, 2] for u. What are the scaling gains that will achieve this?

Exercise 2.10 (Defuzzification): Suppose that for the inverted pendulum we
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have

e(t) =
π

8

and

d

dt
e(t) = −π

8
+

π

32

at some time t. Assume that we use the rule-base shown in Table 2.1 on page 32
and minimum to represent both the premise and implication.

(a) Draw all the implied fuzzy sets on the output universe of discourse.
(b) Draw the overall implied fuzzy set assuming that maximum is used.
(c) Find the output of the fuzzy controller using center-average defuzzification.

(d) Find the output of the fuzzy controller using COG defuzzification.
(e) For the overall implied fuzzy set, find the output of the fuzzy controller

using the maximum criterion, the mean of the maximum, and the COA
defuzzification techniques.

(f) Assume that we use the product to represent both the premise and implica-
tion. Repeat (a)–(e).

(g) Assume that we use the product to represent the premise and minimum to
represent the implication. Repeat (a)–(e).

(h) Assume that we use the minimum to represent the premise and product to
represent the implication. Repeat (a)–(e).

(i) Suppose that rather than using the membership functions shown in Fig-
ure 2.9 on page 36, we make a small change to one membership function
on the output universe of discourse. In particular, we take the right-most
membership function (i.e., the one for “poslarge”) on the output universe of
discourse and make it the same shape as the right-most one on the e universe
of discourse (i.e., to saturate at 20 and remain at a value of one for all values
greater than 20). Suppose that the inputs to the fuzzy controller are

e(t) =
d

dt
e(t) = −π

2

at some time t. Repeat (a)–(e) (use minimum to represent both the premise
and implication). Explain any problems that you encounter.

Exercise 2.11 (Graphical Depiction of Fuzzy Decision Making): Develop
a graphical depiction of the operation of the fuzzy controller for the inverted
pendulum similar to the one given in Figure 2.19 on page 50. For this, choose
e(t) = 3π

8
and d

dt
e(t) = π

16
, which will result in four rules being on. Be sure to

show all parts of the graphical depiction, including an indication of your choices
for e(t) and d

dte(t), the implied fuzzy sets, and the final defuzzified value.
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(a) Use minimum for the premise and implication and COG defuzzification.
(b) Use product for the premise and implication and center-average defuzzifica-

tion.

Exercise 2.12 (Fuzzy Controllers as Interpolators): Fuzzy controllers act
as interpolators in the sense that they interpolate between the conclusions that
each individual rule of the rule-base reaches. It is possible to derive formulas that
show exactly how this interpolation takes place; this is the focus of this problem.

Suppose that you are given a single-input, single-output fuzzy system with
input x and output y. Suppose that the input universe of discourse has only two
membership functions. The first one is zero from minus infinity to x = −1. Then
it increases linearly to reach a value of unity when x = 1. From x = 1 out to
plus infinity, the value of the membership function is one. Hence, at x = 0 the
membership function’s value is 0.5. The second membership function is a mirror
image of this one about the vertical axis. That is, at minus infinity it starts at
one and stays there up till x = −1. Then it starts decreasing linearly so that it
has a value of zero by x = 1. There are only two output membership functions,
each of which is a singleton, with one of these centered at y = −1 and the other
centered at y = 1. There are two rules, one that has as a premise the first input
membership function and a consequent of the singleton that is centered at y = −1,
and the other that has as a premise the other input membership function and as
a consequent the output membership function centered at y = 1. Notice that this
fuzzy system is so simple that the input membership functions are the same as
the premise membership functions. Use center-average defuzzification.

(a) Sketch the membership functions. Are the computations used to compute
the output y for an input x any different if we use symmetric triangular
output membership functions centered at ±1? Why?

(b) Show that for x ∈ [−1, 1], y = x. Show that for x ∈ (−∞,−1], y = −1.
Show that for x ∈ [1, +∞), y = 1.

This demonstrates that for this case center-average defuzzification performs a
linear interpolation between the output centers. Other types of fuzzy systems,
such as ones with Gaussian membership functions or COG defuzzification, achieve
different types of interpolations that result in different-shaped functions (e.g., see
the nonlinear control surface in Figure 2.35 on page 89).

Exercise 2.13 (Takagi-Sugeno Fuzzy Systems): In this problem you will
study the way that a Takagi-Sugeno fuzzy system interpolates between linear
mappings. Consider in particular the example from Section 2.3.7 where n = 1,
R = 2, and that we had rules

If ũ1 is Ã1
1 Then b1 = 2 + u1

If ũ1 is Ã2
1 Then b2 = 1 + u1
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with the universe of discourse for u1 given in Figure 2.24 on page 75 so that µ1

represents Ã1
1 and µ2 represents Ã2

1. We have y = b1µ1 + b2µ2.

(a) Show that the nonlinear mapping induced by this Takagi-Sugeno fuzzy sys-
tem is given by

y =




1 + u1 if u1 > 1
0.5u1 + 1.5 if − 1 ≤ u1 ≤ 1
2 + u1 u1 < −1

(Hint: The Takagi-Sugeno fuzzy system represents three lines, two in the
consequents of the rules and one that interpolates between these two.)

(b) Plot y versus u1 over a sufficient range of u1 to illustrate the nonlinear
mapping implemented by the Takagi-Sugeno fuzzy system.

Exercise 2.14 (Fuzzy Controller Simulation): In this problem you will de-
velop a computer program that can simulate a fuzzy controller. You may use the
code available at the web site or ftp site listed in the Preface but you must recode
it (and add comments to the code) to be able to meet the specifications given in
part (a).

(a) Using the approach developed in this chapter, develop a subroutine that
will simulate a two-input, one-output fuzzy controller that uses triangular
membership functions (except at the outermost edges), either the minimum
or the product to represent the “and” in the premise or the implication, and
COG or center-average defuzzification.

(b) Use the rule-base from Table 2.1 on page 32 for the inverted pendulum, let
e(t) = 3π

8 and d
dte(t) = π

16 , and find the output of the fuzzy controller.

2.10 Design Problems
Design Problem 2.1 (Inverted Pendulum: Design and Simulation): In
this problem you will study the simulation of the fuzzy control system for the
inverted pendulum studied in the tutorial introduction to fuzzy control. Use the
model defined in Equation (2.25) on page 78 for the model for the pendulum.
Be sure to use an appropriate numerical simulation technique for the nonlinear
system and a small enough integration step size.

(a) Verify all the simulation results of Section 2.4.1 (i.e., use all the same pa-
rameters as used there and reproduce all the simulation results shown).

(b) Repeat (a) for the case where we use Gaussian membership functions, as
in Exercise 2.3. Use product to represent the premise and implication and
COG defuzzification. This problem demonstrates that changing membership
function shapes and the inference strategy can have a significant impact on
performance. Once you have completed (a) for all its parts, tune the scaling
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gains g0, g1, and h to achieve a performance that is at least as good as that
shown in Figure 2.25 on page 79.

(c) Repeat (a) for the case where we use 49 rules, as in Exercise 2.4(b) (use
triangular membership functions).

(d) Compare the performance obtained in each case. Does switching to the use
of Gaussian membership functions and the product improve performance?
Why? Does the addition of more rules improve performance? Why?

Design Problem 2.2 (Fuzzy Cruise Control): In this problem you will de-
velop a fuzzy controller that regulates a vehicle’s speed v(t) to a driver-specified
value vd(t). The dynamics of the automobile are given by

v̇(t) =
1
m

(−Aρv2(t) − d + f(t))

ḟ(t) =
1
τ

(−f(t) + u(t))

where u is the control input (u > 0 represents a throttle input and u < 0 repre-
sents a brake input), m = 1300 kg is the mass of the vehicle, Aρ = 0.3 Ns2/m2

is its aerodynamic drag, d = 100 N is a constant frictional force, f is the driv-
ing/braking force, and τ = 0.2 sec is the engine/brake time constant. Assume
that the input u ∈ [−1000, 1000] (i.e., that u is saturated at ±1000 N).

(a) Suppose that we wish to be able to track a step or ramp change in the driver-
specified speed value vd(t) very accurately. Suppose that you choose to use
a “PI fuzzy controller” as shown in Figure 2.36. Why does this choice make
sense for this problem? In Figure 2.36 the fuzzy controller is denoted by Φ;
g0, g1, and g2 are scaling gains; and b(t) is the output of the integrator.

Automobile
Σ

v (t)
u(t) v(t)

Fuzzy controller
g
0

g
1

g2

d

b(t)b(t)d
dt

Φ

FIGURE 2.36 PI fuzzy cruise controller.

Find the differential equation that describes the closed-loop system. Let
the state be x = [x1, x2, x3]� = [v, f, b]� and find a system of three first-
order ordinary differential equations that can be used by the Runge-Kutta
method in the simulation of the closed-loop system (i.e., find Fi(x, vd) for
i = 1, 2, 3, in Equation (2.26)). Use Φ to represent the fuzzy controller in
the differential equations.

For the reference input we will use three different test signals:
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1. Test input 1 makes vd(t) = 18 m/sec (40.3 mph) for 0 ≤ t ≤ 10 and
vd(t) = 22 m/sec (49.2 mph) for 10 ≤ t ≤ 30.

2. Test input 2 makes vd(t) = 18 m/sec (40.3 mph) for 0 ≤ t ≤ 10 and
vd(t) increases linearly (a ramp) from 18 to 22 m/sec by t = 25 sec, and
then vd(t) = 22 for 25 ≤ t ≤ 30.

3. Test input 3 makes vd(t) = 22 for t ≥ 0 and we use x(0) = 0 as the
initial condition (this represents starting the vehicle at rest and suddenly
commanding a large increase in speed).

Use x(0) = [18, 197.2, 20]� for test inputs 1 and 2. Why is x(0) = [18, 197.2, 20]�

a reasonable choice for the initial conditions?
Design the fuzzy controller Φ to get less than 2% overshoot, a rise-time

between 5 and 7 sec, and a settling time of less than 8 sec (i.e., reach to
within 2% of the final value within 8 sec) for the jump from 18 to 22 m/sec
in “test input 1” that is defined above. Also, for the ramp input (“test input
2” above) it must have less than 1 mph (0.447 m/sec) steady-state error
(i.e., at the end of the ramp part of the input have less than 1 mph error).
Fully specify your controller (e.g., the membership functions, rule-base de-
fuzzification, etc.) and simulate the closed-loop system to demonstrate that
it performs properly. Provide plots of v(t) and vd(t) on the same axis and
u(t) on a different plot. For test input 3 find the rise-time, overshoot, 2%
settling time, and steady-state error for the closed-loop system for the con-
troller that you designed to meet the specifications for test input 1 and 2. In
your simulations use the Runge-Kutta method and an integration step size
of 0.01.

(b) Next, suppose that you are concerned with tracking a step change in vd(t)
accurately and that you use the PD fuzzy controller shown in Figure 2.37.
To represent the derivative, simply use a backward difference

c(t) =
e(t) − e(t − h)

h

where h is the integration step size in your simulation (or it could be your
sampling period in an implementation).

d
dt

Automobile
Σ

v (t)
u(t) v(t)

Fuzzy controller
g

0

g
1

g
2

d

c(t)

Φ

FIGURE 2.37 PD fuzzy cruise controller.

Design a PD fuzzy controller to get less than 2% overshoot, a rise-time
between 7 and 10 sec, and a settling time of less than 10 sec for test input 1
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defined in (a). Also, for the ramp input (test input 2 in (a)) it must have less
than 1 mph steady-state error to the ramp (i.e., at the end of the ramp part
of the input, have less than 1mph error). Fully specify your controller and
simulate the closed-loop system to demonstrate that it performs properly.
Provide plots of v(t) and vd(t) on the same axis and u(t) on a different plot.
In your simulations use the Runge-Kutta method and an integration step
size of 0.01.

Assume that x(0) = [18, 197.2]� for test inputs 1 and 2 (hence we ignore
the derivative input in coming up with the state equations for the closed-
loop system and simply use the approximation for c(t) that is shown above
so that we have a two-state system). As a final test let x(0) = 0 and use test
input 3 defined in (a). For this, what is the rise-time, overshoot, 2% settling
time, and steady state error for your controller?

(c) Explain the effect of the aerodynamic drag term and how you would redesign
a rule-base to take this effect into account if you used vehicle velocity directly
as an input to the fuzzy controller.

An expanded version of this problem is given in Design Problem 2.4. There, PD
controllers are used, and we show how to turn the cruise control problem into an
automated highway system control problem where the speeds of many vehicles
are regulated so that they can move together as a “platoon.”

Design Problem 2.3 (Fuzzy Control for a Thermal Process): This prob-
lem is used to show how you can get into trouble in fuzzy control design if you
do not understand basic ideas from conventional control or if you do not tune
the controller properly. Suppose that you are given the thermal process shown in
Figure 4.8 on page 209 described in Chapter 4 except that you use the plant

τ (s)
q(s)

=
1

s + 1

(this is a thermal process with slower dynamics than the one in Chapter 4).
Note that q(t) > 0 corresponds to adding heat while q(t) < 0 corresponds to
cooling. Suppose that we wish to track a unit-step input of desired temperature
difference τd with zero steady-state tracking error. Using ideas from conventional
control for linear systems, you would normally first choose to put a pole of the
compensator at zero since this would give you zero steady-state tracking error to
a step input (why?). Next, for a linear control system design you might proceed
with the design of a cascaded lead controller (why?).

Now, rather than designing a linear controller, suppose that you decide to try
a fuzzy controller that has as an output q(t) and inputs g0e(t) and g1ė(t) where
e(t) = τd(t) − τ (t) and g0 and g1 are scaling gains (i.e., a PD fuzzy controller).
That is, you are ignoring that you may need an integrator in the loop to effec-
tively eliminate steady-state tracking error. For the PD fuzzy controller, use the
same membership functions as we did in Figure 2.9 on page 36 for the inverted
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pendulum. Here, however, make the effective universes of discourse for e(t) and
ė(t), [−1, 1] and [−0.5, 0.5], respectively, and the effective universe of discourse
for q(t), [−20, 20] (i.e., the exact same output membership functions as for the
inverted pendulum in Figure 2.9 on page 36). Use minimum for the premise and
implication and COG defuzzification. For the rule-base we simply modify the one
used in Table 2.1 on page 32 for the inverted pendulum: Specifically, simply mul-
tiply each element of the body of Table 2.1 by −1 and use the resulting rule-base
table as a rule-base for the PD fuzzy controller (this shows one case where you
can reuse rule-bases in a convenient manner). Why is this a reasonable choice for
a rule-base? To explain this, compare it to the pendulum’s rule-base and explain
the meaning of a few of the new rules for the thermal process.

(a) Design a linear controller that will result in zero steady-state tracking error
for the step input, minimize the rise time, achieve less than 5% overshoot,
and try to minimize the settling time (treat the tracking error and rise-time
specifications as your primary objectives, and the overshoot and settling
time as your secondary objectives). Simulate the control system you design,
and provide plots of τ versus t to verify that you meet the desired objectives.

(b) Simulate the fuzzy control system using the PD fuzzy controller described
above. Plot q(t) and τ (t) and discuss the results. Use the Runge-Kutta
method for simulation with an integration step size of 0.0005 and zero initial
conditions.

(c) Even though it may be more appropriate to use a PI fuzzy controller, you
can tune the PD fuzzy controller to try to meet the above specifications.
Tune the PD fuzzy controller by changing the scaling gains g0 and g1 to
meet the same objectives as stated in (a). Compare the results from (a) and
(b).

(d) Is it fair to compare the linear and fuzzy controllers? Which uses more
computations? Is nonlinear control (fuzzy control) really needed for this
linear plant?

Design Problem 2.4 (Fuzzy Control for an Automated Highway System)�:12

Due to increasing traffic congestion, there has been a renewed interest in the de-
velopment of an automated highway system (AHS) in which high traffic flow rates
may be safely achieved. Since many of today’s automobile accidents are caused
by human error, automating the driving process may actually increase safety
on the highway. Vehicles will be driven automatically with on-board lateral and
longitudinal controllers. The lateral controllers will be used to steer the vehicles
around corners, make lane changes, and perform additional steering tasks. The
longitudinal controllers will be used to maintain a steady velocity if a vehicle
is traveling alone (conventional cruise control), follow a lead vehicle at a safe

12. Reminder: Exercises or design problems that are particularly challenging (considering how
far along you are in the text) or that require you to help define part of the problem are

designated with a star (“�”).
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distance, or perform other speed/tracking tasks. For more details on intelligent
vehicle highway systems see [53] and [185, 186].

The dynamics of the car-following system for the ith vehicle may be described
by the state vector Xi = [δi, vi, fi]�, where δi = xi − xi−1 is the intervehicle
spacing between the ith and i − 1st vehicles, vi is the ith vehicle’s velocity, and
fi is the driving/braking force applied to the longitudinal dynamics of the ith

vehicle. The ith vehicle follows vehicle i − 1. The longitudinal dynamics may be
expressed as

δ̇i = vi − vi−1 (2.30)

v̇i =
1

mi

(
−Aρv2

i − di + fi

)
(2.31)

ḟi =
1
τi

(−fi + ui) (2.32)

where ui is the control input (if ui > 0, it represents a throttle input, while if ui <
0, it represents a brake input), and mi = 1300 kg is the mass of all the vehicles,
Aρ = 0.3 Ns2/m2 is the aerodynamic drag for all the vehicles, di = 100 N is a
constant frictional force for all the vehicles, and τi = 0.2 sec is the engine/brake
time constant for all the vehicles.

The reference input is r(t) = 0. The plant output is yi = δi +λivi, and we want
yi → 0 for all i. This is a “velocity-dependent headway policy.” As the velocity of
the ith vehicle increases, the distance between the ith and i − 1st vehicles should
increase. A standard good driving rule for humans is to allow an intervehicle
spacing of one vehicle length per 10 mph of velocity (this roughly corresponds to
λi = 0.9 for all i).

Suppose that we wish to design a controller for each vehicle that is to be put
in the AHS that will achieve good tracking with no steady state error. In fact,
our goal is to make the system react as a first-order system with a pole at −1
would to a unit-step input. Suppose that the lead vehicle is commanded to have
a speed of 18 m/sec for 20 sec, then switch to 22 m/sec for 20 sec, then back to
18 m/sec and repeat the alternation between 18 and 22 m/sec for a total of 300
sec.

(a) Assume that there are only two vehicles in the AHS and that you implement
a controller on the following vehicle that will regulate the intervehicle spac-
ing. Design a PD controller that will achieve the indicated specifications.
For your PD controller use

ei(t) = r(t) − yi(t)

and

ui(t) = Kpiei(t) + Kdi

d

dt
ei(t)
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(b) Repeat (a) except use a fuzzy controller.

(c) Repeat (a) except use a sliding-mode controller.

(d) Compare the performance of the controllers and make recommendations on
which one should be used. Be careful to tune each of the controllers as well
as you can so that you will feel confident about your recommendation of
which approach to use.

(e) Repeat (a)–(d) for five vehicles all with different masses, aerodynamic drags,
and engine/brake time constants.

Design Problem 2.5 (Fuzzy Control for a Magnetic Ball Suspension
System)�: See the model of the magnetic ball suspension system shown in
Figure 6.19 on page 366 in Chapter 6.

(a) Use the linear model given in Chapter 6 to design a linear controller that
achieves zero steady-state tracking error and a fast rise-time with as little
overshoot as possible. Demonstrate that the controller works properly for the
linear plant model. Next, investigate how it performs for the nonlinear plant
model (you may need to pick a reference input that is small in magnitude
when you test your system in simulation with the nonlinear plant model).

(b) Repeat (a) but design a conventional nonlinear controller for the nonlinear
model of the system.

(c) Repeat (b) except use a fuzzy controller.

(d) Compare the performance of the fuzzy and conventional linear and nonlinear
controllers. Be careful to tune each of the controllers as well as you can so
that you will feel confident about your recommendation of which approach
to use.

Design Problem 2.6 (Fuzzy System Design for Basic Math Operations)�:
In a PD controller, the plant input is generated by scaling the error and deriva-
tive of the error and summing these two values. A fuzzy controller that uses the
error and derivative of the error as inputs can be designed to perform a similar
scaling and summing operation (a linear operation), at least locally. For example,
in the inverted pendulum problem we actually achieve such a scaling and sum-
ming operation with the fuzzy controllers that we designed (provided that the
fuzzy controller input signals are small). The scaling is actually achieved by the
scaling gains, and the summing operation is achieved by the rule-base (recall that
the pattern of the consequent linguistic-numeric values in Table 2.1 on page 32
is achieved by adding the linguistic-numeric values associated with each of the
inputs, taking the negative of the result, and saturating their values at +2 or
−2). We see that fuzzy systems are capable of performing basic mathematical
operations, at least on a region of their input space.
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(a) Suppose that there are two inputs to the fuzzy system, x and y, and one
output, z. Define a fuzzy system that can add two numbers that lie within
the regions x ∈ [−2, 2] and y ∈ [−1, 1]. Plot the three-dimensional nonlinear
surface induced by the fuzzy system.

(b) Repeat (a) for subtraction.

(c) Repeat (a) for multiplication.

(d) Repeat (a) for division.

(e) Repeat (a) for taking the maximum of two numbers.

(f) Repeat (a) for taking the minimum of two numbers.



118 Chapter 2 / Fuzzy Control: The Basics



C H A P T E R 3

Case Studies
in Design

and Implementation
Example is the school of mankind.

–Edmund Burke

3.1 Overview
As indicated in Chapters 1 and 2, there is no generally applicable systematic
methodology for the construction of fuzzy controllers for challenging control ap-
plications that is guaranteed to result in a high-performance closed-loop control
system. Hence, the best way to learn the basics of how to design fuzzy controllers
is to do so yourself—and for a variety of applications. In this chapter we show how
to design fuzzy controllers for a variety of applications in a series of case studies.
We then include at the end of the chapter a variety of design problems that the
reader can use to gain experience in fuzzy control system design.

Despite the lack of a general systematic design procedure, by reading this chap-
ter you will become convinced that the fuzzy control design methodology does
provide a way to design controllers for a wide variety of applications. Once the
methodology is understood, it tends to provide a “way to get started,” a “way to
at least get a solution,” and often a “way to quickly get a solution” for many types
of control problems. Indeed, we have found that if you focus on one application, a
(somewhat) systematic design methodology for that application seems to emerge
from the fuzzy control approach. While the procedure is typically closely linked
to application-specific concepts and parameters and is therefore not generally ap-
plicable to other plants, it does often provide a very nice framework in which the
designer can think about how to achieve high-performance control.

119
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You must keep in mind that the fuzzy controller has significant functional ca-
pabilities (recall the universal approximation property described in Section 2.3.8 on
page 77) and therefore with enough work the designer should be able to achieve just
about anything that is possible in terms of performance (up to the computational
limits of the computer on which the controller is implemented). The problem is that
just because the controller can be tuned does not mean that it is easy to tune, or
that the current framework in which you are tuning will work (e.g., you may not
be using the proper preprocessing of the fuzzy controller inputs or enough rules).
We have found that while for some applications fuzzy control makes it easy to “do
what makes sense” in terms of control, in others high performance is achieved only
after a significant amount of work on the part of the control designer, who must get
the best knowledge on how to control the system into the rule-base, which often
can only occur by understanding the physics of the process very well.

Ultimately, the reader should always remember that the fuzzy control design
process is nothing more than a heuristic technique for the synthesis of nonlinear
controllers (there is nothing mystical about a fuzzy controller). For each of the case
studies and design problems, the reader should keep in mind that an underlying
nonlinearity is being shaped in the design of a fuzzy controller (recall that we showed
the nonlinear surface that results from a fuzzy controller in Figure 2.35 on page 89).
The shape of this nonlinearity is what determines the behavior of the closed-loop
system, and it is the task of the designer to get the proper control knowledge into
the rule-base so that this nonlinearity is properly shaped.

Conventional control provides a different approach to the construction of non-
linear controllers (e.g., via feedback-linearization or sliding-mode control). When
you have a reasonably good model of the plant, which satisfies the necessary
assumptions—and even sometimes when it does not (e.g., for some PID controllers
that we design with no model or a very poor one)—then conventional control can
offer quite a viable solution to a control problem. Indeed, conventional control is
more widely used than fuzzy control (it is said that more than 90% of all controllers
in operation are PID controllers), and for a variety of reasons may be a more viable
approach (see Chapters 1 and 8 for more discussion on the relative merits of fuzzy
versus conventional control). Due to the success of conventional control, we place
a particular emphasis in this book on comparative analysis of fuzzy versus conven-
tional control; the reader will see this emphasis winding its way through the case
studies and design problems in this chapter. We believe that it is unwise to ignore
past successes in control in the excitement over trying fuzzy control.

In this chapter we begin, in Section 3.2, by providing an overview of a gen-
eral methodology for fuzzy controller design (including issues in computer-aided
design) and then show how to design fuzzy controllers for a variety of challenging
applications: a two-link flexible robot, a rotational inverted pendulum, a machine
scheduling problem, and fuzzy decision-making systems. In each case study we have
a specific objective in mind:

1. Vibration damping for a flexible-link robot (Section 3.3): Here, we illustrate
the basic strength of the fuzzy control methodology, which is to use heuristic
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information about how to achieve high-performance control. We explain in a
series of steps how to quantify control knowledge in a fuzzy controller and
show how performance can be subsequently improved. Moreover, we provide
experimental results in each case and especially highlight the importance of
understanding the physics of the underlying control problem so that appropriate
control rules can be designed. In Chapters 6 and 7 we will study adaptive and
supervisory fuzzy control techniques for this problem, and achieve even better
performance than in this chapter, even for the case where a mass is added to
the second link’s endpoint.

2. Rotational inverted pendulum (Section 3.4): In this case study we first design
a conventional linear controller for balancing the pendulum. Then we intro-
duce a general procedure for incorporating these conventional control laws into
a fuzzy controller. In this way, for small signals the fuzzy controller will act
like a well-designed linear controller, and for larger signals the fuzzy controller
nonlinearity can be shaped appropriately. Experimental results are provided to
compare the conventional and fuzzy control approaches. In Chapter 6 we show
how an adaptive fuzzy controller can be used to achieve very good balancing
performance even if a sealed bottle half-filled with water is attached to the
pendulum endpoint to create a disturbance.

3. Machine Scheduling (Section 3.5): Here, we show how a fuzzy controller can
be used to schedule part processing in a simple manufacturing system. This
case study is included to show how a fuzzy system has wide applicability since
it can be used as a very general decision maker. Comparisons are made to
conventional scheduling methods to try to uncover the advantages of fuzzy
control. In Chapter 6 we extend the basic approach to provide an adaptive
scheduler that can reconfigure itself to maintain throughput performance even
if there are unpredictable changes in the machine.

4. Fuzzy decision-making systems (Section 3.6): In this case study we explain
the various roles that fuzzy systems can serve in the implementation of general
decision-making systems. Then we show how to construct fuzzy decision-making
systems for providing warnings of the spread of an infectious disease and failure
warnings for an aircraft. This case study is used to show that fuzzy systems
have broad applicability outside the area of traditional feedback control.

When you complete this chapter, you will have solidified your understanding of
the general fuzzy control system design methodology over that which was presented
in Chapter 2 for the academic inverted pendulum design problem. Also, you will
have gained an understanding of how to design fuzzy controllers for three specific
applications and fuzzy decision-making systems for several applications.

As indicated above, the case studies in this chapter will actually be used
throughout the remainder of the book. In particular, they will be used in Chapter 6
on adaptive fuzzy control and Chapter 7 on fuzzy supervisory control. Moreover,
they will be used as design problems in this and these later chapters. Hence, you
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will want to at least skim the case studies if you are concerned with understanding
the corresponding later case studies where we will use adaptive and supervisory
control for the same plants. However, the reader who wants to learn techniques
alone and is not as concerned with applications and implementations can skip this
chapter.

3.2 Design Methodology
In Chapter 2 we provided an introduction to how to design fuzzy controllers, and
several basic guidelines for their design were provided in Section 2.4.4 on page 89.
Here, we provide an overview of the design procedure that we have in mind when
we construct the fuzzy controllers for the first two case studies in this chapter. Our
methodology is as follows:

1. Try to understand the behavior of the plant, how it reacts to inputs, what
are the effects of disturbances, and what fundamental limitations it presents
(e.g., nonminimum phase or unstable behavior). A clear understanding comes
from studying the physics of the process, developing mathematical models, us-
ing system identification methods, doing analysis, performing simulations, and
using heuristic knowledge about the plant dynamics. The analysis could in-
volve studying stability, controllability, or observability of the plant; how fast
the plant can react to various inputs; or how noise propagates in the dynam-
ics of the process (e.g., via stochastic analysis). The heuristic knowledge may
come from, for example, a human operator of the process or a control engi-
neer. Sometimes, knowledge of the plant’s behavior comes from actually trying
out a controller on the system (e.g., a PID, lead-lag, state-feedback, or fuzzy
controller).

2. Gain a clear understanding of the closed-loop specifications (i.e., the perfor-
mance objectives). These may be stated in terms of specifications on stability,
rise-time, overshoot, settling time, steady-state error, disturbance rejection, ro-
bustness, and so on. You should make sure that the performance objectives are
reasonable and achievable, and that they properly characterize exactly what is
desired in terms of closed-loop behavior.

3. Establish the basic structure of the control system (here we assume that a
“direct” (nonadaptive) controller is used). This will establish what the plant
and controller inputs and outputs should be.

4. Perform an initial control design. This may be with a simple PID controller,
some other linear technique (e.g., lead-lag compensation or state feedback), or
a simple fuzzy controller (often you should first try a fuzzy PD, PI, or PID
controller). For some basic ideas on how to design fuzzy controllers, see Chap-
ter 2, Section 2.4.4 on page 89. The basic approaches include (a) inclusion of
good control knowledge, (b) tuning the scaling gains, (c) tuning the member-
ship functions, and (d) adding more rules or membership functions. Work hard
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to tune the chosen method. Evaluate if the performance objectives are met via
simulations or mathematical analysis (such as that found in Chapter 4) if you
have a model.

5. If your simple initial approach to control is successful, begin working on an
implementation. If it is not successful, first make sure that you are using solid
control engineering ideas to pick the “nonfuzzy” part of the controller (e.g.,
the preprocessing of fuzzy controller inputs by choosing to use an integrator to
try to remove steady-state error). If this does not work, consider the following
options:

• A more sophisticated conventional control method (e.g., feedback-linearization
or sliding-mode control).

• A more sophisticated fuzzy controller. You may need more inputs to the
fuzzy controller or more rules in the rule-base. You should carefully con-
sider if you have loaded the best knowledge about how to control the
process into the rule-base (often, the problem with tuning a fuzzy con-
troller boils down to a basic lack of understanding of how best to control
the plant and the corresponding lack of knowledge in the rule-base).

• Try designing the fuzzy controller by using a well-designed linear control
technique to specify the general shape of the control surface (especially
around zero) and then tune the surface starting from there (this approach
is illustrated in this chapter for the rotational inverted pendulum).

• Conventional or fuzzy adaptive or supervisory control approaches (see
Chapters 6 and 7).

Work hard to tune the chosen method. Evaluate if the performance objectives
are met.

6. Repeat the above process as often as necessary, evaluating the designs in sim-
ulation and, if possible, implementation. When you have met the performance
objectives for the implementation, you will likely have additional work including
“burn-in” tests, marketing analyses, cost analyses, and other issues (of course,
several of these will have to be considered much earlier in the design process).

Computer-aided design (CAD) packages are designed to try to help automate
the above process. While we recommend that you strongly consider their use, we
must reemphasize that it is best to first know how to program the fuzzy controller
in a high-level language before moving on to the use of CAD packages where the
user can be removed from understanding the low-level details of the operation of
fuzzy systems. Once fuzzy systems are well understood, you can use one of the
existing packages (e.g., the one currently in Matlab) or design a package on your
own. However, you should not dismiss the importance of knowing how to code a
fuzzy controller on your own. Often this is necessary for implementation anyway
(e.g., in C or assembly language).
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3.3 Vibration Damping for a Flexible Robot
For nearly a decade, control engineers and roboticists alike have been investigating
the problem of controlling robotic mechanisms that have very flexible links. Such
mechanisms are important in space structure applications, where large, lightweight
robots are to be utilized in a variety of tasks, including deployment, spacecraft
servicing, space-station maintenance, and so on. Flexibility is not designed into the
mechanism; it is usually an undesirable characteristic that results from trading off
mass and length requirements in optimizing effectiveness and “deployability” of the
robot. These requirements and limitations of mass and rigidity give rise to many
interesting issues from a control perspective.

In this section we present a design case study that makes use of previous expe-
rience in the modeling and control of a two-link planar flexible robot. First, though,
we provide some motivation for why you would want to consider using fuzzy control
for the robot.

The modeling complexity of multilink flexible robots is well documented, and
numerous researchers have investigated a variety of techniques for representing flex-
ible and rigid dynamics of such mechanisms. Equally numerous are the works ad-
dressing the control problem in simulation studies based on mathematical models,
under assumptions of perfect modeling. Even in simulation, however, a challenging
control problem exists; it is well known that vibration suppression in slewing me-
chanical structures whose parameters depend on the configuration (i.e., are time
varying) can be extremely difficult to achieve. Compounding the problem, numer-
ous experimental studies have shown that when implementation issues are taken
into consideration, modeling uncertainties either render the simulation-based con-
trol designs useless, or demand extensive tuning of controller parameters (often in
an ad hoc manner).

Hence, even if a relatively accurate model of the flexible robot can be developed,
it is often too complex to use in controller development, especially for many control
design procedures that require restrictive assumptions for the plant (e.g., linearity).
It is for this reason that conventional controllers for flexible robots are developed
either (1) via simple crude models of the plant behavior that satisfy the necessary
assumptions (e.g., the model we develop below), or (2) via the ad hoc tuning of
linear or nonlinear controllers. Regardless, heuristics enter the design process when
the conventional control design process is used.

It is important to emphasize, however, that such conventional control-engineering
approaches that use appropriate heuristics to tune the design have been relatively
successful. For a process such as a flexible robot, you are left with the following
question: How much of the success can be attributed to the use of the mathe-
matical model and conventional control design approach, and how much should be
attributed to the clever heuristic tuning that the control engineer uses upon im-
plementation? While control engineers have a relatively good understanding of the
capabilities of conventional mathematical approaches to control, much less is un-
derstood about whether or not control techniques that are designed to exploit the
use of heuristic information (such as fuzzy control approaches) can perform better



3.3 Vibration Damping for a Flexible Robot 125

than conventional techniques.
In this section we show that fuzzy control can, in fact, perform quite well for

a particular two-link flexible robot. In Chapters 6 and 7 we will show how to use
adaptive and supervisory fuzzy control for this same mechanism. These methods
build on the direct fuzzy control methods studied in this chapter and provide the
best controllers developed for this experiment to date (including many conventional
methods).

3.3.1 The Two-Link Flexible Robot
In this section we describe the laboratory test bed, the control objectives, and how
the robot reacts to open-loop control.

Laboratory Test Bed

The two-link flexible robot shown in Figure 3.1 consists of three main parts: (1)
the robot with its sensors, (2) the computer and the interface to the robot, and
(3) the camera with its computer and interface. The robot is made up of two very
flexible links constrained to operate in the horizontal plane. The “shoulder link” is a
counterbalanced aluminum strip that is driven by a DC direct-drive motor with an
input voltage v1. The “elbow link,” which is mounted on the shoulder link endpoint,
is a smaller aluminum strip. The actuator for the elbow link is a geared DC motor
with an input voltage v2. The sensors on the robot are two optical encoders for
the motor shaft positions Θ1 and Θ2, and two accelerometers mounted on the link
endpoints to measure the accelerations a1 and a2.

Camera

a 1

a 2 Θ
2

Θ1

v1

v 2

Camera data
acquisition
computer

Control computer

Motor voltage
Amplifier Cards

Encoder
Interface

Camera
interface

Light
source Elbow link

Shoulder link Counterbalance

FIGURE 3.1 Two-link flexible robot setup (figure taken from
[145], c© IEEE).

A line scan camera is used to monitor the endpoint position of the robot for
plotting; this data is not used for feedback. The sampling period used for all sensors
and control updates is 15 milliseconds (ms). For comparative purposes, we use the
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camera data for robot movements that begin in some position and end in a fully
extended position, to approximate equal movements in each joint. When responses
are plotted, the final endpoint position is nominally indicated (on the plot) to reflect
(approximately) the total movement, in degrees, of the shoulder joint.

Objectives and Open-Loop Control

The primary objective of this case study is to develop a controller that makes
the robot move to its desired position as quickly as possible, with little or no
endpoint oscillation. To appreciate the improvement in the plant behavior due to
the application of the various control strategies, we will first study how the robot
operates under the “no control” situation; that is, when no external digital control
algorithm is applied for vibration compensation. To implement the no control case,
we simply apply v1 = v2 = 0.3615 volts at t = 0 seconds and return v1 and v2 to zero
voltages as soon as the links reach their set-points. Note that for this experiment
we monitor the movement of the links but do not use this information as feedback
for control.

The results of the “no control” experiment are plotted in Figure 3.2, where the
endpoint position shows a significant amount of endpoint oscillation. As is typical
in mechanisms of this sort, inherent modal damping is present. It is well known
that the effect of mass-loading a slewing flexible beam is to reduce the modal
frequencies and this is indeed the case for this experiment. Indeed, when a 30-gram
payload is attached to the robot endpoint, the first modal frequency of the second
link (endpoint) reduces significantly. This effect causes performance degradation in
fixed, linear controllers. In Figure 3.2, as in all plots to follow, endpoint position
refers to the position of the elbow link endpoint. Note that the inset shown in
Figure 3.2 depicts the robot slew employed. The two dashed lines describe the
initial position of the links. The arrows show the direction of movement, and the
solid line shows the final position of the links. Hence, for this open-loop experiment,
we wanted 90 degrees of movement in each link. In the ideal case the shaft should
stop moving the instant the voltage signal to the motor amplifier is cut off. But
the arm had been moving at a constant velocity before the signal was cut off, and
thus had a momentum that dragged the shaft past the angle at which it was to
stop. This movement depends on the speed at which the arm was moving, which in
turn depends on the voltage signal applied. Clearly, there is a significant need for
vibration damping in endpoint positioning.

Quantitatively speaking, in terms of step-type responses (for motions through
large angles in each joint), the control objectives are as follows: system settling
(elimination of residual vibrations in endpoint position) within 2 seconds of mo-
tion initiation, and overshoot minimized to less than 5% deviation from the final
desired position. In addition, we wish to achieve certain qualitative aspects such as
eliminating jerky movements and having smooth transitions between commanded
motions.
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FIGURE 3.2 Endpoint position: “No control” response
(figure taken from [145], c© IEEE).

Model

While it is difficult to produce an accurate model of the two-link robot using mod-
eling based on first principles, it is possible to perform system identification studies
for this system to produce approximate linear models. Working along these lines,
the authors in [243] developed linear models for the two-link flexible robot. In par-
ticular, random inputs were injected via the voltage inputs, data was gathered at
the outputs, and a least squares method was used to compute the parameters of
linear models. Several experiments had to be performed since there are two inputs
and four outputs. To identify transfer functions from the inputs to the shaft ve-
locity and endpoint acceleration for the shoulder link, the elbow link was initially
fixed at a 180-degree angle (directly in line) with the shoulder link. While voltage
was applied to one link it was set to zero for the other link so that it would not be
commanded to move from its initial position. The sampling period for these sys-
tem identification experiments is 20 ms (note that this is different from the 15-ms
sampling period used in our control implementation studies to follow). Note that
the joint angles Θ1 and Θ2 must lie in a ±250-degree range, and v1 and v2 must lie
in a range of ±5 volts (the values are saturated beyond this point). The saturation
constraints should be considered part of the model (so that the resulting model is
nonlinear).

Let ω1 and ω2 denote the shaft velocity of the shoulder and elbow joints, re-
spectively. The models produced by the system identification experiments in [243]
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are given by

ω1

v1
=

−0.0166(z − 0.6427± j1.2174)(z − 1.4092)
(z − 0.7385± j0.6288)(z − 0.8165± j0.2839)

(3.1)

ω2

v2
=

−0.1(z − 1.8062± j1.7386)(z + 0.9825)
(z − 0.7158± j0.615)(z − 0.8377± j0.2553)

These equations provide models for relating voltages to velocities, but we actually
need the models for relating voltages to positions. To get these, you can simply
use a discrete approximation to an integrator (using a sampling period of 20 ms)
concatenated with the models for velocities to obtain the positions Θ1 and Θ2.

The transfer functions that describe how the motor voltages affect the endpoint
accelerations a1 and a2 were determined in a similar way in [243] and are given by

a1

v1
=

0.1425(z − 0.9589± j0.9083)(z − 1.7945)
(z − 0.7521± j0.573)(z − 0.9365± j0.139)

a2

v2
=

−0.228(z − 1.5751)(z − 1.2402)
(z − 0.9126)(z − 0.8387± j0.4752)

Experiments showed that lower-order models resulted in less accurate models and
higher-order ones did not seem to make any of the above models more accurate.
Simple inspection of the root locations in the z-plane shows that parts of the dy-
namics are especially lightly damped, which characterizes the vibration damping
challenge for this problem.

Notice that we are ignoring certain cross-coupling effects in the model (e.g.,
how v1 combined with v2 will affect a2); the effect of the movement of the modes,
and hence plant parameters, due to mass-loading (these models are for a robot that
is not mass-loaded); the effects of the position of one link on the model used for
the other link; dead-zone nonlinearities due to the gearbox on the elbow motor;
and many other characteristics. It is for these reasons that this model cannot be
expected to be a perfectly accurate representation of the two-link robot. It is correct
only under the experimental conditions outlined above. We present the model here
mainly to give the reader an idea of the type of dynamics involved in this experiment
and to use these models in a design problem at the end of the chapter.

We would like to emphasize that models that accurately characterize the cou-
pling effects between the two links are particularly difficult to develop. This has
significant effects on what is possible to illustrate in simulation, relative to what
can be illustrated in implementation. For instance, in the two following subsections
we will show that while an “uncoupled controller” (i.e., one where there are separate
controllers for the shoulder and elbow links) performs adequately in implementa-
tion, significant performance improvements can be obtained by using some heuristic
ideas about how to compensate for some of the coupling effects between the links
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(e.g., how v2 for the elbow link should be changed based on the acceleration a1 of
the shoulder link so that the effects of the movement of the shoulder link on the
elbow link can be tailored so that the endpoint vibrations can be reduced).

We have used least squares methods to identify linear models that attempt to
characterize the coupling between the two links; however, we were not able to make
these accurate enough so that a coupled controller developed from these models
would perform better than those developed as uncoupled controllers without this
information. Hence, the case study that follows is a good example of the case where
heuristic ideas about how to control a system proved to be more valuable than the
models we were able to produce for the system (and significantly less work was
needed to specify the heuristic ideas about compensating for coupling effects than
what it took to try to construct models and develop controllers based on these).

3.3.2 Uncoupled Direct Fuzzy Control
In this section and the next we investigate the use of two types of direct fuzzy
controllers for the flexible robot, one that uses information about the coupling
effects of the two links (coupled direct fuzzy control) and one that does not use
such information (uncoupled direct fuzzy control). The design scenario we present,
although specific to the flexible robot test bed under study, may be viewed as
following a general philosophy for fuzzy controller design where we are concerned
with loading good control knowledge into the rule-base.

For uncoupled direct fuzzy control, two separate controllers are implemented,
one for each of the two links. Each controller has two inputs and one output, as
shown in Figure 3.3. The term uncoupled is used since the controllers operate in-
dependent of each other. No information is transferred between the shoulder and
elbow motor controllers. We thus consider the robot to be made up of two separate
single-link systems. In Figure 3.3, Θ1d and Θ2d denote the desired positions of the
shoulder and elbow links, respectively, and Θ1(t) and Θ2(t) denote their position
at time t, as measured from the optical encoders. The inputs to the shoulder link
controller are the position error of the shoulder motor shaft e1(t) = Θ1d − Θ1(t),
and the acceleration information a1(t) from the shoulder link endpoint. The out-
put of this controller is multiplied by the output gain gv1 to generate the voltage
signal v1(t) that drives the shoulder motor amplifier. The inputs to the elbow link
controller are the elbow motor shaft position error e2(t) = Θ2d − Θ2(t) and the
acceleration information from the elbow link endpoint a2(t). The output of this
controller is multiplied by the output gain gv2 to generate the voltage signal v2(t)
that drives the elbow motor amplifier. We did experiment with using the change
in position error of each link as an input to each of the link controllers but found
that it significantly increased the complexity of the controllers with very little, if
any, improvement in overall performance; hence we did not pursue the use of this
controller input. Typically, we use filtered signals from the accelerometers, prior to
processing, to enhance their effectiveness.
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FIGURE 3.3 Fuzzy control system for uncoupled controller
(figure taken from [145], c© IEEE).

Fuzzy Controller Design

The input and output universes of discourse of the fuzzy controller are normalized
on the range [−1, 1]. The gains ge1, ge2, ga1 and ga2 are used to map the actual inputs
of the fuzzy system to the normalized universe of discourse [−1, 1] and are called
normalizing gains, as was discussed in Chapter 2, Exercise 2.9 on page 107. Similarly
gv1 and gv2 are the output gains that scale the output of the controllers. We use
singleton fuzzification and center of gravity (COG) defuzzification throughout this
case study, and the minimum operator to represent the premise and implication.

The shoulder controller uses triangular membership functions, as shown in Fig-
ure 3.4. Notice that the membership functions for the input fuzzy sets are uniform,
but the membership functions for the output fuzzy sets are narrower near zero.
This serves to decrease the gain of the controller near the set-point so we can ob-
tain a better steady-state control (since we do not amplify disturbances around the
set-point) and yet avoid excessive overshoot (i.e., we have a nonlinear (nonuniform)
spacing of the output membership function centers). The membership functions for
the elbow controller are similar but have different center values for the membership
functions as they use different universes of discourse than the shoulder controller.
For the shoulder controller, the universe of discourse for the position error is cho-
sen to be [−250, +250] degrees. Recall from Chapter 2 that we sometimes refer to
[X, Y ] as being the universe of discourse while in actuality the universe of discourse
is made up of all real numbers (e.g., in Figure 3.4 we will refer to the universe of
discourse of e1(t) as [−250, +250]). In addition, will refer to Y − X as being the
“width” of the universe of discourse (so that the width of the universe of discourse
[−250, +250] is 500). Recall also that by specifying the width for the universes of
discourse, we are also specifying the corresponding scale factor. For example, if
the input universe of discourse for e1(t) is [−250, +250], then ge1 = 1

250
, and if

the output universe of discourse for v1(t) is [−0.8, +0.8], then gv1 = 0.8. The uni-
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verse of discourse for the endpoint acceleration of the shoulder link is [−4, +4] g.
This width of 8 g was picked after experimentation with different slews at different
speeds, upon observing the output of the acceleration sensor. The output universe
of discourse of [−0.8, +0.8] volts was chosen so as to keep the shaft speed within
reasonable limits.
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FIGURE 3.4 Membership functions for the shoulder controller
(figure taken from [145], c© IEEE).

For the elbow motor controller, the universe of discourse for the error input is set
to [−250, +250] degrees. This motor is mounted on the shoulder link endpoint and
the link movement is limited by the shoulder link. The universe of discourse for the
acceleration input is set to [−8, +8] g, which was picked after several experiments.
The universe of discourse for the output of the elbow controller is [−5, +5] volts.
This universe of discourse is large compared to the shoulder link as this motor is a
geared-head motor with a 30:1 reduction in the motor to the output shaft speed.

The rule-base array that we use for the shoulder controller is shown in Table 3.1,
and for the elbow link, in Table 3.2. Each rule-base is an 11×11 array, as we have 11
fuzzy sets on the input universes of discourse. The topmost row shows the indices for
the eleven fuzzy sets for the acceleration input a1, and the column at the extreme
left shows the indices for the eleven fuzzy sets for the position error input e1. The
bodies of the tables in Tables 3.1 and 3.2 show the indices m for V m

1 in fuzzy
implications of the form

If Ej
1 and Ak

1 Then V m
1

where Ej
i , Aj

i , and V j
i denote the jth fuzzy sets associated with ei, ai, and vi,

respectively (i = 1, 2;−5 ≤ j ≤ +5). The number of rules used for the uncoupled
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direct fuzzy controller is 121 for the shoulder controller, plus another 121 for the
elbow controller, giving a total of 242 rules.

What is the rationale for these choices for the rule-bases? First, notice the
uniformity of the indices in Tables 3.1 and 3.2. For example, for Table 3.1 if there is
a positive error e1(t) > 0 and a positive acceleration a1(t) > 0, then the controller
will input a positive voltage v1(t) > 0, since in this case the link is not properly
aligned but is moving in the proper direction. As the error (e1(t) > 0) decreases,
and the acceleration (a1(t) > 0) decreases the controller applies smaller voltages
to try to avoid overshoot. The other part of Table 3.1 and all of Table 3.2 can be
explained in a similar way. Next, notice that for row j = 0 there are three zeros in
the center of both Tables 3.1 and 3.2. These zeros have been placed so as to reduce
the sensitivity of the controller to the noisy measurements from the accelerometer.
Via the interpolation performed by the fuzzy controller, these zeros simply lower
the gain near zero to make the controller less sensitive so that it will not amplify
disturbances.

TABLE 3.1 Rule-Base for Shoulder Link

Ak
1

V m
1 −5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −5 −5 −5 −4 −4 −3 −3 −2 −2 −1 0
−4 −5 −5 −4 −4 −3 −3 −2 −2 −1 0 1
−3 −5 −4 −4 −3 −3 −2 −2 −1 0 1 2
−2 −4 −4 −3 −3 −2 −2 −1 0 1 2 2
−1 −4 −3 −3 −2 −2 −1 0 1 2 2 3

Ej
1 0 −4 −3 −2 −1 0 0 0 1 2 3 4

1 −3 −2 −2 −1 0 1 2 2 3 3 4
2 −2 −2 −1 0 1 2 2 3 3 4 4
3 −2 −1 0 1 2 2 3 3 4 4 5
4 −1 0 1 2 2 3 3 4 4 5 5
5 0 1 2 2 3 3 4 4 5 5 5

Experimental Results

The endpoint position response for the uncoupled fuzzy controller is shown in Fig-
ure 3.5. The robot was commanded to slew 90 degrees for each link from the initial
position (shown by the dashed lines in the inset) to its fully extended position
(shown by the solid lines). Other “counterrelative” and small-angle movements
produced similar results in terms of the quality of the responses. From the plot
in Figure 3.5, we see that the magnitude of the endpoint oscillations is reduced
as compared to the “no control” case, and the settling time is also improved (see
Figure 3.2 on page 127). In the initial portion of the response (between 0.8 and 2.0
sec), we see large oscillations due to the fact that the controllers are uncoupled.
That is, the shoulder link comes close to its set-point at around 0.9 seconds but
is still traveling at a high speed. When the controller detects this, it tries to cut
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TABLE 3.2 Rule-Base for Elbow Link

Ak
2

V m
2 −5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −5 −5 −4 −4 −3 −3 −3 −2 −2 −1 0
−4 −5 −4 −4 −3 −3 −3 −2 −2 −1 0 1
−3 −4 −4 −3 −3 −3 −2 −2 −1 0 1 2
−2 −4 −3 −3 −3 −2 −2 −1 0 1 2 2
−1 −4 −3 −3 −2 −2 −1 0 1 2 2 3

Ej
2 0 −4 −3 −2 −1 0 0 0 1 2 3 4

1 −3 −2 −2 −1 0 1 2 2 3 3 4
2 −2 −2 −1 0 1 2 2 3 3 3 4
3 −2 −1 0 1 2 2 3 3 3 4 4
4 −1 0 1 2 2 3 3 3 4 4 5
5 0 1 2 2 3 3 3 4 4 5 5

the speed of the link by applying an opposite voltage at around 0.9 seconds. This
causes the endpoint of the elbow link to accelerate due to its inertia, causing it to
oscillate with a larger magnitude. When the controller for the elbow link detects
this sudden change, it outputs a large control signal in order to move the shaft in
the direction of acceleration so as to damp these oscillations. Once the oscillations
are damped out, the controller continues to output signals until the set-point is
reached.

30

40

50

60

70

80

90

100

110

0 1 2 3 4 5 6 7

Time (sec)

E
nd

po
in

t p
os

iti
on

 (
de

g)

FIGURE 3.5 Endpoint position for uncoupled controller design
(figure taken from [145], c© IEEE).



134 Chapter 3 / Case Studies in Design and Implementation

Note that a portion of the oscillation is caused by the dead-zone nonlinearity
in the gearbox of the elbow motor. The sudden braking of the shoulder link causes
the elbow link to jerk, and the link oscillates in the dead-zone, creating what is
similar to a limit-cycle effect. One way of preventing these oscillations in the link
is to slow down the speed of the elbow link until the shoulder link is moving fast
and speed it up as the shoulder link slows down. This would ensure that the elbow
link is not allowed to oscillate as the motor is moving fast, and that the driven gear
does not operate in the dead-zone. This control technique will be examined in the
next section when we couple the acceleration feedback signals from the robot.

Figure 3.6 shows the response of the plant with a payload. The payload used
was a 30-gram block of aluminum attached to the elbow link endpoint. A slew of 90
degrees for each link was commanded, as shown in the inset. The payload at the end
of the elbow link increases the inertia of the link and reduces the modal frequencies
of oscillation. In this case this reduction in the frequency positively affected the
controller’s ability to dampen the oscillation caused by the dead-zone, as compared
to the unloaded case shown in Figure 3.5.
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FIGURE 3.6 Endpoint position for uncoupled controller design
with payload (figure taken from [145], c© IEEE).

3.3.3 Coupled Direct Fuzzy Control
While the two uncoupled controllers provide reasonably good results, they are not
able to take control actions that are directly based on the movements in both links.
In this section we investigate the possibility of improving the performance by cou-
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pling the two controllers; this can be done by using either the position information,
the acceleration information, or both. From the tests on the independent controllers,
it was observed that the acceleration at the endpoint of the shoulder link signifi-
cantly affected the oscillations of the elbow link endpoint, whereas the acceleration
at the endpoint of the elbow link did not significantly affect the shoulder link. The
position of one link does not have a significant effect on the vibrations in the other.
As the primary objective here is to reduce the vibration at the endpoint as much
as possible while still achieving adequate slew rates, it was decided to couple the
controller for the elbow link to the shoulder link using the acceleration feedback
from the endpoint of the shoulder link; this is shown schematically in Figure 3.7.
Note that in addition to the six normalizing gains ge1, ge2, ga1, ga2, gv1, and gv2, a
seventh gain ga12 is added to the system. This gain can also be varied to tune the
controller and need not be the same as ga1.

Normalized 
fuzzy 
controller

+

� Link  2

Θ Θd

a 2

Link  1
Normalized 
fuzzy 
controller

+

�

Θ Θd

a 1

1 1

2
2Σ

Σ g e

g a

g v

(t)

(t)

(t)

ga

g e

a

e  (t)1

e  (t)
2

(t)

g

g v

1(t)

2(t)

Shoulder motor controller

Elbow motor controller

v

v1

1

1

2

2

2

21

FIGURE 3.7 Coupled fuzzy controller (figure taken from [145],
c© IEEE).

Fuzzy Controller Design

Essentially, in coupling the controllers we are using our experience and intuition
to redesign the fuzzy controller. The rule-base and the membership functions for
the shoulder link are kept the same as in Figure 3.4 and Table 3.1, and the rule-
base for the elbow link is modified to include the acceleration information from the
shoulder link endpoint. Adding a third premise term to the premises of the rules
in the rule-base in this manner will, of course, increase the total number of rules.
The number of fuzzy sets for the elbow controller was therefore reduced to seven
in order to keep the number of rules at a reasonable level. The number of rules
for the second link with seven fuzzy sets increased to 343 (7 × 7 × 7). Hence, the
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number of rules used for the coupled direct fuzzy controller is 121 for the shoulder
controller, plus 343 for the elbow link controller, for a total of 464 rules.

The membership functions for the elbow controller are shown in Figure 3.8.
The universe of discourse for the position error is [−250, +250] degrees, and for
the elbow link endpoint acceleration it is [−8, +8] g, as in the uncoupled case. The
universe of discourse for the shoulder link acceleration is [+2,−2] g. This smaller
range was chosen to make the elbow link controller sensitive to small changes in the
shoulder link endpoint oscillation. The universe of discourse for the output voltage
is [−4, +4] volts.
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FIGURE 3.8 Membership functions for the elbow controller using
coupled control (figure taken from [145], c© IEEE).

Tables 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9 depict a three-dimensional rule-base
table for the elbow link. Table 3.6 represents the case when the acceleration input
from the shoulder link is zero, and is the center of the rule-base (the body of the
table denotes the indices m for V m

2 ). Tables 3.3, 3.4, and 3.5 are for the case when
the shoulder endpoint acceleration is negative, and Tables 3.7, 3.8, and 3.9 are for
the case when the shoulder endpoint acceleration is positive. The central portion of
the rule-base makes use of the entire output universe of discourse. This is the portion
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of the rule-base where the acceleration input from the shoulder link endpoint is zero
or small. As we move away from the center of the rule-base (to the region where
the shoulder link endpoint acceleration is large), only a small portion of the output
universe of discourse is used to keep the output of the controller small. Thus the
speed of the elbow link is dependent on the acceleration input from the shoulder
link endpoint. The speed of the elbow link is decreased if the acceleration is large
and is increased as the acceleration input decreases.

TABLE 3.3 A−3
1 portion of Rule-Base Array for the

Elbow Link

A−3
1 Ak

2

V m
2 −3 −2 −1 0 1 2 3

−3 −3 −3 −2 −2 −1 −1 0
−2 −3 −2 −2 −1 −1 0 1
−1 −2 −2 −1 −1 0 1 1

Ej
2 0 −2 −1 −1 0 1 1 2

1 −1 −1 0 1 1 2 2
2 −1 0 1 1 1 2 2
3 0 1 1 1 2 2 2

TABLE 3.4 A−2
1 portion of Rule-Base Array for the

Elbow Link

A−2
1 Ak

2

V m
2 −3 −2 −1 0 1 2 3

−3 −3 −3 −3 −2 −2 −1 0
−2 −3 −3 −2 −1 −1 0 1
−1 −3 −2 −2 −1 0 1 1

Ej
2 0 −2 −2 −1 0 1 2 2

1 −2 −1 0 1 1 2 2
2 −1 0 1 1 2 2 2
3 0 1 1 2 2 2 3

Also note that in Tables 3.5, 3.6, and 3.7 there are three zeros in the middle
rows to reduce the sensitivity of the controller to the noisy accelerometer signal.
This noise is not a significant problem when the endpoint is oscillating, and so
the rule-base does not have the zeros in the outer region. Taking the rule-base as
a three-dimensional array, we get a central cubical core made up of zeros. Also
notice that some parts of the rule-base, especially toward the extremes of the third
dimension, are not fully uniform. This has been done to slow down the elbow link
when the acceleration input from the shoulder link is very large. Overall, we see
that we are incorporating our understanding of the physics of the plant into the
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TABLE 3.5 A−1
1 portion of Rule-Base Array for the

Elbow Link

A−1
1 Ak

2

V m
2 −3 −2 −1 0 1 2 3

−3 −4 −4 −3 −3 −2 −1 0
−2 −4 −3 −3 −2 −1 0 1
−1 −3 −3 −2 −1 0 1 1

Ej
2 0 −2 −2 0 0 0 1 2

1 −2 −1 0 1 2 2 3
2 −1 0 1 2 2 3 3
3 0 1 2 2 3 3 3

TABLE 3.6 A0
1 portion of Rule-Base Array for the

Elbow Link

A0
1 Ak

2

V m
2 −3 −2 −1 0 1 2 3

−3 −5 −4 −4 −3 −3 −2 0
−2 −4 −4 −3 −2 −1 0 1
−1 −4 −3 −2 −1 0 1 2

Ej
2 0 −2 −1 0 0 0 1 2

1 −2 −1 0 1 2 3 4
2 −1 0 2 2 3 4 4
3 0 1 2 3 4 4 5

rule-base. We are shaping the nonlinearity of the fuzzy controller to try to improve
performance.

The coupled direct fuzzy controller seeks to vary the speed of the elbow link
depending on the amplitude of oscillations in the shoulder link. If the shoulder link
is oscillating too much, the speed of the elbow link is reduced so as to allow the
oscillations in the shoulder link to be damped; and if there are no oscillations in
the shoulder link, then the second link speed is increased. We do this to eliminate
the oscillation of the elbow link close to the set-point, where the control voltage
from the elbow controller is small. This scheme works well as will be shown by
the results, but the drawback is that it slows down the overall plant response as
compared to the uncoupled case (i.e., it slows the slew rate).

Experimental Results

The experimental results obtained using coupled direct fuzzy control are shown in
Figure 3.9. The slew requested here is the same as in the case of the uncoupled direct
fuzzy control experiment (Figure 3.5) as shown by the inset—that is, 90 degrees for
each link. We also ran experiments for “counterrelative” and small-angle slews and
obtained results of a similar nature. Note that there is no overshoot in the response,
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TABLE 3.7 A1
1 portion of Rule-Base Array for the

Elbow Link

A1
1 Ak

2

V m
2 −3 −2 −1 0 1 2 3

−3 −4 −3 −3 −2 −2 −1 0
−2 −3 −3 −2 −2 −1 0 1
−1 −3 −2 −2 −1 0 1 2

Ej
2 0 −2 −1 0 0 0 1 2

1 −2 −1 0 1 2 3 3
2 −1 0 1 2 3 3 4
3 0 1 2 3 3 4 4

TABLE 3.8 A2
1 portion of Rule-Base Array for the

Elbow Link

A2
1 Ak

2

V m
2 −3 −2 −1 0 1 2 3

−3 −3 −2 −2 −1 −1 −1 0
−2 −3 −2 −2 −1 −1 0 1
−1 −2 −2 −1 −1 0 1 2

Ej
2 0 −2 −1 −1 0 1 1 2

1 −1 −1 0 1 1 2 3
2 −1 0 1 1 2 3 3
3 0 1 2 2 3 3 4

with negligible residual vibrations. The dip in the curve in the initial part of the
graph is due to the first link “braking” as it reaches the set-point and is primarily
due to the dead-zone nonlinearity in the gears. As the shoulder link brakes, the
elbow link is accelerated due to its inertia. The elbow link, which was at one end of
its dead-zone while the shoulder was moving, shoots to the other end of the dead-
zone, causing the local maxima seen in Figure 3.9 at around 0.9 seconds. The link
recoils due to its flexibility and starts moving to the lower end of the dead-zone. By
this time the elbow motor speed increases and prevents further oscillation of the
elbow link in the dead-zone.

Notice that the multiple oscillations in the elbow link have been eliminated as
compared to Figure 3.5 on page 133. This is due to the fact that when the shoulder
link reaches its set-point, the elbow link is still away from its set-point, and as the
shoulder link slows down, the elbow link motor speeds up and keeps the elbow link
at one end of the dead-zone, preventing oscillation. Also notice that the rise time has
increased in this case compared to that of the uncoupled case due to the decrease
in speed of the second link while the first link is moving. This fact (increase in
rise-time) and, especially, the schema embodied in the coupled-controller rule-base
contribute to the reduction in endpoint residual vibration.

Experimentally, we have determined that the dip in the curve can be decreased,
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TABLE 3.9 A3
1 portion of Rule-Base Array for the

Elbow Link

A3
1 Ak

2

V m
2 −3 −2 −1 0 1 2 3

−3 −2 −2 −2 −1 −1 −1 0
−2 −2 −2 −1 −1 −1 0 1
−1 −2 −2 −1 −1 0 1 2

Ej
2 0 −2 −1 −1 0 1 1 2

1 −1 −1 0 1 1 2 2
2 −1 0 1 1 2 2 3
3 0 1 1 2 2 3 3

but not completely eliminated as the rule-base does not have enough “granularity”
near zero (i.e., enough membership functions and rules). To alleviate this problem,
a “supervisor” can be used to change the granularity of the rule-base as the shoulder
link comes close to its desired set-point by changing the universes of discourse and
the appropriate normalizing gains. This would produce finer control close to the set-
point, resulting in a smoother transition in the speed of the shoulder link (this effect
could also be achieved via the addition of more membership functions and hence
rules, but this will adversely affect computational complexity). We will investigate
the use of such a supervisor in Chapter 7.
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FIGURE 3.9 Endpoint position for coupled controller design
(figure taken from [145], c© IEEE).
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Figure 3.10 shows the endpoint response of the robot with a 30-gram payload
attached to its endpoint. The commanded slew is 90 degrees for each link, as shown
in the inset. Notice that the dip in the curve (between 1.0 and 1.5 sec) is reduced as
compared to the case without a payload (Figure 3.9). This is due to the increased
inertia of the elbow link, which reduces the frequency of oscillation of the link,
as the elbow link motor speeds up at this point, preventing further oscillations.
Obviously, there is performance degradation relative to Figure 3.9 due to the fact
that the modal frequencies of the flexible links (particularly the elbow link) have
changed with the additional payload attached to the endpoint.
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FIGURE 3.10 Endpoint position for coupled controller design
with payload (figure taken from [145], c© IEEE).

This completes our case study for direct fuzzy control of the flexible robot.
The reader should note that while the performance obtained here compares fa-
vorably with all previous conventional control approaches studied to date for this
experimental apparatus, it is not the best possible. In particular, we will show in
Chapter 6 how to use adaptive fuzzy control to synthesize and later tune the fuzzy
controller when there are payload variations. Moreover, we will show in Chapter 7
how a supervisory fuzzy control approach can be used to incorporate abstract ideas
about how to achieve high-performance control and in fact improve performance
over the direct and adaptive fuzzy control approaches (and all past conventional
methods).
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3.4 Balancing a Rotational Inverted Pendu-
lum

One of the classical problems in the study of nonlinear systems is that of the
inverted pendulum. The primary control problem you consider with this system
is regulating the position of the pendulum (typically a rod with a mass at the
endpoint) to the vertical “up” position (i.e., balancing it). A secondary problem is
that of “swinging up” the pendulum from its rest position (vertical “down”) to the
vertical “up” position. Often, actuation is accomplished via a motor that provides
a translational motion to a cart on which the pendulum is attached with a hinge.
In this case study actuation of the pendulum is accomplished through rotation of
a separate, attached link referred to henceforth as the “base.”

3.4.1 The Rotational Inverted Pendulum
In this section we describe the laboratory test bed, a model of the pendulum, and
a method to swing up the pendulum.

Laboratory Test Bed

The test bed consists of three primary components: (1) the plant, (2) digital and
analog interfaces, and (3) the digital controller. The overall system is shown in
Figure 3.11. The plant consists of a pendulum and a rotating base made of aluminum
rods, two optical encoders as the angular position sensors, and a permanent-magnet
DC motor to move the base. As the base rotates through the angle θ0 , the pendulum
is free to rotate through its angle θ1 made with the vertical. Interfaces between the
digital controller and the plant consist of two data-acquisition cards and some signal
conditioning circuitry. The sampling period for all experiments on this system is 10
ms (smaller sampling times did not help improve performance).
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FIGURE 3.11 Hardware setup (figure taken from [235], c© IEEE).
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Model

The differential equations that approximately describe the dynamics of the plant
are given by

θ̈0 = −apθ̇0 + Kp va

θ̈1 = −C1

J1
θ̇1 +

m1 g l1
J1

sin(θ1) + K1θ̈0

where, again, θ0 is the angular displacement of the rotating base, θ̇0 is the angular
speed of the rotating base, θ1 is the angular displacement of the pendulum, θ̇1 is the
angular speed of the pendulum, va is the motor armature voltage, Kp = 74.8903
rad-s−2-v−1 and ap = 33.0408 s−2 are parameters of the DC motor with torque
constant K1 = 1.9412× 10−3 kg-m/rad, g = 9.8066 m/sec2 is the acceleration due
to gravity, m1 = 0.086184 kg is the pendulum mass, l1 = 0.113 m is the pendulum
length, J1 = 1.3011×10−3 N-m-s2 is the pendulum inertia, and C1 = 2.9794×10−3

N-m-s/rad is a constant associated with friction. Note that the sign of K1 depends
on whether the pendulum is in the inverted or noninverted position. In particular,
for π

2 < θ1 < 3π
2 (pendulum hanging down) we have K1 = 1.9412 × 10−3, and

K1 = −1.9412×10−3 otherwise. Hence, to properly simulate the system you change
the sign of K1 depending on the value of θ1.

For controller synthesis we will require a state-variable description of the pen-
dulum system. This is easily done by defining state variables x1 = θ0, x2 = θ̇0,
x3 = θ1 , and x4 = θ̇1, and control signal u = va to get

ẋ1 = x2 (3.2)
ẋ2 = −ap x2 + Kp u

ẋ3 = x4

ẋ4 = −K1 ap

J1
x2 +

m1 g l1
J1

sin(x3) −
C1

J1
x4 +

K1 Kp

J1
u

Linearization of these equations about the vertical position (i.e., θ1 = 0), results
in the linear, time-invariant state variable model


ẋ1

ẋ2

ẋ3

ẋ4


 =




0 1 0 0
0 −33.04 0 0
0 0 0 1
0 49.30 73.41 −2.29






x1

x2

x3

x4


 +




0
74.89

0
−111.74


 u

Clearly, we cannot expect the above models to perfectly represent the physical
system. We are ignoring saturation effects, motor dynamics, friction and dead-zone
nonlinearities for movement of the links, and other characteristics. We present the
model here to give the reader an idea of how the physical system behaves and to
make it possible for the reader to study fuzzy controller design and simulation in
the design problems at the end of the chapter.
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Swing-Up Control

Because we intend to develop control laws that will be valid in regions about the
vertical up position, it is necessary to swing the pendulum up so that it is near
vertical at near zero angular velocity. Elaborate schemes can be used for this task,
but for the purposes of this case study, we choose to use a simple heuristic procedure
called an “energy-pumping strategy.”

The goal of this simple swing-up strategy is to “pump” energy into the pendu-
lum link in such a way that the energy or magnitude of each swing increases until
the pendulum approaches its inverted position. To apply such an approach, consider
how you would (intuitively) swing the pendulum from its vertical down position to
its vertical up position. If the rotating base is repeatedly swung to the left and then
right at an appropriate magnitude and frequency, the magnitude of the pendulum
angle θ1 relative to the down position will increase with each swing. Swinging the
pendulum in this fashion is continued until θ1 is close to zero (vertical up), and we
try to design the swing up strategy so that θ̇1 is also near zero at this point (so that
it is nearly balanced for an instant). Then, the swing up controller is turned off and
a “balancing controller” is used to catch and balance the pendulum (we switch the
swing-up controller off and the balancing controller on when |θ1| < 0.3 rad). Next,
we explain the details of how such a swing-up strategy can be implemented.

Suppose that initially θ1(0) = π and θ0(0) = 0. We use a swing-up strategy
that has u = Kp(θref

0 −θ0) where θref
0 is switched between +Γ and −Γ where Γ > 0

is a parameter that specifies the amplitude of the rotating base movement during
swing-up. The criterion for switching between ±Γ is that if the pendulum base is
moving toward +Γ then we use u = Kp(Γ − θ0) until θ̇1 is close to zero (indicating
that the pendulum has swung up as far as it can for the given movement from the
base). Then we switch the control to u = Kp(−Γ − θ0) to drive the base in the
other direction until θ̇1 is close to zero again. Then the process repeats until the
pendulum position is brought close to the vertical up position, where the swing-
up control is turned off and the balancing control is switched on. In addition to
manual tuning of Γ, it is necessary for the operator of the experiment to perform
some initial tuning for the positioning control gain Kp. Basically, the gain Kp is
chosen just large enough so that the actuator drives the base fast enough without
saturating the control output.

Finally, we note that if the dynamics of the pendulum are changed (e.g., adding
extra weight to the endpoint of the pendulum), then the parameter Γ must be
retuned by the operator of the experiment. Moreover, retuning is sometimes even
needed if the temperature in the room changes.

3.4.2 A Conventional Approach to Balancing Control
Although numerous linear control design techniques have been applied to this par-
ticular system, here we consider the performance of only the linear quadratic reg-
ulator (LQR) [3, 12]. Our purpose is twofold: First, we wish to form a baseline for
comparison to fuzzy control designs to follow, and second, we wish to provide a
starting point for synthesis of the fuzzy controller.
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Because the linearized system is completely controllable and observable, linear
state-feedback strategies, such as the LQR, are applicable. The performance index
for the LQR is

J =
∫ ∞

0

(x(t)�Qx(t) + u(t)�Ru(t))dt

where Q and R are the weighting matrices of appropriate dimension corresponding
to the state x and input u, respectively. Given fixed Q and R, the feedback gains
that optimize the function J can be uniquely determined by solving an algebraic
Riccati equation (e.g., in Matlab). Because we are more concerned with balancing
the pendulum than regulating the base position, we put the highest priority on
controlling θ1 by choosing the weighting matrices Q = diag(1, 0, 5, 0) (a 4 × 4
diagonal matrix with zeros off the diagonal) and R = 1. The optimal feedback gains
corresponding to the weighting matrices Q and R are k1 = −1.0, k2 = −1.191,
k3 = −9.699, and k4 = −0.961 (these are easily found in Matlab). Hence, our
controller is u(t) = Kx(t) where K = [k1, k2, k3, k4]�. Although observers may be
designed to estimate the states θ̇1 and θ̇0, we choose to use an equally effective and
simple backward difference approximation for each derivative.

Using the swing-up control strategy tuned for the nominal system (with Kp =
0.5 and Γ = 1.81 rad), the results of using the LQR controller for balancing, after the
pendulum is swung up, are given in Figure 3.12. These are actual implementation
results for the case where there is no additional mass added to the endpoint (i.e.,
what we will call the “nominal case”). The base angle is shown in the top plot, the
pendulum angle in the center plot, and the control output in the bottom plot. When
the LQR controller gains (k1 through k4) are implemented on the actual system,
some trial-and-error tuning is required (changing the gains by about 10%) to obtain
performance matching the predicted results that we had obtained from simulation.
Overall, we see that the LQR is quite successful at balancing the pendulum.

3.4.3 Fuzzy Control for Balancing
Synthesis of the fuzzy controllers to follow is aided by (1) a good understanding of
the pendulum dynamics (the analytical model and intuition related to the physi-
cal process), and (2) experience with performance of linear control strategies such
as a proportional-derivative controller and the above LQR. Aside from serving to
illustrate procedures for synthesizing a fuzzy controller, several reasons arise for
considering the use of a nonlinear control scheme for the pendulum system. Be-
cause linear controllers are designed based on a linearized model of the system,
they are inherently valid only for a region about a specific point (in this case, the
vertical up position). For this reason, such linear controllers tend to be very sen-
sitive to parametric variations, uncertainties, and disturbances. This is indeed the
case for the experimental system under study. When an extra weight or sloshing
liquid (using a watertight bottle) is attached at the endpoint of the pendulum, the
performance of all the linear controllers we tested degrades considerably, often re-
sulting in unstable behavior. Hence, to enhance the performance of the balancing
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FIGURE 3.12 LQR on the nominal system (figure taken from
[235], c© IEEE).

control, you naturally turn to some nonlinear control scheme that is expected to
exhibit improved performance in the presence of nonlinearities, disturbances, and
uncertainties in modeling. We will investigate two such nonlinear controllers in this
book: in this section we describe how to construct a direct fuzzy controller, and in
Chapter 6 we develop an adaptive fuzzy controller.

The Fuzzy Controller

The fuzzy controller is shown in Figure 3.13. Similar to the linear quadratic regu-
lator, the fuzzy controller for the inverted pendulum system will have four inputs
and one output. The four inputs to the fuzzy controller are the position error of
the base e1, its change in error e2, the position error of the pendulum e3, and the
change in error e4.

Our fuzzy controller utilizes singleton fuzzification and symmetric, triangular
membership functions on the controller input and output universes of discourse.
We use seven membership functions for each input, uniformly distributed across
their universes of discourse, as shown in Figure 3.14 (the choice of the scaling gains
that results in the scaling for the horizontal axes is explained below). The linguistic
values for the ith input are denoted by Ẽj

i where j ∈ {−3,−2,−1, 0, 1, 2, 3}. Lin-
guistically, we would therefore define Ẽ−3

i as “negative large,” Ẽ−2
i as “negative

medium,” Ẽ0
i as “zero,” and so on. We use the minimum operation to represent

the premise and the implication, and COG defuzzification. We need to specify the
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output membership functions, the rules, and the gains gi to complete the design of
our fuzzy controller.
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FIGURE 3.14 Four sets of input membership functions: (a) “Base position
error” (e1), (b) “base derivative error” (e2), (c) “pendulum position error” (e3),
and (d) “pendulum derivative error” (e4) (figures taken from [235], c© IEEE).

To synthesize a fuzzy controller, we pursue the idea of making it match the
LQR for small inputs since the LQR was so successful. Then, we still have the
added tuning flexibility with the fuzzy controller to shape its control surface so
that for larger inputs it can perform differently from the LQR (and, if we get the
right knowledge into the rule-base, better).

Fuzzy Controller Design via Copying a Linear Controller

Recall from our discussion in Chapter 2 that a fuzzy system is a static nonlinear
map between its inputs and output. Certainly, therefore, a linear map such as the
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LQR can be easily approximated by a fuzzy system (at least for small values of
the inputs to the fuzzy system). Two components of the LQR are the optimal
gains and the summation operation; the optimal gains can be replaced with the
scaling gains of a fuzzy system, and the summation can essentially be incorporated
into the rule-base of a fuzzy system. By doing this, we can effectively utilize a
fuzzy system to expand the region of operation of the controller beyond the “linear
region” afforded by the design process that relied on linearization. Intuitively, this is
done by making the “gain” of the fuzzy controller match that of the LQR when the
fuzzy controller inputs are small, while shaping the nonlinear mapping representing
the fuzzy controller for larger inputs (in regions further from zero).

Implementing the summation operation in the rule-base is straightforward.
First, we assume that all the input universes of discourse have uniformly distributed
triangular membership functions, such as those shown in Figure 3.14, but with ef-
fective universes of discourse all given by [−1, +1] (i.e., so that the left-most mem-
bership function and the right-most membership function saturate at −1 and +1,
respectively). Then we arrange the If-Then rules so that the output membership
function centers are equal to a scaled sum of the premise linguistic-numeric indices.

Assume that we label the membership functions with linguistic-numeric indices
that are integers with zero at the middle (as in our example below). In general, for
a fuzzy controller with n inputs and one output, the center of the controller output
fuzzy set Y s membership function would be located at

(j + k + ... + l) × 2
(N − 1)n

(3.3)

where s = j + k + ... + l is the index of the output fuzzy set Y s, {j, k, ...l} are the
linguistic-numeric indices of the input fuzzy sets, N is the number of membership
functions on each input universe of discourse (we assume that there is the same
number on each universe of discourse), and n is the number of inputs. This will
result in the positioning of a certain number of distinct output membership function
centers (the actual number depends on n and N). We choose triangular membership
functions for these, with centers given by Equation (3.3), and base widths equal to
1

2.5
.
As a simple example of how to make a rule-base implement a summation op-

eration, assume that we have input membership functions of the form shown in
Figure 3.14 but with N = 5 and n = 2 and effective universes of discourse [−1, +1].
In this case Equation (3.3) is given by

(j + k)
1
4

and will result in the rule-base shown in Table 3.10, where the body of the table
represents the centers of nine distinct output membership function centers (we
assume that their base widths are equal to 0.5 so that they are uniformly distributed
on the output universe of discourse).



3.4 Balancing a Rotational Inverted Pendulum 149

TABLE 3.10 Rule Table Created for
Copying a Linear Controller

Output center “Input 2” j index
−2 −1 0 1 2

−2 −1 −0.75 −0.5 −0.25 0
“Input 1” −1 −0.75 −0.5 −0.25 0 0.25
k index 0 −0.5 −0.25 0 0.25 0.5

1 −0.25 0 0.25 0.5 0.75
2 0 0.25 0.5 0.75 1

In this case we know that our fuzzy system is normalized (i.e., its effective
universe of discourse for the inputs and output are [−1, +1]). Also, the fuzzy system
will act like a summation operation. All that remains is to explain how to pick the
scaling gains so that the fuzzy system implements a weighted sum.

The basic idea in specifying the scaling gains g0, . . . , g4 is that for “small”
controller inputs (ei) the local slope (about zero) of the input-output mapping
representing the controller should be similar to the LQR gains (i.e., the ki). We
know that by changing the gi we change the slope of the nonlinearity. Increasing gi,
i = 1, 2, . . . , n causes the “gain” of the fuzzy controller to increase for small signals
(recall the discussions from Chapter 2, Section 2.4.1 on page 78). Increasing g0, we
proportionally increase the “gain” of the fuzzy system. Hence, the approximate gain
on the ith input-output pair is gig0, so to copy the ki gains of the state-feedback
controller choose

gig0 = ki

We can select all the scaling gains via this formula. Recall that the LQR gains are
k1 = −0.9, k2 = −1.1, k3 = −9.2, and k4 = −0.9. Transformation of the LQR gains
into the scaling gains of the fuzzy system is achieved according to the following
simple scheme:

• Choose the controller input that most greatly influences plant behavior and over-
all control objectives; in our case, we choose the pendulum position θ1. Next, we
specify the operating range of this input (e.g., the interval [−0.5, +0.5] radians,
for which the corresponding normalizing input gain g3 = 2).

• Given g3, the output gain of the fuzzy controller is calculated according to g0 =
k3
g3

= −4.6.

• Given the output gain g0, the remaining input gains can be calculated according
to gj = kj

g0
, where j ∈ {1, 2, 3, 4}, j �= i (note that i = 3). For g0 = −4.6, the

input gains g1, g2, g3, and g4 are 0.1957, 0.2391, 2, and 0.1957, respectively.

The resulting (nonnormalized) input universes of discourse are shown in Figure 3.14.
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Experimental Results

If the resulting fuzzy controller that was designed based on the LQR is implemented,
we get similar results to the LQR, so we do not include them here. Instead, we will
pursue the idea of shaping the nonlinearity induced by the fuzzy controller so that
it will be able to perform better than the LQR for the case where a sloshing liquid
is added to the endpoint of the pendulum.

The fuzzy controller is a parameterized nonlinearity that can be tuned in a
variety of ways. For instance, in Chapter 2 we explained how the output centers
can be specified according to a nonlinear function to shape the nonlinearity. Such
shaping of the fuzzy controller nonlinearity represents yet another area where intu-
ition (i.e., knowledge about how best to control the process) may be incorporated
into the design process. In order to preserve behavior in the “linear” region (i.e.,
the region near the origin) of the fuzzy controller that we designed using the LQR
gains, but at the same time provide a smooth transition from the linear region to
its extensions (e.g., regions of saturation), we choose an arctangent-type mapping
of the output membership function centers to achieve this rearrangement. Because
of the slope of such a mapping near the origin, we expect the fuzzy controller to
behave somewhat like the LQR when the states are near the process equilibrium;
however, for our particular chosen arctan-type function, we do not expect it to be
exactly the same since this warping of the fuzzy controller nonlinearity with the
function on the output centers actually changes the slope on the nonlinearity com-
pared to the LQR near the origin. The rationale for this choice of raising the gain
near zero will become clear below when we test the fuzzy controller for a variety of
conditions on the experimental test bed.

For comparative purposes, we first consider the nominal system—that is, the
pendulum alone with no added weight or disturbances. With the pendulum ini-
tialized at its hanging position, the swing-up control was tuned to give the best
swing-up response (we left Kp the same as for the LQR case but set Γ = 1.71). The
only tuning required for the fuzzy control scheme in transferring it from simulation
to implementation was in adjusting the value for g3 upward to improve performance
(recall that the gain g3 is critical in that it essentially determines the other scaling
gains).

Figure 3.15 shows the results for the fuzzy controller on the laboratory appara-
tus. The response is comparable to that of the LQR controller (compare Figure 3.15
to Figure 3.12 on page 146) in terms of the ability of the controller to balance the
pendulum in the vertical up position. Although some oscillation is noticed in the
controller output, any difference in the ability to balance the pendulum is only
slightly discernible in viewing the operation of the system. (This oscillation on the
controller input arises from our use of the arctan-type function since it raises the
gain of the controller near zero.)

As a final evaluation of the performance of the fuzzy controller, and to show
why we employ the arctan-type function, we illustrate how it performs when a con-
tainer half-filled with water is attached to the pendulum endpoint. This essentially
gives a “sloshing-liquid” effect when the pendulum reaches the balanced position. In
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FIGURE 3.15 Direct fuzzy control on the nominal rotational
inverted pendulum system (figure taken from [235], c© IEEE).

addition, the added weight shifts the pendulum center of mass away from the pivot
point; as a result, the natural frequency of the pendulum decreases. Furthermore,
the effect of friction becomes less dominant because the inertia of the pendulum
increases. These effects obviously come to bear on the balancing controller perfor-
mance, but also significantly affect the swing-up controller as well.

With the sloshing liquid added to the pendulum endpoint, the LQR controller
(and, in fact, other linear control schemes we implemented on this system) produced
an unstable response and was unable to balance the pendulum, so we do not show
their responses here. Of course, the linear control schemes can be tuned to improve
performance for the perturbed system, at the expense of degraded performance for
the nominal system. Moreover, it is important to note that tuning of the LQR type
controller is difficult and ad hoc without additional modeling to account for the
added dynamics. Such an attempt on this system produced a controller with stable
but poor performance.

It is interesting to note, however, that the fuzzy controller was able to maintain
stability in the presence of the additional dynamics and disturbances caused by
the sloshing liquid, without tuning. These results are shown in Figure 3.16, where
some degradation of controller performance is apparent. Basically, due to the added
flexibility in tuning the fuzzy controller nonlinearity, we are able to make it behave
similarly to the LQR for the nominal case, but also make it perform reasonably
well for the case where the sloshing-liquid disturbance is added. Moreover, there
is nothing mystical about the apparent “robustness” of the fuzzy controller: The
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shaping of the nonlinearity near zero with the arctan-type function provides a higher
gain that counteracts the effects of the sloshing liquid.
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FIGURE 3.16 Direct fuzzy control on the rotational inverted
pendulum with sloshing liquid at its endpoint (figure taken from
[235], c© IEEE).

In Chapter 6 we will show how to design an adaptive fuzzy controller that can
automatically reshape its control surface to compensate for endpoint disturbances.
This controller will try to optimize its own performance for both the nominal and
added-weight cases; we will demonstrate how it will improve the performance of
the direct fuzzy controller.

3.5 Machine Scheduling
The flexible manufacturing system (FMS) that we consider in this case study is
a system composed of several machines, such as the one shown in Figure 3.17.
The system processes several different part-types (indicated by Pi, i= 1, 2, 3 in
Figure 3.17). Each part-type enters the system at a prespecified rate and is routed
in the system through a sequence of machines (indicated by Mi, i= 1, 2, ..., 6 in
Figure 3.17) over the transportation tracks (the arrows in Figure 3.17). A part-
type may enter the same machine more than once for processing (i.e., the FMS is
“nonacyclic”). The length of processing time for each part-type at each machine is
also prespecified. The same part-type may have different processing times for the
same machine at different visits—that is, a machine may process a part-type longer
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at its first visit than at its second. Each part that arrives at a machine is stored
in a buffer until the machine is ready to process the part. There are prespecified
“set-up times” (delays) when the machine switches from processing one part-type to
another. Each scheduler on each machine tries to minimize the size of the “backlog”
of parts by appropriately scheduling the sequence of parts to be processed. The goal
is to specify local scheduling policies that maximize the throughput of each part-
type and hence minimize the backlog and the overall delay incurred in processing
parts through the FMS.
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FIGURE 3.17 Example flexible manufacturing
system.

In this section we focus on showing how to design a fuzzy controller (scheduler)
for a single machine. We use simulations to illustrate that its performance is com-
parable to conventional scheduling policies. We note that the fuzzy scheduler we
develop here is quite different from the ones shown in the two previous case studies.
This case study helps to show how fuzzy controllers can be used in nontraditional
control problems as general decision makers.

3.5.1 Conventional Scheduling Policies
Figure 3.18 illustrates a single machine that operates on P different part-types.
The value of dp represents the arrival rate of part-type p, and τp represents the
amount of time it takes to process a part of type p. Parts of type p that are not yet
processed by the machine, are stored in buffer bp. The single machine can process
only one part at a time. When the machine switches processing from one part-type
p to another part-type p′, it will consume a set-up time δp,p′ . For convenience, we
will assume that all the set-up times are equal to a single fixed value δ.

If a scheduling policy does not appropriately choose which part to process
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...

Machine

FIGURE 3.18 Single machine with P
part-types.

next, the buffer levels of the parts that are not processed often enough may rise
indefinitely high, which can result in buffer overflow. To avoid that problem, the
machine must have a proper scheduler (controller). In addition to keeping the buffer
levels finite, the scheduler must also increase the throughput of each part-type, and
decrease the buffer levels (i.e., decrease the backlog).

Scheduling Policies

A block diagram of a single machine with its controller (scheduler) is shown in
Figure 3.19. The inputs to the scheduler are the buffer levels xp of each part-type.
The output from the scheduler is p∗, which represents the next part-type to process.
In order to minimize the idle time due to set-ups, the machine will clear a buffer
before it starts to process parts from another buffer. There are three clearing policies
proposed in [168]: (1) clear largest buffer (CLB), (2) clear a fraction (CAF), and
(3) an unnamed policy in Section IV of [168], which we will refer to as “CPK,”
after the authors, Perkins and Kumar.

MachineScheduler
xpp*

FIGURE 3.19 Machine with its controller
(scheduler).

Let xp(Tn) represent the buffer level of bp at Tn, the time at which the scheduler
selects the next buffer of part-type p∗ to clear. Let γp be any positive weighting
factors (throughout this case study, we set the γp to 1 so that the “AWBL,” to
be defined below, is “average work”). Each of the three clearing policies is briefly
described as follows:

1. CLB: Select p∗ such that xp∗(Tn) ≥ xp(Tn) for all p (i.e., select the buffer to
process that has the highest number of parts in it).
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2. CAF: Select p∗ such that

xp∗(Tn) ≥ ε

P∑
p=1

xp(Tn)

where ε is a small number, often set to 1
P (i.e., when ε = 1

P , select any buffer
to process that has greater than the average number of parts in the buffers).

3. CPK: Select p∗ such that

p∗ = arg max
p


 xp(Tn) + δdp

dp

√
γpρ

−1
p (1 − ρp)




where ρp = dpτp.

In addition to these clearing policies, there exist many other policies that are used
in FMS (e.g., first-come first-served (FCFS)).

Machine Properties

A single machine is “stable” if the buffer level for each part-type is bounded. In
this case there exists mp > 0, p = 1, 2, . . . , P , such that

sup
t

xp(t) ≤ mp < +∞ for p = 1, 2, . . . , P

A necessary condition for stability is that the machine load ρ =
∑P

p=1 ρp < 1
where ρp = dpτp. For the single-machine case, the authors in [168] prove that all
three policies described above cause the machine to be stable.

There are various ways to measure the performance of a scheduling policy. We
can measure the average delays incurred when a part is processed in the machine.
We can also measure the maximum value of each buffer level. The performance
criterion proposed in [168] is a quantity called the average weighted buffer level
(AWBL), defined as follows:

AWBL = lim inf
t→∞

1
t

∫ t

0

[∑
p

γpτpxp(s)

]
ds

For any stable scheduling policy, the average weighted buffer level has a lower
bound (LB), defined in [168] as follows:

LB =
δ
[∑

p

√
γpρp (1 − ρp)

]2

2(1 − ρ)
.
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Let η = AWBL
LB be a measure of how close a scheduling policy is to optimal.

An optimal scheduling policy has η equal to 1; any scheduling policy has η ≥ 1. To
compute the value of AWBL, we will of course have to choose some finite value of
t to terminate our simulations.

Stabilizing Mechanism

The universally stabilizing supervisory mechanism (USSM) introduced in [100] is
a mechanism that is used to govern any scheduling policy. There are two sets of
parameters employed by the mechanism for the single machine—namely, γ and zp,
where it must be the case that

γ >

∑
b
maxb′ δb′,b
1−ρ

and zp can be chosen arbitrarily. The single machine will process parts of type
p for exactly γdpτp units of time unless it is cleared first (if a part is currently
being processed when this amount of time is up, the processing on this part is
finished). Once the machine takes γdpτp units of time to process parts of type p
or the parts of type p are cleared before γdpτp elapses, the machine will schedule
another part to be processed next. In addition, the USSM has a first-in-first-out
queue Q. When a buffer level xp exceeds zp, and the buffer is not being processed
or set up, that buffer will be placed into Q. When there is some buffer in the queue
overruling the scheduling policy, the next buffer scheduled to be processed is the
first buffer in the queue. Once that first buffer is processed, it leaves the queue,
then any remaining buffers in the queue are processed. Hence, the USSM stabilizes
any scheduling policy by truncating long production runs and by giving priority to
buffers that become excessively high. Note that xp is not exactly bounded by zp

since xp can still increase while it is listed in the queue. However, xp is affected by
zp. The larger zp is, the larger the maximum of xp tends to be. Also, note that if
the system is already stable (i.e., without the USSM) and the values of γ and zp

are large enough, the mechanism will not be invoked.

3.5.2 Fuzzy Scheduler for a Single Machine
In this section we will show how to perform scheduling via a fuzzy scheduler. The
fuzzy scheduler is designed to be a clearing policy just as CLB, CAF, and CPK
are. There is no guarantee of stability when operating by itself; therefore, the fuzzy
scheduler is always augmented with the USSM.

As for the conventional scheduling policies CLB, CAF, and CPK, the inputs to
the fuzzy scheduler policy are the buffer levels xp. The output of the fuzzy scheduler
is simply an index p∗ indicating which one of the buffers will be processed next. The
universe of discourse for each xp is [0,∞). The universe of discourse of each xp has
several fuzzy sets. The membership function for each fuzzy set is triangular except
at the extreme right, as shown in Figure 3.20. Figure 3.20 shows the membership
functions µ for the case where the universe of discourse for xp has three fuzzy sets.
These fuzzy sets, indexed as 1, 2, and 3, indicate how “small,” “medium,” and
“large,” respectively, the value of xp is. If the buffer level xp exceeds Mp, the value
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of xp is assumed to be Mp by the fuzzy scheduler, where Mp must be predetermined.
We will call this parameter Mp the saturation value of the fuzzy scheduler for xp

and will use Mp as a tuning parameter.

1

0 Mp

1 2 3

 xp

µ low medium high

FIGURE 3.20 Three
membership functions for xp.

Table 3.11 shows a rule-base of a fuzzy scheduler for a single machine that has
3 part-types using the fuzzy sets shown in Figure 3.20. In each rule, Ixp represents
the index of the fuzzy set and J represents the part-type that is selected by the
rule. Then, for instance, rule number 2 takes on the form

If x1 is small and x2 is small and x3 is medium Then p∗ = 3

In other words, if the buffer levels of b1 and b2 are small and the buffer level of
b3 is medium then process part-type 3. The part of type J that is selected in each
rule has buffer level xJ that falls into a fuzzy set that has index IxJ the largest
compared to the other indices. In some rules, there are indices of fuzzy sets of several
part-types that have equal largest value. In these cases, one of these part-types is
selected arbitrarily in our rule-base. For example, the first rule in Table 3.11 is fixed
to select part-type 1 even though the fuzzy set indices of all part-types in the rule
are equal to 1. Therefore, this rule is biased toward part-type 1. We note that our
fuzzy scheduler essentially “fuzzifies” the operation of the CLB policy; however,
due to the interpolation inherent in the implementation of the fuzzy scheduler it
will behave quite differently from the conventional CLB (as the simulation results
below indicate).

Throughout the simulation studies in the next subsection, if we use more fuzzy
sets on the universe of discourse we will utilize a similar structure for the rule-
base (i.e., uniformly distributed and symmetric membership functions). The output
universe of discourse (the positive integers) has P membership functions denoted
by µp where for each p ∈ {1, 2, ..., P}, µp(i) = 1 for i = p and µp(i) = 0 for
i �= p (i.e., singletons). We use singleton fuzzification, minimum for the premise and
implication, and max-defuzzification to pick p∗, given the rule-base and particular
values of xp.

For P buffers and m fuzzy sets, the size of memory needed to store the rules
is on the order of P m; hence, the CLB, CPK, and CAF policies are simpler than
the fuzzy scheduler. We will, however, show that with the use of this more complex
scheduler we can get enhanced performance in some cases.
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TABLE 3.11 Rule-Base of a
Fuzzy Scheduler with 3 Inputs and
3 Fuzzy Sets on Each Universe of
Discourse

Rule No. Ix1 Ix2 Ix3 J

1 1 1 1 1
2 1 1 2 3
3 1 1 3 3
4 1 2 1 2
5 1 2 2 2
6 1 2 3 3
7 1 3 1 2
8 1 3 2 2
9 1 3 3 2
10 2 1 1 1
11 2 1 2 1
12 2 1 3 3
13 2 2 1 1
14 2 2 2 1
15 2 2 3 3
16 2 3 1 2
17 2 3 2 2
18 2 3 3 3
19 3 1 1 1
20 3 1 2 1
21 3 1 3 3
22 3 2 1 1
23 3 2 2 1
24 3 2 3 1
25 3 3 1 1
26 3 3 2 1
27 3 3 3 3

It is possible to expand the fuzzy scheduler to use the information about ar-
rival rates, processing times, and set up times also. There may be significant im-
provements in performance if this information is represented with the control rules;
however, the memory size can significantly increase too. In the interest of ensuring
that the fuzzy scheduler will be implementable in real time we did not present this
variation in this case study.

3.5.3 Fuzzy Versus Conventional Schedulers
Next, we simulate a single machine that uses CLB, CAF, CPK, and the fuzzy
scheduler so that we can compare their performance. The machine parameters are
as follows: d1 = 7, d2 = 9, d3 = 3, τ1 = 1/100, τ2 = 1/51, τ3 = 1/27, and δ = 1.
Figures 3.21 and 3.22 show the plots of the buffer levels of a single machine with
three part-types for the first 10 production runs (a production run is defined as
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setting up for and processing all the parts in a buffer) and the last 30 production
runs when CPK and the fuzzy scheduler are used (note that CLB and CAF did
not perform as well, so we do not include their plots). The parameters M1 = 35,
M2 = 35, and M3 = 12 are selected based on the maximum value xp obtains when
the CPK policy is used. Note that the first 10 production runs of the fuzzy scheduler
are very different from CPK. However, for large values of t they are quite similar
but not exactly the same, as indicated by the last 30 production runs when CPK
and the fuzzy scheduler are used. Even though the buffer levels are maintained at
nearly the same heights, the periodic sequence of scheduling the part-types by CPK
is 1, 3, 2, 1, 3, 2, . . ., whereas the sequence by the fuzzy scheduler is 1, 2, 3, 1, 2, 3, . . .
.
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FIGURE 3.21 Buffer levels using the CPK scheduling
policy (figure taken from [4], c© IEEE).

Among the three schedulers—namely, CLB, CAF, and CPK—CPK often yields
the best performance—that is, its η is closest to one [168]. The performance of the
fuzzy scheduler is compared to that of CLB, CAF, and CPK for several single ma-
chines below. The number of fuzzy sets is set to 3, 5, and 7 for each universe of
discourse xp, so as to observe how the number of fuzzy sets can affect the perfor-
mance of the fuzzy scheduler. The first two machines are chosen from Section IV
of [168].

Machine 1: d1 = 7, d2 = 9, d3 = 3, τ1 = 1/100, τ2 = 1/51, τ3 = 1/27,
ρ = 0.35758.

• CLB: η = 1.0863484

• CAF: η = 1.2711257
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FIGURE 3.22 Buffer levels using the fuzzy scheduler
(figure taken from [4], c© IEEE).

• CPK: η = 1.0262847

• Fuzzy scheduler: M1 = 35, M2 = 35, M3 = 12; γ = 34.0, z1 = 30, z2 = 30,
z3 = 30
For 3 fuzzy subsets, η = 1.0263256
For 5 fuzzy subsets, η = 1.0262928
For 7 fuzzy subsets, η = 1.0262928

These simulations show that a fuzzy scheduler can perform nearly as well as
can CPK. Note also that we cannot significantly improve η by simply increasing
the number of fuzzy subsets for the same Mp (for this machine).

Machine 2: d1 = 18, d2 = 3, d3 = 1, τ1 = 1/35, τ2 = 1/7, τ3 = 1/20, ρ =
0.99286.

• CLB: η = 1.1738507

• CAF: η = 1.179065

• CPK: η = 1.0017406

• Fuzzy scheduler: M1 = 3375, M2 = 626, M3 = 665; γ = 1000.0, z1 = 5000,
z2 = 5000, z3 = 5000.
For 3 fuzzy subsets, η = 1.0027945
For 5 fuzzy subsets, η = 1.0027945
For 7 fuzzy subsets, η = 1.0013173

These simulations show that with the machine load closer to one, the fuzzy
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scheduler can work even better than CPK provided that there are enough fuzzy
sets on the input space. Next, we create a new machine that has a lower machine
load, and compare the performance of the scheduling policies.

Machine 3: d1 = 3.5, d2 = 4.5, d3 = 1.5, τ1 = 1/100, τ2 = 1/51, τ3 = 1/27,
ρ = 0.17879.

• CLB: η = 1.0841100

• CAF: η = 1.3456014

• CPK: η = 1.0306833

• Fuzzy scheduler: M1 = 23.6, M2 = 25.1, M3 = 5.6; γ = 100.0, z1 = 5000,
z2 = 5000, z3 = 5000.
For 3 fuzzy subsets, η = 1.0307992
For 5 fuzzy subsets, η = 1.0319630
For 7 fuzzy subsets, η = 1.0306972

• Fuzzy scheduler with 3 fuzzy subsets; M1 = 50, M2 = 50, M3 = 20; γ = 100.0,
z1 = 5000, z2 = 5000, z3 = 5000: η = 1.2273009

These simulations show that the fuzzy scheduler cannot perform any better
than CPK when the machine load is small for this machine. Also note that if the
parameters Mp are not set properly, the performance of the fuzzy scheduler can
degrade.

Our experience in simulation above shows that it is possible to tune the fuzzy
scheduler by choosing the values of Mp and the fuzzy sets to minimize η. We have
used the following procedure to tune the fuzzy scheduler to get smaller η: (1) use
i fuzzy sets and set the Mp all to unity, (2) run a simulation, (3) replace Mp with
the maximum buffer levels obtained in xp and rerun the simulation, and (4) repeat
as necessary with i + 1 fuzzy sets, i + 2 fuzzy sets, and so on. Using this tuning
approach for the above machine we find that for 3-buffer machines the results are as
good as those of CPK, and for some 5-buffer machines the tuning method converges
to a good result, even though the result is not quite as good as that of CPK. Note
that our experiences in tuning allowed us to develop the on-line adaptive fuzzy
scheduler technique that is studied in Chapter 6.

3.6 Fuzzy Decision-Making Systems
A fuzzy controller is constructed to make decisions about what the control input
to the plant should be given processed versions of the plant outputs and reference
input. It is a form of artificial (i.e., nonbiological) decision-making system. Decision-
making systems find wide application in many areas, not only the ones that have
been traditionally studied in control systems. For instance, the machine scheduling
case study of the previous section shows a nontraditional application of feedback
control where a fuzzy system can play a useful role as a decision-making system.
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There are many other areas in which fuzzy decision-making systems can be used
including the following:

• Manufacturing: Scheduling and planning materials flow, resource allocation, rout-
ing, and machine and equipment design.

• Traffic systems: Routing and signal switching.

• Robotics: Path planning, task scheduling, navigation, and mission planning.

• Computers: Memory allocation, task scheduling, and hardware design.

• Process industries: Monitoring, performance assessment, and failure diagnosis.

• Science and medicine: Medical diagnostic systems, health monitoring, and auto-
mated interpretation of experimental data.

• Business: Finance, credit evaluation, and stock market analysis.

This list is by no means exhaustive. Virtually any computer decision-making system
has the potential to benefit from the application of fuzzy logic to provide for “soft”
decisions when there is the need for decision making under uncertainty.

In this section we focus on the design of fuzzy decision-making systems for
problems other than feedback control. We begin by showing how to construct fuzzy
systems that provide warnings for the spread of an infectious disease. Then we show
how to construct a fuzzy decision making system that will act as a failure warning
system in an aircraft.

3.6.1 Infectious Disease Warning System
In this section we study a biological system where a fuzzy decision-making system
is used as a warning system to produce alarm information. To model a form of
biological growth, one of Volterra’s population equations is used. A simple model
representing the spread of a disease in a given population is given by

dx1(t)
dt

= −ax1(t) + bx1(t)x2(t) (3.4)

dx2(t)
dt

= −bx1(t)x2(t) (3.5)

where x1(t) is the density of the infected individuals, x2(t) is the density of the
noninfected individuals, a > 0, and b > 0. These equations are only valid for
x1(t) ≥ 0 and x2(t) ≥ 0. The initial conditions x1(0) ≥ 0 and x2(0) ≥ 0 must also
be specified.

Equation (3.5) intuitively means that the noninfected individuals become in-
fected at a rate proportional to x1(t)x2(t). This term is a measure of the interaction
between the two groups. The term −ax1(t) in Equation (3.4) represents the rate at
which individuals die from disease or survive and become forever immune. The term
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bx1(t)x2(t) in Equation (3.4) represents the rate at which previously noninfected
individuals become infected.

Here, we design a fuzzy system to produce alarms if certain conditions occur
in the diseased population—that is, a simple warning system. The fuzzy system
uses x1(t) and x2(t) as inputs, and its output is an indication of what type of
warning condition occurred along with the certainty that this warning condition has
occurred. To specify the types of alarms we would like the fuzzy system to output,
we first begin by using conventional (nonfuzzy) logic and “decision regions” to
specify the alarms. In particular, we would like indications of the following alarms:

1. “Warning: The density of infected individuals is unsafe”; this occurs if x1(t) >
α1 where α1 is some positive real number (here x1(t) > α1 specifies a “decision
region” for where we could like the warning to be given).

2. “Caution: The density of infected individuals is unsafe, and the number of
infected individuals is greater than the number of noninfected individuals”;
this occurs if x1(t) > α1 and x1(t) ≥ x2(t) + α2 but x1(t) < x2(t) + α3, where
α2 and α3 are positive real numbers such that α2 < α3.

3. “Critical: The density of infected individuals is unsafe, and the number of in-
fected individuals is much greater than the number of noninfected individuals”;
this occurs if x1(t) > α1 and x1(t) ≥ x2(t) + α3.

The three alarms represent certain warnings characterized by the decision re-
gions shown in Figure 3.23. The darkest region plus the other lighter shaded regions
represent the first warning’s decision region, the slightly lighter one represents the
second warning, and the lightest shaded represents the third warning.
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FIGURE 3.23 Decision regions for the
biological system (figure taken from [164],
c© IEEE).
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We could simply use the above inequalities to implement a system that would
take as inputs x1(t) and x2(t) and output an indication of which warning above has
occurred. Then, as the differential equation evolves, the values of x1(t) and x2(t)
change and different warning conditions will hold (when none hold, there is no
warning). Here, we will implement a fuzzy decision-making system by using fuzzy
logic to “soften” the decision boundaries. We do this since we are not certain about
the positions of these boundaries and since we would like an earlier indication when
we are near a boundary and therefore near having another condition begin to hold.

To construct the fuzzy system, we would like to implement fuzzy versions of
the following three rules:

1. If x1(t) > α1 Then warning is “Warning”

2. If x1(t) > α1 and x1(t) ≥ x2(t) + α2 and x1(t) < x2(t) + α3 Then warning is
“Caution”

3. If x1(t) > α1 and x1(t) ≥ x2(t) + α3 Then warning is “Critical”

While the rules we used in the fuzzy controllers in Chapter 2 were different, we can
still use fuzzy logic to quantify these rules. First, we need to quantify the meaning
of each of the premise terms. Then we will be able to use the standard fuzzy logic
approach to quantify the meaning of the “and” in the premises.

First, notice that the premise term x1(t) > α1 can be quantified with the
membership function shown in Figure 3.24 (study the shape of the membership
function carefully and convince yourself that this is the case). The membership
functions in Figure 3.25 quantify the meaning of x1(t) ≥ x2(t) + α2 and x1(t) <
x2(t)+α3 . Notice that we have made the positioning of the membership functions in
Figure 3.25 dependent on the value of x2(t); hence, to compute the certainty of the
statement x1(t) ≥ x2(t)+α2, we would first position the membership function with
the given value of x2(t), then we would compute the certainty of the statement (i.e.,
its membership value). You can avoid this shifting of the membership functions by
simply making the two inputs to the fuzzy system x1(t) and x1(t) − x2(t) rather
than x1(t) and x2(t) (since then you can use a similar characterization to that which
was used for the first alarm—why?). We can quantify the third alarm in a similar
way to the second one.

1
µ
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1α 1

FIGURE 3.24 Membership
function representing
x1(t) > α1.
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FIGURE 3.25 Membership functions representing (a)
x1(t) ≥ x2(t) + α2 and (b) x1(t) < x2(t) + α3.

Next, we need to use fuzzy logic to quantify the consequents of the three rules.
To do this, suppose that we let the universe of discourse for “warning” be the
interval of the real line [0, 10]. Then we simply use the membership functions shown
in Figure 3.26. There, the membership function on the left represents “Warning,”
the one in the middle represents “Caution,” and the one on the right represents
“Critical” (note that all of these have finite area). Suppose that we use minimum
to quantify the premise and implication, and that we use COG defuzzification (be
careful with COG since the output membership functions are not symmetric).

warning

1

µ

10

Warning Caution Critical

FIGURE 3.26 Membership functions to
quantify the consequents.

This completes the definition of the fuzzy warning system for the biological
system. We leave it to the reader to simulate the biological system and verify that
the fuzzy system will provide the proper values for the output “warning.” Note
that to interpret the output of the fuzzy system you will want to have a list of the
three failures “Warning,” “Caution,” and “Critical” and their associated certainties
of being true. Define the certainty of each warning being true as the minimum
certainty of any premise term in the premise of the rule that corresponds to the
warning. The output of the fuzzy system, “warning” will also provide a numerical
rating of the severity of the warning. In this way the fuzzy system provides both a
linguistic and numeric quantification of the warning.
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3.6.2 Failure Warning System for an Aircraft
Consumer and governmental demands have provided the impetus for an extraor-
dinary increase in the complexity of the systems that we use. For instance, in
automotive and aircraft systems, governmental demands have called for (1) highly
accurate air-to-fuel-ratio control in automobiles to meet pollution standards, and
(2) highly technological aircraft capable of achieving frequent flights with very little
maintenance downtime. Similarly, consumer demands have driven (1) the develop-
ment of antiskid braking systems for increased stopability, steerability, and stability
in driving and (2) the need for increased frequency of commercial flights such that
travel must occur under all weather conditions in a timely manner.

While engineers have, in general, been able to meet these demands by enhancing
the functionality of high-technology systems, this has been done at the risk of
significant failures (it is generally agreed that “the more complex a system is the
more likely it is to fail in some way”). For automotive and aircraft systems, some
of the failures that are of growing concern include the following:

• Failures and/or degradation of performance of the emissions control systems (fail-
ures or degradation leads to a significant increase in the level of pollutants).

• “Cannot duplicate” failures where a failure is detected while the aircraft is in flight
that cannot be duplicated during maintenance, which lengthens the downtime.

• Actuator, sensor, and other failures in aircraft systems that cause commercial
aircraft crashes in adverse weather conditions.

• A system failure in an integrated vehicle handling, braking and traction control
system, which can lead to a loss of control by the driver.

Automotive and aircraft systems provide excellent examples of how failures in
high-technology systems can result in catastrophic failures. In addition, the effect
of undetected system faults can lead to costly downtime or catastrophic failures
in manufacturing systems, nuclear power plants, and process control problems. As
history indicates, the probability of some of the system failures listed above is
sometimes high. There is then the need for detecting, identifying, and providing
appropriate warnings about failures that occur on automobiles, aircraft, and other
systems so that corrective actions can be taken before there is a loss of life or other
undesirable consequences.

Experience in developing on-line failure warning systems has indicated that
there is no uniform approach to solving all problems; solutions are “problem-
dependent.” This makes the fuzzy system particularly well suited for this applica-
tion. You simply have to load different knowledge into a fuzzy system for different
applications. Next, we look at a simple example of how to construct a fuzzy warning
system for an aircraft.

The simple warning system for an aircraft uses the aircraft’s measurable inputs
and outputs. Suppose the aircraft’s input vector u has two components, the elevator
δe (deg), and thrust δt (deg). The output vector y has three components, pitch rate q
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(deg/sec), pitch angle θ (deg), and load factor ηz (g). Four aircraft failure modes are
considered here. To define the modes, we take the same approach as in the previous
section and define decision regions using conventional logic and inequalities. Later,
we will soften the decision boundaries and define the fuzzy decision-making system.

To define the decision boundaries, each input and output is discretized into five
regions with four boundaries associated with the real number line. For example,
the elevator δe is discretized as follows:

• Region R1: δe ≤ δR1

• Region Y1: δR1 < δe ≤ δY1

• Region G: δY1 < δe ≤ δY2

• Region Y2: δY2 < δe ≤ δR2

• Region R2: δe ≥ δR2

where δR1 and δY1 are negative constants with δR1 larger in magnitude than δY1 ,
and δY2 and δR2 are positive constants with δY2 ≤ δR2 . The G (for Green) region
denotes an area of safe operation, the Y1 and Y2 (for Yellow) regions denote areas
of warning, and the R1 and R2 (for Red) regions denote areas of unsafe operation.
Suppose that using a similar notation we define such regions for all the other aircraft
input and output variables. For simplicity we will then sometimes say that other
variables lie in the regions R1, Y1, G, Y2, and R2 with the understanding that there
can be different values of the constants used to define the intervals on the real line.

Using the defined regions for the aircraft inputs and outputs, four failure modes
for the aircraft are identified as follows:

1. Load factor is in region R2.

2. Load factor is in region Y2.

3. Load factor is in region Y2 and elevator is in region Y1

4. (Pitch rate is in Y1 and Pitch angle is in Y1) or (Pitch rate is in Y2 and Pitch
angle is in Y2).

The decision regions for the fourth failure mode are shown as the shaded areas
in Figure 3.27 (notice that we use an appropriate notation for the constants that
define the boundaries).

The fuzzy system’s inputs are the aircraft inputs and outputs, and its outputs
are the four failure warnings. Suppose that the output of the fuzzy system is either
1, 2, 3, or 4, representing the failure warning mode, i = 1, 2, 3, 4. Now, we want to
define a fuzzy system that will give a proper indication of the above failure warning
modes. To define the fuzzy system, we use the same approach as in the previous
section. We can define rules representing each of the four failure warning modes.
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failure mode four (figure taken from [164],
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These will have the proper logical combinations of the inequalities in the premises,
and the consequents will be, for example, “failure warning = 1.”

For the first mode (load factor is in region R2), you can use the same approach
as in the last section to specify a membership function to represent the single
premise term; the same for the second and third failure warning modes. For the
fourth failure warning mode, we can use fuzzy logic in the characterization of the
“and” in the premise as we did in the last section. Also, we can use the fuzzy
logic characterization of “or” to represent the combination of the two terms in the
premise of the rule for the fourth failure warning mode. You can use singletons
positioned at i = 1, 2, 3, 4 for the ith failure warning mode rule. Then use center-
average defuzzification to complete the specification of the fuzzy warning system.
We leave the details of constructing this fuzzy decision-making system to the reader.

3.7 Summary
In this chapter we provided an overview of the design methodology for fuzzy control
systems and showed how to design fuzzy controllers in the two-link flexible robot and
the rotational inverted pendulum case studies. We used the machine control problem
and fuzzy decision-making systems to illustrate how the fuzzy system can also
be useful in nontraditional control applications. Each problem provided different
challenges, and in two of the case studies we showed actual implementation results.
In two of the cases we compared the fuzzy controller to conventional approaches,
which highlights the advantages and disadvantages of fuzzy control.

Upon completing this chapter, the reader should understand the following:
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• The general design methodology for fuzzy controllers.

• How to design a fuzzy controller for a flexible-link robot and how the use of ad-
ditional, more-detailed knowledge can improve performance (e.g., the uncoupled
versus coupled cases) but increases the complexity of the controller (e.g., the
number of rules increased).

• How to design a swing-up controller and LQR for balancing for the rotational
inverted pendulum, how to use the LQR design to provide the first guess at the
fuzzy controller (that may later be tuned), and how to use a nonlinear mapping
to set the positions of the output membership function centers.

• How to specify a fuzzy controller that can schedule the processing of parts at a
machine and perform at comparable levels to good conventional schedulers.

• How to design fuzzy decision-making systems, particularly for failure warning
systems.

Essentially, this is a checklist for the major topics covered in this chapter. The
reader should be sure to understand each of the above concepts or approaches
before proceeding on to more-advanced chapters, especially the ones on adaptive
and supervisory fuzzy control, where the first three case studies examined here are
further investigated.

3.8 For Further Study
There are many conference and journal papers that focus on the application of direct
fuzzy control—indeed, too many to mention here. Here, we simply highlight a few
case studies that are particularly interesting or instructive [125, 91, 21, 35, 25]
and refer the interested reader to several books that have focused on industrial
applications of fuzzy control, including [240, 137, 175, 206] (these also have extensive
lists of references that the interested reader may want to follow up on). Also, there
are some recent books [47, 154] and papers (e.g., [218]) that focus on some new
design methodologies for fuzzy controllers that the reader may be interested in.
One of these is based on sliding-mode control [217], and the other is related to
gain-scheduling-type control.

The case study in this chapter on the two-link flexible robot was taken directly
from [145, 144]; the interested reader should see those papers (and the references
within them) to obtain a more complete treatment of work related to the case study.
Since the literature abounds with work on the modeling and control of flexible
robots, both from a theoretical (simulation-based) and an experimental point of
view, we refer the interested reader to Chapter 8 of [193] for an overview of the
literature on conventional approaches. Some studies that are particularly relevant
to our case study are in [69, 242, 243].

The case study for the rotational inverted pendulum was taken from [235, 244].
The literature abounds in research and implementations of the linear-translational
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inverted pendulum. The approach of using the linear controller to initialize the fuzzy
controller that is used for the rotational inverted pendulum was first introduced
in [104], where it was used for an aircraft application. It is interesting to note that
in [235] it is shown how a fuzzy system can be used to automate the swing-up
control so that the manual tuning of the above parameters is not needed even if
additional mass is added to the endpoint of the pendulum.

The machine control case study was taken directly from [6]. The work was
inspired by the earlier work of P.R. Kumar and his colleagues (see, for example,
[168, 100]) on the development of distributed scheduling policies for flexible man-
ufacturing systems. The failure warning systems are fuzzy versions of the ones de-
veloped in [164]; for a more detailed study of aircraft failure diagnostic systems, see
[161]. Fuzzy decision-making systems are discussed in some more detail in [206, 175].

The motor control design problem in the problems at the end of the chapter
is part of a control laboratory at Ohio State University (developed over the years
by many people, including Ü. Özgüner, L. Lenning, and S. Brown). The ship steer-
ing problem comes from [11] and [112]. The rocket velocity control problem was
taken directly from [113]. The design problem on the acrobot was taken directly
from [27] and builds directly on earlier work performed by M. Spong and his col-
leagues, who have focused on the development of conventional controllers for the
acrobot. Their work in [190] and [191] serves as an excellent introduction to the
acrobot and its dynamics. The dynamics of a simple acrobot are also described
in both works; however, a more complete development of the acrobot dynamics
may be found in [192]. The base-braking control problem is taken from [75, 66]
and was based on years of contracted research with Delphi Chassis Division of
General Motors. Previous research on the brake system has been conducted using
proportional-integral-derivative (PID), lead-lag, autotuning, and model reference
adaptive control (MRAC) techniques [66]. The particular problem description we
use for the brakes was taken from [118].

3.9 Exercises
Exercise 3.1 (Simulation of General Fuzzy Systems): Write a program in
high-level language that will simulate a general fuzzy controller with the following
characteristics:

(a) n inputs and one output (i.e., so that the user can input n).

(b) Triangular membership functions (with appropriately saturated ones at the
endpoints of the input universes of discourse).

(c) Gaussian membership functions (with appropriately saturated ones at the
endpoints of the input universes of discourse).

(d) Trapezoidal membership functions (with appropriately saturated ones at the
endpoints of the input universes of discourse).

(e) The use of product or minimum for representing the premise and implication.

(f) The use of center-average or COG defuzzification.
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Exercise 3.2 (Efficient Simulation of Fuzzy Systems): Write a program in
high-level language that will simulate a general fuzzy controller with the following
characteristics:

• n inputs and one output.
• Triangular membership functions (with appropriately saturated ones at the

outermost regions of the input universes of discourse) that are uniformly
distributed across the universes of discourse so that there are at most two
of them overlapping at any one point.

• The use of minimum for representing the premise and implication.
• The use of COG defuzzification.

Exploit the fact that no more than two membership functions overlap at any one
point to make the code as efficient as possible. Use ideas from Chapter 2 where
we discuss simulation of fuzzy systems and real-time implementation issues.

Exercise 3.3 (Fuzzy Systems: Computational Complexity): Fuzzy con-
trollers can at times require significant computational resources to compute op-
erations in real-time. Define a “computing step” as the act of performing a basic
mathematical operation (e.g., addition, subtraction, multiplication, division, or
finding the maximum or minimum of a set of numbers). For the first inverted
pendulum controller that we designed in Chapter 2 (i.e., the one using triangu-
lar membership functions with R = 25 rules), using this measure, determine the
number of computing steps that it takes to perform the following operations (as-
sume that you code it efficiently, exploiting the fact that only two membership
functions overlap at any point so at most four rules are on):

(a) COG defuzzification—assuming that you are already given the values of the
premise membership function certainties.

(b) Center-average defuzzification—assuming that you are already given the val-
ues of the premise membership function certainties.

(c) Assume that we switch to using Gaussian membership functions as in Exer-
cise 2.3 on page 102. Does this increase or decrease computational complex-
ity? Why?

Exercise 3.4 (Fuzzy Controller Design Using Linear Controllers): Sup-
pose that you have a PD controller that generates the plant input u = Kpe +
Kd

d
dte (e = r − y where r is the reference input and y is the plant output) and

that it performs well for small values of its inputs, but that for larger values you
happen to know some additional heuristics that can be used to improve perfor-
mance. To capture this information, suppose that you decide to use a two-input,
one-output fuzzy controller. Rather than throwing out all the work you have done
to tune the PD gains Kp and Kd, you would like to make the fuzzy controller
behave similarly to the PD controller. Suppose that Kp = 2 and Kd = 5. Design
a fuzzy controller that will approximate these same gains for small values of e
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and d
dte. Demonstrate that the two are close by providing a three-dimensional

plot of the control surfaces for both the PD and the fuzzy controller (note that
the PD controller surface looks like a plane in three dimensions).

Exercise 3.5 (Fuzzy Control Design Trade-Offs)�: List all the trade-offs
involved in choosing fuzzy versus conventional control and, for the application
of your choice, provide a written analysis of whether you think fuzzy control is
a viable approach for your problem. Fully support your conclusions. You may
choose your own application, but if you do you must fully describe the control
problem that you study and provide at least simulation studies to back up your
conclusions. Alternatively, you may choose one of the case study examples in this
chapter (or one of the design problems) for your analysis.

3.10 Design Problems
Design Problem 3.1 (Inverted Pendulum: Use of a CAD Package): In
this problem you will learn to use a CAD package (such as the one available in
Matlab) for the development and analysis of fuzzy control systems.

(a) Use a CAD package to solve Exercise 2.3 on page 102.

(b) Use a CAD package to solve Exercise 2.4 on page 103.

(c) Use a CAD package to solve Design Problem 2.1 on page 110.

Design Problem 3.2 (Single-Link Flexible Robot): This problem focuses
on the design of a fuzzy controller for a single-link flexible robot. To perform
the designs, use the model provided in Section 3.3.1 on page 127 (in particular,
Equation (3.1)); hence, the plant input is v1 and the plant output is θ1. Com-
mand a 90-degree step change in the position to test your closed-loop system.
Use the saturation nonlinearities that were provided for the voltage input and
link position. The goals are fast slewing with minimal endpoint vibrations and
no steady-state tracking error. Use a 20-ms sampling period and discrete time
controllers.

(a) Design a fuzzy controller for the single-link flexible robot and evaluate its
performance.

(b) Design the best linear controller that you can for the flexible robot and
compare its performance to that of the fuzzy controller.

(c) Compare the performance that was obtained in (a) to that obtained in (b).
Identify which characteristics of your simulation responses are different from
the implementation responses for the two-link robot, and try to provide
reasons for these differences.
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Design Problem 3.3 (Rotational Inverted Pendulum): This problem fo-
cuses on the design of fuzzy controllers for the rotational inverted pendulum that
was studied in this chapter. To perform the designs, use the model provided in
Section 3.4.1 on page 143. You should seek to obtain performance comparable to
that seen in the implementation results for the rotational inverted pendulum.

(a) Design an “energy-pumping” swing-up strategy for the rotational inverted
pendulum, and develop a LQR controller for balancing the pendulum. Demon-
strate its performance in simulation.

(b) Design a fuzzy controller for balancing the pendulum, and, using the same
swing-up strategy as in (a), demonstrate its performance in simulation.

(c) For both (a) and (b), compare the performance that was obtained to that
which was found in implementation. Identify characteristics of your simu-
lation responses that are different from the implementation responses, and
provide a reason for these differences.

Design Problem 3.4 (Machine Scheduling): Here, we focus on the design
of fuzzy schedulers for the machine scheduling problem that was studied in this
chapter. To perform the designs, use the model provided in Section 3.5.1 on
page 153. Suppose that we define “Machine 4” to have the following characteris-
tics: d1 = 1, d2 = 1, d3 = 1/0.9, d4 = 1, d5 = 1, τ1 = 0.15, τ2 = 0.2, τ3 = 0.05,
τ4 = 0.1, τ5 = 0.2, ρ = 0.7055556 (i.e., it has five buffers).

(a) Develop CLB, CAF, and CPK schedulers, simulate them, and determine the
value for η for each of these.

(b) Develop a fuzzy scheduler using the same approach as in the case study.
Find the value of η for the cases where 3, 5, and 7 fuzzy sets are used on
each input universe of discourse. Be careful to properly tune the values of
the Mi and use γ = 100.0, and zi = 30, i = 1, 2, 3, 4, 5. You should tune
the Mi so that the fuzzy scheduler performs better than the ones in (a) as
measured by η.

Design Problem 3.5 (Motor Control): In this problem we study control of
the Pittman GM9413H529 DC motor with a simulated inertial load (aluminum
disk). The simulated moment of inertia is small, and is considerably less than
the actual motor moment of inertia. The effective gear ratio is 7860:18 (from the
motor armature shaft to the actual load); therefore, the reflected load inertia
seen by the motor is very small. The equivalent circuit diagram of the DC motor
system is shown in Figure 3.28.

The DC motor has a single measurable signal: the motor’s rotational ve-
locity. This velocity is sensed using an optical encoder mounted on the shaft
of the motor. An optical encoder outputs square wave pulses with a frequency
proportional to rotational velocity. The pulses from the encoder are counted by
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FIGURE 3.28 Equivalent circuit diagram of the DC motor
system (figure drawn by Scott C. Brown).

a data-acquisition card’s counter/timer, and translated to a rotational velocity
of the inertial plate. Pulse width modulation (PWM) is used to vary the input
voltage to the motor. PWM varies the duty cycle of a constant magnitude square
wave to achieve an approximation of a continuous control input. A diagram of
the motor experimental setup is shown in Figure 3.29.
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FIGURE 3.29 Motor experimental setup
(figure drawn by Scott C. Brown).

The transfer function of the motor can be derived from the following data
(taken from the Pittman motor spec sheets for winding 114T32):

Ra = armature resistance = 8.33 Ω
La = armature inductance = 6.17 mH
Ke = back emf constant = 4.14 V/krpm = 3.953× 10−2 V/(rad/s)
Kt = torque constant = 5.60 oz · in/A = 0.03954 N ·m/A
Ja = armature inertia = 3.9× 10−4 oz · in · s2 = 2.75× 10−6 Kg · m2

JL = load inertia = 0.0137 Kg · m2

J = total inertia = motor + load = Ja +
JL

N2
= 2.82× 10−6 Kg · m2

N = Gear ratio = 7860 : 18
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The aluminum disk has a radius of 15.24 cm, a thickness of 0.6 cm and a density
of 2699 Kg/m3.

Using these parameters, the following system time constants can be deter-
mined:

1/Te = Ra/La = 1350 (rad/sec)
1/Tm = KeKt

RaJ
= 66.43 (rad/sec)

Since La � R2
aJ

KeKt
,

G1(s) =
ωa(s)
Veq(s)

=
1/Ke

(1 + Tes)(1 + Tms)

=
25.3

(1 + s
1350)(1 + s

66.4)

=
2.27× 106

(s + 1350)(s + 66.4)

(
rad/sec

V

)

G2(s) =
ωL(s)
Veq(s)

=
1
N

G(s) =
ωL(s)
Veq(s)

=
5194

(s + 1350)(s + 66.4)

(
rad/sec

V

)

G3(s) =
ωL(s)
Veq(s)

=
5194 · ( 60

2π
)

(s + 1350)(s + 66.4)

=
49.60× 103

(s + 1350)(s + 66.4)

( rpm
V

)

G1(s) specifies the transfer function from voltage input to motor speed, while
G2(s) and G3(s) specify the transfer function from voltage input to load speed
(in different units). G3(s) is the transfer function of interest for this system, as
the reference input to track is specified in rpm. Note that the maximum system
input is ±12 volts.

We will study the development of controllers with a focus on implementation;
hence, we will develop a discrete model for the simulations. To simulate the
system G3(s), it is converted to a state-space realization, and then a discrete
state-space realization (we use the zero order hold (ZOH) method for continuous
to discrete-time conversion). Use a sampling period of 0.01 sec. The discrete-time
model

x(k + 1) = Ax(k) + B u(k)
y(k) = C x(k) + D u(k)



176 Chapter 3 / Case Studies in Design and Implementation

can be simulated where u is the system input, or controller output. Note that this
model is a relatively accurate representation of the actual physical experiment in
our laboratory, shown in Figure 3.29 (the main difference lies in the presence of
more noise in the actual experiment).

We developed and implemented a fuzzy controller that we consider to be only
marginally acceptable for the motor and show its response in Figure 3.30. We
consider this plot to provide an indication of the type of performance we expect
from controller designs for this plant.
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FIGURE 3.30 Motor step response (plot created by Scott C.
Brown).

(a) Design a linear controller for the motor, and demonstrate that you can do
better than the performance shown in Figure 3.30.

(b) Define a two-input, single-output fuzzy system to control the motor. Use e

and
∫ t

0
e dt (use the trapezoidal approximation to integration to approximate∫ t

0
e dt) as inputs to your fuzzy system where error is defined as

error
�
= reference input − system output

Use triangular input and output membership functions (with appropriately
saturated ones at the outermost edges). Be sure that your fuzzy system
output is in the range [−12.0, 12.0]. Simulate the system with the fuzzy
controller by tracking a 4-rpm step input.
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(c) Tune your fuzzy system to obtain a better step response. Try changing the
number of input and output membership functions, as well as the gains mul-
tiplying the fuzzy controller inputs and outputs. (Remember, your output
should saturate at ±12 volts.) Can you do better than the response shown
in Figure 3.30? Obtain plots of the input and output membership functions,
and simulated step response for your best response.

(d) Using your best fuzzy controller in (c), simulate the system tracking a 1-rpm
step input.

Design Problem 3.6 (Cargo Ship Steering): In this problem we study the
development of fuzzy controllers for a ship steering problem. The model for the
ship is given in Chapter 6, Section 6.3.1 on page 333. Use the nonlinear model
of the ship provided in Equation (6.5) in all the simulation evaluations for the
control systems that you develop. Note that we would like to make the closed-loop
system for the ship steering system behave like the reference model provided in
Chapter 6 for the ship. Note that to simulate the system given in Equation (6.5) on
page 334, you will have to convert the third-order nonlinear ordinary differential
equation to three first-order ordinary differential equations, as is explained in
Chapter 6.

(a) Develop a fuzzy controller for the ship steering problem that will result
in achieving the performance specified by the reference model (it may be
off slightly during transients). That is, you should achieve nearly the same
performance as that shown in Figure 6.6 on page 342.

(b) Design a linear controller for the ship steering problem that will result in
achieving the performance specified by the reference model (it may be off
slightly during transients).

(c) Compare the results in (a) and (b).

Design Problem 3.7 (Base Braking Control): Antilock braking systems
(ABS) are designed to stop vehicles as safely and quickly as possible. Safety
is achieved by maintaining lateral stability (and hence steering effectiveness) and
reducing braking distances over the case where the brakes are controlled by the
driver. Current ABS designs typically use wheel speed compared to the velocity
of the vehicle to measure when wheels lock (i.e., when there is “slip” between the
tire and the road) and use this information to adjust the duration of brake signal
pulses (i.e., to “pump” the brakes). Essentially, as the wheel slip increases past
a critical point where it is possible that lateral stability (and hence our ability
to steer the vehicle) could be lost, the controller releases the brakes. Then, once
wheel slip has decreased to a point where lateral stability is increased and braking
effectiveness is decreased, the brakes are reapplied. In this way the ABS cycles the
brakes to achieve an optimum trade-off between braking effectiveness and lateral
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stability. Inherent process nonlinearities, limitations on our abilities to sense cer-
tain variables, and uncertainties associated with process and environment (e.g.,
road conditions changing from wet asphalt to ice) make the ABS control problem
challenging. Many successful proprietary algorithms exist for the control logic for
ABS. In addition, several conventional nonlinear control approaches have been
reported in the literature.

In this problem, we do not consider brake control for a “panic stop,” and hence
for this problem the brakes are in a non-ABS mode. Instead, we consider what
is referred to as the “base-braking” control problem, where we seek to have the
brakes perform consistently as the driver (or an ABS) commands, even though
there may be aging of components or environmental effects (e.g., temperature
or humidity changes) that can cause “brake grab” or “brake fade.” We seek to
design a controller that will ensure that the braking torque commanded by the
driver (related to how hard we hit the brakes) is achieved by the brake system.
Clearly, solving the base-braking problem is of significant importance since there
is a direct correlation between safety and the reliability of the brakes in providing
the commanded stopping force. Moreover, base-braking algorithms would run in
parallel with ABS controllers so that they could also enhance braking effectiveness
while the brakes are in an ABS mode.

Figure 3.31 shows the diagram of the base-braking system, as developed
in [66, 118]. The input to the system, denoted by r(kT ), is the braking torque
(in ft-lbs) requested by the driver. The output, y(kT ) (in ft-lbs), is the output of
a torque sensor, which directly measures the torque applied to the brakes. Note
that while torque sensors are not available on current production vehicles, there
is significant interest in determining the advantages of using such a sensor. The
signal e(kT ) represents the error between the reference input and output torques,
which is used by the controller to create the input to the brake system, u(kT ). A
sampling interval of T = 0.005 seconds is used.
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FIGURE 3.31 Brake control system (figure taken from [118], c© IEEE).

The General Motors braking system used in this problem is physically limited
to processing signals between [0, +1] volts, while the braking torque can range
from 0 to 2700 ft-lbs. For this reason and other hardware specific reasons [66],
the input torque is attenuated by a factor of 2560 and the output is amplified
by the same factor. After u(kT ) is multiplied by 2560, it is passed through a
saturation nonlinearity where if 2560u(kT ) ≤ 0, the brake system receives a zero
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input and if 2560u(kT ) ≥ 5, the input is 5. The output of the brake system passes
through a similar nonlinearity that saturates at zero and 2700. The output of this
nonlinearity passes through F (y), which is defined as

F (y) =
y

2502.4419
+ 0.0139878

The function F (y) was experimentally determined and represents the relation-
ship between brake fluid pressure and the stopping force on the car. Next, F (y)
is multiplied by the “specific torque” St. This signal is passed through an exper-
imentally determined model of the torque sensor, the signal is scaled, and y(kT )
is output.

The specific torque St in the braking process reflects the variations in the
stopping force of the brakes as the brake pads increase in temperature. The
stopping force applied to the wheels is a function of the pressure applied to the
brake pads and the coefficient of friction between the brake pads and the wheel
rotors. As the brake pads and rotors increase in temperature, the coefficient of
friction between the brake pads and the rotors increases. The result is that less
pressure on the brake pads is required for the same amount of braking force. The
specific torque St of this braking system has been found experimentally to lie
between two limiting values so that

0.85 ≤ St ≤ 1.70

To conduct simulations for this problem, you should use the specific methodology
that we present next to represent the fact that as you repeatedly apply your
brakes, they heat up—which is represented by increasing the value of St. In
particular, a repeating 4-second input reference signal should be used where each
period of this signal corresponds to one application of the brakes. The input
reference begins at 0 ft-lbs, increases linearly to 1000 ft-lbs by 2 seconds, and
remains constant at 1000 ft-lbs until 4 seconds. After 4 seconds the states of
the brake system and controller should be cleared, and the simulation can be
run again. For part (d) below the first two 4-second simulations are run with
St = 0.85, corresponding to “cold brakes” (a temperature of 125◦ F for the brake
pads). The next two 4-second simulations are run with St increasing linearly from
0.85 at 8 seconds to 1.70 after 12 seconds. Finally, two more 4-second simulations
are run with St = 1.7, corresponding to “hot brakes” (a temperature of 250◦ F
for the brake pads).

(a) Develop a fuzzy controller for the base-braking control problem assuming
that the brakes always stay cold (i.e., St = 0.85).

(b) Develop a fuzzy controller for the base-braking control problem assuming
that the brakes always stay hot (i.e., St = 1.7).

(c) Test the fuzzy controller developed for the cold brakes on the hot ones, and
vice-versa.
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(d) Next, test the performance of the controller developed for the cold brakes
on brakes that heat up over time. Use the simulation methodology outlined
above.

(e) Repeat (a)–(d) using a conventional control approach and compare its per-
formance to that of the fuzzy controllers.

Design Problem 3.8 (Rocket Velocity Control): A mathematical model
that is useful in the study of the control of the velocity of a single-stage rocket is
given by (see [16] and [136])

d v(t)
dt

= c(t)
(

m

M − m t

)
− g

(
R

R + y(t)

)
− 0.5 v2(t)

(
ρa A Cd

M − m t

)
(3.6)

where v(t) is the rocket velocity at time t (the plant output), y(t) is the altitude
of the rocket (above sea level), and c(t) (the plant input) is the velocity of the
exhaust gases (in general, the exhaust gas velocity is proportional to the cross-
sectional area of the nozzle, so we take it as the input). Also,

• M = 15000.0 kg = the initial mass of the rocket and fuel.

• m = 100.0 kg
s = the exhaust gases mass flow rate (approximately constant

for some solid propellant rockets).
• A = 1.0 meter2 = the maximum cross-sectional area of the rocket.
• g = 9.8 meters

s2 = the the acceleration due to gravity at sea level.
• R = 6.37× 106 meters = the radius of the earth.

• ρa = 1.21 kg
m3 = the density of air.

• Cd = 0.3 = the drag coefficient for the rocket.

Due to the loss of fuel resulting from combustion and exhaust, the rocket has a
time-varying mass.

To specify the performance objectives, we use a “reference model.” That is, we
desire to have the closed-loop system from r to v behave the same as a reference
model does from r to vm. In our case, we choose the reference model to be

dvm(t)
dt

= −0.2vm(t) + 0.2r(t)

where vm(t) specifies the desired rocket velocity. This shows that we would like
a first-order-type response due to a step input.

(a) Pick an altitude trajectory y(t) that you would like to follow.

(b) Develop a fuzzy controller for the rocket velocity control problem and demon-
strate that it meets the performance specifications via simulation.
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(b) Develop a controller using conventional methods and demonstrate that it
meets the performance objectives. Compare its performance to that of the
fuzzy controller.

Design Problem 3.9 (An Acrobot)�: An acrobot is an underactuated, un-
stable two-link planar robot that mimics the human acrobat who hangs from
a bar and tries to swing up to a perfectly balanced upside-down position with
his or her hands still on the bar (see Figure 3.32). In this problem we apply di-
rect fuzzy control to two challenging robotics control problems associated with
the acrobot, swing-up and balancing, and use different controllers for each case.
Typically, a heuristic strategy is used for swing-up, where the goal is to force the
acrobot to reach its vertical upright position with near-zero velocity on both links.
Then, when the links are close to the inverted position, a balancing controller is
switched on and used to maintain the acrobot in the inverted position (again, see
Figure 3.32). Such a strategy was advocated in earlier work in [191] and [190].

Hanging
position
(stable)

Movement
to help
swing-up

Moving
toward
inverted
position

Near
inverted
position

Inverted
position
(unstable)

Use swing-up controller Switch to balancing controller

Motor fixed
to link 1, used
to drive
link 2

Sensors for
angular
position

"Link 1"

"Link 2"

FIGURE 3.32 The acrobot (figure taken
from [27], c© Kluwer Academic Pub.).

The acrobot has a single actuator at the elbow and no actuator at the
shoulder; the system is “underactuated” because we desire to control two links of
the acrobot (each with a degree of freedom) with only a single system input. The
configuration of a simple acrobot, from which the system dynamics are obtained,
is shown in Figure 3.33. The joint angles q1 and q2 serve as the generalized system
coordinates; m1 and m2 specify the mass of the links; l1 and l2 specify the link
lengths; lc1 and lc2 specify the distance from the axis of rotation of each link to
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its center of mass; and I1 and I2 specify the moment of inertia of each link taken
about an axis coming out of the page and passing through its center of mass. The
single system input τ is defined such that a positive torque causes q2 to increase
(move in the counterclockwise direction).

2m 2 I,

q
1

q
2

l

l

l

c
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l1

2

, I1m
1

2

1

FIGURE 3.33 Simple acrobot notation
(figure taken from [27], c© Kluwer Academic
Pub.).

The dynamics of the simple acrobot may be obtained by determining the Euler-
Lagrange equations of motion for the system. This is accomplished by finding
the Lagrangian of the system, or the difference between the system’s kinetic
and potential energies. Indeed, determining the kinetic and potential energies
of each link is the most difficult task in obtaining the system dynamics and
requires forming the manipulator Jacobian (see Chapters 5 and 6 of [192] for more
details). In [192], Spong has developed the equations of motion of a planar elbow
manipulator; this manipulator is identical to the acrobot shown in Figure 3.33,
except that it is actuated at joints one and two. The dynamics of the acrobot
are simply those of the planar manipulator, with the term corresponding to the
input torque at the first joint set equal to zero. The acrobot dynamics may be
described by the two second-order differential equations

d11q̈1 + d12q̈2 + h1 + φ1 = 0 (3.7)
d12q̈1 + d22q̈2 + h2 + φ2 = τ (3.8)

where the coefficients in Equations (3.7) and (3.8) are defined as

d11 = m1l
2
c1 + m2(l21 + l2c2 + 2l1lc2 cos(q2)) + I1 + I2
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d22 = m2l
2
c2 + I2

d12 = m2(l2c2 + l1lc2 cos(q2)) + I2

h1 = −m2l1lc2 sin(q2)q̇2
2 − 2m2l1lc2 sin(q2)q̇2q̇1

h2 = m2l1lc2 sin(q2)q̇2
1

φ1 = (m1lc1 + m2l1)g cos(q1) + m2lc2g cos(q1 + q2)
φ2 = m2lc2g cos(q1 + q2)

In our acrobot model, we have also limited the range for joint angle q2 to
[−π, π] (i.e., the second link is not free to rotate in a complete revolution—it
cannot cross over the first link). We have also cascaded a saturation nonlinearity
between the controller output and plant input to limit the input torque magnitude
to 4.5 N-m. The model parameter values are given in Table 3.12.

TABLE 3.12 Acrobot Model
Parameters Used in Simulations

Parameter Value

m1 1.9008 kg

m2 0.7175 kg

l1 0.2 m

l2 0.2 m

lc1 1.8522 × 10−1 m

lc2 6.2052 × 10−2 m

I1 4.3399 × 10−3 kg·m2

I2 5.2285 × 10−3 kg·m2

When you simulate the acrobot, be sure to use a good numerical simulation
algorithm with a small enough integration step size. For instance, use a fourth-
order Runge-Kutta technique with an integration step size of 0.0025 seconds. To
simulate the effects of implementing the controllers on a digital computer, sample
the output signals with a period T = 0.01 seconds, and only update the control
input every T seconds (holding the value constant in between updates).

(a) Find a linear model about the equilibrium inverted position (q1 = π/2,
q2 = 0, q̇1 = 0, q̇2 = 0) with τ = 0 (note that there is actually a continuum
of equilibrium positions). Define the state vector x = [q1 − π/2, q2, q̇1, q̇2]�

to transform the balancing control problem to a regulation problem. The
acrobot dynamics linearized about x = [0, 0, 0, 0]� may be described by

ẋ = Ax + Bτ

y = Cx + Dτ

Find the numerical values for the A, B, C, and D matrices and verify that the
system is unstable. Design a linear quadratic regulator (LQR), and illustrate
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its performance in simulation for an initial condition q1(0) = π/2 + 0.04,
q2(0) = −0.0500, q̇1(0) = −0.2000, and q̇2(0) = 0.0400. This initial condition
is such that the first link is approximately 2.29◦ beyond the inverted position,
while the second link is displaced approximately −2.86◦ from the first link.
The initial velocities are such that the first link is moving away from the
inverted position, while the second link is moving into line with the first
link.

(b) Next we study the development of a fuzzy controller for the acrobot. Suppose
that your fuzzy controller has four inputs: g0(q1−π/2), g1q2, g2q̇1, and g3q̇2;
and a single output. Here, g0–g3 are scaling gains, and the output of the
fuzzy controller is scaled by a gain h. Test your controller in simulation
using the same initial conditions as in part (a). Hint: Use the approach of
copying the LQR gains as we did for the rotational inverted pendulum. Also,
consider specifying the output membership function centers via a nonlinear
function.

Design Problem 3.10 (Fuzzy Warning Systems): In this problem you will
fully develop the fuzzy decision-making systems that are used as warning systems
for an infectious disease and an aircraft.

(a) Fully develop the fuzzy system that will serve as a warning system for the
infectious disease warning system described in Section 3.6.1 on page 162.
Test the performance of the system by showing that it can provide proper
warnings for each of the warning conditions.

(b) Repeat (a) but for the aircraft failure warning system described in Sec-
tion 3.6.2 on page 166.

Design Problem 3.11 (Automobile Speed Warning System)�: In this
problem you will study the development of a fuzzy decision-making system for
“intelligent vehicle and highway systems” where there is a focus on the devel-
opment of “automated highway systems” (AHS). In AHS it is envisioned that
vehicles will be automatically driven by an on-board computer that interacts
with a specially designed roadway. Such AHS offer significant improvements in
safety and overall roadway efficiency (i.e., they increase vehicle throughput). It
is evident that the AHS will evolve by the sequential introduction of increasingly
advanced automotive and roadway subsystems. One such system that may be
used is a speed advisory system to be placed on the vehicle to enhance safety,
as shown in Figure 3.34. There is a vehicle and a changeable electronic sign that
displays the speed limit for the current weather and traffic conditions, and in
addition transmits the current speed limit to passing vehicles. There is a receiver
in the vehicle that can collect this speed limit information. The problem is to
design a speed advisory system that can display warnings to the driver about the
dangers of exceeding the speed limit. We will use this problem to illustrate the
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development of a fuzzy decision-making system that can emulate the manner in
which a human safety expert would warn the driver about traveling at dangerous
speeds if such a person could be available on each and every vehicle.

55

FIGURE 3.34 Scenario for an automobile speed advisory
system.

The first step in the design of the speed advisory system is to specify the types
of advice that the safety expert should provide. Then the expert should indicate
what variables need to be known to in order to provide such advice. This will help
define the inputs and outputs of the fuzzy system. Suppose specifications dictate
that the advisory system is to provide (1) an indication of the likelihood (on a
scale of zero to one, with one being very likely) that the vehicle will exceed the
current speed limit (which we assume is fixed at 55 mph for our example), and (2)
a numeric rating between one and ten (ten being the highest) of how dangerous
the current operating speed is. Suppose that to provide such information the
safety expert indicates that the error between the current vehicle speed and the
speed limit and the derivative of the error between the current vehicle speed and
the speed limit will be needed. Clearly, the fuzzy system will then have two inputs
and two outputs.

To develop a fuzzy speed warning system, we need to have the engineer
interview the safety expert to determine how to decide what warnings should be
provided to the driver. The safety expert will provide a linguistic description of
her or his approach. First, define the universe of discourse for the speed error
input to the fuzzy system to be [−100, 100] mph (where 100 mph is the highest
speed that the vehicle can attain) and universe of discourse for the change in speed
input to be [−10, 10] mph/sec (so that the vehicle can accelerate or decelerate
at most 10 mph in one second). The universe of discourse for the output that
indicates the likelihood to exceed the speed limit is [0, 1], and the universe of
discourse for the danger rating output is [0, 10], with 10 representing the most
dangerous situation. We use e to denote the speed error, ė for the derivative of
the error, s for the likelihood that the speed limit will be exceeded, and d for
the danger rating for the current speed. The linguistic variables for the inputs
could be = “error” and = “error-deriv,” and for the outputs they could be =
“likely-to-exceed-limit” and = “danger-rating.”

Examples of linguistic rules for the fuzzy system could be the following: (1)
If error is “possmall” and error-deriv is “neglarge” Then likely-to-exceed-limit is
“medium” (i.e., if the speed is below the limit, but it is approaching the limit
quickly, then there is some concern that the speed limit will be exceeded), (2) If
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error is “zero” and error-deriv is “neglarge” Then likely-to-exceed-limit is “large”
(i.e., if the speed is currently at the speed limit and it is increasing rapidly, then
there is a significant concern that the speed limit will be exceeded), and (3) If
error is “possmall” and error-deriv is “neglarge” Then danger-rating is “small”
(i.e., if the speed is below the limit, but it is approaching the limit quickly, Then
there is some danger because the limit is likely to at least slightly exceed what
experts judge to be a safe driving speed).

(a) Develop a fuzzy decision-making system that can serve as a speed advisory
system for automobiles.

(b) Develop a test scenario for the fuzzy system. Clearly explain how you will
test the system.

(c) Test the system according to your plan in (b), and show your results (these
should include showing that the system can provide warnings under the
proper conditions).

Design Problem 3.12 (Design of Fuzzy Decision-Making Systems)�: In
this problem you will assist in both defining the problem and the solution. The
problem focuses on the development of fuzzy decision-making systems that are
not necessarily used in the control of a system.

(a) Suppose that you wish to buy a used car. You have various priorities with
regard to price, color, safety features, the year the car was made, and the
make of the car. Quantify each of these characteristics with fuzzy sets and
load appropriate rules into a fuzzy decision-making system that represents
your own priorities in purchasing a used car. For instance, when presented
with N cars in a row, the fuzzy system should be able to provide a value
that represents your ranking of the desirability of purchasing each of the
cars. Demonstrate in simulation the performance of the system (i.e., that
it properly represents your decision-making strategy for purchasing a used
car).

(b) Suppose that you wish to design a computer program that will guess which
team wins in a football game (that has already been played) when it is given
only total passing yards, total rushing yards, and total time of possession
for each team. Design a fuzzy decision-making system that will guess at the
outcome (score) of a game based on these inputs. Test the performance of
the system by using data from actual games played by your favorite team.

(c) An alternative, perhaps more interesting system to develop than the one
described in (b), would be one that would predict who would win the game
before it was played. How would you design such a system?
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Nonlinear Analysis
So far as the laws of mathematics refer to reality,

they are not certain. And so far as they are certain,

they do not refer to reality.

–Albert Einstein

4.1 Overview
As we described it in Chapters 1–3, the standard control engineering methodology
involves repeatedly coordinating the use of modeling, controller design, simulation,
mathematical analysis, implementations, and evaluations to develop control sys-
tems. In Chapters 2 and 3 we showed via examples how modeling is used, and we
provided guidelines for controller design. Moreover, we discussed how to simulate
fuzzy controllers, highlighted some issues that are encountered in implementation,
and showed case studies that illustrated the design, simulation, and implementa-
tion of fuzzy control systems. In this chapter we show how to perform mathematical
analysis of various properties of fuzzy control systems so that the designer will have
access to all steps of the basic control design methodology.

Basically, we use the mathematical model of the plant and nonlinear analysis to
enhance our confidence in the reliability of a fuzzy control system by verifying sta-
bility and performance specifications and possibly redesigning the fuzzy controller.
We emphasize, however, that mathematical analysis alone cannot provide defini-
tive answers about the reliability of the fuzzy control system since such analysis
proves properties about the model of the process, not the actual physical process.
Indeed, it can be argued that a mathematical model is never a perfect representa-
tion of a physical process; hence, while nonlinear analysis may appear to provide
definitive statements about control system reliability, you must understand that
such statements are only accurate to the extent that the mathematical model is
accurate. Nonlinear analysis does not replace the use of common sense and evalua-
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tion via simulations and experimentation. It simply assists in providing a rigorous
engineering evaluation of a fuzzy control system before it is implemented.

It is important to note that the advantages of fuzzy control often become most
apparent for very complex problems where we have an intuitive idea about how
to achieve high-performance control (e.g., the two-link flexible robot case study
in Chapter 3). In such control applications, an accurate mathematical model is so
complex (i.e., high order, nonlinear, stochastic, with many inputs and outputs) that
it is sometimes not very useful for the analysis and design of conventional control
systems since assumptions needed to utilize conventional control design approaches
are often violated. The conventional control engineering approach to this problem is
to use an approximate mathematical model that is accurate enough to characterize
the essential plant behavior in a certain region of operation, yet simple enough so
that the necessary assumptions needed to apply the analysis and design techniques
are satisfied. However, due to the inaccuracy of the model, upon implementation
the developed controllers often need to be tuned via the “expertise” of the control
engineer.

The fuzzy control approach, where explicit characterization and utilization of
control expertise is used earlier in the design process, largely avoids the problems
with model complexity that are related to design. That is, for the most part, fuzzy
control system design does not depend on a mathematical model unless it is needed
to perform simulations to gain insight into how to choose the rule-base and mem-
bership functions. However, the problems with model complexity that are related
to analysis have not been solved (i.e., analysis of fuzzy control systems critically
depends on the form of the mathematical model); hence, it is often difficult or
impossible to apply nonlinear analysis techniques to the applications where the
advantages of fuzzy control are most apparent!

For instance, existing results for stability analysis of fuzzy control systems typ-
ically require that the plant model be deterministic and satisfy some continuity
constraints, and sometimes require the plant to be linear or have a very specific
mathematical form. The most general approaches to the nonlinear analysis of fuzzy
control systems are those due to Lyapunov (his direct and indirect methods). On
the other hand, for some stability analysis approaches (e.g., for absolute stability),
the only results for analysis of steady-state tracking error of fuzzy control systems,
and the existing results on the use of describing functions for analysis of limit cycles,
essentially require a linear time-invariant plant (or one that has a special form so
that the nonlinearities can be bundled into one nonlinear component in the loop).

These limitations in the theory help to show that fuzzy control technology is in
a sense leading the theory; the practitioner will go ahead with the design and im-
plementation of many fuzzy control systems without the aid of nonlinear analysis.
In the meantime, theorists will continue to develop a mathematical theory for the
verification and certification of fuzzy control systems. This theory will have a syn-
ergistic effect by driving the development of fuzzy control systems for applications
where there is a need for highly reliable implementations.

Overall, the objectives of this chapter are as follows:
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• To help teach sound techniques for the construction of fuzzy controllers by alerting
the designer to some of the pitfalls that can occur if a rule-base is improperly
constructed (e.g., instabilities, limit cycles, and steady-state errors).

• To provide insights into how to modify the fuzzy controller rule-base to guar-
antee that performance specifications are met (thereby helping make the fuzzy
controller design process more systematic).

• To provide examples of how to apply the theory to some simple fuzzy control
system analysis and design problems.

We provide an introduction to the use of Lyapunov stability analysis in Sec-
tion 4.3. In particular, we introduce Lyapunov’s direct and indirect methods and
illustrate the use of these via several examples and an inverted pendulum applica-
tion. Moreover, we show how to use Lyapunov’s direct method for the analysis of
stability of plants represented with Takagi-Sugeno fuzzy systems that are controlled
with a Takagi-Sugeno form of a fuzzy controller.

We introduce analysis of absolute stability in Section 4.4, steady-state error
analysis in Section 4.5, and describing function analysis in Section 4.6. In each
of these sections we show how the methods can aid in picking the membership
functions in a fuzzy controller to avoid limit cycles, and instabilities, and ultimately
to meet a variety of closed-loop specifications. Since most fuzzy control systems are
“hybrid” in that the controller contains a linear portion (e.g., an integrator or
differentiator) as well as a nonlinear portion (a fuzzy system), we will show how to
use nonlinear analysis to design both of these portions of the fuzzy control system.

Overall, while we highly recommend that you study this chapter carefully, if you
are not concerned with the verification of the behavior of a fuzzy control system,
you can skip to the next chapter. Indeed, there is no direct dependence of any topic
in the remaining chapters of this book on the material in this chapter. This chapter
simply tends to deepen your understanding of the material studied in Chapters 1–3.

4.2 Parameterized Fuzzy Controllers
In this section we will introduce the fuzzy control system to be investigated and
briefly examine the nonlinear characteristics of the fuzzy controller. Except in Sec-
tion 4.3, the closed-loop systems in this chapter will be as shown in Figure 4.1
(where we assume that G(s) is a single-input single-output (SISO) linear system)
or they will be modified slightly so that the fuzzy controller is in the feedback path.1

We will be using both SISO and MISO (multi-input single-output) fuzzy controllers
as they are defined in the next subsections.

1. We assume throughout this chapter that the fuzzy controller is designed so that the existence

and uniqueness of the solution of the differential equation describing the closed-loop system is
guaranteed.
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FIGURE 4.1 Fuzzy control system.

4.2.1 Proportional Fuzzy Controller
For the “proportional fuzzy controller,” as the SISO fuzzy controller in Figure 4.1
is sometimes called, the rule-base can be constructed in a symmetric fashion with
rules of the following form:

1. If e is NB Then u is NB

2. If e is NM Then u is NM

3. If e is NS Then u is NS

4. If e is ZE Then u is ZE

5. If e is PS Then u is PS

6. If e is PM Then u is PM

7. If e is PB Then u is PB

where NB, NM, NS, ZE, PS, PM, and PB are linguistic values representing “nega-
tive big,” “negative medium,” and so on.

The membership functions for the premises and consequents of the rules are
shown in Figure 4.2. Notice in Figure 4.2 that the widths of the membership func-
tions are parameterized by A and B. Throughout this chapter, unless it is indicated
otherwise, the same rule-base and similar uniformly distributed membership func-
tions will be used for all applications (where if the number of input and output
membership functions and rules increase, our analysis approaches work in a similar
manner). The fuzzy controller will be adjusted by changing the values of A and
B. The manner in which these values affect the nonlinear map that the fuzzy con-
troller implements will be discussed below. The fuzzy inference mechanism operates
by using the product to combine the conjunctions in the premise of the rules and
in the representation of the fuzzy implication. Singleton fuzzification is used, and
defuzzification is performed using the center-average method.

The SISO fuzzy controller described above implements a static nonlinear input-
output map between its input e(t) and output u(t). As we discussed in Chapter 2,
the particular shape of the nonlinear map depends on the rule-base, inference strat-
egy, fuzzification, and defuzzification strategy utilized by the fuzzy controller. Con-
sider the input-output map for the above fuzzy controller shown in Figure 4.3 with
A = B = 1. Modifications to the fuzzy controller can provide an infinite variety
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FIGURE 4.2 Membership functions for e(t) and u(t) (figure
taken from [83], c© John Wiley and Sons).

of such input-output maps (e.g., by changing the consequents of the rules). Notice,
however, that there is a marked similarity between the input-output map in Fig-
ure 4.3 and the standard saturation nonlinearity. In fact, the parameters A and B
from the fuzzy controller are similar to the saturation parameters of the standard
saturation nonlinearity—that is, B is the level at which the output saturates, and
A is the value of e(t) at which the saturation of u(t) occurs. Because the input-
output map of the fuzzy controller is odd, −B is the saturation level for e(t) ≤ −A,
and −A is the value of e(t) where the saturation occurs. By modifying A and B
(and hence moving the input and output membership functions), we can change the
input-output map nonlinearity and its effects on the system. Throughout this chap-
ter, except in Section 4.3, we will always use rules in the form described above. We
emphasize, however, that the nonlinear analysis techniques used in this chapter will
work in the same manner for other types of rule-bases (and different fuzzification,
inference, and defuzzification techniques).

4.2.2 Proportional-Derivative Fuzzy Controller
There are many different types of fuzzy controllers we could examine for the MISO
case. Here, aside from Section 4.3, we will constrain ourselves to the two input
“proportional-derivative fuzzy controller” (as it is sometimes called). This controller
is similar to our SISO fuzzy controller with the addition of the second input, ė. In
fact, the membership functions on the universes of discourses and linguistic values
NB, NM, NS, ZE, PS, PM, and PB for e and u are the same as they are shown in
Figure 4.2 and will still be adjusted using the parameters A and B, respectively.
The membership functions on the universe of discourse and the linguistic values for
the second input, ė, are the same as for e with the exception that the adjustment
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FIGURE 4.3 Input-output map of the proportional fuzzy
controller (figure taken from [83], c© John Wiley and Sons).

parameter will be denoted by D. Therefore, there are now three parameters for
changing the fuzzy controller: A, B, and D. Assuming that there are seven mem-
bership functions on each input universe of discourse, there are 49 possible rules
that can be put in the rule-base. A typical rule will take on the form

If e is NB and ė is NB Then u is NB

The complete set of rules is shown in tabulated form in Table 4.1. In Table 4.1
the premises for the input ė are represented by the linguistic values found in the
top row, the premises for the input e are represented by the linguistic values in the
left-most column, and the linguistic values representing the consequents for each
of the 49 rules can be found at the intersections of the row and column of the
appropriate premises (note that this is a slightly different tabular form than what
we used earlier since we list the actual linguistic values here). The upper left-hand
corner of the body of Table 4.1 is the representation of the above rule, “If e is
NB and ė is NB Then u is NB.” The remainder of the MISO fuzzy controller is
similar to the SISO fuzzy controller (i.e., singleton fuzzification, the product for
the premise and implication, and center-average defuzzification are used). Notice
that there is a type of pattern of rules in Figure 4.1 that will result in a particular
(somewhat irregular shaped) nonlinearity. This particular rule-base was chosen for
an application we study in describing function analysis later in the chapter.

We can also construct an input-output map for this MISO fuzzy controller.
The parameters A and B have the same effect as with the SISO fuzzy controller.
By changing the values A, B, and D, we can change the effect of the MISO fuzzy
controller on the closed-loop system without reconstructing the rule-base or any
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TABLE 4.1 Rule Table for PD Fuzzy Controller

“output” “change-in-error” ė
u NB NM NS ZE PS PM PB

NB NB NS PS PB PB PB PB
NM NB NM ZE PM PM PB PB

“error” NS NB NM NS PS PM PB PB
e ZE NB NM NS ZE PS PM PB

PS NB NB NM NS PS PM PB
PM NB NB NM NM ZE PM PB
PB NB NB NB NB NS PS PB

other portion of the fuzzy controller. Again, we emphasize that while we use this
particular fuzzy controller, which is conveniently parameterized by A, B, and D, the
approaches to nonlinear analysis in this chapter work in a similar manner for fuzzy
controllers that use other membership functions, rule-bases, inference mechanisms,
and fuzzification and defuzzification strategies.

4.3 Lyapunov Stability Analysis
Often the designer is first concerned about investigating the stability properties of
a fuzzy control system, since it is often the case that if the system is unstable there
is no chance that any other performance specifications will hold. For example, if
the fuzzy control system for an automobile cruise control is unstable, you would
be more concerned with the possibility of unsafe operation than with how well it
regulates the speed at the set-point. In this section we provide an overview of two
approaches to stability analysis of fuzzy control systems: Lyapunov’s direct and
indirect methods. We provide several examples for each of the methods, including
the application of Lyapunov’s direct method to the stability analysis of Takagi-
Sugeno fuzzy systems. In the next section we show how to use the circle criterion
in the analysis of absolute stability of fuzzy control systems.

4.3.1 Mathematical Preliminaries
Suppose that a dynamic system is represented with

ẋ(t) = f(x(t)) (4.1)

where x ∈ �n is an n vector and f : D → �n with D = �n or D = B(h) for some
h > 0 where

B(h) = {x ∈ �n : |x| < h}

is a ball centered at the origin with a radius of h and | · | is a norm on �n (e.g.,
|x| =

√
(x�x)). If D = �n then we say that the dynamics of the system are defined

globally, while if D = B(h) they are only defined locally. Assume that for every x0
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the initial value problem

ẋ(t) = f(x(0)), x(0) = x0 (4.2)

possesses a unique solution φ(t, x0) that depends continuously on x0. A point xe ∈
�n is called an “equilibrium point” of Equation (4.1) if f(xe) = 0 for all t ≥ 0. An
equilibrium point xe is an “isolated equilibrium point” if there is an h′ > 0 such
that the ball around xe,

B(xe, h
′) = {x ∈ �n : |x − xe| < h′}

contains no other equilibrium points besides xe. As is standard, we will assume that
the equilibrium of interest is an isolated equilibrium located at the origin of �n.
This assumption results in no loss of generality since if xe �= 0 is an equilibrium
of Equation (4.1) and we let x̄(t) = x(t) − xe, then x̄ = 0 is an equilibrium of the
transformed system

˙̄x(t) = f̄(x̄(t)) = f(x̄(t) + xe)

(for an example of this idea, see Section 4.3.4).
The equilibrium xe = 0 of (4.1) is “stable” (in the sense of Lyapunov) if for

every ε > 0 there exists a δ(ε) > 0 such that |φ(t, x0)| < ε for all t ≥ 0 whenever
|x0| < δ(ε) (i.e., it is stable if when it starts close to the equilibrium it will stay
close to it). The notation δ(ε) means that δ depends on ε. A system that is not
stable is called “unstable.”

The equilibrium xe = 0 of Equation (4.1) is said to be “asymptotically stable” if
it is stable and there exists η > 0 such that limt→∞ φ(t, x0) = 0 whenever |x0| < η
(i.e., it is asymptotically stable if when it starts close to the equilibrium it will
converge to it).

The set Xd ⊂ �n of all x0 ∈ �n such that φ(t, x0) → 0 as t → ∞ is called the
“domain of attraction” of the equilibrium xe = 0 of Equation (4.1). The equilibrium
xe = 0 is said to be “globally asymptotically stable” if Xd = �n (i.e., if no matter
where the system starts, its state converges to the equilibrium asymptotically).

As an example, consider the scalar differential equation

ẋ(t) = −2x(t)

which is in the form of Equation (4.2). For this system, D = �1 (i.e., the dynamics
are defined on the entire real line, not just some region around zero). We have
xe = 0 as an equilibrium point of this system since 0 = −2xe. Notice that for any
x0, we have the solution

φ(t, x0) = x0e
−2t → 0

as t → ∞ so that the equilibrium xe = 0 is stable since if you are given any
ε > 0 there exists a δ > 0 such that if |x0| < δ, φ(t, x0) ≤ ε. To see this, simply
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choose δ = ε for any ε > 0 that you choose. Also note that since for any x0 ∈ �n,
φ(t, x0) → 0, the system is globally asymptotically stable. While determining if this
system possesses certain stability properties is very simple since the system is so
simple, for complex nonlinear systems it is not so easy. One reason for this is that
for complex nonlinear systems, it is difficult to even solve the ordinary differential
equations (i.e., to find φ(t, x0) for all t and x0). However, Lyapunov’s methods
provide two techniques that allow you to determine the stability properties without
solving the ordinary differential equations.

4.3.2 Lyapunov’s Direct Method
The stability results for an equilibrium xe = 0 of Equation (4.1) that we provide
next depend on the existence of an appropriate “Lyapunov function” V : D → �
where D = �n for global results (e.g., global asymptotic stability) and D = B(h) for
some h > 0, for local results (e.g., stability in the sense of Lyapunov or asymptotic
stability). If V is continuously differentiable with respect to its arguments, then the
derivative of V with respect to t along the solutions of Equation (4.1) is

V̇(4.1)(x(t)) = ∇V (x(t))�f(x(t))

where

∇V (x(t)) =
[

∂V

∂x1
,
∂V

∂x2
, . . . ,

∂V

∂xn

]�

is the gradient of V with respect to x. Using the subscript on V̇ is sometimes
cumbersome, so we will at times omit it with the understanding that the derivative
of V is taken along the solutions of the differential equation that we are studying
the stability of.

Lyapunov’s direct method is given by the following:

1. Let xe = 0 be an equilibrium for Equation (4.1). Let V : B(h) → � be a
continuously differentiable function on B(h) such that V (0) = 0 and V (x) > 0
in B(h)−{0}, and V̇(4.1)(x) ≤ 0 in B(h). Then xe = 0 is stable. If, in addition,
V̇(4.1)(x) < 0 in B(h) − {0}, then xe = 0 is asymptotically stable.

2. Let xe = 0 be an equilibrium for Equation (4.1). Let V : �n → � be a contin-
uously differentiable function such that V (0) = 0 and V (x) > 0 for all x �= 0,
|x| → ∞ implies that V (x) → ∞, and V̇(4.1)(x) < 0 for all x �= 0. Then xe = 0
is globally asymptotically stable.

As an example, consider the system

ẋ(t) = −2x3
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that has an equilibrium xe = 0. Choose

V (x) =
1
2
x2

With this choice we have

V̇ =
∂V

∂x

dx

dt
= xẋ = −2x4

so that clearly if x �= 0 then −2x4 < 0, so that by Lyapunov’s direct method xe = 0
is asymptotically stable. Notice that xe = 0 is in fact globally asymptotically stable.

While Lyapunov’s direct method has found wide application in conventional
control, it is important to note that it is not always easy to find the “Lyapunov
function” V that will have the above properties so that we can guarantee that the
system is stable. Next, we introduce Lyapunov’s indirect method.

4.3.3 Lyapunov’s Indirect Method

Let ∂f
∂x =

[
∂fi

∂xj

]
denote the n×n “Jacobian matrix.” For the next result, assume that

f : D → �n where D ⊂ �n, that xe ∈ D, and that f is continuously differentiable.
Lyapunov’s indirect method is given by the following: Let xe = 0 be an equi-

librium point for the nonlinear system Equation (4.1). Let the n × n matrix

Ā =
∂f

∂x
(x)

∣∣∣∣
x=xe=0

then

1. The origin xe = 0 is asymptotically stable if Re[λi] < 0 (the real part of λi) for
all eigenvalues λi of Ā.

2. The origin xe = 0 is unstable if Re[λi] > 0 for one or more eigenvalues of Ā.

3. If Re[λi] ≤ 0 for all i with Re[λi] = 0 for some i where the λi are the eigenvalues
of Ā, then we cannot conclude anything about the stability of xe = 0 from
Lyapunov’s indirect method.

Lyapunov’s indirect method has also found wide application in conventional
control. Note that the term “indirect” is used since we arrive at our conclusions
about stability indirectly by first linearizing the system about an operating point.
The indirect method is sometimes called Lyapunov’s “first method,” while the direct
method is referred to as his “second method.”

As an example, consider the system

ẋ = −x2
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that has an equilibrium xe = 0. We have

Ā =
∂f

∂x
(x)

∣∣∣∣
x=xe=0

= −2x = 0

so that we can conclude nothing about stability. In the next section we will show a
simple example where both Lyapunov techniques can be used to draw conclusions
about stability for a fuzzy control system.

4.3.4 Example: Inverted Pendulum
In this section we will illustrate the use of Lyapunov’s indirect method for stability
analysis of an inverted pendulum (one with a model different from the ones used
in Chapters 2 and 3).

A simple model of the pendulum shown in Figure 4.4 is given by

ẋ1 = x2

ẋ2 = −g
�
sin(x1) − k

m
x2 + 1

m�2
T

(4.3)

where g = 9.81, � = 1.0, m = 1.0, k = 0.5, x1 is the angle (in radians) shown in
Figure 4.4, x2 is the angular velocity (in radians per second), and T is the control
input.

�������

x1

�
�
�
�
�

�
�
�
�
���
��������
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�
���������
��

Inverted
position

Downward
position

T

FIGURE 4.4 Pendulum.

If we assume that T = 0, then there are two distinct isolated equilibrium points,
one in the downward position [0, 0]� and one in the inverted position [π, 0]�. Since
we are interested in the control of the pendulum about the inverted position, we
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need to translate the equilibrium by letting x̄ = x − [π, 0]�. From this we obtain

˙̄x1 = x̄2 = f̄1(x̄)
˙̄x2 = g

�
sin(x̄1) − k

m
x̄2 + 1

m�2
T = f̄2(x̄) (4.4)

where if T = 0 then x̄ = 0 corresponds to the equilibrium [π, 0]� in the original
system in Equation (4.3), so studying the stability of x̄ = 0 corresponds to studying
the stability of the fuzzy control system about the inverted position. Now, it is
traditional to omit the cumbersome bar notation in Equation (4.4) and study the
stability of x = 0 for the system

ẋ1 = x2 = f1(x)
ẋ2 = g

� sin(x1) − k
mx2 + 1

m�2 T = f2(x)
(4.5)

with the understanding that we are actually studying the stability of Equation (4.4).
Assume that the fuzzy controller denoted by T = Φ(x1, x2), which utilizes x1 and
x2 as inputs to generate T as an output, is designed so that f (i.e., the closed-loop
dynamics) are continuously differentiable and so that D is a neighborhood of the
origin.

Application of Lyapunov’s Direct Method

Assume that for the fuzzy controller Φ(0, 0) = 0 so that the equilibrium is preserved.
Choose

V (x) =
1
2
x�x =

1
2
x2

1 +
1
2
x2

2

so that

∇V (x(t)) = [x1, x2]�

and

V̇ = [x1, x2]
[

x2
g
� sin(x1) − k

mx2 + 1
m�2 Φ(x1, x2)

]

and we would like V̇ < 0 to prove asymptotic stability (i.e., to show that the fuzzy
controller can balance the pendulum). We have

x2

(
x1 +

g

�
sin(x1) −

k

m
x2 +

1
m�2

Φ(x1, x2)
)

< −β

if for some fixed β > 0 (note that x2 �= 0)

x1 +
g

�
sin(x1) −

k

m
x2 +

1
m�2

Φ(x1, x2) < − β

x2
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Rearranging this equation, we see that we need

Φ(x1, x2) ≤ m�2
(
− β

x2
+

k

m
x2 − x1 −

g

�
sin(x1)

)

on x ∈ B(h) for some h > 0 and β > 0. As a graphical approach, we can plot
the right-hand side of this equation, design the fuzzy controller Φ(x1, x2), and find
h > 0 and β > 0 so that the given inequality holds and hence asymptotic stability
holds.

We must emphasize that this is a local result. This means that we have shown
that there exists an h and hence a ball B(h) such that if we start our initial
conditions in this ball (i.e., x(0) ∈ B(h)), then the fuzzy controller will balance the
pendulum. The theory does not say how large h is; hence, it can be very small so
that you may have to start the initial condition very close to the vertical equilibrium
point for it to balance.

Application of Lyapunov’s Indirect Method

For Equation (4.5)

Ā =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]∣∣∣∣∣
x=0

=
[

0 1
g
� + 1

m�2
∂T
∂x1

− k
m + 1

m�2
∂T
∂x2

]∣∣∣∣
x=0

(4.6)

The eigenvalues of Ā are given by the determinant of λI − Ā. To ensure that the
eigenvalues λi, i = 1, 2, of Ā are in the left half of the complex plane, it is sufficient
that

λ2 +
(

k

m
− 1

m�2
∂T

∂x2

)
λ +

(
−g

�
− 1

m�2
∂T

∂x1

)
= 0 (4.7)

where x = 0, has its roots in the left half-plane. Equation (4.7) will have its roots
in the left half-plane if each of its coefficients are positive. (Why?) Hence, if we
substitute the values of the model parameters, we need

∂T
∂x2

∣∣∣
x=0

< k�2 = 0.5,

∂T
∂x1

∣∣∣
x=0

< g�m = −9.81
(4.8)

to ensure asymptotic stability.
Using simple intuitive knowledge about the dynamics of the inverted pendu-

lum, we can design a fuzzy controller that uses triangular membership functions
and 25 rules that meets these constraints. Rather than provide the details of the
development of the fuzzy controller, which differs slightly from the one introduced
in Section 4.2.1 on page 190, we would simply like to emphasize that any fuzzy
controller that satisfies the above conditions in Equation (4.8) will result in a sta-
ble closed-loop system (we have designed and tested one). One easy way to design
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such a fuzzy controller is to construct one in the usual way (i.e., heuristically) then
plot the controller surface and check that the above conditions in Equation (4.8)
are met (by simply inspecting the plot to make sure that its slope near zero (i.e.,
x = 0) satisfies the above constraints).

Finally, it is important that the reader not overgeneralize the stability result
that is obtained via Lyapunov’s indirect method. For the pendulum, Lyapunov’s
indirect method simply says that if the pendulum position begins close enough
to the inverted position, the fuzzy controller will be guaranteed to balance it in
the upright position; whereas if the pendulum starts too far from the balanced
condition, the fuzzy controller may not balance it.

4.3.5 Example: The Parallel Distributed Compensator
While in the remainder of this chapter we consider nonlinear analysis of fuzzy con-
trol systems where the fuzzy controller is the “standard” one, in this one subsection
we consider the case where the plant and controller are Takagi-Sugeno fuzzy sys-
tems. While here we will study the continuous-time case, in Exercise 4.6 on page 227
we will focus on the discrete-time case.

Plant, Controller, and Closed-Loop System

In particular, consider the plant introduced in Chapter 2, Section 2.3.7, in Equa-
tion (2.23) on page 76, where if we let z(t) = x(t) we have

ẋ(t) =

(
R∑

i=1

Aiξi(x(t))

)
x(t) +

(
R∑

i=1

Biξi(x(t))

)
u(t) (4.9)

which is a Takagi-Sugeno fuzzy system. We could let u(t) = 0, t ≥ 0 and study
the stability of Equation (4.9). Instead, we will consider the case where we use a
controller to generate u(t).

Assume that we can measure x(t) and that the controller is another Takagi-
Sugeno fuzzy system with R rules (the same number of rules as was used to describe
the plant) of the form

If x̃1 is Ãj
1 and x̃2 is Ãk

2 and, . . . , and x̃n is Ãl
n Then ui = Kix(t)

where Ki, i = 1, 2, . . . , R, are 1 × n vectors of control gains and the premises of
the rules are identical to the premises of the plant rules that were used to specify
Equation (4.9). In this case

u(t) =
R∑

j=1

Kjξj(x(t))x(t) (4.10)

This controller is sometimes referred to as a “parallel distributed compensator”
since some think of the ith rule in the controller as controlling the ith rule of
the plant, as this may be how you think of the design methodology for the Ki
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gains. In this context some people think of the compensator as being “parallel”
and “distributed” since the rules can be viewed as parallel and since some view
the construction of the gain Ki as separate from the construction of the gain Kj

where i �= j. We will, however, see below that the construction of each Ki gain is
not necessarily independent of the construction of other Kj gains, i �= j.

If we connect the controller to the plant in Equation (4.9), we get a closed-loop
system

ẋ(t) =


 R∑

i=1

Aiξi(x(t)) +

(
R∑

i=1

Biξi(x(t))

)
 R∑

j=1

Kjξj(x(t))




x(t) (4.11)

which is in the form of Equation (4.1). We assume that µi and hence ξi are defined
so that Equation (4.11) possesses a unique solution that is continuously dependent
on x(0).

Stability Analysis

For stability analysis we use the direct method of Lyapunov. Choose a (quadratic)
Lyapunov function

V (x) = x�Px

where P is a “positive definite matrix” (denoted by P > 0) that is symmetric (i.e.,
P = P�). Given a symmetric matrix P we can easily test if it is positive definite.
You simply find the eigenvalues of P , and if they are all strictly positive, then P is
positive definite. If P is positive definite, then for all x �= 0, x�Px > 0. Hence, we
have V (x) > 0 and V (x) = 0 only if x = 0. Also, if |x| → ∞, then V (x) → ∞.

To show that the equilibrium x = 0 of the closed-loop system in Equation (4.11)
is globally asymptotically stable, we need to show that V̇ (x) < 0 for all x. Notice
that

V̇ (x) = x�P ẋ + ẋ�Px

so that since

ξi(x(t)) =
µi(x(t))∑R
i=1 µi(x(t))

we have

V̇ (x) = x�P

[∑R
i=1 Aiµi(x(t))∑R

i=1 µi(x(t))
+

(∑R
i=1 Biµi(x(t))∑R

i=1 µi(x(t))

)(∑R
j=1 Kjµj(x(t))∑R

j=1 µj(x(t))

)]
x

+x�
[∑R

i=1 Aiµi(x(t))∑R
i=1 µi(x(t))

+

(∑R
i=1 Biµi(x(t))∑R

i=1 µi(x(t))

)(∑R
j=1 Kjµj(x(t))∑R

j=1 µj(x(t))

)]�

Px
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= x�P

[∑R
i=1 Aiµi(x(t))

∑R
j=1 µj(x(t))∑R

i=1 µi(x(t))
∑R

j=1 µj(x(t))
+

(∑R
i=1 Biµi(x(t))∑R

i=1 µi(x(t))

)(∑R
j=1 Kjµj(x(t))∑R

j=1 µj(x(t))

)]
x

+x�
[∑R

i=1 Aiµi(x(t))
∑R

j=1 µj(x(t))∑R
i=1 µi(x(t))

∑R
j=1 µj(x(t))

+

(∑R
i=1 Biµi(x(t))∑R

i=1 µi(x(t))

)(∑R
j=1 Kjµj(x(t))∑R

j=1 µj(x(t))

)]�

Px

Now, if we let
∑

i,j denote the sum over all possible combinations of i and j,
i = 1, 2, . . . , R, j = 1, 2, . . . , R, we get

V̇ (x) = x�P

[∑
i,j Aiµi(x(t))µj(x(t))∑

i,j µi(x(t))µj(x(t))
+

∑
i,j BiKjµi(x(t))µj(x(t))∑

i,j µi(x(t))µj(x(t))

]
x

+x�
[∑

i,j Aiµi(x(t))µj(x(t))∑
i,j µi(x(t))µj(x(t))

+

∑
i,j BiKjµi(x(t))µj(x(t))∑

i,j µi(x(t))µj(x(t))

]�

Px

= x�P

[∑
i,j(Ai + BiKj)µi(x(t))µj(x(t))∑

i,j µi(x(t))µj(x(t))

]
x

+x�
[∑

i,j(Ai + BiKj)µi(x(t))µj(x(t))∑
i,j µi(x(t))µj(x(t))

]�

Px

= x�
[
P

[∑
i,j(Ai + BiKj)µi(x(t))µj(x(t))∑

i,j µi(x(t))µj(x(t))

]

+

[∑
i,j(Ai + BiKj)µi(x(t))µj(x(t))∑

i,j µi(x(t))µj(x(t))

]�

P


x

= x�
[∑

i,j µi(x(t))µj(x(t))
[
P (Ai + BiKj) + (Ai + BiKj)�P

]
∑

i,j µi(x(t))µj(x(t))

]
x

Now, since

0 ≤ µi(x(t))µj(x(t))∑
i,j µi(x(t))µj(x(t))

≤ 1

we have

V̇ (x) ≤
∑
i,j

x� (
P (Ai + BiKj) + (Ai + BiKj)�P

)
x

Hence, if

x� (
P (Ai + BiKj) + (Ai + BiKj)�P

)
x < 0 (4.12)
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then V̇ (x) < 0.
Let

Z = P (Ai + BiKj) + (Ai + BiKj)�P

Notice that since P is symmetric Z is symmetric so that Z� = Z. Equation (4.12)
holds if Z is a “negative definite matrix.” For a symmetric matrix Z, we say that
it is negative definite (denoted Z < 0) if x�Zx < 0 for all x �= 0. If Z is symmetric,
then it is negative definite if the eigenvalues of Z are all strictly negative. Hence,
to show that the equilibrium x = 0 of Equation (4.11) is globally asymptotically
stable, we must find a single n × n positive definite matrix P such that

P (Ai + BiKj) + (Ai + BiKj)�P < 0 (4.13)

for all i = 1, 2, . . . , R and j = 1, 2, . . . , R.
Notice that in Equation (4.13) finding the common P matrix such that the

R2 matrices are negative definite is not trivial to compute by hand if n and R are
large. Fortunately, “linear matrix inequality” (LMI) methods can be used to find P
if it exists, and there are functions in a Matlab toolbox for solving LMI problems.
If, however, via these methods there does not exist a P , this does not mean that
there does not exist a Takagi-Sugeno fuzzy controller that can stabilize the plant;
it simply means that the quadratic Lyapunov function approach (i.e., our choice of
V (x) above) did not lead us to find one. If you pick a different Lyapunov function,
you may be able to find a Takagi-Sugeno controller that will stabilize the plant. It
is in this sense that Lyapunov techniques often are called “conservative” in that
conditions can often be relaxed beyond what the Lyapunov method would say for a
given Lyapunov function and stability is still maintained. This does not, however,
give us the license to ignore the conditions set up by the Lyapunov method; it simply
is something that the designer must keep in mind in designing stable controllers
with a Lyapunov method.

In our use of the Lyapunov method for constructing a Takagi-Sugeno fuzzy
controller, it is evident that the overall approach must be conservative due partially
to the use of the quadratic Lyapunov function and also since the stability test in
Equation (4.13) depends in no way on the membership functions that are chosen for
the plant representation that are used in the controller. In other words the results
indicate that no matter what membership functions are used to represent the plant,
and these are what allow for the modeling of nonlinear behavior, the stability test
is the same. In this sense the test is for all possible membership functions that can
be used. Clearly, then, we are not exploiting all of the known nonlinear structure
of the plant and hence we are opening the possibility that the resulting stability
analysis is conservative.

Regardless of the conservativeness, the above approach to controller construc-
tion and stability analysis can be quite useful for practical applications where you
may ignore the stability analysis and simply use the type of controller that the
method suggests (i.e., the controller in Equation (4.10) that is a nonlinear inter-
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polation between R linear controllers). We will discuss the use of this controller in
more detail in Chapter 7, Section 7.2.2, when we discuss gain scheduling since you
can view the Takagi-Sugeno fuzzy controller as a nonlinear interpolator between R
linear controllers for R linear plants represented by the Takagi-Sugeno model of the
plant.

Simple Stability Analysis Example

As a simple example of how to use the stability test in Equation (4.13), assume
that n = 1, R = 2, A1 = −1, B1 = 2, A2 = −2, and B2 = 1. These provide
the parameters describing the plant. We do not provide the membership functions
as any that you choose (provided that they result in a differential equation with
a unique solution that depends continuously on x(0)) will work for the stability
analysis that we provide.

Equation (4.13) says that to stabilize the plant with the Takagi-Sugeno fuzzy
controller in Equation (4.10), we need to find a scalar P > 0 and gains K1 and K2

such that

P (−1 + 2K1) + (−1 + 2K1)P < 0
P (−1 + 2K2) + (−1 + 2K2)P < 0
P (−2 + K1) + (−2 + K1)P < 0
P (−2 + K2) + (−2 + K2)P < 0

Choose any P > 0 such as P = 0.5. The stability test indicates that we need K1

and K2 such that K1 < 0.5 and K2 < 2 to get a globally asymptotically stable
equilibrium x = 0. If you simulated the closed-loop system for some x(0) �= 0, you
would find that x → 0 as t → ∞.

4.4 Absolute Stability and the Circle Crite-
rion

In this section we will examine the use of the Circle Criterion for testing and
designing to ensure the stability of a fuzzy control system. The methods of this
section provide an alternative (to the ones described in the previous section) for
when the closed-loop system is in a special form to be defined next.

4.4.1 Analysis of Absolute Stability
Figure 4.5 shows a basic regulator system. In this system G(s) is the transfer
function of the plant and is equal to C(sI − A)−1B where (A, B, C) is the state
variable description of the plant (x is the n-dimensional state vector). Furthermore,
(A, B) is controllable and (A, C) is observable [54]. The function Φ(t, y), represents
a memoryless, possibly time-varying nonlinearity—in our case, the fuzzy controller.
Here, the fuzzy controller does not change with time, so we denote it by Φ(y). Even
though the fuzzy controller is in the feedback path rather than the feed-forward
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path in this system, we will be able to use the same SISO fuzzy controller described
in Section 4.2.1 since it represents an odd function (i.e., for our illustrative example
with the SISO fuzzy controller Φ(−y) = −Φ(y) so we can transform Figure 4.5
into Figure 4.2). It is assumed that Φ(y) is piecewise continuous in t and locally
Lipschitz [141].

G(s)

Φ(t,y)

Σ
yr=0 u

FIGURE 4.5 Regulator
system.

If Φ is bounded within a certain region as shown in Figure 4.6 so that there
exist α, β, a, b, (β > α, a < 0 < b) for which

αy ≤ Φ(y) ≤ βy (4.14)

for all t ≥ 0 and all y ∈ [a, b] (i.e., it fits between two lines that pass through
zero) then Φ is said to be a “sector nonlinearity” or it is said to “lie on a sector.” If
Equation (4.14) is true for all y ∈ (−∞,∞), then the sector condition holds globally;
and if certain conditions hold (to be listed below), the system is “absolutely stable”
(i.e., x = 0 is (uniformly) globally asymptotically stable). For the case where Φ only
satisfies Equation (4.14) locally (i.e., for some a and b), if certain conditions (to
be listed below) are met, then the system is “absolutely stable on a finite domain”
(i.e., x = 0 is asymptotically stable).

y

β y

α y

Φ

a

b

FIGURE 4.6 Sector-bounded
nonlinearity.
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Recall that in Section 4.2.1 we explained how the fuzzy controller is often similar
to a saturation nonlinearity. Clearly, the fuzzy controller can be sector-bounded in
the same manner as the saturation nonlinearity with either α = 0 for the global
case, or for local stability, with some α > 0. To see this, consider how you would
bound the plot of the fuzzy controller input-output map in Figure 4.3 on page 192
with two lines as shown in Figure 4.6.

Last, we define D(α, β) to be a closed disk in the complex plane whose diameter
is the line segment connecting the points − 1

α + j0 and − 1
β + j0. A picture of this

disk is shown in Figure 4.7.

-1
α

-1
β

Im[s]

Re[s]

FIGURE 4.7 Disk.

Circle Criterion: With Φ satisfying the sector condition in Equation (4.14), the
regulator system in Figure 4.5 is absolutely stable if one of the following three
conditions is met:

1. If 0 < α < β, the Nyquist plot of G(jω) is bounded away from the disk
D(α, β) and encircles it m times in the counterclockwise direction where m is
the number of poles of G(s) in the open right half-plane.

2. If 0 = α < β, G(s) is Hurwitz (i.e., has its poles in the open left half plane)
and the Nyquist plot of G(jω) lies to the right of the line s = − 1

β .

3. If α < 0 < β, G(s) is Hurwitz and the Nyquist plot of G(jω) lies in the interior
of the disk D(α, β) and is bounded away from the circumference of D(α, β).

If Φ satisfies Equation (4.6) only on the interval y ∈ [a, b] (i.e., it only lies between
the two lines in a region around zero), then the above conditions ensure absolute
stability on a finite domain. It is important to note that the above conditions are
only sufficient conditions for stability and hence there is the concern that they are
conservative. In [223] it is shown how the circle criterion can be adjusted such that
the conditions are sufficient and necessary in a certain way. We introduce these
next.

It is necessary to begin by providing some mathematical preliminaries. For each
real p ∈ [1,∞), the set Lp consists of functions f(·) : [0,∞) → � such that∫∞

0
|f(t)|p dt < ∞ (4.15)

For instance, if f(t) = e−t, then we can say that f(t) ∈ L1. The set L∞ denotes
the set of all functions f(t) such that supt{f(t)} < ∞ (i.e., the set of all bounded
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functions). Clearly, e−t ∈ L∞ also.
Let

fT (t) =
{

f(t), 0 ≤ t ≤ T
0, T < t

(4.16)

be a truncated version of f(t). Let the set Lpe, the extension of Lp, consist of all
functions fT : [0,∞) → �, such that fT ∈ Lp for all finite T . Finally, let

‖ f(·) ‖p =
[∫ ∞

0

|f(t)|p dt

]1/p

‖ f(·) ‖Tp = ‖ f(·)T ‖p

If R̄ is a binary relation on Lpe, then R̄ is said to be Lp-stable if

(x, y) ∈ R̄, x ∈ Lp ⇒ y ∈ Lp (4.17)

For example, if x is the input to a system and y is the output, this quantifies a type
of input-output stability. R̄ is “Lp-stable with finite gain” if it is Lp-stable, and in
addition there exist finite constants γp and bp such that

(x, y) ∈ R̄, x ∈ Lp ⇒ ‖y‖p ≤ γp‖x‖p + bp (4.18)

R̄ is “Lp-stable with finite gain and zero bias” if it is Lp-stable, and in addition
there exists a finite constant γp such that

(x, y) ∈ R̄, x ∈ Lp ⇒ ‖y‖p ≤ γp‖x‖p (4.19)

Assume that we are given the regulator system shown in Figure 4.5 (with G
defined as above) except that now Φ is in general defined by Φ : L2e → L2e (more
general than above so it can still represent a fuzzy controller). Φ belongs to the
open sector (α, β) if it belongs to the sector [α + ε, β − ε] for some ε > 0 with the
sector bound defined as

‖Φx − [(β + α)/2]x‖T2 ≤ (β−α)
2

‖x‖T2, for all T ≥ 0, for all x ∈ L2e (4.20)

In actuality, this definition of the sector [α, β] is the same as our previous definition
in Equation (4.14) if Φ is memoryless (i.e., it has no dynamics, and it does not use
past values of its inputs, only its current input). Hence, since we have a memoryless
fuzzy controller, we can use the sector condition from Equation (4.14). Next, we
state a slightly different version of the circle criterion that we will call the circle
criterion with sufficient and necessary conditions (SNC).

Circle Criterion with Sufficient and Necessary Conditions (SNC): For
the system of Figure 4.5 with Φ defined as Φ : L2e → L2e, which satisfies Equa-
tion (4.20), and α, β two given real numbers with α < β, the following two state-
ments are equivalent [223]:
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1. The feedback system is L2-stable with finite gain and zero bias for every Φ
belonging to the sector (α, β).

2. The transfer function G satisfies one of the following conditions as appropriate:

(a) If αβ > 0, then the Nyquist plot of G(jω) does not intersect the interior
of the disk D(α, β) and encircles the interior of the disk D(α, β) exactly
m times in the counterclockwise direction, where m is the number of poles
of G with positive real part.

(b) If α = 0, then G has no real poles with positive real part, and Re[G(jω)] ≥
− 1

β for all ω.

(c) If αβ < 0, then G is a stable transfer function and the Nyquist plot of
G(jω) lies inside the disk D(α, β) for all ω.

If the conditions in statement 2 are satisfied, the system is L2-stable and the
result is similar to the circle criterion with sufficient conditions only. Negation of
statement 2 infers negation of statement 1, and we can state that the system will
not be L2-stable for every nonlinearity in the sector (it may not be apparent which
of the nonlinearities in a sector will cause the instability). Hence, if a given fuzzy
control system does not satisfy any of the conditions of statement 2, then we do
not know that it will result in an unstable system. All we know is that there is a
way to define the fuzzy controller (perhaps one you would not pick) that will result
in an unstable closed-loop system.

4.4.2 Example: Temperature Control
Suppose that we are given the thermal process shown in Figure 4.8, where τe is the
temperature of a liquid entering the insulated chamber, τo is the temperature of
the liquid leaving the chamber, and τ = τo − τe is the temperature difference due
to the thermal process. The heater/cooling element input is denoted with q. The
desired temperature is τd. Suppose that the plant model is

τ (s)
q(s)

=
1

s + 2

(note that we are slightly abusing the notation by showing τ as a function of the
Laplace variable). Suppose that we wish to track a unit step input τd. We wish to
design a stable fuzzy control system and would like to try to make the steady-state
error go to zero.

Suppose that the control system that we use is shown in Figure 4.9. The con-
troller Gc(s) is a post compensator for the fuzzy controller. Suppose that we begin
by choosing Gc(s) = K = 2 and that we simply consider this gain to be part of the
plant. Furthermore, for the SISO fuzzy controller we use input membership func-
tions shown in Figure 4.10 and output membership functions shown in Figure 4.11.
Note that we denote the variable that is output from the fuzzy controller (and input
to Gc(s)) as q′. We use 11 rules in the rule-base. For instance,
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Heater/cooling 
element

Fluid in

Fluid out

FIGURE 4.8 Thermal process.

• If e is positive small Then q is positive small

• If e is zero Then q is zero

• If e is negative big Then q is negative big

are rules in the rule-base (the others are similar in that they associate one fuzzy set
on the input universe of discourse with one on the output universe of discourse).
We use minimum to represent the premise and implication, singleton fuzzification,
and COG defuzzification (different from our parameterized fuzzy controller in Sec-
tion 4.2.1).

Fuzzy 
controller G

c GΣ

τd e q τ

Controller Thermal heating
process

FIGURE 4.9 Thermal process control system.

e, temperature 
difference0

18 36 54 72 90-18-36-54-72-90

µ (e)"zero" "positive small"

FIGURE 4.10 Input fuzzy sets.

A plot of the nonlinear surface for the fuzzy controller, which looks similar to a
saturation nonlinearity, can be used to show that α = 0 (it must be since the fuzzy
controller output is saturated and the only line that will fit under the saturation
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0
16 32 48 64 80-16-32-48-64-80

µ (q’)

q’,  heat 
flow rate 

FIGURE 4.11 Output fuzzy sets.

is one with zero slope) and β = 4
3 (to see this, plot the nonlinear surface and note

that a line with a slope of 4
3 overbounds the nonlinearity). The Nyquist plot of GcG

is in the right half-plane so that there are no encirclements (i.e., m = 0). Also, GcG
is Hurwitz since it has no right half-plane poles (including none on the jω axis).
Using the second condition of the circle criterion, we can conclude that the system
is absolutely stable. If you were to pick some initial conditions on the state and let
the reference input be zero, you could show in simulation that the state trajectories
asymptotically decrease to zero.

It is interesting to note, however, that if you let the reference input be

τd = 20u(t)

where u(t) is the unit step function, then you would find a large steady-state error.
Hence, we see that the guarantee for stability holds only for the case where τd = 0.

If you would like to get rid of this steady-state error, one way to proceed would
be to add an integrator (using standard ideas from conventional control). Suppose
that we choose Gc(s) = 3

s . With this choice GcG is no longer Hurwitz, so the
second condition of the circle criterion cannot be used. Using the plot of the fuzzy
controller nonlinearity, we see that we can choose α = 3

4 and β = 4
3 and the sector

condition holds on a region [−80, 80]. Now, we consider the disk D(−4/3,−3/4)
and note that there are no encirclements of this disk (i.e., m = 0). Hence, by the
first condition of the circle criterion we get absolute stability on a finite domain.

From this, if you were to do a simulation where the initial conditions were
started sufficiently close to the origin and the reference input were equal to zero,
then the state trajectories would asymptotically decrease to zero. It is interesting to
note that if we choose τd = 20u(t) (i.e., a nonzero reference input) and a simulation
is done, we would find that there would be no steady-state error. The theory above
does not guarantee this; however, we will study how to guarantee that we will get
zero steady-state error in the next section.

4.5 Analysis of Steady-State Tracking Error
A terrain-following and terrain-avoidance aircraft control system uses an altimeter
to provide a measurement of the distance of the aircraft from the ground to decide
how to steer the aircraft to follow the earth at a pilot-specified height. If a fuzzy
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controller is employed for such an application, and it consistently seeks to control
the height of the plane to be lower than what the pilot specifies, there will be a
steady-state tracking error (an error between the desired and actual heights) that
could result in a crash. In this section we will show how to use the results in [178]
for predicting and eliminating steady-state tracking errors for fuzzy control systems
so that problems of this sort can be avoided.

4.5.1 Theory of Tracking Error for Nonlinear Systems
The system is assumed to be of the configuration shown in Figure 4.1 on page 190
where r, e, u, and y belong to L∞e and Φ(e) is the SISO fuzzy controller described
in Section 4.2.1. We will call ess = limt→∞ e(t) the steady-state tracking error. G(s)
has the form

G(s) =
p(s)

sρq(s)
(4.21)

where ρ, a nonnegative integer, is the number of poles of G(s) at s = 0, and p(s)
and sρq(s) are relatively prime polynomials (i.e., they have no common factors)
such that deg(p(s)) < deg(sρq(s)). For example, if

G(s) =
s + 1

s(s + 2)

then ρ = 1. Furthermore, we assume that Φ(0) = 0, and Φ is bounded by α and β
according to

α ≤ Φ(a) − Φ(b)
a − b

≤ β (4.22)

for all a �= b. Notice that this sector bound is different from the sector bound
in Equation (4.14). This new sector bound is determined by the maximum and
minimum slopes of Φ at any point and is sometimes not as easy to determine as
the graphical sector bound described in the last section. Finally, we assume that
one of the three circle criterion conditions listed on page 207 is satisfied.

To predict the value of ess, we must make several definitions. First, we define
an “average gain” for Φ, c0, as

c0 =
1
2
(α + β)

and we assume that c0 �= 0. In [178] the authors show that for this c0, 1+c0G(s) �= 0
for Re(s) ≥ 0. Therefore, the rational function

H(s) =
G(s)

1 + c0G(s)
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is strictly proper, and has no poles in the closed right half-plane. Defined in this
manner, H(s) is the closed-loop equation for the system shown in Figure 4.1 with
c0 as an average gain of Φ. Finally, we define

Φ̃(e) = Φ(e) − c0e

for all e. That is, Φ̃ is the difference between the actual value of Φ at some point e
and a predicted value found by using the average gain c0.

Suppose that the above assumptions are met. It is proven in [178] that for each
given real number γ, there exists a unique real number ξ such that

γ = ξ + H(0)Φ̃(ξ) (4.23)

where to find the value of ξ we use

ξ = lim
k→∞

ξk (4.24)

where

ξk+1 = γ − H(0)Φ̃(ξk) (4.25)

and ξ0 is an arbitrary real number and γ is given (Equation (4.25) is an iterative
algorithm that will be used to find ess). Furthermore, if we define c as

c =
1
2
(β − α)|H(0)| (4.26)

and assume that c < 1, then the equation

|ξ − ξk| ≤
ck

1 − c
|ξ0 − γ + H(0)η̃(ξ0)|, k ≥ 1 (4.27)

must be true for the iterative algorithm, Equation (4.25), to converge.
Finally, suppose that we define Θ(γ) = ξ to represent the algorithm in Equa-

tion (4.25). Hence, Θ is given a γ, an arbitrary ξ0 is chosen, c0 and H(0) are
specified, then with the given fuzzy controller Φ, we let Φ̃(e) = Φ(e) − c0e, and
Equation (4.25) is computed until k is large enough that ξk+1 − ξk is very small.
The resulting converged value of ξ is the value of Θ(γ).

Tracking Error Theorem: Assuming that all the described assumptions are
satisfied, then

1. If r(t) approaches a limit l as t → ∞, then ess ≡ limt→∞ e(t) exists. Moreover,
ess �= 0 if and only if l �= 0 and ρ = 0, and then ess = Θ(γ) where γ = l

1+c0G(0) .
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2. Assuming that

r(t) =
ν∑

j=0

ajt
j , t ≥ 0 (4.28)

in which the aj are real, ν is a positive integer, and aν �= 0, the following holds:

(a) e is unbounded if ν > ρ.

(b) if ν ≤ ρ, then e approaches a limit as t → ∞. If ν = ρ, this limit is
ess = Θ(γ) where

γ =
aνν !q(0)
c0p(0)

(4.29)

If ν < ρ, then the limit is zero.

Notice that for Equation (4.28) if we want r(t) to be a unit step, then ν = 0 so
r(t) = a0, t ≥ 0 and we choose a0 = 1. If we want r(t) to be a ramp of unit slope,
then we choose ν = 1 so that r(t) = a0 + a1t and we choose a0 = 0 and a1 = 1.

An examination of the above theorem reveals that in actuality the proposed
method for finding the steady-state error for fuzzy control systems is similar to the
equations used in conventional linear control systems. The theorem performs the
function of identifying an appropriate equation for ess based on the type of input
and the “system type.” Notice that the two equations for γ in the theorem are
analogous to the equations for the “error constants” [54], 1/(1 + Kp), 1/Kv, and
1/Ka, and provide an initial estimate for ess.

4.5.2 Example: Hydrofoil Controller Design
The HS Denison is an 80-ton hydrofoil stabilized via flaps on the main foils and the
incidence of the aft foil. The transfer function for a linearized model of the plant
that includes the foil and vehicle is

θ(s)
D(s)

=
104

s2 + 60s + 104

where θ(s) is the pitch angle and D(s) is the command input. We wish to design
a fuzzy controller that will maintain a constant deflection of the pitch angle with
less than 1% steady-state error from the desired angle.

We first determine that if α = 0, then β must be less than 1.56 for the circle
criterion conditions to be satisfied. Therefore, our preliminary design for the SISO
parameterized fuzzy controller will have A = B = 1. For this controller β = 1,
α = 0, and c0 = 0.5. The other relevant values are H(0) = 0.6667 and G(0) = 1. If
our input r(t) is a step with magnitude 5.0, then we will use the first condition of
the theorem and γ = 3.3333. Using these values in the iterative equation, we find
that our steady-state error will be 4.0. This is a very large error and is obviously
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much larger than 1%. Even with β = 1.559 we cannot meet the error requirement.
Therefore, the system requirements cannot be met with a simple fuzzy controller.
However, if we combine a simple fuzzy controller with an integrator, the circle
criterion is satisfied as long as B/A < 50. Furthermore, ρ = 1 for this system
and part 1 of the theorem predicts that ess = 0. Simulations for this system with
A = B = 1 show that in fact ess = 0 and we have met the design criteria.

4.6 Describing Function Analysis
Autopilots used for cargo ship steering seek to achieve a smooth response by ap-
propriately actuating the rudder to steer the ship. The presence of unwanted oscil-
lations in the ship heading results in loss of fuel efficiency and a less comfortable
ride. While such oscillations, which are closed periodic orbits in the state plane,
sometimes called “limit cycles,” result from certain inherent nonlinearities in the
control loop, it is sometimes possible to carefully construct a controller so that such
undesirable behavior is avoided.

In this section we will investigate the use of the describing function method for
the prediction of the existence, frequency, amplitude, and stability of limit cycles.
We will first present describing function theory following the format in [189]. Next,
we will use several examples to show how describing function analysis can be used in
the design of SISO and MISO fuzzy controllers of the form described in Section 4.2.
Finally, we will use describing function analysis to design fuzzy controllers for an
underwater vehicle and a tape drive servo.

4.6.1 Predicting the Existence and Stability of Limit Cycles
Before explaining the describing function method, we will discuss several assump-
tions that we will use in applying the techniques of this section.

Basic Assumptions

There are several assumptions that need to be satisfied for our purposes for the
describing function method. These assumptions are as follows:

1. There is only a single nonlinear component and the system can be rearranged
into the form shown in Figure 4.1 on page 190.

2. The nonlinear component is time-invariant.

3. Corresponding to a sinusoidal input e(t) = sin(ωt), only the fundamental com-
ponent u1(t) in the output u(t) must be considered.

4. The nonlinearity Φ (which will represent the fuzzy controller) is an odd function.

The first assumption requires that nonlinearities associated with the plant or output
sensors be rearranged to appear in Φ as shown in Figure 4.1. The second assumption
originates from the use in this method of the Nyquist criterion, which can only be
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applied to linear time-invariant systems. The third assumption implies that the
linear component following the nonlinearity has characteristics of a low-pass filter
so that

|G(jω)| � |G(njω)| for n = 2, 3, ... (4.30)

and therefore the higher-frequency harmonics, as compared to the fundamental
component, can be neglected in the analysis. This is the fundamental assumption
of describing function analysis and represents an approximation as there normally
will be higher-frequency components in the signal. The fourth assumption simplifies
the analysis of the system by allowing us to neglect the static term of the Fourier
expansion of the output.

We emphasize that due to the lack of perfect satisfaction of the above assump-
tions the resulting analysis is only approximate. Next, we introduce the tools and
methods of describing function analysis.

Defining and Computing the Describing Function

For an input e(t) = C sin(ωt) to the nonlinearity, Φ(e), there will be an output u(t).
This output will often be periodic though generally nonsinusoidal. Expanding this
u(t) into a Fourier series results in

u(t) =
a0

2
+

∞∑
n=1

[an cos(nωt) + bn sin(nωt)] (4.31)

The Fourier coefficients (ai’s and bi’s) are generally functions of C and ω and are
determined by

a0 =
1
π

∫ π

−π

u(t)d(ωt) (4.32)

an =
1
π

∫ π

−π

u(t) cos(nωt)d(ωt) (4.33)

bn =
1
π

∫ π

−π

u(t) sin(nωt)d(ωt) (4.34)

Because of our assumptions a0 = 0, n = 1, and

u(t) ≈ u1(t) = a1 cos(ωt) + b1 sin(ωt) = M(C, ω) sin(ωt + φ(C, ω)) (4.35)

where

M(C, ω) =
√

a2
1 + b2

1 (4.36)
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and where

φ(C, ω) = arctan
(

a1

b1

)
(4.37)

From the above equations we can see that the fundamental component of the out-
put, corresponding to a sinusoidal input, is a sinusoid of the same frequency that
can be written in complex representation as

u1 = M(C, ω)ej(ωt+φ(C,ω)) = (b1 + ja1)ejωt (4.38)

We will now define the describing function of the nonlinear element to be the
complex ratio of the fundamental component of the nonlinear element by the input
sinusoid

N(C, ω) =
u1

C sin(ωt)
=

M(C, ω)ej(ωt+φ(C,ω))

Cejωt
=

1
C

(b1 + ja1) (4.39)

By replacing the nonlinear element Φ(e) with its describing function N(C, ω), the
nonlinear element can be treated as if it were a linear element with a parameterized
frequency response function.

Generally, the describing function depends on the frequency and amplitude of
the input signal. However, for some special cases it does not depend on frequency.
For example, if the nonlinearity is time-invariant and memoryless, N(C, ω) is real
and frequency-independent. For this case, N(C, ω) is real because evaluating Equa-
tion (4.33) gives a1 = 0. Furthermore, in the same equations, the integration of the
single-valued function u(t) sin(ωt) = [C sin(ωt)] sin(ωt) is done for the variable ωt,
implying that ω does not explicitly appear in the integration and that the function
N(C, ω) is frequency-independent.

There are several ways to compute describing functions. The describing function
can be computed analytically if u = Φ(e) is known and the integrations to find a1

and b1 can be easily carried out. If the input-output relationship of Φ(e) is given
by graphs or tables, then numerical integration can be used. The third method,
and the one that we will use, is “experimental evaluation.” We will excite the input
of the fuzzy controller with sinusoidal inputs, save the related outputs, and then
use the input and output waveforms to determine the gain and phase shift at the
frequency of the input sinusoid. By varying the amplitude and frequency (or just
the amplitude if the fuzzy controller is SISO, time-invariant, and memoryless) of
the input sinusoid, we can find u1 at several points and plot the corresponding
describing function.

Predicting Limit Cycles

In Figure 4.1 on page 190, if we replace Φ(e) with N(C, ω) and assume that a self-
sustained oscillation of amplitude C and frequency ω exists in the system, then for
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r = 0, y �= 0, and

G(jω)N(C, ω) + 1 = 0 (4.40)

This equation, sometimes called the “harmonic balance equation,” can be rewritten
as

G(jω) = − 1
N(C, ω)

(4.41)

If any limit cycles exist in our system, and the four basic assumptions outlined
above are satisfied, then the amplitude and frequency of the limit cycles can be
predicted by solving the harmonic balance equation. If there are no solutions to the
harmonic balance equation, then the system will have no limit cycles (under the
above assumptions).

However, solving the harmonic balance equation is not trivial; for higher-order
systems, the analytical solution is very complex. The usual method, therefore, is to
plot G(jω) and −1/N(C, ω) on the same graph and find the intersection points. For
each intersection point, there will be a corresponding limit cycle. The amplitude
and frequency of each limit cycle can then be determined by finding the particular
C and ω that give the value of −1/N(C, ω) and G(jω) at the intersection point.

Along with the amplitude and frequency of the limit cycles, we also would
like to determine whether the limit cycles are stable or unstable. A limit cycle is
considered stable if system trajectories move to the limit cycle when they start
within a certain neighborhood of it. Therefore, once the system is in a limit cycle,
the system will return to the limit cycle when perturbations move the system off of
the limit cycle. For an unstable limit cycle, there is no neighborhood within which
the system trajectory moves to the limit cycle when the system trajectory starts
near it. Instead, the trajectory will move away from the limit cycle. Therefore, if
a system is perturbed from an unstable limit cycle, the oscillations will either die
out, increase until the system goes unstable, or move to a stable limit cycle. The
stability of limit cycles can be determined from the same plot used to predict the
existence of the limit cycles. A summary of the above conclusions is given by the
following criterion from [189].

Limit Cycle Criterion: Each intersection point of the G(jω) and −1/N(C, ω)
curves corresponds to a limit cycle. In particular, if the curves intersect, we predict
that there will be a limit cycle in the closed-loop system with amplitude C and
frequency ω. If points near the intersection and along the increasing-C side of the
curve −1/N(C, ω) are not encircled by the curve G(jω), then the corresponding
limit cycle is stable. Otherwise, the limit cycle is unstable.

In the next two subsections we will show how to use this criterion to test for
the existence, amplitude, frequency, and stability of limit cycles. Also, we will show
how it can be used in the redesign of the fuzzy controller to eliminate limit cycles.



218 Chapter 4 / Nonlinear Analysis

4.6.2 SISO Example: Underwater Vehicle Control System
We wish to design a fuzzy controller for the direction control system of an under-
water vehicle described in [45]. The electrically controlled rudder and an added
compensator have transfer function

C(s)
R(s)

=
s + 0.1

s(s + 5)2(s + 0.001)

We must design the fuzzy controller such that there are no limit cycles possible
within the closed-loop system.

Our fuzzy controller will be SISO, odd, time-invariant, and memoryless. There-
fore, we know that the describing function will be real-valued and can only intersect
the Nyquist plot of G(jω) along the real axis. Examining a Nyquist plot of G(jω) for
this system, we find that it intersects the real axis at one point only, −0.0042 + j0
(an enlargement of this plot is shown in Figure 4.12, where −1/N(C, ω) is on
top of the horizontal axis) and hence a limit cycle exists (you can simulate the
closed-loop system to illustrate this). To avoid intersecting this point, we must con-
struct the fuzzy controller so that −1/N(C, ω) < −0.0042 or N(C, ω) < 240.0528
for all values of C. For the type of fuzzy controller we are using, this criterion
can be achieved if B/A < 240.0528. We will choose A = 2 and B = 200. The
resulting describing function is shown in Figure 4.13. Since the largest value of
−1/N(C, ω) = −2/200 = −0.01 is less than −0.0042, there is no solution to the
harmonic balance equation, and the approximate analysis indicates that the exis-
tence of a limit cycle is unlikely. A simulation of this system for r = 5 is shown in
Figure 4.14. No limit cycles exist, and our design was successful.
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FIGURE 4.12 Plot of G(jω) for the underwater vehicle
(figure taken from [83], c© John Wiley and Sons).
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FIGURE 4.13 Describing function for fuzzy controller
with A = 2 and B = 200 (figure taken from [83], c© John
Wiley and Sons).
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FIGURE 4.14 Simulation of the underwater vehicle
(figure taken from [83], c© John Wiley and Sons).

4.6.3 MISO Example: Tape Drive Servo
The describing function analysis of the previous design example was for SISO fuzzy
controllers whose describing functions are not dependent on ω. However, it is impor-
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tant that we also examine how this type of analysis can be applied to MISO fuzzy
controllers. While for a MISO fuzzy controller the basic theory is still the same,
there are several differences in determining and using the describing function. First,
the describing function will be dependent on both C and ω. Because of this, when
we experimentally determine N(C, ω), we have to find not only the amplitude of
the fundamental frequency of the output waveform but also the phase of the fun-
damental frequency for inputs of different amplitude and frequency. Methods for
doing this can be found in [13]. This also means that there will be more lines to plot
as we will have to plot −1/N(C, ω) as C changes for each value of ω so that there
will be a curve for each value of ω for which N(C, ω) is calculated. Second, not all
intersections of G(jω) and −1/N(C, ω) will be limit cycles. For an intersection to
predict a limit cycle, the values of ω for G(jω) and −1/N(C, ω) at the intersection
must be the same. We can see that, as would be expected, the limit cycle prediction
procedure using describing functions is slightly more complex for MISO systems.
However, with the adjustments mentioned above, the procedure follows the same
format as before. This will be shown in the following design example.

We will design a fuzzy controller for a tape drive servo described in [54] with
transfer function

G(s) =
15s2 + 13.5s + 12

(s + 1)(s2 + 1.1s + 1)

Also included in the system is a precompensator of the form C(s) = (s + 20)/s. It
is desired that a step input of current to the drive mechanism will cause the tape
to have a stable velocity. To analyze the system for limit cycles, we will choose a
fuzzy controller, empirically find the describing function, search for solutions to the
harmonic balance equation, and then redesign the fuzzy controller if necessary.

We will begin by choosing A = 100, B = 600, and D = 50. Next, we will
find N(C, ω) for 0 ≤ C ≤ 100 and ω = 0.5, 1, 10, 50, 100, and 500. The resulting
plot of G(jω) and −1/N(C, ω) is shown in Figure 4.15. There are no intersection
points and therefore no predicted limit cycles. By simulating the system with the
chosen values of A, B, and D and r = 12, we verify that no limit cycles exist. This
simulation is shown in Figure 4.16.

4.7 Limitations of the Theory
It is important to note that there are limitations to the approaches that we covered
in this chapter in addition to the general ones outlined in Section 4.1 on page 187,
which included the following:

• The model of a physical process is never perfectly accurate, and since the mathe-
matical analysis is based on the model, the analysis is of limited accuracy for the
physical system. The more accurate the model, the more accurate the conclusions
from the mathematical analysis as they pertain to the real physical system.

• Fuzzy control tends to show its greatest advantages for processes that are very
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FIGURE 4.15 Plot of G(jω) and −1/N(C, ω) for
A = 100, B = 600, and D = 50 (figure taken from [83],
c© John Wiley and Sons).
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FIGURE 4.16 Simulation of the tape drive servo and
fuzzy controller (figure taken from [83], c© John Wiley
and Sons).

complex in terms of nonlinearities, stochastic influences, process uncertainties,
and so on. The mathematical analysis tools that are available often do not apply
to very complex processes as the needed assumptions are often not satisfied. There
is then an inherent limitation of the mathematical analysis tools due to the need
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for such tools for any nonlinear control systems, let alone fuzzy control systems.

Next, we provide a more detailed overview of some additional limitations to
the approaches covered in this chapter. In general, except for Lyapunov’s methods,
discussed in Section 4.3, we have examined only linear plant models or nonlinear
plants that can be manipulated to be in the form of Figure 4.5. In Section 4.3 some
of the stability conditions are often conservative, which means that if the conditions
for stability are not met, the system could still be stable. Indeed, the results for the
circle criterion have often been found to be too conservative. While the results for
absolute stability, steady-state tracking error, and describing functions can certainly
be applied to models linearized about operating points in a nonlinear system, such
results are only local in nature. Furthermore, we have limited ourselves throughout
the entire chapter (except Section 4.3) to SISO and MISO fuzzy controllers. In
addition to these general limitations, there are also limitations specific to each
section. In the section on absolute stability, we have only examined the SISO fuzzy
controller and not the MISO case (of course, extension to the multivariable case is
not difficult using, for example, the development in [90]). Furthermore, although
the circle criterion conditions are sufficient and necessary, the necessary conditions
are for a class of nonlinearities and do not identify which of the nonlinearities (i.e.,
which fuzzy controller) within the class will cause the system to become unstable.
There is currently no theory for the tracking error analysis of multivariable nonlinear
systems. Our describing function technique, even though it can be applied to SISO
and MISO fuzzy controllers and certain nonlinear plant models, is limited by the
fact that the use of the approach for more than three inputs to the fuzzy controller
becomes prohibitive. There has been some work on the expansion of the theory
of nonlinear analysis to a wider class of nonlinear plants where a mathematical
characterization of the fuzzy controller is used (see, for example, [106, 105, 47, 154]).

In this chapter we often utilize a graphical approach to nonlinear analysis where,
for example, we plot the input-output map of the fuzzy controller and read off per-
tinent information such as the sector bounds, or use a graphical technique for de-
scribing function analysis. We believe that the incorporation of graphical techniques
for the nonlinear analysis of fuzzy control systems offers (1) an intuitive approach
that ties in better with the fuzzy control design procedure, and (2) some of the
same advantages as have been realized in classical control via the use of graphical
techniques (such as the Nyquist plot). On the other hand, our approach has its
own limitations (listed above). We emphasize that there are many approaches to
analyzing fuzzy control systems, and we highly recommend that the reader study
Section 4.9, For Further Study, and the references provided there.

4.8 Summary
In this chapter we have provided an introduction to nonlinear analysis of (non-
adaptive) fuzzy control systems. We showed how to perform Lyapunov stability
analysis of fuzzy control systems and showed how the circle criterion could be
used to analyze and redesign a fuzzy control system. We introduced the theory of
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steady-state tracking error for fuzzy control systems and showed how to predict
and eliminate tracking error. We outlined the theory of describing functions and
showed how to predict the amplitude, frequency, and stability of limit cycles. We
performed analysis and design examples for an inverted pendulum, a temperature
control problem, a hydrofoil, an underwater vehicle, and a tape drive servo.

Upon completing this chapter, the reader should understand the following:

• Lyapunov’s direct and indirect methods.

• How to use the direct and indirect methods, coupled with a plot of the nonlinear
surface of the fuzzy controller, to establish conditions for stability.

• How to use Lyapunov’s direct method to provide sufficient conditions for stability
for Takagi-Sugeno fuzzy systems.

• The concept of absolute stability.

• The circle criterion in two forms.

• The procedure for the application of the circle criterion to fuzzy control systems,
both to predict instability and its use in design to avoid instability.

• The concepts and theory of steady-state tracking error for nonlinear systems.

• The procedure for applying the theory of analysis of tracking error to fuzzy control
systems.

• The assumptions and theory of describing functions.

• How to construct a describing function for a fuzzy controller that has one or two
inputs.

• The conditions for the existence of limit cycles and how to determine their am-
plitude and frequency, and whether or not they are stable.

• The procedure to use describing function analysis for both SISO and MISO fuzzy
control systems, both for limit cycle prediction and in redesigning for limit cycle
elimination.

Essentially, this is a checklist of the major topics of this chapter. With the
completion of Chapters 1–4 you have now finished the first part of this book, where
our primary focus has been on direct fuzzy controllers. The second part of the book,
Chapters 5–7, focuses on adaptive fuzzy systems in estimation and control.

4.9 For Further Study
An earlier version of this chapter appears in [83]. Several of the design problems at
the end of the chapter also came from [83]. For a detailed comparative analysis of
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fuzzy controllers and linear controllers and for more details on the nonlinear char-
acteristics of fuzzy controllers, see [29, 28, 241] and the more recent work in [124].
The work in [30] and [34] presents Lyapunov methods for analyzing the stability of
fuzzy control systems. The authors in [106, 105] also use Lyapunov’s direct method
and the generalized theorem of Popov [148, 90] to provide sufficient conditions for
fuzzy control system stability.

An area that is receiving an increasing amount of attention is stability analysis
of fuzzy control systems where the fuzzy control system is developed using ideas
from sliding-mode control or where Takagi-Sugeno fuzzy systems are used in a
gain-scheduling type of control [153, 47, 154]. Here, our treatment of the stability
of Takagi-Sugeno fuzzy systems is based on the work in [213, 209]. Extensions to
this work that focus on robustness can be found in [212, 210, 84], and work focusing
on the use of linear matrix inequality (LMI) methods for analysis and controller
construction is provided in [210, 226, 225, 248, 247].

In [7], stability indices for fuzzy control systems are established using phase
portraits (of course, standard phase plane analysis [90] can be useful in character-
izing and understanding the dynamic behavior of low-order fuzzy control systems
[65]). Related work is given in [49]. The circle criterion [148] is used in [171] and
[172] to provide sufficient conditions for fuzzy control system stability. Related work
on stability analysis of fuzzy control systems is provided in [211]. While we use the
circle criterion theory found in [90] and [223], there are other frequency domain–
based criteria for stability that can be utilized for fuzzy control system analysis
(e.g., Popov’s criterion and the multivariable circle criterion [148, 90]). Describing
function analysis has already been examined in [92] and [14]. Our coverage here
differs from that in [92] in that we use experimentally determined describing func-
tions, whereas in [92] the describing function is determined for a “multilevel relay”
model of a specific class of fuzzy controllers. A collection of papers on theoretical
aspects of fuzzy control is in [151].

The characterization and analysis of the stability of fuzzy dynamic systems is
studied in [93]. Furthermore, approximate analysis of fuzzy systems is studied by
the authors in [33, 32, 52] using the “cell-to-cell mapping approach” from [71, 72].

One graphical technique that we have found to be useful on occasion, which we
did not cover here, is called the “method of equivalent gains” (see [55, 54]), where
we view the fuzzy controller as an input-dependent time-varying gain and then use
conventional root-locus methods to design fuzzy control systems (the gain moves
the poles along the root-locus). This method is, however, limited to the case of
linear plants. For an idea of how this approach is used, see Exercise 4.3 at the end
of the chapter. Another topic that we did not cover is that of phase plane analysis
for differential equations and what has been called “fuzzy phase plane analysis.” To
get an idea of how such analysis is done, see Exercise 4.2 at the end of this chapter
or [47].

For a more detailed discussion on the general relationships between conventional
and intelligent control and mathematical modeling and nonlinear analysis of more
general intelligent control systems (including expert control systems), see [6, 160,
156, 157, 163].
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4.10 Exercises
Exercise 4.1 (The Nonlinear Fuzzy Control Surface): In this problem you
will study the nonlinear control surface that is induced by the fuzzy controller.

(a) Plot u versus e for the parameterized SISO fuzzy controller of Section 4.2.1
for the case where A = 5 and B = 2.

(b) Plot u versus e for the parameterized SISO fuzzy controller of Section 4.2.1
for the case where A = 3 and B = 6. Compare the result to that obtained
in (a).

(c) Plot the three-dimensional plot of the PD fuzzy controller surface for the
case where there is a proportional and derivative input, as described in
Section 4.2. Choose A = B = D = 1.

(d) Choose A = 5, B = 2, and D = 1 and repeat (c). Compare the result to
that obtained in (c).

Exercise 4.2 (Phase Plane Analysis: Conventional and Fuzzy): The phase
plane is a graph used for the analysis of low-order (typically second-order) non-
linear differential equations (i.e., n = 2 for Equation (4.1)). The phase plane is
simply a plot of x1(t) versus x2(t), where x = [x1, x2]� is the state of Equa-
tion (4.1), for a number of initial conditions x(0).

(a) Write down second-order differential equations that are unstable, marginally
stable, and asymptotically stable, and use a computer program to generate
their phase planes (the choice of the initial conditions should be done so
that they are within a ball of size h where h = 10 and there are at least 50
initial conditions spread out uniformly in the ball).

(b) Learn at least one technique for the construction of phase planes (by hand)
and apply it to the differential equations you developed for (a). Refer to [90]
to learn a method for constructing the phase plane.

(c) When the inputs to a fuzzy controller are e(t) = r(t) − y(t) (where r(t) is
the reference input and y(t) is the plant output) and d

dte(t), sometimes the
plot of e(t) versus d

dte(t) is thought of as a type of phase plane if r(t) = 0.
Moreover, some have introduced the notion of a “fuzzy phase plane” that
is best thought of as a rule-base table for the two-input fuzzy controller.
Motion in the fuzzy phase plane is given by which membership functions have
values greater than zero and as the control system operates, different cells
in the rule-base table become “active” (i.e., the rules associated with them
are on). Following Design Problem 2.1(a) on page 110, begin the pendulum
out of the balanced position but with zero initial velocity and show on the
corresponding rule-base table the trajectory of active regions as the fuzzy
controller balances the pendulum.
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Exercise 4.3 (Method of Equivalent Gains): In the “method of equivalent
gains” (see [55, 54]), we view the fuzzy controller as an input-dependent time-
varying gain and use conventional root-locus methods to design fuzzy control
systems (the gain moves the poles along the root-locus).

(a) To understand why the fuzzy controller is an input-dependent gain, choose
A = B = 1 for the parameterized SISO fuzzy controller of Section 4.2.1, and
plot the output of the fuzzy controller u divided by its input e (i.e., the “gain
of the fuzzy controller”—notice that it is closely related to the describing
function of the fuzzy controller) versus its input e for both positive and
negative values of e.

(b) Suppose that you are given a plant

G(s) =
1

s(s + 1)

that is in a unity feedback configuration with a fuzzy controller. Suppose that
you know that the reference input will never be larger, in magnitude, than
one. View the fuzzy controller as implementing a gain in the control loop
where the value of the gain is given at any one time by the plot you produced
in (a). Use this gain, coupled with the conventional root-locus approach [54],
to design a fuzzy controller so that you get as short a rise-time due to a unit-
step input as possible but with no more than 5% overshoot. This approach
to design is called the method of equivalent gains. Note that this approach
is heuristic and that there are no guarantees of achieving the performance
sought or that the resulting closed-loop system will be stable.

Exercise 4.4 (Lyapunov’s Direct Method): Suppose that you are given the
plant

ẋ = ax + bu

where b > 0 and a < 0 (so the system is stable). Suppose that you design a fuzzy
controller Φ that generates the input to the plant given the state of the plant
(i.e., u = Φ(x)). Assume that you design the fuzzy controller so that Φ(0) = 0
and so that Φ(x) is continuous. Choose the Lyapunov function V (x) = 1

2
x2.

(a) Show that if x and Φ(x) always have opposite signs, then x = 0 is stable.

(b) What types of stability does x = 0 of the fuzzy control system possess for
part (a)?

(c) Why do we assume that Φ(0) = 0 for (a)?

(d) Design a fuzzy controller that satisfies the condition stated in (a) and simu-
late the closed-loop system to help illustrate the stability of the fuzzy control
system (of course, the simulation does not prove that the closed-loop system
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is stable—it only shows that for one initial condition the state appears to
converge but cannot prove that it converges since the simulation is only for
a finite amount of time). Choose the initial condition x(0) = 1, a = −2, and
b = 2.

Exercise 4.5 (Stability of Takagi-Sugeno Fuzzy Systems): Suppose that
you have the same plant as described in the Section 4.3.5 example but with
A1 = −3, B1 = 6, A2 = −5, and B2 = 2. Construct the Takagi-Sugeno fuzzy
controller gains K1 and K2 so that x(0) = 0 of the closed-loop system is globally
asymptotically stable.

Exercise 4.6 (Stability of Discrete-Time Takagi-Sugeno Fuzzy Systems):
Suppose that you are given a discrete-time Takagi-Sugeno fuzzy system model

of a nonlinear system that arises from R Takagi-Sugeno rules and results in

x(k + 1) =
R∑

i=1

Φiξi(x(k))x(k) +
R∑

i=1

Γiξi(x(k))u(k) (4.42)

where

ξi(x(k)) =
µi(x(k))∑R

i=1 µi(x(k))

In Equation (4.42), Φi is an n × n matrix, and Γi is the n input matrix.

Stability conditions for the discrete-time direct method of Lyapunov are
slightly different from the continuous-time case so we discuss these first. The
equilibrium x(0) = 0 of the system in Equation (4.42) is globally asymptotically
stable if there exists a function V (x) such that V (x) ≥ 0 except at x = 0 where
V (x) = 0, V (x) → ∞ if |x| → ∞, and

V (x(k + 1)) − V (x(k)) < 0

(a) Let u(k) = 0 for k ≥ 0. Choose V (x) = x�Px where P is a positive definite
symmetric matrix. Show that if there exists a single n × n matrix, P > 0
such that for all i = 1, 2, . . . , R and j = 1, 2, . . . , R

Φ�
i PΦj − P < 0 (4.43)

then the equilibrium x = 0 of Equation (4.42) is globally asymptotically
stable.

(b) Suppose that you use a Takagi-Sugeno fuzzy controller to choose the input
u(k) so that

u(k) =
R∑

i=1

Kiξi(x(k))x(k)



228 Chapter 4 / Nonlinear Analysis

Using the result from (a), find a stability condition similar to Equation (4.43)
for the closed-loop system.

This problem is based on the work in [213] where the authors also show how to
further simplify the condition in Equation (4.43).

4.11 Design Problems
Design Problem 4.1 (Stable Fuzzy Controller for an Inverted Pendu-
lum): In this problem you will verify the stability analysis for the design of the
fuzzy controller for the inverted pendulum described in Section 4.3.

(a) Design a fuzzy controller that will result in the inverted pendulum of Sec-
tion 4.3 being locally stable, and demonstrate this via Lyapunov’s indirect
method.

(b) Repeat (a) except use minimum to represent the premise and implication
and COG for defuzzification.

(c) Using Lyapunov’s direct method, design a fuzzy controller for the inverted
pendulum that you can guarantee is stable in the inverted position. Provide
a simulation to help verify the stability of the closed-loop system.

Design Problem 4.2 (Stable Fuzzy Controller for the Magnetic Ball Sus-
pension System): In this problem you study the stability properties of a fuzzy
controller for the magnetic ball suspension system.

(a) Design a fuzzy controller for the ball suspension system studied in Exer-
cise 2.5 on page 116, and demonstrate in simulation that it appears to be
stable (at least locally—i.e., for initial conditions very near the operating
point at which you perform the linearization to test stability). Seek to bal-
ance the ball half way between the coil and the “ground.”

(b) Prove, using the methods of Section 4.3, that the fuzzy control system is
locally stable at the operating point studied in (a).

Design Problem 4.3 (Designing Stable Fuzzy Control Systems): Sup-
pose that you are given a plant with transfer function

G(s) =
1

s3 + 7s2 + 7s + 15

This plant is chosen because it illustrates the problems with stability that can
arise when designing fuzzy controllers.
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(a) A controller that some expert could construct is one with A = 0.5 and
B = 16.6667 (using the parameterized fuzzy controller of Section 4.2.1).
Simulate this system with initial conditions x(0) = [0, 0, 2]� to show that
the system has sustained oscillations.

(b) If we consider the fuzzy controller as a nonlinearity Φ, we can find a sector
(α, β) in which Φ lies and use the circle criterion to determine why the insta-
bility is occurring and perhaps determine how to tune the fuzzy controller
so that it does not cause sustained oscillations. Plot the nonlinearity of the
fuzzy controller from (a). Plot the Nyquist plot of G. Show that the circle
criterion/SNC predicts that not all of the nonlinearities within this sector
will be stable. Hence, the fuzzy controller in (a) verifies this statement by
producing sustained oscillations in the closed-loop system.

(c) Next we use condition (b) of the circle criterion/SNC to provide ideas on
how to tune the fuzzy controller. To do this, we will have to adjust β so that
− 1

β < −0.0733, (i.e., so that β < 13.64). Why? As there are many different
choices for A and B so that the fuzzy controller will fit inside the sector, more
about the system would have to be known (e.g., what the saturation limits
at the input of the plant are) to know whether to tune A or B. Suppose you
choose B = 16.6667 and make A > 1.222 so that B

A < 13.64. As an example,
choose A = 1.3. Produce a simulation of the resulting fuzzy control system
with x(0) = [0, 0, 2]� to show that there are no sustained oscillations so that
the fuzzy controller has been successfully redesigned to avoid the instability.

(d) Repeat (c) but choose A = 0.5 and find a value of B that will result in
a stable closed-loop system. Justify your choice of B theoretically and by
providing a simulation that shows the choice was good.

Design Problem 4.4 (Stable Temperature Control): In this problem you
will verify the results of Section 4.4.2 on page 208 where the problem of designing
a stable fuzzy control system for a temperature control problem was addressed.
Suppose that the control system that we use is shown in Figure 4.9. The controller
Gc(s) is a post compensator for the fuzzy controller.

(a) Suppose that we begin by choosing Gc(s) = K = 2. Provide a plot of q′

versus e for the 11-rule fuzzy controller that is specified in Section 4.4.2.
(b) Show that α = 0 and β = 4

3 . Plot the Nyquist plot of GcG and determine the
number of encirclements. What conclusion can be reached from the circle
criterion?

(c) Choose a value for the initial state of the system, let the reference input be
zero, and show that the state trajectories converge asymptotically to zero.

(d) Let τd = 20u(t) where u(t) is a unit step, and determine the value of the
steady-state error using a simulation of the closed-loop system.

(e) Suppose that we choose Gc(s) = 3
s (chosen to try to eliminate the steady-

state error). Using the plot of the fuzzy controller nonlinearity, show that
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we can choose α = 3
4 and β = 4

3 and the sector condition holds on a region
[−80, 80].

(f) Show that the Nyquist plot of GcG does not encircle the disk D(−4/3,−3/4).
What is concluded from the circle criterion?

(g) Do a simulation where the initial conditions are started sufficiently close to
the origin (and the reference input is equal to zero) to show that the state
trajectories asymptotically decrease to zero.

(h) Next, choose τd = 20u(t) where u(t) is a unit step, and do a simulation to
show that there is no steady-state error.

Design Problem 4.5 (Designing for Zero Steady State Tracking Error):
Consider a plant of the form

G(s) =
1

s2 + 4s + 3

(a) Choose a SISO proportional fuzzy controller and determine the α and β
describing the sector in which it lies where the type of sector is the one used
for the theory of steady-state tracking error. Note that you can find α and
β numerically by inserting values of a and b into the equation

α ≤ Φ(a) − Φ(b)
a − b

≤ β

and determining the maximum and minimum values. An alternative ap-
proach is to plot the fuzzy controller nonlinearity and read the values off the
plot by inspection.

(b) Which condition of the circle criterion holds? Show a Nyquist plot to support
your conclusion.

(c) For your choice of α and β, find c0 and H(0). Find γ, and then solve the
recursive equation from Equation (4.25). Suppose that we choose a step
input of magnitude 3. What is the value of ess?

(d) Suppose that we consider the steady-state error to be excessive, and that
we would like to redesign our fuzzy controller using the steady-state error
prediction procedure as part of the design process. Intuitively, we would
expect that if we increased the “gain of the fuzzy controller,” the steady-
state error would decrease. In terms of the ess prediction procedure, this
would mean changing α and β. Because of the inherent saturation of the
fuzzy controller, α will always equal 0. Therefore, we will have to adjust by
changing β only. Find a value of β so that ess < 0.4.

(e) Consider the response of the system from (d) to a ramp input. What is the
value of e(t) as t goes to infinity? Will changing the scaling gains of your
fuzzy controller improve tracking error?
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Design Problem 4.6 (Design of Hydrofoil Controller to Get Zero Track-
ing Error): In this problem you will verify the results of Section 4.5.2 on
page 213. Suppose that we use a proportional fuzzy controller of the form de-
scribed in Section 4.2.1.

(a) Show that β must be less than 1.56 for the circle criterion conditions to be
satisfied.

(b) Choose A = B = 1. Show that c0 = 0.5, H(0) = 0.6667, and G(0) = 1. Let
the input be a step with magnitude 5.0, and show that γ = 3.3333. Find the
value of the steady-state error.

(c) Add an integrator and show that if B/A < 50 we can meet the conditions
to get ess = 0. Perform a simulation for this system with A = B = 1 and
show that ess = 0.

Design Problem 4.7 (Prediction and Elimination of Limit Cycles: SISO
Case): Suppose that a fuzzy controller of the form described in Section 4.2.1
has A = 0.2 and B = 0.1 and a plant with transfer function

G(s) =
1

s(s2 + 0.2s + 1)

configured in the form used in Section 4.6.1.

(a) Plot the describing function for the fuzzy controller.
(b) Plot G(jω) and − 1

N(C,ω) on the same plot and find the intersection point(s).
What are the magnitude and frequency of the predicted limit cycle? Is the
limit cycle stable? Why?

(c) The last step of this process is to verify by simulation that the limit cycle
does exist. Choose r(t) = 1 and simulate the closed-loop system. What are
the frequency and amplitude of the limit cycle in the simulation? Compare
your results to the predicted values in (b).

(d) Now that we have predicted the existence of a limit cycle for our system, we
desire to redesign the fuzzy controller so that there are no limit cycles. What
value must −1/N(C, ω) be less than so that there would be no intersection
point and no limit cycle? What values of A and B should you choose so that
there will be no limit cycles? Why? Choose r(t) = 1 and simulate the closed-
loop system to verify that there are now no limit cycles for your choice of A
and B.

Design Problem 4.8 (Prediction and Elimination of Limit Cycles: SISO
Case, Unstable Limit Cycle): Consider a plant with transfer function

G(s) =
s2 + 0.4s + 2.29

s(s2 + 0.4s + 1.04)
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(a) Our first design for the fuzzy controller will have A = 0.1 and B = 0.3. To
predict the limit cycles of this system, find N(C, ω) then plot −1/N(C, ω)
and G(jω) on the same plot and identify the intersection points. What
amplitudes and frequencies will the limit cycles have? Are they stable?

(b) To confirm that these limit cycles exist, simulate the system with r = 0.761
(this value was chosen to best show the existence of both limit cycles). What
are the values of the amplitudes and frequencies of the limit cycles? How
do these compare with the predicted values? What happens if r < 0.761?
Simulate the system for this case to illustrate the behavior.

(c) Redesign the fuzzy controller so that no limit cycles exist. To demonstrate
that no limit cycles exist for your design, use the theory and a simulation
with r = 0.761.

Design Problem 4.9 (Prediction and Elimination of Limit Cycles: MISO
Case): Suppose that the plant has the transfer function

G(s) =
(s + 1)2

s3

Our fuzzy controller is the two-input fuzzy controller with inputs e and ė described
in Section 4.2 on page 189, and with parameters A, B, and D.

(a) Show that choosing A = B = D = 1 is not a good choice.

(b) Use describing function analysis to choose the parameters A, B, and D for
the fuzzy controller so that no limit cycles occur, and demonstrate in simu-
lation that they do not occur. Note that when you experimentally determine
the describing function you must consider a range of values of both C and
ω to find different −1/N(C, ω) curves to find the intersection points. You
can assume that the reference input is a positive step with a magnitude no
larger than five. What happens if the amplitude of the step input is greater
than 30? Simulate the system for this case to illustrate the behavior.



C H A P T E R 5

Fuzzy Identification
and Estimation

For the things we have to learn before we can do

them,

we learn by doing them.

–Aristotle

5.1 Overview
While up to this point we have focused on control, in this chapter we will examine
how to use fuzzy systems for estimation and identification. The basic problem to
be studied here is how to construct a fuzzy system from numerical data. This is
in contrast to our discussion in Chapters 2 and 3, where we used linguistics as
the starting point to specify a fuzzy system. If the numerical data is plant input-
output data obtained from an experiment, we may identify a fuzzy system model
of the plant. This may be useful for simulation purposes and sometimes for use in a
controller. On the other hand, the data may come from other sources, and a fuzzy
system may be used to provide for a parameterized nonlinear function that fits the
data by using its basic interpolation capabilities. For instance, suppose that we have
a human expert who controls some process and we observe how she or he does this
by observing what numerical plant input the expert picks for the given numerical
data that she or he observes. Suppose further that we have many such associations
between “decision-making data.” The methods in this chapter will show how to
construct rules for a fuzzy controller from this data (i.e., identify a controller from
the human-generated decision-making data), and in this sense they provide another
method to design controllers.

Yet another problem that can be solved with the methods in this chapter is
that of how to construct a fuzzy system that will serve as a parameter estimator.

233
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To do this, we need data that shows roughly how the input-output mapping of the
estimator should behave (i.e., how it should estimate). One way to generate this data
is to begin by establishing a simulation test bed for the plant for which parameter
estimation must be performed. Then a set of simulations can be conducted, each
with a different value for the parameter to be estimated. By coupling the test
conditions and simulation-generated data with the parameter values, you can gather
appropriate data pairs that allow for the construction of a fuzzy estimator. For some
plants it may be possible to perform this procedure with actual experimental data
(by physically adjusting the parameter to be estimated). In a similar way, you could
construct fuzzy predictors using the approaches developed in this chapter.

We begin this chapter by setting up the basic function approximation problem
in Section 5.2, where we provide an overview of some of the fundamental issues in
how to fit a function to input-output data, including how to incorporate linguistic
information into the function that we are trying to force to match the data. We
explain how to measure how well a function fits data and provide an example of how
to choose a data set for an engine failure estimation problem (a type of parameter
estimation problem in which when estimates of the parameters take on certain
values, we say that a failure has occurred).

In Section 5.3 we introduce conventional least squares methods for identifica-
tion, explain how they can be used to tune fuzzy systems, provide a simple exam-
ple, and offer examples of how they can be used to train fuzzy systems. Next, in
Section 5.4 we show how gradient methods can be used to train a standard and
Takagi-Sugeno fuzzy system. These methods are quite similar to the ones used to
train neural networks (e.g., the “back-propagation technique”). We provide exam-
ples for standard and Takagi-Sugeno fuzzy systems. We highlight the fact that via
either the recursive least squares method for fuzzy systems or the gradient method
we can perform on-line parameter estimation. We will see in Chapter 6 that these
methods can be combined with a controller construction procedure to provide a
method for adaptive fuzzy control.

In Section 5.5 we introduce two techniques for training fuzzy systems based
on clustering. The first uses “c-means clustering” and least squares to train the
premises and consequents, respectively, of the Takagi-Sugeno fuzzy system; while
the second uses a nearest neighborhood technique to train standard fuzzy systems.
In Section 5.6 we present two “learning from examples” (LFE) methods for con-
structing rules for fuzzy systems from input-output data. Compared to the previous
methods, these do not use optimization to construct the fuzzy system parameters.
Instead, the LFE methods are based on simple procedures to extract rules directly
from the data.

In Section 5.7 we show how hybrid methods for training fuzzy systems can
be developed by combining the methods described in this chapter. Finally, in Sec-
tion 5.8, we provide a design and implementation case study for parameter estima-
tion in an internal combustion engine.

Overall, the objective of this chapter is to show how to construct fuzzy systems
from numerical data. This will provide the reader with another general approach
for fuzzy system design that may augment or extend the approach described in
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Chapters 2 and 3, where we start from linguistic information. With a good under-
standing of Chapter 2, the reader can complete this chapter without having read
Chapters 3 and 4. The section on indirect adaptive control in Chapter 6 relies on
the gradient and least squares methods discussed in this chapter, and a portion of
the section on gain schedule construction in Chapter 7 relies on the reader knowing
at least one method from this chapter. In other words, this chapter is important
since many adaptive control techniques depend on the use of an estimator. More-
over, the sections on neural networks and genetic algorithms in Chapter 8 depend
on this chapter in the sense that if you understand this chapter and those sections,
you will see how those techniques relate to the ones discussed here. Otherwise, the
remainder of the book can be completed without this chapter; however, this chapter
will provide for a deeper understanding of many of the concepts to be presented
in Chapters 6 and 7. For example, the learning mechanism for the fuzzy model
reference learning controller (FMRLC) described in Chapter 6 can be viewed as an
identification algorithm that is used to tune a fuzzy controller.

5.2 Fitting Functions to Data
We begin this section by precisely defining the function approximation problem, in
which you seek to synthesize a function to approximate another function that is
inherently represented via a finite number of input-output associations (i.e., we only
know how the function maps a finite number of points in its domain to its range).
Next, we show how the problem of how to construct nonlinear system identifiers
and nonlinear estimators is a special case of the problem of how to perform function
approximation. Finally, we discuss issues in the choice of the data that we use to
construct the approximators, discuss the incorporation of linguistic information,
and provide an example of how to construct a data set for a parameter estimation
problem.

5.2.1 The Function Approximation Problem
Given some function

g : X̄ → Ȳ

where X̄ ⊂ �n and Ȳ ⊂ �, we wish to construct a fuzzy system

f : X → Y

where X ⊂ X̄ and Y ⊂ Ȳ are some domain and range of interest, by choosing a
parameter vector θ (which may include membership function centers, widths, etc.)
so that

g(x) = f(x|θ) + e(x) (5.1)
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for all x = [x1, x2, . . . , xn]� ∈ X where the approximation error e(x) is as small as
possible. If we want to refer to the input at time k, we will use x(k) for the vector
and xj(k) for its jth component.

Assume that all that is available to choose the parameters θ of the fuzzy system
f(x|θ) is some part of the function g in the form of a finite set of input-output data
pairs (i.e., the functional mapping implemented by g is largely unknown). The ith

input-output data pair from the system g is denoted by (xi, yi) where xi ∈ X,
yi ∈ Y , and yi = g(xi). We let xi = [xi

1, x
i
2, ..., x

i
n]� represent the input vector

for the ith data pair. Hence, xi
j is the jth element of the ith data vector (it has a

specific value and is not a variable). We call the set of input-output data pairs the
training data set and denote it by

G = {(x1, y1), . . . , (xM , yM )} ⊂ X × Y (5.2)

where M denotes the number of input-output data pairs contained in G. For con-
venience, we will sometimes use the notation d(i) for data pair (xi, yi).

To get a graphical picture of the function approximation problem, see Fig-
ure 5.1. This clearly shows the challenge; it can certainly be hard to come up with
a good function f to match the mapping g when we know only a little bit about
the association between X and Y in the form of data pairs G. Moreover, it may be
hard to know when we have a good approximation—that is, when f approximates
g over the whole space of inputs X.

g

X

Y

x

x

1

2

x
3

y

y

y

1

2

3

G

FIGURE 5.1 Function mapping with three
known input-output data pairs.

To make the function approximation problem even more concrete, consider a
simple example. Suppose that n = 2, X ⊂ �2, Y = [0, 10], and g : X → Y . Let
M = 3 and the training data set

G =
{([

0
2

]
, 1

)
,

([
2
4

]
, 5

)
,

([
3
6

]
, 6

)}
(5.3)

which partially specifies g as shown in Figure 5.2. The function approximation
problem amounts to finding a function f(x|θ) by manipulating θ so that f(x|θ)
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approximates g as closely as possible. We will use this simple data set to illustrate
several of the methods we develop in this chapter.

1

2

3

4

5

6
7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 yx

x

1

2

FIGURE 5.2 The training data G generated from the
function g.

How do we evaluate how closely a fuzzy system f(x|θ) approximates the func-
tion g(x) for all x ∈ X for a given θ? Notice that

sup
x∈X

{|g(x) − f(x|θ)|} (5.4)

is a bound on the approximation error (if it exists). However, specification of such a
bound requires that the function g be completely known; however, as stated above,
we know only a part of g given by the finite set G. Therefore, we are only able to
evaluate the accuracy of approximation by evaluating the error between g(x) and
f(x|θ) at certain points x ∈ X given by available input-output data. We call this
set of input-output data the test set and denote it as Γ, where

Γ = {(x1, y1), . . . , (xMΓ , yMΓ)} ⊂ X × Y (5.5)

Here, MΓ denotes the number of known input-output data pairs contained within
the test set. It is important to note that the input-output data pairs (xi, yi) con-
tained in Γ may not be contained in G, or vice versa. It also might be the case that
the test set is equal to the training set (G = Γ); however, this choice is not always
a good one. Most often you will want to test the system with at least some data
that were not used to construct f(x|θ) since this will often provide a more realistic
assessment of the quality of the approximation.

We see that evaluation of the error in approximation between g and a fuzzy
system f(x|θ) based on a test set Γ may or may not be a true measure of the error
between g and f for every x ∈ X, but it is the only evaluation we can make based
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on known information. Hence, you can use measures like∑
(xi,yi)∈Γ

(g(xi) − f(xiθ))2 (5.6)

or

sup
(xi,yi)∈Γ

{|g(xi) − f(xi|θ)|} (5.7)

to measure the approximation error. Accurate function approximation requires that
some expression of this nature be small; however, this clearly does not guarantee
perfect representation of g with f since most often we cannot test that f matches
g over all possible input points.

We would like to emphasize that the type of function that you choose to ad-
just (i.e., f(x|θ)) can have a significant impact on the ultimate accuracy of the
approximator. For instance, it may be that a Takagi-Sugeno (or functional) fuzzy
system will provide a better approximator than a standard fuzzy system for a par-
ticular application. We think of f(x|θ) as a structure for an approximator that is
parameterized by θ. In this chapter we will study the use of fuzzy systems as ap-
proximators, and use a fuzzy system as the structure for the approximator. The
choice of the parameter vector θ depends on, for example, how many membership
functions and rules you use. Generally, you want enough membership functions and
rules to be able to get good accuracy, but not too many since if your function is
“overparameterized” this can actually degrade approximation accuracy. Often, it is
best if the structure of the approximator is based on some physical knowledge of
the system, as we explain how to do in Section 5.2.4 on page 241.

Finally, while in this book we focus primarily on fuzzy systems (or, if you un-
derstand neural networks you will see that several of the methods of this chapter
directly apply to those also), at times it may be beneficial to use other approxi-
mation structures such as neural networks, polynomials, wavelets, or splines (see
Section 5.10 “For Further Study,” on page 302).

5.2.2 Relation to Identification, Estimation, and Prediction
Many applications exist in the control and signal processing areas that may utilize
nonlinear function approximation. One such application is system identification,
which is the process of constructing a mathematical model of a dynamic system
using experimental data from that system. Let g denote the physical system that
we wish to identify. The training set G is defined by the experimental input-output
data.

In linear system identification, a model is often used where

y(k) =
q̄∑

i=1

θaiy(k − i) +
p̄∑

i=0

θbiu(k − i) (5.8)
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and u(k) and y(k) are the system input and output at time k ≥ 0. Notice that you
will need to specify appropriate initial conditions. In this case f(x|θ), which is not
a fuzzy system, is defined by

f(x|θ) = θ�x

where

x(k) = [y(k − 1), · · · , y(k − q̄), u(k), · · · , u(k − p̄)]� (5.9)
θ = [θa1 , · · · , θaq̄ , θb0 , · · · , θbp̄ ]� (5.10)

Let N = q̄ + p̄+1 so that x(k) and θ are N ×1 vectors. Linear system identification
amounts to adjusting θ using information from G so that g(x) = f(x|θ) + e(x)
where e(x) is small for all x ∈ X.

Similar to conventional linear system identification, for fuzzy identification we
will utilize an appropriately defined “regression vector” x as specified in Equa-
tion (5.9), and we will tune a fuzzy system f(x|θ) so that e(x) is small. Our hope is
that since the fuzzy system f(x|θ) has more functional capabilities (as characterized
by the universal approximation property described in Section 2.3.8 on page 77) than
the linear map defined in Equation (5.8), we will be able to achieve more accurate
identification for nonlinear systems by appropriate adjustment of its parameters θ
of the fuzzy system.

Next, consider how to view the construction of a parameter (or state) estimator
as a function approximation problem. To do this, suppose for the sake of illustration
that we seek to construct an estimator for a single parameter in a system g. Suppose
further that we conduct a set of experiments with the system g in which we vary a
parameter in the system—say, α. For instance, suppose we know that the parameter
α lies in the range [αmin, αmax] but we do not know where it lies and hence we would
like to estimate it. Generate a data set G with data pairs (xi, αi) ∈ G where the αi

are a range of values over the interval [αmin, αmax] and the xi corresponding to each
αi is a set of input-output data from the system g in the form of Equation (5.9)
that results from using αi as the parameter value in g. Let α̂ denote the fuzzy
system estimate of α. Now, if we construct a function α̂ = f(x|θ) from the data
in G, it will serve as an estimator for the parameter α. Each time a new x vector
is encountered, the estimator f will interpolate between the known associations
(xi, αi) ∈ G to produce the estimate α̂. Clearly, if the data set G is “rich” enough,
it will have enough (xi, αi) pairs so that when the estimator is presented with an
x �= xi, it will have a good idea of what α̂ to specify because it will have many xi

that are close to x that it does know how to specify α for. We will study several
applications of parameter estimation in this chapter and in the problems at the end
of the chapter.

To apply function approximation to the problem of how to construct a predictor
for a parameter (or state variable) in a system, we can proceed in a similar manner to
how we did for the parameter estimation case above. The only significant difference
lies in how to specify the data set G. In the case of prediction, suppose that we
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wish to estimate a parameter α(k + D), D time steps into the future. In this case
we will need to have available training data pairs (xi, αi(k+D)) ∈ G that associate
known future values of α with available data xi. A fuzzy system constructed from
such data will provide a predicted value α̂(k + D) = f(x|θ) for given values of x.

Overall, notice that in each case—identification, estimation, and prediction—
we rely on the existence of the data set G from which to construct the fuzzy system.
Next, we discuss issues in how to choose the data set G.

5.2.3 Choosing the Data Set
While the method for adjusting the parameters θ of f(x|θ) is critical to the overall
success of the approximation method, there is virtually no way that you can succeed
at having f approximate g if there is not appropriate information present in the
training data set G. Basically, we would like G to contain as much information
as possible about g. Unfortunately, most often the number of training data pairs
is relatively small, or it is difficult to use too much data since this affects the
computational complexity of the algorithms that are used to adjust θ. The key
question is then, How would we like the limited amount of data in G structured so
that we can adjust θ so that f matches g very closely?

There are several issues involved in answering this question. Intuitively, if we
can manage to spread the data over the input space uniformly (i.e., so that there
is a regular spacing between points and not too many more points in one region
than another) and so that we get coverage of the whole input space, we would often
expect that we may be able to adjust θ properly, provided that the space between
the points is not too large [108]. This is because we would then expect to have
information about how the mapping g is shaped in all regions so we should be able
to approximate it well in all regions. The accuracy will generally depend on the
slope of g in various regions. In regions where the slope is high, we may need more
data points to get more information so that we can do good approximation. In
regions with lower slopes, we may not need as many points. This intuition, though,
may not hold for all methods of adjusting θ. For some methods, you may need just
as many points in “flat” regions as for those with ones that have high slopes. It is
for this reason that we seek data sets that have uniform coverage of the X space.
If you feel that more data points are needed, you may want to simply add them
more uniformly over the entire space to try to improve accuracy.

While the above intuitive ideas do help give directions on how to choose G for
many applications, they cannot always be put directly into use. The reason for this
is that for many applications (e.g., system identification) we cannot directly pick the
data pairs in G. Notice that since our input portion of the input-output training
data pairs (i.e., x) is typically of the form shown in Equation (5.9), x actually
contains both the inputs and the outputs of the system. It is for this reason that it
is not easy to pick an input to the system u that will ensure that the outputs y will
have appropriate values so that we get x values that uniformly cover the space X.
Similar problems may exist for other applications (e.g., parameter estimation), but
for some applications this may not be a problem. For instance, in constructing a
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fuzzy controller from human decision-making data, we may be able to ensure that
we have the human provide data on how to respond to a whole range of input data
(i.e., we may have full control over what the input portion of the training data in
G is).

It is interesting to note that there are fundamental relationships between a data
set that has uniform coverage of X and the idea of “sufficiently rich” signals in sys-
tem identification (i.e., “persistency of excitation” in adaptive systems). Intuitively,
for system identification we must choose a signal u to “excite” the dynamics of the
system so that we can “see,” via the plant input-output data, what the dynamics
are that generated the output data. Normally, constraints from conventional linear
system identification will require that, for example, a certain number of sinusoids
be present in the signal u to be able to estimate a certain number of parameters.
The idea is that if we excite more modes of the system, we will be able to identify
these modes. Following this line of reasoning, if we use white noise for the input
u, then we should excite all frequencies of the system—and therefore we should be
able to better identify the dynamics of the plant.

Excitation with a noise signal will have a tendency to place points in X over
a whole range of locations; however, there is no guarantee that uniform coverage
will be achieved for nonlinear identification problems with standard ideas from
conventional linear identification. Hence, it is a difficult problem to know how to
pick u so that G is a good data set for solving a function approximation problem.
Sometimes we will be able to make a choice for u that makes sense for a particular
application. For other applications, excitation with noise may be the best choice
that you can make since it can be difficult to pick the input u that results in a
better data set G; however, sometimes putting noise into the system is not really a
viable option due to practical considerations.

5.2.4 Incorporating Linguistic Information
While we have focused above on how best to construct the numerical data set G so
that it provides us with good information on how to construct f , it is important
not to ignore the basic idea from the earlier chapters that linguistic information
has a valuable role to play in the construction of a fuzzy system. In this section
we explain how all the methods treated in this chapter can be easily modified so
that linguistic information can be used together with the numerical data in G to
construct the fuzzy system.

Suppose that we call f the fuzzy system that is constructed with one of the
techniques described in this chapter—that is, from numerical data. Now, suppose
that we have some linguistic information and with it we construct another fuzzy
system that we denote with fL. If we are studying a system identification problem,
then fL may contain heuristic knowledge about how the plant outputs will respond
to its inputs. For specific applications, it is often easy to specify such information,
especially if it just characterizes the gross behavior of the plant. If we are studying
how to construct a controller, then just as we did in Chapters 2 and 3, we may
know something about how to construct the controller in addition to the numerical
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data about the decision-making process. If so, then this can be loaded into fL. If
we are studying an estimation or prediction problem, then we can provide similar
heuristic information about guesses at what the estimate or prediction should be
given certain system input-output data.

Suppose that the fuzzy system fL is in the same basic form (in terms of its
inference strategy, fuzzification, and defuzzification techniques) as f , the one con-
structed with numerical data. Then to combine the linguistic information in fL

with the fuzzy system f that we constructed from numerical data, we simply need
to combine the two fuzzy systems. There are many ways to do this. You could
merge the two rule-bases then treat the combined rule-base as a single rule-base.
Alternatively, you could interpolate between the outputs of the two fuzzy systems,
perhaps with another fuzzy system. Here, we will explain how to merge the two
fuzzy systems using one rule-base merging method. It will then be apparent how
to incorporate linguistic information by combining fuzzy systems for the variety of
other possible cases (e.g., merging information from two different types of fuzzy
systems such as the standard fuzzy system and the Takagi-Sugeno fuzzy system).

Suppose that the fuzzy system we constructed from numerical data is given by

f(x) =
∑R

i=1 biµi(x)∑R
i=1 µi(x)

where

µi(x) =
n∏

j=1

exp


−1

2

(
xj − ci

j

σi
j

)2



It uses singleton fuzzification, Gaussian membership functions, product for the
premise and implication, and center-average defuzzification. It has R rules, out-
put membership function centers at bi, input membership function centers at ci

j ,
and input membership function spreads σi

j . Suppose that the additional linguistic
information is described with a fuzzy system

fL(x) =
∑RL

i=1 bL
i µL

i (x)∑RL

i=1 µL
i (x)

where

µL
i (x) =

n∏
j=1

exp


−1

2

(
xj − ci

j

σi
j

)2



This fuzzy system has RL rules, output membership function centers at bL
i , input

membership function centers at ci
j , and input membership function widths σi

j.
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The combined fuzzy system fC can be defined by

fC(x) =
∑R

i=1 biµi(x) +
∑RL

i=1 bL
i µL

i (x)∑R
i=1 µi(x) +

∑RL

i=1 µL
i (x)

This fuzzy system is obtained by concatenating the rule-bases for the two fuzzy
systems, and this equation provides a mathematical description of how this is done.
This combination approach results in a fuzzy system that has the same basic form
as the fuzzy systems that it is made of.

Overall, we would like to emphasize that at times it can be very beneficial to
include heuristic information via the judicious choice of fL. Indeed, at times it can
make the difference between the success or failure of the methods of this chapter.
Also, some would say that our ability to easily incorporate heuristic knowledge via
fL is one of the advantages of fuzzy over neural or conventional identification and
estimation methods.

5.2.5 Case Study: Engine Failure Data Sets
In this section we will show how to choose the training data for a case study that we
will use in the homework problems of this chapter. In particular, we will establish
an engine failure simulator for the generation of data to train a failure estimator (a
type of parameter estimator) for an internal combustion engine.

Engine Failure Simulator

An engine failure simulator takes engine inputs and and uses an engine model with
specified parameters to produce engine outputs. When the engine parameters are
varied, the failure simulator produces an output corresponding to the varied pa-
rameters. In this case study we use the engine model shown in Figure 5.3, with pa-
rameters defined in Table 5.1, which was developed in [174]. This particular model
is a crude representation of a fuel-injected internal combustion engine. It describes
the throttle to engine speed dynamics, taking into account some of the dynamics
from other engine subsystems. The engine model includes a throttle position sensor
for Θ, manifold absolute pressure (MAP) sensor for Pm, and a sensor for the en-
gine speed N . The model describes the intake manifold dynamics, the pressure to
torque map, the rotating dynamics of the engine, including the inherent frictional
losses, and the load torque due to outside disturbances, TL. Under normal vehicle
operation, the system contains nonlinearities that make modeling the engine quite
complex. Some of these nonlinearities are determined by the speed and throttle and
can be linearized about an idle speed operating point, as was done with this model.
While such a simple model does not represent the complete engine dynamics, it
proves adequate for our failure estimation example, as it has the ability to roughly
model the failure modes that we are interested in.

There are several inputs to the failure simulator: the throttle position Θ; the
parameters k1–k7, whose variations represent failures; and the load torque distur-
bance TL. Recall that we will use different conditions for training and testing the
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FIGURE 5.3 Linearized engine model (figure drawn by Sashonda Morris).

TABLE 5.1 Parameter Values for an Operating Condition

Engine speed N 1092.6 rpm

Throttle position Θ 10.22% of full throttle

Change in input throttle angle k1 949.23 kPa/second-volts

Change in intake manifold k2 6.9490 kPa/second-kPa

Change in engine pumping k3 0.3787 kPa/second-rpm

Change in combustion characteristic k4 0.8045 (Nt-m)/kPa

Change in the engine friction k5 0.0246 (Nt-m)/rpm

Change in air pressure intake manifold k6 1.0000 kPa/second-kPa

Change in speedometer sensor k7 1.0000 (Nt-m)/rpm

Time delay tD 0.0549 second

Inertia J 0.00332 (Nt-m second)/rpm

accuracy of our estimator. For training, the input Θ is a “staircase step,” with
amplitude ranging from 0.1 to 0.025, as shown in Figure 5.4. For testing, the in-
put Θ is a constant step of 0.1. For training, we set TL = 0. For testing, the load
torque disturbance TL is shown in Figure 5.4 where we use a height of 5 Nm, a start
time of 0.1 sec, a period of 3 sec, and a width of 0.2 sec. This type of disturbance
corresponds to the load placed on the engine due to the on/off cycling of the air
conditioner compressor. Since we are using a linearized model, the values of the
step correspond to the change in the input throttle angle and load torque around
the idle speed. Note that we use TL = 0 for training since this represents that we
do not know how the load torque will influence the system a priori. Then, in testing
we can evaluate the ability of our estimator to perform under conditions that it
was not originally designed for.

To modify the gains k1–k7 in the engine model in Figure 5.3 to represent fail-
ures, we use

ki(failure) = ki(nominal) + ∆ki × ki(nominal) (5.11)
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FIGURE 5.4 Throttle position Θ and load torque TL (plots
created by Sashonda Morris).

where

∆ki =
% of failure

100
(5.12)

∆ki ∈ [−1.0, +1.0 ], i ∈ {1, 2, . . . , 7}, and the ki(nominal), are the values of the
parameters ki given in Table 5.1. The percentage of failure can be any value between
±100%. If ∆ki = 0, then ki(failure) = ki(nominal), and no failure occurred for that
particular parameter. If ∆ki �= 0, then the value of the nominal gain is increased
for ∆ki > 0 and decreased for ∆ki < 0.

Engine Failure Scenarios

The failure simulator is capable of simulating throttle position, manifold absolute
pressure, and vehicle speed sensor failures. It also has the ability to simulate various
plant and actuator failures, such as the change in engine pumping and change in
combustion characteristics. In this case study, the intake manifold coefficient, k2,
and the frictional coefficient, k5, were varied for failure estimation purposes. A
decrease in k2 represents a vacuum or gasket leak, which results from a cracked or
loose gasket. Under these conditions, the engine may idle rough, stall, or yield poor
fuel economy. An increase in k5 indicates excessive engine friction resulting from an
excessive loss in torque. This condition may result in engine knocking, backfiring,
surging at steady speed, or a lack of engine power. Our objective is to develop a
parameter estimator for these parameters so that we can provide an indication if
there has been a failure in the engine.

The two failure scenarios are shown in Table 5.2. The scenarios represent single
parameter engine faults. Figure 5.5 shows the output responses for the specified
failure scenarios. These will be used to test the fuzzy parameter estimators for k2

and k5 after they are constructed. The first plot in the figure indicates normal
operation of the engine when Θ is a step input of amplitude 0.1. The last two plots
illustrate the output responses for the failure scenarios specified in Table 5.2. The
failures were induced at the beginning of the simulation. Notice that a k2 failure
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results in an increase in overshoot and some steady-state error, while a k5 failure
results in a significant steady-state error.

TABLE 5.2 Failure Scenarios for Automotive Engine

Failure Gain Original Failure
Scenarios Value Setting

Leakage in gasket k2 6.9490 kPa/second-kPa −50%

Excessive engine friction k5 0.0246 (Nt-m)/rpm +100%
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FIGURE 5.5 Output responses for the automotive engine failure
scenarios (plots created by Sashonda Morris).

The Training Data Set

To train the fuzzy parameter estimator, the training input for the throttle posi-
tion Θ shown in Figure 5.4 is used as the input to the engine. Using this input,
the engine failure simulator produces output responses corresponding to the sys-
tem parameters. Varying a single parameter over a range of values yields different
responses, with each one corresponding to the value of the parameter. For our pur-
poses, the parameters k2 and k5 were varied individually over a specified range
of values to account for the possible failure scenarios the system might encounter.
The parameter k2 was varied between −50% and +50% of its nominal value (i.e.,
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∆k2 ∈ [−0.5, +0.5]), and k5 was varied between +100% and +200% of its nominal
value (i.e., ∆k5 ∈ [+1, +2]). The parameters k2 and k5 were varied at 5% and 10%
increments, yielding Mk2 = 21 and Mk5 = 11 responses, which are shown in Fig-
ures 5.6 and 5.7. These plots represent how the engine will behave over a variety of
failure conditions.
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FIGURE 5.6 Automotive engine rpm for
∆k2 ∈ [−0.5,0.5] (plots created by Sashonda Morris).
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∆k5 ∈ [+1, +2] (plots created by Sashonda Morris).
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The output responses were sampled with a sampling period of T = 0.25 sec to
form the engine failure data sets. In particular, the full set of engine failure data is
given by

Gki = {([Θj
i (kT ), N j

i (kT ), N j
i (kT − T )]�, kj

i ) : k ∈ {1, 2, . . . , 30},
if i = 2, 1 ≤ j ≤ Mk2 , and if i = 5, 1 ≤ j ≤ Mk5} (5.13)

where kj
i denotes the jth value (1 ≤ j ≤ Mki) of ki and Θj

i (kT ), N j
i (kT ), and

N j
i (kT − T ) represent the corresponding values of Θ(kT ), N(kT ), and N(kT − T )

that were generated using this kj
i (note that “k” denotes a time index while ki and

kj
i denote parameter values). Hence, Gk2 (Gk5) is the set of data that we will use

in the problems at the end of the chapter to train fuzzy systems to estimate the
value of k2 (k5). Notice that the number of training data points in Gki is 30Mki ,
i = 2, 5.

We choose x = [Θj
i (kT ), N j

i (kT ), N j
i (kT − T )]� since the value of ki depends

on the size of Θ, the size of N(kT ), and the rate of change of N(kT ). Also, we
chose to have more training points in the k2 data set since we found it somewhat
more difficult to estimate. Notice also that we choose the Gki to represent a range of
failures, and for illustration purposes we will test the performance of our estimators
near the end of these ranges (i.e., a −50% failure on k2 and a +100% failure on k5).
Generally, it is often better to train for a whole range of failures around where you
expect the failed parameter values to be. For this reason, estimators developed based
on these training data will tend to be worse than what is possible to obtain (we
made this choice for testing our fuzzy parameter estimation systems for illustrative
purposes to show that even at the limits of the training data it is possible for you
get reasonably good estimation results).

5.3 Least Squares Methods
In this section we will introduce batch and recursive least squares methods for
constructing a linear system to match some input-output data. Following this, we
explain how these methods can be directly used for training fuzzy systems. We
begin by discussing least squares methods as they are simple to understand and
have clear connections to conventional estimation methods. We also present them
first since they provide for the training of only certain parameters of a fuzzy system
(e.g., the output membership function centers). Later, we will provide methods that
can be used to tune all the fuzzy system’s parameters.

5.3.1 Batch Least Squares
We will introduce the batch least squares method to train fuzzy systems by first
discussing the solution of the linear system identification problem. Let g denote
the physical system that we wish to identify. The training set G is defined by the
experimental input-output data that is generated from this system. In linear system
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identification, we can use a model

y(k) =
q̄∑

i=1

θaiy(k − i) +
p̄∑

i=0

θbiu(k − i)

where u(k) and y(k) are the system input and output at time k. In this case f(x|θ),
which is not a fuzzy system, is defined by

f(x|θ) = θ�x(k) (5.14)

where we recall that

x(k) = [y(k − 1), · · · , y(k − q̄), u(k), · · · , u(k − p̄)]�

and

θ = [θa1 , · · · , θaq̄ , θb0 , · · · , θbp̄ ]�

We have N = q̄ + p̄ + 1 so that x(k) and θ are N × 1 vectors, and often x(k) is
called the “regression vector.”

Recall that system identification amounts to adjusting θ using information from
G so that f(x|θ) ≈ g(x) for all x ∈ X. Often, to form G for linear system identifi-
cation we choose xi = x(i), yi = y(i), and let G = {(xi, yi) : i = 1, 2, . . . , M}. To
do this you will need appropriate initial conditions.

Batch Least Squares Derivation

In the batch least squares method we define

Y (M) =
[
y1, y2, . . . , yM

]�
to be an M × 1 vector of output data where the yi, i = 1, 2, . . . , M come from G
(i.e., yi such that (xi, yi) ∈ G). We let

Φ(M) =




(x1)�

(x2)�
...

(xM)�




be an M ×N matrix that consists of the xi data vectors stacked into a matrix (i.e.,
the xi such that (xi, yi) ∈ G). Let

εi = yi − (xi)�θ
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be the error in approximating the data pair (xi, yi) ∈ G using θ. Define

E(M) = [ε1, ε2, . . . , εM ]�

so that

E = Y − Φθ

Choose

V (θ) =
1
2
E�E

to be a measure of how good the approximation is for all the data for a given θ. We
want to pick θ to minimize V (θ). Notice that V (θ) is convex in θ so that a local
minimum is a global minimum.

Now, using basic ideas from calculus, if we take the partial of V with respect to
θ and set it equal to zero, we get an equation for θ̂, the best estimate (in the least
squares sense) of the unknown θ. Another approach to deriving this is to notice
that

2V = E�E = Y �Y − Y �Φθ − θ�Φ�Y + θ�Φ�Φθ

Then, we “complete the square” by assuming that Φ�Φ is invertible and letting

2V = Y �Y − Y �Φθ − θ�Φ�Y + θ�Φ�Φθ

+ Y �Φ(Φ�Φ)−1Φ�Y − Y �Φ(Φ�Φ)−1Φ�Y

(where we are simply adding and subtracting the same terms at the end of the
equation). Hence,

2V = Y �(I − Φ(Φ�Φ)−1Φ�)Y + (θ − (Φ�Φ)−1Φ�Y )�Φ�Φ(θ − (Φ�Φ)−1Φ�Y )

The first term in this equation is independent of θ, so we cannot reduce V via
this term, so it can be ignored. Hence, to get the smallest value of V , we choose
θ so that the second term is zero. We will denote the value of θ that achieves the
minimization of V by θ̂, and we notice that

θ̂ = (Φ�Φ)−1Φ�Y (5.15)

since the smallest we can make the last term in the above equation is zero. This is
the equation for batch least squares that shows we can directly compute the least
squares estimate θ̂ from the “batch” of data that is loaded into Φ and Y . If we pick
the inputs to the system so that it is “sufficiently excited” [127], then we will be
guaranteed that Φ�Φ is invertible; if the data come from a linear plant with known
q̄ and p̄, then for sufficiently large M we will achieve perfect estimation of the plant
parameters.
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In “weighted” batch least squares we use

V (θ) =
1
2
E�WE (5.16)

where, for example, W is an M × M diagonal matrix with its diagonal elements
wi > 0 for i = 1, 2, . . . , M and its off-diagonal elements equal to zero. These wi

can be used to weight the importance of certain elements of G more than others.
For example, we may choose to have it put less emphasis on older data by choosing
w1 < w2 < · · · < wM when x2 is collected after x1, x3 is collected after x2, and so
on. The resulting parameter estimates can be shown to be given by

θ̂wbls = (Φ�WΦ)−1Φ�WY (5.17)

To show this, simply use Equation (5.16) and proceed with the derivation in the
same manner as above.

Example: Fitting a Line to Data

As an example of how batch least squares can be used, suppose that we would like
to use this method to fit a line to a set of data. In this case our parameterized
model is

y = x1θ1 + x2θ2 (5.18)

Notice that if we choose x2 = 1, y represents the equation for a line. Suppose that
the data that we would like to fit the line to is given by{([

1
1

]
, 1

)
,

([
2
1

]
, 1

)
,

([
3
1

]
, 3

)}

Notice that to train the parameterized model in Equation (5.18) we have chosen
xi

2 = 1 for i = 1, 2, 3 = M . We will use Equation (5.15) to compute the parameters
for the line that best fits the data (in the sense that it will minimize the sum of the
squared distances between the line and the data). To do this we let

Φ =


 1 1

2 1
3 1




and

Y =


 1

1
3



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Hence,

θ̂ = (Φ�Φ)−1Φ�Y =
([

14 6
6 3

])−1 [ 12
5

]
=

[
1
−1

3

]

Hence, the line

y = x1 −
1
3

best fits the data in the least squares sense. We leave it to the reader to plot the
data points and this line on the same graph to see pictorially that it is indeed a
good fit to the data.

The same general approach works for larger data sets. The reader may want to
experiment with weighted batch least squares to see how the weights wi affect the
way that the line will fit the data (making it more or less important that the data
fit at certain points).

5.3.2 Recursive Least Squares
While the batch least squares approach has proven to be very successful for a variety
of applications, it is by its very nature a “batch” approach (i.e., all the data are
gathered, then processing is done). For small M we could clearly repeat the batch
calculation for increasingly more data as they are gathered, but the computations
become prohibitive due to the computation of the inverse of Φ�Φ and due to the fact
that the dimensions of Φ and Y depend on M . Next, we derive a recursive version
of the batch least squares method that will allow us to update our θ̂ estimate each
time we get a new data pair, without using all the old data in the computation and
without having to compute the inverse of Φ�Φ.

Since we will be considering successively increasing the size of G, and we will
assume that we increase the size by one each time step, we let a time index k = M
and i be such that 0 ≤ i ≤ k. Let the N × N matrix

P (k) = (Φ�Φ)−1 =

(
k∑

i=1

xi(xi)�
)−1

(5.19)

and let θ̂(k−1) denote the least squares estimate based on k−1 data pairs (P (k) is
called the “covariance matrix”). Assume that Φ�Φ is nonsingular for all k. We have
P−1(k) = Φ�Φ =

∑k
i=1 xi(xi)� so we can pull the last term from the summation

to get

P−1(k) =
k−1∑
i=1

xi(xi)� + xk(xk)�
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and hence

P−1(k) = P−1(k − 1) + xk(xk)� (5.20)

Now, using Equation (5.15) we have

θ̂(k) = (Φ�Φ)−1Φ�Y

=

(
k∑

i=1

xi(xi)�
)−1 ( k∑

i=1

xiyi

)

= P (k)

(
k∑

i=1

xiyi

)

= P (k)

(
k−1∑
i=1

xiyi + xkyk

)
(5.21)

Hence,

θ̂(k − 1) = P (k − 1)
k−1∑
i=1

xiyi

and so

P−1(k − 1)θ̂(k − 1) =
k−1∑
i=1

xiyi

Now, replacing P−1(k − 1) in this equation with the result in Equation (5.20), we
get

(P−1(k) − xk(xk)�)θ̂(k − 1) =
k−1∑
i=1

xiyi

Using the result from Equation (5.21), this gives us

θ̂(k) = P (k)(P−1(k) − xk(xk)�)θ̂(k − 1) + P (k)xkyk

= θ̂(k − 1) − P (k)xk(xk)�θ̂(k − 1) + P (k)xkyk

= θ̂(k − 1) + P (k)xk(yk − (xk)�θ̂(k − 1)). (5.22)

This provides a method to compute an estimate of the parameters θ̂(k) at each time
step k from the past estimate θ̂(k − 1) and the latest data pair that we received,
(xk, yk). Notice that (yk −(xk)�θ̂(k−1)) is the error in predicting yk using θ̂(k−1).

To update θ̂ in Equation (5.22) we need P (k), so we could use

P−1(k) = P−1(k − 1) + xk(xk)� (5.23)
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But then we will have to compute an inverse of a matrix at each time step (i.e.,
each time we get another set of data). Clearly, this is not desirable for real-time
implementation, so we would like to avoid this. To do so, recall that the “matrix
inversion lemma” indicates that if A, C, and (C−1+DA−1B) are nonsingular square
matrices, then A + BCD is invertible and

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

We will use this fact to remove the need to compute the inverse of P−1(k) that
comes from Equation (5.23) so that it can be used in Equation (5.22) to update θ̂.
Notice that

P (k) = (Φ�(k)Φ(k))−1

= (Φ�(k − 1)Φ(k − 1) + xk(xk)�)−1

= (P−1(k − 1) + xk(xk)�)−1

and that if we use the matrix inversion lemma with A = P−1(k − 1), B = xk,
C = I, and D = (xk)�, we get

P (k) = P (k − 1) − P (k − 1)xk(I + (xk)�P (k − 1)xk)−1(xk)�P (k − 1) (5.24)

which together with

θ̂(k) = θ̂(k − 1) + P (k)xk(yk − (xk)� θ̂(k − 1)) (5.25)

(that was derived in Equation (5.22)) is called the “recursive least squares (RLS)
algorithm.” Basically, the matrix inversion lemma turns a matrix inversion into the
inversion of a scalar (i.e., the term (I + (xk)�P (k − 1)xk)−1 is a scalar).

We need to initialize the RLS algorithm (i.e., choose θ̂(0) and P (0)). One
approach to do this is to use θ̂(0) = 0 and P (0) = P0 where P0 = αI for some
large α > 0. This is the choice that is often used in practice. Other times, you may
pick P (0) = P0 but choose θ̂(0) to be the best guess that you have at what the
parameter values are.

There is a “weighted recursive least squares” (WRLS) algorithm also. Suppose
that the parameters of the physical system θ vary slowly. In this case it may be
advantageous to choose

V (θ, k) =
1
2

k∑
i=1

λk−i(yi − (xi)�θ)2

where 0 < λ ≤ 1 is called a “forgetting factor” since it gives the more recent data
higher weight in the optimization (note that this performance index V could also
be used to derive weighted batch least squares). Using a similar approach to the
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above, you can show that the equations for WRLS are given by

P (k) =
1
λ

(
I − P (k − 1)xk(λI + (xk)�P (k − 1)xk)−1(xk)�

)
P (k − 1) (5.26)

θ̂(k) = θ̂(k − 1) + P (k)xk(yk − (xk)�θ̂(k − 1))

(where when λ = 1 we get standard RLS). This completes our description of the
least squares methods. Next, we will discuss how they can be used to train fuzzy
systems.

5.3.3 Tuning Fuzzy Systems
It is possible to use the least squares methods described in the past two sections
to tune fuzzy systems either in a batch or real-time mode. In this section we will
explain how to tune both standard and Takagi-Sugeno fuzzy systems that have
many inputs and only one output. To train fuzzy systems with many outputs,
simply repeat the procedure described below for each output.

Standard Fuzzy Systems

First, we consider a fuzzy system

y = f(x|θ) =
∑R

i=1 biµi(x)∑R
i=1 µi(x)

(5.27)

where x = [x1, x2, . . . , xn]� and µi(x) is defined in Chapter 2 as the certainty of the
premise of the ith rule (it is specified via the membership functions on the input
universe of discourse together with the choice of the method to use in the triangular
norm for representing the conjunction in the premise). The bi, i = 1, 2, . . . , R, values
are the centers of the output membership functions. Notice that

f(x|θ) =
b1µ1(x)∑R
i=1 µi(x)

+
b2µ2(x)∑R
i=1 µi(x)

+ · · ·+ bRµR(x)∑R
i=1 µi(x)

and that if we define

ξi(x) =
µi(x)∑R
i=1 µi(x)

(5.28)

then

f(x|θ) = b1ξ1(x) + b2ξ2(x) + · · ·+ bRξR(x)

Hence, if we define

ξ(x) = [ξ1, ξ2, . . . , ξR]�
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and

θ = [b1, b2, . . . , bR]�

then

y = f(x|θ) = θ�ξ(x) (5.29)

We see that the form of the model to be tuned is in only a slightly different form
from the standard least squares case in Equation (5.14). In fact, if the µi are given,
then ξ(x) is given so that it is in exactly the right form for use by the standard least
squares methods since we can view ξ(x) as a known regression vector. Basically, the
training data xi are mapped into ξ(xi) and the least squares algorithms produce
an estimate of the best centers for the output membership function centers bi.

This means that either batch or recursive least squares can be used to train
certain types of fuzzy systems (ones that can be parameterized so that they are
“linear in the parameters,” as in Equation (5.29)). All you have to do is replace xi

with ξ(xi) in forming the Φ vector for batch least squares, and in Equation (5.26)
for recursive least squares. Hence, we can achieve either on- or off-line training of
certain fuzzy systems with least squares methods. If you have some heuristic ideas
for the choice of the input membership functions and hence ξ(x), then this method
can, at times, be quite effective (of course any known function can be used to replace
any of the ξi in the ξ(x) vector). We have found that some of the standard choices
for input membership functions (e.g., uniformly distributed ones) work very well
for some applications.

Takagi-Sugeno Fuzzy Systems

It is interesting to note that Takagi-Sugeno fuzzy systems, as described in Sec-
tion 2.3.7 on page 73, can also be parameterized so that they are linear in the
parameters, so that they can also be trained with either batch or recursive least
squares methods. In this case, if we can pick the membership functions appro-
priately (e.g., using uniformly distributed ones), then we can achieve a nonlinear
interpolation between the linear output functions that are constructed with least
squares.

In particular, as explained in Chapter 2, a Takagi-Sugeno fuzzy system is given
by

y =
∑R

i=1 gi(x)µi(x)∑R
i=1 µi(x)

where

gi(x) = ai,0 + ai,1x1 + · · ·+ ai,nxn
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Hence, using the same approach as for standard fuzzy systems, we note that

y =
∑R

i=1 ai,0µi(x)∑R
i=1 µi(x)

+
∑R

i=1 ai,1x1µi(x)∑R
i=1 µi(x)

+ · · ·+
∑R

i=1 ai,nxnµi(x)∑R
i=1 µi(x)

We see that the first term is the standard fuzzy system. Hence, use the ξi(x) defined
in Equation (5.28) and redefine ξ(x) and θ to be

ξ(x) = [ξ1(x), ξ2(x), . . . , ξR(x), x1ξ1(x), x1ξ2(x), . . . , x1ξR(x), . . . ,

xnξ1(x), xnξ2(x), . . . , xnξR(x)]�

and

θ = [a1,0, a2,0, . . . , aR,0, a1,1, a2,1, . . . , aR,1, . . . , a1,n, a2,n, . . . , aR,n]�

so that

f(x|θ) = θ�ξ(x)

represents the Takagi-Sugeno fuzzy system, and we see that it too is linear in the
parameters. Just as for a standard fuzzy system, we can use batch or recursive
least squares for training f(x|θ). To do this, simply pick (a priori) the µi(x) and
hence the ξi(x) vector, process the training data xi where (xi, yi) ∈ G through
ξ(x), and replace xi with ξ(xi) in forming the Φ vector for batch least squares, or
in Equation (5.26) for recursive least squares.

Finally, note that the above approach to training will work for any nonlinearity
that is linear in the parameters. For instance, if there are known nonlinearities
in the system of the quadratic form, you can use the same basic approach as the
one described above to specify the parameters of consequent functions that are
quadratic (what is ξ(x) in this case?).

5.3.4 Example: Batch Least Squares Training of Fuzzy Systems
As an example of how to train fuzzy systems with batch least squares, we will
consider how to tune the fuzzy system

f(x|θ) =

∑R
i=1 bi

∏n
j=1 exp

(
−1

2

(
xj−ci

j

σi
j

)2
)

∑R
i=1

∏n
j=1 exp

(
−1

2

(
xj−ci

j

σi
j

)2
)

(however, other forms may be used equally effectively). Here, bi is the point in the
output space at which the output membership function for the ith rule achieves a
maximum, ci

j is the point in the jth input universe of discourse where the member-
ship function for the ith rule achieves a maximum, and σi

j > 0 is the relative width
of the membership function for the jth input and the ith rule. Clearly, we are using
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center-average defuzzification and product for the premise and implication. Notice
that the outermost input membership functions do not saturate as is the usual case
in control.

We will tune f(x|θ) to interpolate the data set G given in Equation (5.3) on
page 236. Choosing R = 2 and noting that n = 2, we have θ = [b1, b2]� and

ξi(x) =

∏n
j=1 exp

(
−1

2

(
xj−ci

j

σi
j

)2
)

∑R
i=1

∏n
j=1 exp

(
−1

2

(
xj−ci

j

σi
j

)2
) . (5.30)

Next, we must pick the input membership function parameters ci
j, i = 1, 2,

j = 1, 2. One way to choose the input membership function parameters is to use
the xi portions of the first R data pairs in G. In particular, we could make the
premise of rule i have unity certainty if xi, (xi, yi) ∈ G, is input to the fuzzy
system, i = 1, 2, . . . , R, R ≤ M . For instance, if x1 = [0, 2]� = [x1

1, x
1
2]

� and
x2 = [2, 4]� = [x2

1, x
2
2]
�, we would choose c1

1 = x1
1 = 0, c1

2 = x1
2 = 2, c2

1 = x2
1 = 2,

and c2
2 = x2

2 = 4.
Another approach to picking the ci

j is simply to try to spread the membership
functions somewhat evenly over the input portion of the training data space. For
instance, consider the axes on the left of Figure 5.2 on page 237 where the input
portions of the training data are shown for G. From inspection, a reasonable choice
for the input membership function centers could be c1

1 = 1.5, c1
2 = 3, c2

1 = 3,
and c2

2 = 5 since this will place the peaks of the premise membership functions in
between the input portions of the training data pairs. In our example, we will use
this choice of the ci

j.
Next, we need to pick the spreads σi

j. To do this we simply pick σi
j = 2 for

i = 1, 2, j = 1, 2 as a guess that we hope will provide reasonable overlap between
the membership functions. This completely specifies the ξi(x) in Equation (5.30).
Let ξ(x) = [ξ1(x), ξ2(x)]�.

We have M = 3 for G, so we find

Φ =


 ξ�(x1)

ξ�(x2)
ξ�(x3)


 =


 0.8634 0.1366

0.5234 0.4766
0.2173 0.7827




and Y = [y1, y2, y3]� = [1, 5, 6]�. We use the batch least squares formula in Equa-
tion (5.15) on page 250 to find θ̂ = [0.3646, 8.1779]�, and hence our fuzzy system
is f(x|θ̂).

To test the fuzzy system, note that at the training data

f(x1|θ̂) = 1.4320
f(x2|θ̂) = 4.0883
f(x3|θ̂) = 6.4798
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so that the trained fuzzy system maps the training data reasonably accurately
(x3 = [3, 6]�). Next, we test the fuzzy system at some points not in the training
data set to see how it interpolates. In particular, we find

f([1, 2]�|θ̂) = 1.8267
f([2.5, 5]�|θ̂) = 5.3981

f([4, 7]�|θ̂) = 7.3673

These values seem like good interpolated values considering Figure 5.2 on page 237,
which illustrates the data set G for this example.

5.3.5 Example: Recursive Least Squares Training of
Fuzzy Systems

Here, we illustrate the use of the RLS algorithm in Equation (5.26) on page 255 for
training a fuzzy system to map the training data given in G in Equation (5.3) on
page 236. First, we replace xk with ξ(xk) in Equation (5.26) to obtain

P (k) =
1
λ

(I − P (k − 1)ξ(xk)(λI + (ξ(xk))�P (k − 1)ξ(xk))−1(ξ(xk))�)P (k − 1)

θ̂(k) = θ̂(k − 1) + P (k)ξ(xk)(yk − (ξ(xk))� θ̂(k − 1)) (5.31)

and we use this to compute the parameter vector of the fuzzy system. We will train
the same fuzzy system that we considered in the batch least squares example of
the previous section, and we pick the same ci

j and σi
j, i = 1, 2, j = 1, 2 as we chose

there so that we have the same ξ(x) = [ξ1, ξ2]�.
For initialization of Equation (5.31), we choose

θ̂(0) = [2, 5.5]�

as a guess of where the output membership function centers should be. Another
guess would be to choose θ̂(0) = [0, 0]�. Next, using the guidelines for RLS initial-
ization, we choose

P (0) = αI

where α = 2000. We choose λ = 1 since we do not want to discount old data, and
hence we use the standard (nonweighted) RLS.

Before using Equation (5.31) to find an estimate of the output membership
function centers, we need to decide in what order to have RLS process the training
data pairs (xi, yi) ∈ G. For example, you could just take three steps with Equa-
tion (5.31), one for each training data pair. Another approach would be to use each
(xi, yi) ∈ G Ni times (in some order) in Equation (5.31) then stop the algorithm.
Still another approach would be to cycle through all the data (i.e., (x1, y1) first,
(x2, y2) second, up until (xM , yM ) then go back to (x1, y1) and repeat), say, NRLS

times. It is this last approach that we will use and we will choose NRLS = 20.
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After using Equation (5.31) to cycle through the data NRLS times, we get the
last estimate

θ̂(NRLS · M) =
[

0.3647
8.1778

]
(5.32)

and

P (NRLS · M) =
[

0.0685 −0.0429
−0.0429 0.0851

]

Notice that the values produced for the estimates in Equation (5.32) are very close
to the values we found with batch least squares—which we would expect since
RLS is derived from batch least squares. We can test the resulting fuzzy system in
the same way as we did for the one trained with batch least squares. Rather than
showing the results, we simply note that since θ̂(NRLS · M) produced by RLS is
very similar to the θ̂ produced by batch least squares, the resulting fuzzy system is
quite similar, so we get very similar values for f(x|θ̂(NRLS · M)) as we did for the
batch least squares case.

5.4 Gradient Methods
As in the previous sections, we seek to construct a fuzzy system f(x|θ) that can ap-
propriately interpolate to approximate the function g that is inherently represented
in the training data G. Here, however, we use a gradient optimization method to
try to pick the parameters θ that perform the best approximation (i.e., make f(x|θ)
as close to g(x) as possible). Unfortunately, while the gradient method tries to pick
the best θ, just as for all the other methods in this chapter, there are no guarantees
that it will succeed in achieving the best approximation. As compared to the least
squares methods, it does, however, provide a method to tune all the parameters of
a fuzzy system. For instance, in addition to tuning the output membership func-
tion centers, using this method we can also tune the input membership function
centers and spreads. Next, we derive the gradient training algorithms for both stan-
dard fuzzy systems and Takagi-Sugeno fuzzy systems that have only one output.
In Section 5.4.5 on page 270 we extend this to the multi-input multi-output case.

5.4.1 Training Standard Fuzzy Systems
The fuzzy system used in this section utilizes singleton fuzzification, Gaussian input
membership functions with centers ci

j and spreads σi
j, output membership function

centers bi, product for the premise and implication, and center-average defuzzifica-
tion, and takes on the form

f(x|θ) =

∑R
i=1 bi

∏n
j=1 exp

(
−1

2

(
xj−ci

j

σi
j

)2
)

∑R
i=1

∏n
j=1 exp

(
−1

2

(
xj−ci

j

σi
j

)2
) (5.33)



5.4 Gradient Methods 261

Note that we use Gaussian-shaped input membership functions for the entire input
universe of discourse for all inputs and do not use ones that saturate at the outer-
most endpoints as we often do in control. The procedure developed below works in
a similar fashion for other types of fuzzy systems. Recall that ci

j denotes the center
for the ith rule on the jth universe of discourse, bi denotes the center of the output
membership function for the ith rule, and σi

j denotes the spread for the ith rule on
the jth universe of discourse.

Suppose that you are given the mth training data pair (xm, ym) ∈ G. Let

em =
1
2

[f(xm|θ) − ym ]2

In gradient methods, we seek to minimize em by choosing the parameters θ, which
for our fuzzy system are bi, ci

j , and σi
j , i = 1, 2, . . . , R, j = 1, 2, . . . , n (we will use

θ(k) to denote these parameters’ values at time k). Another approach would be to
minimize a sum of such error values for a subset of the data in G or all the data in
G; however, with this approach computational requirements increase and algorithm
performance may not.

Output Membership Function Centers Update Law

First, we consider how to adjust the bi to minimize em. We use an “update law”
(update formula)

bi(k + 1) = bi(k) − λ1
∂em

∂bi

∣∣∣∣
k

where i = 1, 2, . . . , R and k ≥ 0 is the index of the parameter update step. This is a
“gradient descent” approach to choosing the bi to minimize the quadratic function
em that quantifies the error between the current data pair (xm, ym) and the fuzzy
system. If em were quadratic in θ (which it is not; why?), then this update method
would move bi along the negative gradient of the em error surface—that is, down
the (we hope) bowl-shaped error surface (think of the path you take skiing down
a valley—the gradient descent approach takes a route toward the bottom of the
valley). The parameter λ1 > 0 characterizes the “step size.” It indicates how big
a step to take down the em error surface. If λ1 is chosen too small, then bi is
adjusted very slowly. If λ1 is chosen too big, convergence may come faster but you
risk it stepping over the minimum value of em (and possibly never converging to
a minimum). Some work has been done on adaptively picking the step size. For
example, if errors are decreasing rapidly, take big steps, but if errors are decreasing
slowly, take small steps. This approach attempts to speed convergence yet avoid
missing a minimum.

Now, to simplify the bi update formula, notice that using the chain rule from
calculus

∂em

∂bi
= (f(xm |θ) − ym)

∂f(xm |θ)
∂bi
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so

∂em

∂bi
= (f(xm|θ) − ym)

∏n
j=1 exp

(
−1

2

(
xm

j −ci
j

σi
j

)2
)

∑R
i=1

∏n
j=1 exp

(
−1

2

(
xm

j −ci
j

σi
j

)2
)

For notational convenience let

µi(xm, k) =
n∏

j=1

exp


−1

2

(
xm

j − ci
j(k)

σi
j(k)

)2

 (5.34)

and let

εm(k) = f(xm|θ(k)) − ym

Then we get

bi(k + 1) = bi(k) − λ1εm(k)
µi(xm, k)∑R
i=1 µi(xm, k)

(5.35)

as the update equation for the bi, i = 1, 2, . . . , R, k ≥ 0.
The other parameters in θ, ci

j(k) and σi
j(k), will also be updated with a gradient

algorithm to try to minimize em, as we explain next.

Input Membership Function Centers Update Law

To train the ci
j , we use

ci
j(k + 1) = ci

j(k) − λ2
∂em

∂ci
j

∣∣∣∣∣
k

where λ2 > 0 is the step size (see the comments above on how to choose this step
size), i = 1, 2, . . . , R, j = 1, 2, . . . , n, and k ≥ 0. At time k using the chain rule,

∂em

∂ci
j

= εm(k)
∂f(xm |θ(k))
∂µi(xm, k)

∂µi(xm, k)
∂ci

j

for i = 1, 2, . . . , R, j = 1, 2, . . . , n, and k ≥ 0. Now,

∂f(xm|θ(k))
∂µi(xm, k)

=

(∑R
i=1 µi(xm, k)

)
bi(k) −

(∑R
i=1 bi(k)µi(xm, k)

)
(1)(∑R

i=1 µi(xm, k)
)2
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so that

∂f(xm|θ(k))
∂µi(xm, k)

=
bi(k) − f(xm|θ(k))∑R

i=1 µi(xm, k)

Also,

∂µi(xm, k)
∂ci

j

= µi(xm, k)

(
xm

j − ci
j(k)(

σi
j(k)

)2

)

so we have an update method for the ci
j(k) for all i = 1, 2, . . . , R, j = 1, 2, . . . , n,

and k ≥ 0. In particular, we have

ci
j(k+1) = ci

j(k)−λ2εm(k)

(
bi(k) − f(xm|θ(k))∑R

i=1 µi(xm, k)

)
µi(xm, k)

(
xm

j − ci
j(k)(

σi
j(k)

)2

)
(5.36)

for i = 1, 2, . . . , R, j = 1, 2, . . . , n, and k ≥ 0.

Input Membership Function Spreads Update Law

To update the σi
j(k) (spreads of the membership functions), we follow the same

procedure as above and use

σi
j(k + 1) = σi

j(k) − λ3
∂em

∂σi
j

∣∣∣∣∣
k

where λ3 > 0 is the step size, i = 1, 2, . . . , R, j = 1, 2, . . . , n, and k ≥ 0. Using the
chain rule, we obtain

∂em

∂σi
j

= εm(k)
∂f(xm|θ(k))
∂µi(xm, k)

∂µi(xm, k)
∂σi

j

We have

∂µi(xm, k)
∂σi

j

= µi(xm, k)

(
xm

j − ci
j(k)

)2

(
σi

j(k)
)3

so that

σi
j(k + 1) = σi

j(k) − λ3εm(k)
bi(k) − f(xm|θ(k))∑R

i=1 µi(xm, k)
µi(xm, k)

(xm
j − ci

j(k))2

(σi
j(k))3

(5.37)

for i = 1, 2, . . . , R, j = 1, 2, . . . , n, and k ≥ 0. This completes the definition of
the gradient training method for the standard fuzzy system. To summarize, the
equations for updating the parameters θ of the fuzzy system are Equations (5.35),
(5.36), and (5.37).
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Next, note that the gradient training method described above is for the case
where we have Gaussian-shaped input membership functions. The update formulas
would, of course, change if you were to choose other membership functions. For
instance, if you use triangular membership functions, the update formulas can be
developed, but in this case you will have to pay special attention to how to define
the derivative at the peak of the membership function.

Finally, we would like to note that the gradient method can be used in either
an off- or on-line manner. In other words, it can be used off-line to train a fuzzy
system for system identification, or it can be used on-line to train a fuzzy system to
perform real-time parameter estimation. We will see in Chapter 6 how to use such
an adaptive parameter identifier in an adaptive control setting.

5.4.2 Implementation Issues and Example
In this section we discuss several issues that you will encounter if you implement a
gradient approach to training fuzzy systems. Also, we provide an example of how
to train a standard fuzzy system.

Algorithm Design

There are several issues to address in the design of the gradient algorithm for
training a fuzzy system. As always, the choice of the training data G is critical.
Issues in the choice of the training data, which we discussed in Section 5.2 on
page 235, are relevant here. Next, note that you must pick the number of inputs n
to the fuzzy system to be trained and the number of rules R; the method does not
add rules, it just tunes existing ones.

The choice of the initial estimates bi(0), ci
j(0), and σi

j(0) can be important.
Sometimes picking them close to where they should be can help convergence. Notice
that you should not pick bi = 0 for all i = 1, 2, . . . , R or the algorithm for the bi

will stay at zero for all k ≥ 0. Your computer probably will not allow you to pick
σi

j(0) = 0 since you divide by this number in the algorithm. Also, you may need to
make sure that in the algorithm σi

j(k) ≥ σ̄ > 0 for some fixed scalar σ̄ so that the
algorithm does not tune the parameters of the fuzzy system so that the computer
has to divide by zero (to do this, just monitor the σi

j(k), and if there exists some k′

where σi
j(k

′) < σ̄, let σi
j(k

′) = σ̄). Notice that for our choice of input membership
functions

R∑
i=1

µi(xm, k) �= 0

so that we normally do not have to worry about dividing by it in the algorithm.
Note that the above gradient algorithm is for only one training data pair. That

is, we could run the gradient algorithm for a long time (i.e., many values of k) for
only one data pair to try to train the fuzzy system to match that data pair very
well. Then we could go to the next data pair in G, begin with the final computed
values of bi, ci

j, and σi
j from the last data pair we considered as the initial values for
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this data pair, and run the gradient algorithm for as many steps as we would like
for that data pair—and so on. Alternatively, we could cycle through the training
data many times, taking one step with the gradient algorithm for each data pair.
It is difficult to know how many parameter update steps should be made for each
data pair and how to cycle through the data. It is generally the case, however, that
if you use some of the data much more frequently than other data in G, then the
trained fuzzy system will tend to be more accurate for that data rather than the
data that was not used as many times in training. Some like to cycle through the
data so that each data pair is visited the same number of times and use small step
sizes so that the updates will not be too large in any direction.

Clearly, you must be careful with the choices for the λi, i = 1, 2, 3 step sizes
as values for these that are too big can result in an unstable algorithm (i.e., θ
values can oscillate or become unbounded), while values for these that are too
small can result in very slow convergence. The main problem, however, is that in
the general case there are no guarantees that the gradient algorithm will converge
at all! Moreover, it can take a significant amount of training data and long training
times to achieve good results. Generally, you can conduct some tests to see how
well the fuzzy system is constructed by comparing how it maps the data pairs to
their actual values; however, even if this comparison appears to indicate that the
fuzzy system is mapping the data properly, there are no guarantees that it will
“generalize” (i.e., interpolate) for data not in the training data set that it was
trained with.

To terminate the gradient algorithm, you could wait until all the parameters
stop moving or change very little over a series of update steps. This would indicate
that the parameters are not being updated so the gradients must be small so we
must be at a minimum of the em surface. Alternatively, we could wait until the
em or

∑M
m=1 em does not change over a fixed number of steps. This would indicate

that even if the parameter values are changing, the value of em is not decreasing,
so the algorithm has found a minimum and it can be terminated.

Example

As an example, consider the data set G in Equation (5.3) on page 236: we will train
the parameters of the fuzzy system with R = 2 and n = 2. Choose λ1 = λ2 = λ3 =
1. Choose [

c1
1(0)

c1
2(0)

]
=

[
0
2

]
,

[
σ1

1(0)
σ1

2(0)

]
=

[
1
1

]
, b1(0) = 1

and [
c2
1(0)

c2
2(0)

]
=

[
2
4

]
,

[
σ2

1(0)
σ2

2(0)

]
=

[
1
1

]
, b2(0) = 5

In this way the two rules will begin by perfectly mapping the first two data pairs
in G (why?). The gradient algorithm has to tune the fuzzy system so that it will
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provide an approximation to the third data pair in G, and in doing this it will tend
to somewhat degrade how well it represented the first two data pairs.

To train the fuzzy system, we could repeatedly cycle through the data in G so
that the fuzzy system learns how to map the third data pair but does not forget
how to map the first two. Here, for illustrative purposes, we will simply perform
one iteration of the algorithm for the bi parameters for the third data pair. That
is, we use

xm = x3 =
[

3
6

]
, ym = y3 = 6

In this case we have

µ1(x3, 0) = 0.000003724

and

µ2(x3, 0) = 0.08208

so that f(x3|θ(0)) = 4.99977 and εm(0) = −1.000226. With this and Equation (5.35),
we find that b1(1) = 1.000045379 and b2(1) = 6.0022145. The calculations for the
ci
j(1) and σi

j(1) parameters, i = 1, 2, j = 1, 2, are made in a similar way, but using
Equations (5.36) and (5.37), respectively.

Even with only one computation step, we see that the output centers bi, i = 1, 2,
are moving to perform an interpolation that is more appropriate for the third data
point. To see this, notice that b2(1) = 6.0022145 where b2(0) = 5.0 so that the
output center moved much closer to y3 = 6.

To further study how the gradient algorithm works, we recommend that you
write a computer program to implement the update formulas for this example. You
may need to tune the λi and approach to cycling through the data. Then, using an
appropriate termination condition (see the discussion above), stop the algorithm
and test the quality of the interpolation by placing inputs into the fuzzy system and
seeing if the outputs are good interpolated values (e.g., compare them to Figure 5.2
on page 237). In the next section we will provide a more detailed example, but for
the training of Takagi-Sugeno fuzzy systems.

5.4.3 Training Takagi-Sugeno Fuzzy Systems
The Takagi-Sugeno fuzzy system that we train in this section takes on the form

f(x|θ(k)) =
∑R

i=1 gi(x, k)µi(x, k)∑R
i=1 µi(x, k)

where µi(x, k) is defined in Equation (5.34) on page 262 (of course, other definitions
are possible), x = [x1, x2, . . . , xn]�, and

gi(x, k) = ai,0(k) + ai,1(k)x1 + ai,2(k)x2 + · · ·+ ai,n(k)xn
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(note that we add the index k since we will update the ai,j parameters). For more
details on how to define Takagi-Sugeno fuzzy systems, see Section 2.3.7 on page 73.

Parameter Update Formulas

Following the same approach as in the previous section, we need to update the
ai,j parameters of the gi(x, k) functions and ci

j and σi
j. Notice, however, that most

of the work is done since if in Equations (5.36) and (5.37) we replace bi(k) with
gi(xm, k), we get the update formulas for the ci

j and σi
j for the Takagi-Sugeno fuzzy

system.
To update the ai,j we use

ai,j(k + 1) = ai,j(k) − λ4
∂em

∂ai,j

∣∣∣∣
k

(5.38)

when λ4 > 0 is the step size. Notice that

∂em

∂ai,j
= εm(k)

∂f(xm |θ(k))
∂gi(xm, k)

∂gi(xm, k)
∂ai,j(k)

for all i = 1, 2, . . . , R, j = 1, 2, . . . , n (plus j = 0) and

∂f(xm |θ(k))
∂gi(xm, k)

=
µi(xm, k)∑R

i=1 µi(xm, k)

for all i = 1, 2, . . . , R. Also,

∂gi(xm, k)
∂ai,0(k)

= 1

and

∂gi(x, k)
∂ai,j(k)

= xj

for all j = 1, 2, . . . , n and i = 1, 2, . . . , R.
This gives the update formulas for all the parameters of the Takagi-Sugeno

fuzzy system. In the previous section we discussed issues in the choice of the step
sizes and initial parameter values, how to cycle through the training data in G,
and some convergence issues. All of this discussion is relevant to the training of
Takagi-Sugeno models also. The training of more general functional fuzzy systems
where the gi take on more general forms proceeds in a similar manner. In fact, it
is easy to develop the update formulas for any functional fuzzy system such that

∂gi(xm, k)
∂ai,j(k)
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can be determined analytically. Finally, we would note that Takagi-Sugeno or gen-
eral functional fuzzy systems can be trained either off- or on-line. Chapter 6 dis-
cusses how such on-line training can be used in adaptive control.

Example

As an example, consider once again the data set G in Equation (5.3) on page 236.
We will train the Takagi-Sugeno fuzzy system with two rules (R = 2) and n = 2
considered in Equation (5.33). We will cycle through the data set G 40 times (similar
to how we did in the RLS example) to get the error between the fuzzy system output
and the output portions of the training data to decrease to some small value.

We use Equations (5.38), (5.36), and (5.37) to update the ai,j(k), ci
j(k), and

σi
j(k) values, respectively, for all i = 1, 2, . . . , R, j = 1, 2, . . . , n, and we choose σ̄

from the previous section to be 0.01. For initialization we pick λ4 = 0.01, λ2 =
λ3 = 1, ai,j(0) = 1, and σi

j = 2 for all i and j, and c1
1(0) = 1.5, c1

2(0) = 3,
c2
1(0) = 3, and c2

2(0) = 5. The step sizes were tuned a bit to improve convergence,
but could probably be further tuned to improve it more. The ai,j(0) values are
simply somewhat arbitrary guesses. The σi

j(0) values seem like reasonable spreads
considering the training data. The ci

j(0) values are the same ones used in the least
squares example and seem like reasonable guesses since they try to spread the
premise membership function peaks somewhat uniformly over the input portions of
the training data. It is possible that a better initial guess for the ai,j(0) could be
obtained by using the least squares method to pick these for the initial guesses for
the ci

j(0) and σi
j(0); in some ways this would make the guess for the ai,j(0) more

consistent with the other initial parameters.
By the time the algorithm terminates, the error between the fuzzy system

output and the output portions of the training data has reduced to less than 0.125
but is still showing a decreasing oscillatory behavior. At algorithm termination
(k = 119), the consequent parameters are

a1,0(119) = 0.8740, a1,1(119) = 0.9998, a1,2(119) = 0.7309

a2,0(119) = 0.7642, a2,1(119) = 0.3426, a2,2(119) = 0.7642

the input membership function centers are

c1
1(119) = 2.1982, c2

1(119) = 2.6379

c1
2(119) = 4.2833, c2

2(119) = 4.7439

and their spreads are

σ1
1(119) = 0.7654, σ2

1(119) = 2.6423
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σ1
2(119) = 1.2713, σ2

2(119) = 2.6636

These parameters, which collectively we call θ, specify the final Takagi-Sugeno fuzzy
system.

To test the Takagi-Sugeno fuzzy system, we use the training data and some
other cases. For the training data points we find

f(x1|θ) = 1.4573
f(x2|θ) = 4.8463
f(x3|θ) = 6.0306

so that the trained fuzzy system maps the training data reasonably accurately.
Next, we test the fuzzy system at some points not in the training data set to see
how it interpolates. In particular, we find

f([1, 2]�|θ) = 2.4339
f([2.5, 5]�|θ) = 5.7117

f([4, 7]�|θ) = 6.6997

These values seem like good interpolated values considering Figure 5.2 on page 237,
which illustrates the data set G for this example.

5.4.4 Momentum Term and Step Size
There is some evidence that convergence properties of the gradient method can
sometimes be improved via the addition of a “momentum term” to each of the
update laws in Equations (5.35), (5.36), and (5.37). For instance, we could modify
Equation (5.35) to

bi(k + 1) = bi(k) − λ1
∂em

∂bi

∣∣∣∣
k

+ βi(bi(k) − bi(k − 1))

i = 1, 2, . . . , R where βi is the gain on the momentum term. Similar changes can be
made to Equations (5.36) and (5.37). Generally, the momentum term will help to
keep the updates moving in the right direction. It is a method that has found wide
use in the training of neural networks.

While for some applications a fixed step size λi can be sufficient, there has
been some work done on adaptively picking the step size. For example, if errors are
decreasing rapidly, take big update steps, but if errors are decreasing slowly take
small steps. Another option is to try to adaptively pick the λi step sizes so that
they best minimize the error

em =
1
2
[f(xm|θ(k)) − ym]2

For instance, for Equation (5.35) you could pick at time k the step size to be λ∗
1



270 Chapter 5 / Fuzzy Identification and Estimation

such that

1
2

[
f

(
xm|

{
θ(k) : bi(k) − λ∗

1

∂em

∂bi

∣∣∣∣
k

})
− ym

]2

=

min
λ1∈[0,λ̄1]

1
2

[
f

(
xm|

{
θ(k) : bi(k) − λ1

∂em

∂bi

∣∣∣∣
k

})
− ym

]2

(where λ̄1 > 0 is some scalar that is fixed a priori) so that the step size will optimize
the reduction of the error. Similar changes could be made to Equations (5.36)
and (5.37). A vector version of the statement of how to pick the optimal step size is
given by constraining all the components of θ(k), not just the output centers as we
do above. The problem with this approach is that it adds complexity to the update
formulas since at each step an optimization problem must be solved to find the step
size.

5.4.5 Newton and Gauss-Newton Methods
There are many gradient-type optimization techniques that can be used to pick θ to
minimize em. For instance, you could use Newton, quasi-Newton, Gauss-Newton,
or Levenberg-Marquardt methods. Each of these has certain advantages and disad-
vantages and many deserve consideration for a particular application.

In this section we will develop vector rather than scalar parameter update laws
so we define θ(k) = [θ1(k), θ2(k), . . . , θp(k)]� to be a p× 1 vector. Also, we provide
this development for n input, N̄ output fuzzy systems so that f(xm|θ(k)) and ym

are both N̄ × 1 vectors.
The basic form of the update using a gradient method to minimize the function

em(k|θ(k)) =
1
2
|f(xm|θ(k)) − ym|2

(notice that we explicitly add the dependence of em(k) on θ(k) by using this nota-
tion) via the choice of θ(k) is

θ(k + 1) = θ(k) + λkd(k) (5.39)

where d(k) is the p×1 descent direction, and λk is a (scalar) positive step size that
can depend on time k (not to be confused with the earlier notation for the step
sizes). Here, |x|2 = x�x. For the descent function

(
∂em(k|θ(k))

∂θ(k)

)�
d(k) < 0

and if

∂em(k|θ(k))
∂θ(k)

= 0
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where “0” is a p× 1 vector of zeros, the method does not update θ(k). Our update
formulas for the fuzzy system in Equations (5.35), (5.36), and (5.37) use

d(k) = −∂em(k|θ(k))
∂θ(k)

= −∇em(k|θ(k))

(which is the gradient of em with respect to θ(k)) so they actually provide for a
“steepest descent” approach (of course, Equations (5.35), (5.36), and (5.37) are
scalar update laws each with its own step size, while Equation (5.39) is a vector
update law with a single step size). Unfortunately, this method can sometimes
converge slowly, especially if it gets on a long, low slope surface.

Next, let

∇2em(k|θ(k)) =
[
∂2em(k|θ(k))
∂θi(k)θj(k)

]

be the p × p “Hessian matrix,” the elements of which are the second partials of
em(k|θ(k)) at θ(k). In “Newton’s method” we choose

d(k) = −
(
∇2em(k|θ(k))

)−1 ∇em(k|θ(k)) (5.40)

provided that ∇2em(k|θ(k)) is positive definite so that it is invertible (see Sec-
tion 4.3.5 for a definition of “positive definite”). For a function em(k|θ(k)) that
is quadratic in θ(k), Newton’s method provides convergence in one step; for some
other functions, it can converge very fast. The price you pay for this convergence
speed is computation of Equation (5.40) and the need to verify the existence of the
inverse in that equation.

In “quasi-Newton methods” you try to avoid problems with existence and com-
putation of the inverse in Equation (5.40) by choosing

d(k) = −Λ(k)∇em(k|θ(k))

where Λ(k) is a positive definite p× p matrix for all k ≥ 0 and is sometimes chosen
to approximate

(
∇2em(k|θ(k))

)−1 (e.g., in some cases by using only the diagonal
elements of

(
∇2em(k|θ(k))

)−1). If Λ(k) is chosen properly, for some applications
much of the convergence speed of Newton’s method can be achieved.

Next, consider the Gauss-Newton method that is used to solve a least squares
problem such as finding θ(k) to minimize

em(k|θ(k)) =
1
2
|f(xm|θ(k)) − ym|2 =

1
2
|εm(k|θ(k))|2

where

εm(k|θ(k)) = f(xm|θ(k)) − ym = [εm1 , εm2 , . . . , εmN̄
]�
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First, linearize εm(k|θ(k)) around θ(k) (i.e., use a truncated Taylor series expansion)
to get

ε̃m(θ|θ(k)) = εm(k|θ(k)) + ∇εm(k|θ(k))�(θ − θ(k))

Here,

∇εm(k|θ(k)) =
[
∇εm1(k|θ(k)),∇εm2 (k|θ(k)), . . . ,∇εmN̄

(k|θ(k))
]

is a p × N̄ matrix whose columns are gradient vectors

∇εmi(k|θ(k)) =
∂∇εmi(k|θ(k))

∂θ(k)

i = 1, 2, . . . , N̄ . Notice that

∇εm(k|θ(k))�

is the “Jacobian.” Also note that the notation ε̃m(θ|θ(k)) is used to emphasize the
dependence on both θ(k) and θ.

Next, minimize the norm of the linearized function ε̃m(θ|θ(k)) by letting

θ(k + 1) = arg min
θ

1
2
|ε̃m(θ|θ(k))|2

Hence, in the Gauss-Newton approach we update θ(k) to a value that will best
minimize a linear approximation to εm(k|θ(k)). Notice that

θ(k + 1) = arg min
θ

1
2
[
|εm(k|θ(k))|2 + 2(θ − θ(k))� (∇εm(k|θ(k))) εm(k|θ(k))

+ (θ − θ(k))�∇εm(k|θ(k))∇εm(k|θ(k))�(θ − θ(k))
]

= arg min
θ

1
2
[
|εm(k|θ(k))|2 + 2(θ − θ(k))� (∇εm(k|θ(k))) εm(k|θ(k))

+ θ�∇εm(k|θ(k))∇εm(k|θ(k))�θ − 2θ(k)�∇εm(k|θ(k))∇εm(k|θ(k))�θ

+ θ(k)�∇εm(k|θ(k))∇εm(k|θ(k))�θ(k)
]

(5.41)

To perform this minimization, notice that we have a quadratic function so we find

∂[·]
∂θ

= ∇εm(k|θ(k))εm(k|θ(k)) + ∇εm(k|θ(k))∇εm(k|θ(k))�θ

− ∇εm(k|θ(k))∇εm(k|θ(k))�θ(k) (5.42)

where [·] denotes the expression in Equation (5.41) in brackets multiplied by one
half. Setting this equal to zero, we get the minimum achieved at θ∗ where

∇εm(k|θ(k))∇εm(k|θ(k))�(θ∗ − θ(k)) = −∇εm(k|θ(k))�εm(k|θ(k))
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or, if ∇εm(k|θ(k))∇εm(k|θ(k))� is invertible,

θ∗ − θ(k) = −
(
∇εm(k|θ(k))∇εm(k|θ(k))�

)−1 ∇εm(k|θ(k))εm(k|θ(k))

Hence, the Gauss-Newton update formula is

θ(k + 1) = θ(k) −
(
∇εm(k|θ(k))∇εm(k|θ(k))�

)−1 ∇εm(k|θ(k))εm(k|θ(k))

To avoid problems with computing the inverse, the method is often implemented
as

θ(k + 1) = θ(k) − λk

(
∇εm(k|θ(k))∇εm(k|θ(k))� + Γ(k)

)−1 ∇εm(k|θ(k))εm(k|θ(k))

where λk is a positive step size that can change at each time k, and Γ(k) is a p× p
diagonal matrix such that

∇εm(k|θ(k))∇εm(k|θ(k))� + Γ(k)

is positive definite so that it is invertible. In the Levenberg-Marquardt method you
choose Γ(k) = αI where α > 0 and I is the p × p identity matrix. Essentially,
a Gauss-Newton iteration is an approximation to a Newton iteration so it can
provide for faster convergence than, for instance, steepest descent, but not as fast
as a pure Newton method; however, computations are simplified. Note, however,
that for each iteration of the Gauss-Newton method (as it is stated above) we must
find the inverse of a p× p matrix; there are, however, methods in the optimization
literature for coping with this issue.

Using each of the above methods to train a fuzzy system is relatively straight-
forward. For instance, notice that many of the appropriate partial derivatives have
already been found when we developed the steepest descent approach to training.

5.5 Clustering Methods
“Clustering” is the partitioning of data into subsets or groups based on similarities
between the data. Here, we will introduce two methods to perform fuzzy clustering
where we seek to use fuzzy sets to define soft boundaries to separate data into
groups. The methods here are related to conventional ones that have been developed
in the field of pattern recognition. We begin with a fuzzy “c-means” technique
coupled with least squares to train Takagi-Sugeno fuzzy systems, then we briefly
study a nearest neighborhood method for training standard fuzzy systems. In the
c-means approach, we continue in the spirit of the previous methods in that we
use optimization to pick the clusters and, hence, the premise membership function
parameters. The consequent parameters are chosen using the weighted least squares
approach developed earlier. The nearest neighborhood approach also uses a type of
optimization in the construction of cluster centers and, hence, the fuzzy system. In
the next section we break away from the optimization approaches to fuzzy system
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construction and study simple constructive methods that are called “learning by
examples.”

5.5.1 Clustering with Optimal Output Predefuzzification
In this section we will introduce the clustering with optimal output predefuzzifi-
cation approach to train Takagi-Sugeno fuzzy systems. We do this via the simple
example we have used in previous sections.

Clustering for Specifying Rule Premises

Fuzzy clustering is the partitioning of a collection of data into fuzzy subsets or
“clusters” based on similarities between the data and can be implemented using
an algorithm called fuzzy c-means. Fuzzy c-means is an iterative algorithm used to
find grades of membership µij (scalars) and cluster centers vj (vectors of dimension
n × 1) to minimize the objective function

J =
M∑

i=1

R∑
j=1

(µij)m|xi − vj|2 (5.43)

where m > 1 is a design parameter. Here, M is the number of input-output data
pairs in the training data set G, R is the number of clusters (number of rules)
we wish to calculate, xi for i = 1, ..., M is the input portion of the input-output
training data pairs, vj = [vj

1, v
j
2, . . . , v

j
n]� for j = 1, ..., R are the cluster centers,

and µij for i = 1, ..., M and j = 1, ..., R is the grade of membership of xi in the jth

cluster. Also, |x| =
√

x�x where x is a vector. Intuitively, minimization of J results
in cluster centers being placed to represent groups (clusters) of data.

Fuzzy clustering will be used to form the premise portion of the If-Then rules in
the fuzzy system we wish to construct. The process of “optimal output predefuzzifi-
cation” (least squares training for consequent parameters) is used to form the con-
sequent portion of the rules. We will combine fuzzy clustering and optimal output
predefuzzification to construct multi-input single-output fuzzy systems. Extension
of our discussion to multi-input multi-output systems can be done by repeating the
process for each of the outputs.

In this section we utilize a Takagi-Sugeno fuzzy system in which the consequent
portion of the rule-base is a function of the crisp inputs such that

If Hj Then gj(x) = aj,0 + aj,1x1 + · · ·+ aj,nxn (5.44)

where n is the number of inputs and Hj is an input fuzzy set given by

Hj = {(x, µHj(x)) : x ∈ X1 × · · · × Xn} (5.45)

where Xi is the ith universe of discourse, and µHj (x) is the membership function
associated with Hj that represents the premise certainty for rule j; and gj(x) = a�

j x̂

where aj = [aj,0, aj,1 . . . , aj,n]� and x̂ = [1, x�]� where j = 1, . . . , R. The resulting
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fuzzy system is a weighted average of the output gj(x) for j = 1, ..., R and is given
by

f(x|θ) =

∑R
j=1 gj(x)µHj (x)∑R

j=1 µHj (x)
(5.46)

where R is the number of rules in the rule-base. Next, we will use the Takagi-Sugeno
fuzzy model, fuzzy clustering, and optimal output defuzzification to determine the
parameters aj and µHj (x), which define the fuzzy system. We will do this via a
simple example.

Suppose we use the example data set in Equation (5.3) on page 236 that has
been used in the previous sections. We first specify a “fuzziness factor” m > 1, which
is a parameter that determines the amount of overlap of the clusters. If m > 1 is
large, then points with less membership in the jth cluster have less influence on the
determination of the new cluster centers. Next, we specify the number of clusters
R we wish to calculate. The number of clusters R equals the number of rules in the
rule-base and must be less than or equal to the number of data pairs in the training
data set G (i.e., R ≤ M). We also specify the error tolerance εc > 0, which is the
amount of error allowed in calculating the cluster centers. We initialize the cluster
centers vj

0 via a random number generator so that each component of vj
0 is no larger

(smaller) than the largest (smallest) corresponding component of the input portion
of the training data. The selection of vj

0, although somewhat arbitrary, may affect
the final solution.

For our simple example, we choose m = 2 and R = 2, and let εc = 0.001. Our
initial cluster centers were randomly chosen to be

v1
0 =

[
1.89
3.76

]

and

v2
0 =

[
2.47
4.76

]

so that each component lies in between xi
1 and xi

2 for i = 1, 2, 3 (see the definition
of G in Equation (5.3)).

Next, we compute the new cluster centers vj based on the previous cluster
centers so that the objective function in Equation (5.43) is minimized. The necessary
conditions for minimizing J are given by

vj
new =

∑M
i=1 xi(µnew

ij )m∑M
i=1(µ

new
ij )m

(5.47)
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where

µnew
ij =


 R∑

k=1

(
|xi − vj

old|
2

|xi − vk
old|

2

) 1
m−1



−1

(5.48)

for each i = 1, . . . , M and for each j = 1, 2, . . . , R such that
∑R

j=1 µnew
ij = 1 (and

|x|2 = x�x). In Equation (5.48) we see that it is possible that there exists an
i = 1, 2, . . . , M such that |xi − vj

old|
2 = 0 for some j = 1, 2, . . . , R. In this case the

µnew
ij is undefined. To fix this problem, let µij for all i be any nonnegative numbers

such that
∑R

j=1 µij = 1 and µij = 0, if |xi − vj

old|
2 �= 0.

Using Equation (5.48) for our example with vj

old = vj
0, j = 1, 2, we find that

µnew
11 = 0.6729, µnew

12 = 0.3271, µnew
21 = 0.9197, µnew

22 = 0.0803, µnew
31 = 0.2254,

and µnew
32 = 0.7746. We use these µnew

ij from Equation (5.48) to calculate the new
cluster centers

v1
new =

[
1.366
3.4043

]

and

v2
new =

[
2.5410
5.3820

]

using Equation (5.47).
Next, we compare the distances between the current cluster centers vj

new and
the previous cluster centers vj

old (which for the first step is vj
0). If |vj

new−vj

old| < εc

for all j = 1, 2, . . . , R then the cluster centers vj
new accurately represent the input

data, the fuzzy clustering algorithm is terminated, and we proceed on to the optimal
output defuzzification algorithm (see below). Otherwise, we continue to iteratively
use Equations (5.47) and (5.48) until we find cluster centers vj

new that satisfy
|vj

new − vj

old| < εc for all j = 1, 2, . . . , R. For our example, vj

old = vj
0, and we see

that |vj
new − vj

old| = 0.6328 for j = 1 and 0.6260 for j = 2. Both of these values
are greater than εc, so we continue to update the cluster centers.

Proceeding to the next iteration, let vj

old = vj
new, j = 1, 2, . . . , R from the last

iteration, and apply Equations (5.47) and (5.48) to find µnew
11 = 0.8233, µnew

12 =
0.1767, µnew

21 = 0.7445, µnew
22 = 0.2555, µnew

31 = 0.0593, and µnew
32 = 0.9407 using

the cluster centers calculated above, yielding the new cluster centers

v1
new =

[
0.9056
2.9084

]
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and

v2
new =

[
2.8381
5.7397

]

Computing the distances between these cluster centers and the previous ones, we
find that |vj

new−vj

old| > εc, so the algorithm continues. It takes 14 iterations before

the algorithm terminates (i.e., before we have |vj
new − vj

old| ≤ εc = 0.001 for all
j = 1, 2, . . . , R). When it does terminate, name the final membership grade values
µij and cluster centers vj , i = 1, 2, . . . , M , j = 1, 2, . . . , R.

For our example, after 14 iterations the algorithm finds µ11 = 0.9994, µ12 =
0.0006, µ21 = 0.1875, µ22 = 0.8125, µ31 = 0.0345, µ32 = 0.9655,

v1 =
[

0.0714
2.0725

]

and

v2 =
[

2.5854
5.1707

]

Notice that the clusters have converged so that v1 is near x1 = [0, 2]� and v2 lies
in between x2 = [2, 4]� and x3 = [3, 6]�.

The final values of vj , j = 1, 2, . . . , R, are used to specify the premise mem-
bership functions for the ith rule. In particular, we specify the premise membership
functions as

µHj (x) =

[
R∑

k=1

( |x − vj|2
|x− vk|2

) 1
m−1

]−1

(5.49)

j = 1, 2, . . . , R where vj, j = 1, 2, . . . , R are the cluster centers from the last
iteration that uses Equations (5.47) and (5.48). It is interesting to note that for
large values of m we get smoother (less distinctive) membership functions. This
is the primary guideline to use in selecting the value of m; however, often a good
first choice is m = 2. Next, note that µHj (x) is a premise membership function
that is different from any that we have considered. It is used to ensure certain
convergence properties of the iterative fuzzy c-means algorithm described above.
With the premises of the rules defined, we next specify the consequent portion.

Least Squares for Specifying Rule Consequents

We apply “optimal output predefuzzification” to the training data to calculate the
function gj(x) = a�

j x̂, j = 1, 2, . . . , R for each rule (i.e., each cluster center), by
determining the parameters aj. There are two methods you can use to find the aj .
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Approach 1: For each cluster center vj , we wish to minimize the squared error
between the function gj(x) and the output portion of the training data pairs. Let
x̂i = [1, (xi)�]� where (xi, yi) ∈ G. We wish to minimize the cost function Jj given
by

Jj =
M∑
i=1

(µij)2
(
yi − (x̂i)�aj

)2
(5.50)

for each j = 1, 2, . . . , R where µij is the grade of membership of the input portion
of the ith data pair for the jth cluster that resulted from the clustering algorithm
after it converged, yi is the output portion of the ith data pair d(i) = (xi, yi), and
the multiplication of (x̂i)� and aj defines the output associated with the jth rule
for the ith training data point.

Looking at Equation (5.50), we see that the minimization of Jj via the choice of
the aj is a weighted least squares problem. From Section 5.3 and Equation (5.15) on
page 250, the solution aj for j = 1, 2, . . . , R to the weighted least squares problem
is given by

aj = (X̂�D2
j X̂)−1X̂�D2

j Y (5.51)

where

X̂ =
[

1 ... 1
x1 ... xM

]�
Y = [y1, . . . , yM ]�,

D2
j = (diag([µ1j, . . . , µMj]))

2

For our example the parameters that satisfy the linear function gj(x) = a�
j x̂i for

j = 1, 2 such that Jj in Equation (5.50) is minimized were found to be a1 =
[3, 2.999,−1]� and a2 = [3, 3,−1]�, which are very close to each other.

Approach 2: As an alternative approach, rather than solving R least squares
problems, one for each rule, we can use the least squares methods discussed in Sec-
tion 5.3 to specify the consequent parameters of the Takagi-Sugeno fuzzy system. To
do this, we simply parameterize the Takagi-Sugeno fuzzy system in Equation (5.46)
in a form so that it is linear in the consequent parameters and of the form

f(x|θ) = θ�ξ(x)

where θ holds all the ai,j parameters and ξ is specified in a similar manner to how
we did in Section 5.3.3. Now, just as we did in Section 5.3.3, we can use batch
or recursive least squares methods to find θ. Unless we indicate otherwise, we will
always use approach 1 in this book.
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Testing the Approximator

Suppose that we use approach 1 to specify the rule consequents. To test how accu-
rately the constructed fuzzy system represents the training data set G in Figure 5.2
on page 237, suppose that we choose the test point x′ such that (x′, y′) �∈ G. Specif-
ically, we choose

x′ =
[

1
2

]

We would expect from Figure 5.2 on page 237 that the output of the fuzzy system
would lie somewhere between 1 and 5. The output is 3.9999, so we see that the
trained Takagi-Sugeno fuzzy system seems to interpolate adequately. Notice also
that if we let x = xi, i = 1, 2, 3 where (xi, yi) ∈ G, we get values very close to
the yi, i = 1, 2, 3, respectively. That is, for this example the fuzzy system nearly
perfectly maps the training data pairs. We also note that if the input to the fuzzy
system is x = [2.5, 5]�, the output is 5.5, so the fuzzy system seems to perform
good interpolation near the training data points.

Finally, we note that the aj will clearly not always be as close to each other
as for this example. For instance, if we add the data pair ([4, 5]�, 5.5) to G (i.e.,
make M = 4), then the cluster centers converge after 13 iterations (using the same
parameters m and εc as we did earlier). Using approach 1 to find the consequent
parameters, we get

a1 = [−1.458, 0.7307, 1.2307]�

and

a2 = [2.999, 0.00004, 0.5]�

For the resulting fuzzy system, if we let x = [1, 2]� in Equation (5.46), we get
an output value of 1.8378, so we see that it performs differently than the case for
M = 3, but that it does provide a reasonable interpolated value.

5.5.2 Nearest Neighborhood Clustering
As with the other approaches, we want to construct a fuzzy estimation system
that approximates the function g that is inherently represented in the training
data set G. We use singleton fuzzification, Gaussian membership functions, product
inference, and center-average defuzzification, and the fuzzy system that we train is
given by

f(x|θ) =

∑R
i=1 Ai

∏n
j=1 exp

(
−
(

xj−vi
j

2σ

)2
)

∑R
i=1 Bi

∏n
j=1 exp

(
−
(

xj−vi
j

2σ

)2
) (5.52)
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where R is the number of clusters (rules), n is the number of inputs,

vj = [vj
1, v

j
2, . . . , v

j
n]�

are the cluster centers, σ is a constant and is the width of the membership functions,
and Ai and Bi are the parameters whose values will be specified below (to train
a multi-output fuzzy system, simply apply the procedure to the fuzzy system that
generates each output). From Equation (5.52), we see that the parameter vector θ
is given by

θ = [A1, . . . , AR, B1, . . . , BR, v1
1, . . . , v

1
n, ..., vR

1 , . . . , vR
n , σ]�

and is characterized by the number of clusters (rules) R and the number of inputs
n. Next, we will explain, via a simple example, how to use the nearest neighborhood
clustering technique to construct a fuzzy system by choosing the parameter vector
θ.

Suppose that n = 2, X ⊂ �2, and Y ⊂ �, and that we use the training data set
G in Equation (5.3) on page 236. We first specify the parameter σ, which defines
the width of the membership functions. A small σ provides narrow membership
functions that may yield a less smooth fuzzy system mapping, which may cause
fuzzy system mapping not to generalize well for the data points not in the training
set. Increasing the parameter σ will result in a smoother fuzzy system mapping.
Next, we specify the quantity εf , which characterizes the maximum distance allowed
between each of the cluster centers. The smaller εf , the more accurate are the
clusters that represent the function g. For our example, we chose σ = 0.3 and
εf = 3.0. We must also define an initial fuzzy system by initializing the parameters
A1, B1, and v1. Specifically, we set A1 = y1 , B1 = 1, and v1

j = x1
j for j = 1, 2, . . . , n.

If we take our first data pair,

(x1, y1) =
([

0
2

]
, 1

)

we get A1 = 1, B1 = 1, and

v1 =
[

0
2

]

which forms our first cluster (rule) for f(x|θ). Next, we take the second data pair,

(x2, y2) =
([

2
4

]
, 5

)

and compute the distance between the input portion of the data pair and each of
the R existing cluster centers, and let the smallest distance be |xi − vl| (i.e., the
nearest cluster to xi is vl) where |x| =

√
x�x. If |xi − vl| < εf , then we do not add

any clusters (rules) to the existing system, but we update the existing parameters
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Al and Bl for the nearest cluster vl to account for the output portion yi of the
current input-output data pair (xi, yi) in the training data set G. Specifically, we
let

Al := Aold
l + yi

and

Bl := Bold
l + 1

These values are incremented to represent adding the effects of another data pair
to the existing cluster. For instance, Al is incremented so that the sum in the
numerator of Equation (5.52) is modified to include the effects of the additional
data pair without adding another rule. The value of Bl is then incremented to
represent that we have added the effects of another data pair (it normalizes the
sum in Equation (5.52)). Note that we do not modify the cluster centers in this
case, just the Al and Bl values; hence we do not modify the premises (that are
parameterized via the cluster centers and σ), just the consequents of the existing
rule that the new data pair is closest to.

Suppose that |xi−vl| > εf . Then we add an additional cluster (rule) to represent
the (x2, y2) information about the function g by modifying the parameter vector
θ and letting R = 2 (i.e., we increase the number of clusters (rules)), vR

j = x2
j for

j = 1, 2, . . . , n, AR = y2, and BR = 1. These assignments of variables represent the
explicit addition of a rule to the fuzzy system. Hence, for our example

v2 =
[

2
4

]
, A2 = 5, B2 = 1

The nearest neighbor clustering technique is implemented by repeating the above
algorithm until all of the M data pairs in G are used.

Consider the third data pair,

(x3, y3) =
([

3
6

]
, 6

)

We would compute the distance between the input portion of the current data pair
x3 and each of the R = 2 cluster centers and find the smallest distance |x3 − vl|.
For our example, what is the value of |x3 − vl| and which cluster center is closest?
Explain how to update the fuzzy system (specifically, provide values for A2 and
B2). To test how accurately the fuzzy system f represents the training data set G,
suppose that we choose a test point x′ such that (x′, y′) �∈ G. Specifically, we choose

x′ =
[

1
2

]
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We would expect the output value of the fuzzy system for this input to lie somewhere
between 1 and 5 (why?).

5.6 Extracting Rules from Data
In this section we discuss two very intuitive approaches to the construction of a
fuzzy system f so that it approximates the function g. These approaches involve
showing how to directly specify rules that represent the data pairs (“examples”).
Our two “learning from examples” approaches depart significantly from the ap-
proaches used up to this point that relied on optimization to specify fuzzy system
parameters. In our first approach, the training procedure relies on the complete
specification of the membership functions and only constructs the rules. The sec-
ond approach constructs all the membership functions and rules, and for this reason
can be considered a bit more general.

5.6.1 Learning from Examples (LFE)
In this section we show how to construct fuzzy systems using the “learning from
examples” (LFE) technique. The LFE technique generates a rule-base for a fuzzy
system by using numerical data from a physical system and possibly linguistic
information from a human expert. We will describe the technique for multi-input
single-output (MISO) systems. The technique can easily be extended to apply to
MIMO systems by repeating the procedure for each of the outputs. We will use
singleton fuzzification, minimum to represent the premise and implication, and
COG defuzzification; however, the LFE method does not explicitly depend on these
choices. Other choices outlined in Chapter 2 can be used as well.

Membership Function Construction

The membership functions are chosen a priori for each of the input universes of
discourse and the output universe of discourse. For a two-input one-output fuzzy
system, one typical choice for membership functions is shown in Figure 5.8, where

1. Xi = [x−
i , x+

i ], i = 1,2, and Y = [y−, y+] are chosen according to the expected
range of variation in the input and output variables.

2. The number of membership functions on each universe of discourse affects the
accuracy of the function approximation (with fewer generally resulting in lower
accuracy).

3. Xj
i and Y j denote the fuzzy sets with associated membership functions µXj

i
(xi)

and µY j (y), respectively.

In other cases you may want to choose Gaussian or trapezoidal-shaped membership
functions. The choice of these membership functions is somewhat ad hoc for the
LFE technique.
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FIGURE 5.8 Example membership functions for
input and output universes of discourse for learning
from examples technique.

Rule Construction

We finish the construction of the fuzzy system by using the training data in G to
form the rules. Generally, the input portions of the training data pairs xj, where
(xj, yj) ∈ G, are used to form the premises of rules, while the output portions of
the data pairs yj are used to form the consequents. For our two-input one-output
example above, the rule-base to be constructed contains rules of the form

Ri = If x1 is Xj
1 and x2 is Xk

2 Then y is Y l

where associated with the ith rule is a “degree” defined by

degree(Ri) = µXj
1
(x1) ∗ µXk

2
(x2) ∗ µY l(y) (5.53)

where “∗” represents the triangular norm defined in Chapter 2. We will use the
standard algebraic product for the definition of the degree of a rule throughout
this section so that “∗” represents the product (of course, you could use, e.g., the
minimum operator also). With this, degree(Ri) quantifies how certain we are that
rule Ri represents some input-output data pair ([xj

1, x
j
2]

�, yj) ∈ G (why?). As an
example, suppose that degree(Ri) = 1 for ([xj

1, x
j
2]

�, yj) ∈ G. Using the above
membership functions, if the input to the fuzzy system is x = [xj

1, x
j
2]

� then yj will
be the output of the fuzzy system (i.e., the rule perfectly represents this data pair).
If, on the other hand, x �= [xj

1, x
j
2]

�, then degree(Ri) < 1 and the mapping induced
by rule Ri does not perfectly match the data pair ([xj

1, x
j
2]

�, yj) ∈ G.



284 Chapter 5 / Fuzzy Identification and Estimation

The LFE technique is a procedure where we form rules directly from data pairs
in G. Assume that several rules have already been constructed from the data pairs
in G and that we want to next consider the mth piece of training data d(m). For
our example, suppose

d(m) = ([xm
1 , xm

2 ]�, ym)

where example values of xm
1 , xm

2 , and ym are shown in Figure 5.8. In this case
µX3

1
(xm

1 ) = 0.3, µX4
1
(xm

1 ) = 0.7, µX3
2
(xm

2 ) = 0.8, µX4
2
(xm

2 ) = 0.2, µY 3(ym) = 0.9,
and µY 4(ym) = 0.1. In the learning from examples approach, you choose input and
output membership functions for the rule to be synthesized from d(m) by choosing
the ones with the highest degree of membership (resolve ties arbitrarily). For our
example, from Figure 5.8 we would consider adding the rule

Rm = If x1 is X4
1 and x2 is X3

2 Then y is Y 3

to the rule-base since µX4
1
(xm

1 ) > µX3
1
(xm

1 ), µX3
2
(xm

2 ) > µX4
2
(xm

2 ), and µY 3(ym) >

µY 4(ym) (i.e., it has a form that appears to best fit the data pair d(m)).
Notice that we have degree(Rm) = (0.7)(0.8)(0.9) = 0.504 if x1 = xm

1 , x2 =
xm

2 , and y = ym . We use the following guidelines for adding new rules:

• If degree(Rm) > degree(Ri), for all i �= m such that rules Ri are already in the
rule-base (and degree(Ri) is evaluated for d(m)) and the premises for Ri and Rm

are the same, then the rule Rm (the rule with the highest degree) would replace
rule Ri in the existing rule-base.

• If degree(Rm) ≤ degree(Ri) for some i, i �= m, and the premises for Ri and Rm

are the same, then rule Rm is not added to the rule-base since the data pair d(m)

is already adequately represented with rules in the fuzzy system.

• If rule Rm does not have the same premise as any other rule already in the
rule-base, then it is added to the rule-base to represent d(m).

This process repeats by considering each data pair i = 1, 2, 3, . . . , M . Once you
have considered each data pair in G, the process is completed.

Hence, we add rules to represent data pairs. We associate the left-hand side of
the rules with the xi portion of the training data pairs and the consequents with the
yi, (xi, yi) ∈ G. We only add rules to represent a data pair if there is not already
a rule in the rule-base that represents the data pair better than the one we are
considering adding. We are assured that there will be a bounded number of rules
added since for a fixed number of inputs and membership functions we know that
there are a limited number of possible rules that can be formed (and there is only
a finite amount of data). Notice that the LFE procedure constructs rules but does
not modify membership functions to help fit the data. The membership functions
must be specified a priori by the designer.
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Example

As an example, consider the formation of a fuzzy system to approximate the data
set G in Equation (5.3) on page 236, which is shown in Figure 5.2. Suppose that we
use the membership functions pictured in Figure 5.8 with x−

1 = 0, x+
1 = 4, x−

2 = 0,
x+

2 = 8, y− = 0, and y+ = 8 as a choice for known regions within which all the
data points lie (see Figure 5.2). Suppose that

d(1) = (x1, y1) =
([

0
2

]
, 1

)

is considered first. With this we would consider adding the rule

R1 = If x1 is X1
1 and x2 is X3

2 Then y is Y 1

(notice that we resolved the tie between choosing Y 1 or Y 2 for the consequent fuzzy
set arbitrarily). Since there are no other rules in the rule-base, we will put R1 in
the rule-base and go to the next data pair. Next, consider

d(2) =
([

2
4

]
, 5

)

With d(2) from Figure 5.8, we would consider adding rule

R2 = If x1 is X3
1 and x2 is X5

2 Then y is Y 3

(where once again we arbitrarily chose Y 3 rather than Y 4). Should we add rule R2

to the rule-base? Notice that degree(R2) = 0.5 for d(2) and that degree(R1) = 0
for d(2) so that R2 represents the data pair d(2) better than any other rule in the
rule-base; hence, we will add it to the rule-base. Proceeding in a similar manner,
we will also add a third rule to represent the third data pair in G (show this) so
that our final fuzzy system will have three rules, one for each data pair.

If you were to train a fuzzy system with a much larger data set G, you would
find that there will not be a rule for each of the M data pairs in G since some
rules will adequately represent more than one data pair. Generally, if some x such
that (x, y) /∈ G is put into the fuzzy system, it will try to interpolate to produce a
reasonable output y. You can test the quality of the estimator by putting inputs x
into the fuzzy system and checking that the outputs y are such that (x, y) ∈ G, or
that they are close to these.

5.6.2 Modified Learning from Examples (MLFE)
We will introduce the “modified learning from examples” (MLFE) technique in
this section. In addition to synthesizing a rule-base, in MLFE we also modify the
membership functions to try to more effectively tailor the rules to represent the
data.
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Fuzzy System and Its Initialization

The fuzzy system used in this section utilizes singleton fuzzification, Gaussian mem-
bership functions, product for the premise and implication, and center-average de-
fuzzification, and takes on the form

f(x|θ) =

∑R
i=1 bi

∏n
j=1 exp

(
−1

2

(
xj−ci

j

σi
j

)2
)

∑R
i=1

∏n
j=1 exp

(
−1

2

(
xj−ci

j

σi
j

)2
) (5.54)

(however, other forms may be used equally effectively). In Equation (5.54), the
parameter vector θ to be chosen is

θ = [b1, . . . , bR, c1
1, . . . , c

1
n, . . . , cR

1 , . . . , cR
n , σ1

1, . . . , σ
1
n, . . . , σR

1 , . . . , σR
n ]� (5.55)

where bi is the point in the output space at which the output membership function
for the ith rule achieves a maximum, ci

j is the point in the jth input universe of
discourse where the membership function for the ith rule achieves a maximum, and
σi

j > 0 is the width (spread) of the membership function for the jth input and the
ith rule. Notice that the dimensions of θ are determined by the number of inputs n
and the number of rules R in the rule-base. Next, we will explain how to construct
the rule-base for the fuzzy estimator by choosing R, n, and θ. We will do this via
the simple example data set G where n = 2 that is given in Equation (5.3) on
page 236.

We let the quantity εf characterize the accuracy with which we want the fuzzy
system f to approximate the function g at the training data points in G. We
also define an “initial fuzzy system” that the MLFE procedure will begin with by
initializing the parameters θ. Specifically, we set R = 1, b1 = y1 , c1

j = x1
j , and

σ1
j = σ0 for j = 1, 2, . . . , n where the parameter σ0 > 0 is a design parameter. If we

take σ0 = 0.5 and

(x1, y1) =
([

0
2

]
, 1

)

we get b1 = 1, c1
1 = 0, c1

2 = 2, σ1
1 = 0.5, and σ1

2 = 0.5, which forms our first rule for
f .

Next, we describe how to add rules to the fuzzy system and modify the member-
ship functions so that the fuzzy system matches the data and properly interpolates.
In the first approach that we describe, we will assume that for the training data
(xi, yi) ∈ G, xj

i �= xj′

i′ for any i′ �= i, for each j′ �= j (i.e., the data values are all
distinct element-wise). Later, we will show several ways to remove this restriction.
Notice, however, that for practical situations where, for example, you use a noise
input for training, this assumption will likely be satisfied.
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Adding Rules, Modifying Membership Functions

Following the initialization procedure, for our example we take the second data pair

(x2, y2) =
([

2
4

]
, 5

)

and compare the data pair output portion y2 with the existing fuzzy system f(x2|θ)
(i.e., the one with only one rule). If∣∣f(x2|θ) − y2

∣∣ ≤ εf

then the fuzzy system f already adequately represents the mapping information in
(x2, y2) and hence no rule is added to f and we consider the next training data pair
by performing the same type of εf test.

Suppose that ∣∣f(x2|θ) − y2
∣∣ > εf

Then we add a rule to represent the (x2, y2) information about g by modifying the
current parameters θ by letting R = 2 (i.e., increasing the number of rules by one),
b2 = y2, and c2

j = x2
j for all j = 1, 2, . . . , n (hence, b2 = 5, c2

1 = 2, and c2
2 = 4).

Moreover, we modify the widths σi
j for rule i = R (i = 2 for this example) to

adjust the spacing between membership functions so that

1. The new rule does not distort what has already been learned.

2. There is smooth interpolation between training points.

Modification of the σi
j for i = R is done by determining the “nearest neighbor”

n∗
j in terms of the membership function centers that is given by

n∗
j = arg min{|ci′

j − ci
j| : i′ = 1, 2, . . . , R, i′ �= i} (5.56)

where j = 1, 2, . . . , n and ci
j is fixed. Here, n∗

j denotes the i′ index of the ci′
j that

minimizes the expression (hence, the use of the term “argmin”). For our example
where we have just added a second rule, n∗

1 = 1 and n∗
2 = 1 (the only possible

nearest neighbor for each universe of discourse is found from the initial rule in the
system).

Next, we update the σi
j for i = R by letting

σi
j =

1
W

|ci
j − c

n∗
j

j | (5.57)

for j = 1, 2, . . . , n, where W is a weighting factor that determines the amount of
overlap of the membership functions. Notice that since we assumed that for the
training data (xi, yi) ∈ G, xj

i �= xj′

i′ for any i′ �= i, for each j′ �= j we will never
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have σi
j = 0, which would imply a zero width input membership function that could

cause implementation problems. From Equation (5.57), we see that the weighting
factor W and the widths σi

j have an inverse relationship. That is, a larger W implies
less overlap. For our example, we choose W = 2 so σ2

1 = 1
2
| c2

1− c1
1 |= 1

2
| 2−0 |= 1

and σ2
2 = 1

2 | c2
2 − c1

2 |= 1
2 | 4 − 2 |= 1. The MLFE algorithm is implemented by

repeating the above procedure until all the M data pairs are exhausted.
For instance, for our third training data pair,

(x3, y3) =
([

3
6

]
, 6

)

we would test if
∣∣f(x3 |θ) − y3

∣∣ ≤ εf . If it is, then no new rule is added. If
∣∣f(x3 |θ) − y3

∣∣ >
εf , then we let R = 3 and add a new rule letting bR = yR and cR

j = xR
j for all

j = 1, 2, . . . , n. Then we set the σR
j , j = 1, 2, . . . , n by finding the nearest neighbor

n∗
j (nearest in terms of the closest premise membership function centers) and using

σR
j = 1

W | cR
j − c

n∗
j

j |, j = 1, 2, . . . , n.
For example, for (x3, y3) suppose that εf is chosen so that

∣∣f(x3 |θ) − y3
∣∣ > εf

so that we add a new rule letting R = 3, b3 = 6, c3
1 = 3, and c3

2 = 6. It is easy to
see from Figure 5.2 on page 237 that with i = 3, for j = 1, n∗

1 = arg min{|ci′
j − c3

j | :
i′ = 1, 2} = arg min{3, 1} = 2 and, for j = 2, n∗

2 = arg min{|ci′
j − c3

j | : i′ =
1, 2} = arg min{4, 2} = 2. In other words, [2, 4]� is the closest to [3, 6]�. Hence, via
Equation (5.57) with W = 2, σ3

1 = 1
2
(3 − 2) = 1

2
and σ3

2 = 1
2
(6 − 4) = 1.

Testing the Approximator

To test how accurately the fuzzy system represents the training data set G, note
that since we added a new rule for each of the three training data points it will be
the case that the fuzzy system f(x|θ) = y for all (x, y) ∈ G (why?). If (x′, y′) �∈ G
for some x′, the fuzzy system f will attempt to interpolate. For instance, for our
example above if

x′ =
[

1
3

]

we would expect from Figure 5.2 on page 237 that f(x′|θ) would lie somewhere
between 1 and 5. In fact, for the three-rule fuzzy system we constructed above,
f(x′|θ) = 4.81 for this x′. Notice that this value of f(x′|θ) is quite reasonable as an
interpolated value for the given data in G (see Figure 5.2).

Alternative Methods to Modify the Membership Functions

Here, we first remove the restriction that for the training data (xi, yi) ∈ G, xj
i �= xj′

i′

for any i′ �= i, for each j′ �= j and consider any set of training data G. Following
this we will briefly discuss other ways to tune membership functions.
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Recall that the only reason that we placed the restriction on G was to avoid
having a value of σi

j = 0 in Equation (5.57). One way to avoid having a value of
σi

j = 0 is simply to make the computation in Equation (5.57) and if

σi
j < σ̄

for some small σ̄ > 0, let σi
j = σ̄. This ensures that the algorithm will never pick

σi
j smaller than some preset value. We have found this method to work quite well

in some applications.
Another way to avoid having a value of σi

j = 0 from Equation (5.57) is simply
to set

σi
j = σ

n∗
j

j

This says that we find the closest membership function center c
n∗

j

j , and if it is the
same as ci

j then let the width of the membership function associated with ci
j be

the same as that of the membership function associated with c
n∗

j

j (i.e., σ
n∗

j

j ). Yet

another approach would be to compute the width of the ci
j based not on c

n∗
j

j but on
the other nearest neighbors that do not have identical centers, provided that there
are such centers currently loaded into the rule-base.

There are many other approaches that can be used to train membership func-
tions. For instance, rather than using Equation (5.56), we could let ci = [ci

1, c
i
2, . . . , c

i
n]�

and compute

n∗ = arg min{|ci′ − ci| : i′ = 1, 2, . . . , R, i′ �= i}

and then let

σi
j =

1
W

| ci − cn∗ |

for j = 1, 2, . . . , n. This approach will, however, need similar fixes to the one above
in case the assumption that the input portions of the training data are distinct
element-wise is not satisfied.

As yet another approach, suppose that we use triangular membership functions.
For initialization we use some fixed base width for the first rule and choose its center
c1
j = x1

j as before. Use the same εf -test to decide whether to add rules. If you add
a rule, let ci

j = xi
j, i = R, j = 1, 2, . . . , n as before. Next, to fully specify the

membership functions, compute

n−
j = arg min{|ci

j − ci′
j | : i′ = 1, 2, . . . , M, ci′

j < ci
j}

n+
j = arg min{|ci

j − ci′
j | : i′ = 1, 2, . . . , M, ci′

j > ci
j}.

These are the indices of the nearest neighbor membership functions both above
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and below cj
i . Then draw a line from the point (c

n−
j

j , 0) to (ci
j, 1) to specify the

left side of the triangle and another line from (ci
j, 1) to (c

n+
j

j , 0) to specify the right
side of the triangle. Clearly, there is a problem with this approach if there is no
i′ = 1, 2, . . . , M such that ci′

j < ci
j (ci′

j > ci
j) in computing n−

j (n+
j ). If there is

such a problem, then simply use some fixed parameter (say, c−), draw a line from
(ci

j − c−, 0) to (ci
j, 1) for the left side of the triangle, and use the above approach

for the right side of the triangle assuming that n+
j can be computed. Similarly, if

there is such a problem in computing n+
j , then simply use some fixed parameter

(say, c+), draw a line from (ci
j, 1) to (ci

j + c+, 0) for the right side of the triangle,
and use the above approach for the left side of the triangle assuming that n−

j can
be computed. If both n+

j and n−
j cannot be computed, put the center at ci

j and
draw a line from (ci

j − c−, 0) to (ci
j , 1) for the left side of the triangle and a line

from (ci
j , 1) to (ci

j + c+, 0) for the right side.
Clearly, the order of processing the data will affect the results using this ap-

proach. Also, we would need a fix for the method to make sure that there are no zero
base width triangles (i.e., singletons). Approaches analogous to our fix for the Gaus-
sian input membership functions could be used. Overall, we have found that this
approach to training fuzzy systems can perform quite well for some applications.

Design Guidelines

In this section we investigated the LFE and MLFE approaches to construct fuzzy
estimators. At this point the reader may wonder which technique is the best. While
no theoretical comparisons have been done, we have found that for a variety of
applications the MLFE technique does tend to use fewer rules to get comparable
accuracy to the LFE technique; however, we have found some counterexamples to
this. While the LFE technique does require the designer to specify all the member-
ship functions, it is relatively automatic after that. The MLFE does not require the
designer to pick the membership functions but does require specification of three
design parameters. We have found that most often we can use intuition gained from
the application to pick these parameters.

Overall, we must emphasize that there seems to be no clear winner when com-
paring the LFE and MLFE techniques. It seems best to view them as techniques
that provide valuable insight into how fuzzy systems operate and how they can be
constructed to approximate functions that are inherently represented in data. The
LFE technique shows how rules can be used as a simple representation for data
pairs. Since the constructed rules are added to a fuzzy system, we capitalize on its
interpolation capabilities and hence get a mapping for data pairs that are not in the
training data set. The MLFE technique shows how to tailor membership functions
and rules to provide for an interpolation that will attempt to model the data pairs.
Hence, the MLFE technique specifies both the rules and membership functions.



5.7 Hybrid Methods 291

5.7 Hybrid Methods
In this chapter we have discussed least squares (batch and recursive), gradient
(steepest descent, Newton, and Gauss-Newton), clustering (with optimal output
predefuzzification and nearest neighbor), learning from examples, and modified
learning from examples methods for training standard and Takagi-Sugeno fuzzy
systems. In this section we will discuss hybrid approaches where we combine two
or more of the above methods to train a fuzzy system.

Basically, the hybrid methods can be classified three ways:

• Hybrid initialization/training: You could initialize the parameters of the fuzzy
system with one method and then use a different method for the training. For
instance, you could use the learning by examples methods to create a fuzzy system
that you could later tune with a gradient or least squares method. Alternatively,
you could use a least squares method to initialize the output centers of a standard
fuzzy system and then use a gradient method to tune the premise parameters and
to fine-tune the output centers.

• Hybrid premise/consequent training: You could train the premises of the rules
with one method and the consequents with another. This is exactly what is done
in clustering with optimal output predefuzzification in Section 5.5.1 on page 274:
A clustering method is used to specify the premise parameters, and least squares
is used to train the consequent functions since they are linear in the parameters.
Other examples of hybrid training of this type include the use of least squares for
training the consequent functions of a Takagi-Sugeno fuzzy system (since they
enter linearly) and a gradient method for training the premise parameters (since
they enter in a nonlinear fashion). Alternatively, you could train the premises with
a clustering method and the consequents with a gradient method (especially for
a functional fuzzy system that has consequent functions that are not linear in the
parameters). Still another option would be to use ideas from the learning from
examples techniques to train the premises and use the least squares or gradient
methods for the consequents.

• Hybrid interleaved training: You could train with one method then another, fol-
lowed by another, and so on. For instance, you could use a learning by examples
method to initialize the fuzzy system parameters, then train the fuzzy system
with a gradient method, with periodic updates to the output membership func-
tion centers coming from a least squares method.

Basically, all these methods provide the advantage of design flexibility for the tuning
of fuzzy systems. While some would view this flexibility in a positive light, it does
have its drawbacks, primarily in trying to determine which approach to use, or the
best combination of approaches.

Indeed, it is very difficult to know which of the methods in this chapter to use
as the choice ultimately depends on the application. Moreover, it is important to
have in mind what you mean by “best.” This would likely involve accuracy of esti-
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mation or identification, but it could also focus on the computational complexity of
implementing the resulting fuzzy system. We have found that for some applications
the LFE and MLFE approaches can take many rules to get good identification
accuracy (as can the nearest neighborhood clustering approach). Sometimes the
computations for large data sets are prohibitive for batch least squares, but re-
cursive least squares can then be used. Sometimes gradient training takes a large
amount of training data and extremely long training times. On the other hand,
the clustering with optimal output predefuzzification method needs relatively few
rules (partially because one Takagi-Sugeno rule carries more information than one
standard fuzzy rule) and hence often results in low computational complexity while
at the same time providing better accuracy; it seems to exploit the advantages of
the least squares approach and ideas in clustering that result in well-tuned input
membership functions. We do not, however, consider this finding universal. For
other applications, one of the other methods (e.g., gradient and least squares), or
a combination of the above methods, may provide a better approach.

In the next section we provide a design and implementation case study where
we use the clustering with optimal output predefuzzification approach.

5.8 Case Study: FDI for an Engine
In recent years more attention has been given to reducing exhaust gas emissions pro-
duced by internal combustion engines. In addition to overall engine and emission
system design, correct or fault-free engine operation is a major factor determin-
ing the amount of exhaust gas emissions produced in internal combustion engines.
Hence, there has been a recent focus on the development of on-board diagnostic
systems that monitor relative engine health. Although on-board vehicle diagnostics
can often detect and isolate some major engine faults, due to widely varying driving
environments they may be unable to detect minor faults, which may nonetheless
affect engine performance. Minor engine faults warrant special attention because
they do not noticeably hinder engine performance but may increase exhaust gas
emissions for a long period of time without the problem being corrected.

The minor faults we consider in this case study include “calibration faults” (for
our study, the occurrence of a calibration fault means that a sensed or commanded
signal is multiplied by a gain factor not equal to one, while in the no-fault case
the sensed or commanded signal is multiplied by one) in the throttle and mass fuel
actuators, and in the engine speed and mass air sensors (we could also consider
“bias”-type faults even though we do not do so in this case study). The reliability
of these actuators and sensors is particularly important to the engine controller
since their failure can affect the performance of the emissions control system.

Our particular focus in this design and implementation case study is to show
how to construct fuzzy estimators to perform failure detection and identification
(FDI) for certain actuator and sensor calibration faults. We compare the results
from the fuzzy estimators to a nonlinear autoregressive moving average with ex-
ogenous inputs (ARMAX) technique and provide experimental results showing the
effectiveness of the technique. Next, we provide an overview of the experimental
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engine test bed and testing conditions that we use.

5.8.1 Experimental Engine and Testing Conditions
All investigations in this case study were performed using the experimental engine
test cell shown in Figure 5.9. The experimental setup in the engine test cell consists
of a Ford 3.0 L V-6 engine coupled to an electric dynamometer through an automatic
transmission. An air charge temperature sensor (ACT), a throttle position sensor
(TPS), and a mass airflow sensor (MAF) are installed in the engine to measure
the air charge temperature, throttle position, and air mass flow rate. Two heated
exhaust gas oxygen sensors (HEGO) are located in the exhaust pipes upstream of
the catalytic converter. The resultant airflow information and input from the various
engine sensors are used to compute the required fuel flow rate necessary to maintain
a prescribed air-to-fuel ratio for the given engine operation. The central processing
unit (EEC-IV) determines the needed injector pulse width and spark timing, and
outputs a command to the injector to meter the exact quantity of fuel. An ECM
(electronic control module) breakout box is used to provide external connections to
the EEC-IV controller and the data acquisition system. The angular velocity sensor
system consists of a digital magnetic zero-speed sensor and a specially designed
frequency-to-voltage converter, which converts frequency signals proportional to the
rotational speed into an analog voltage. Data is sampled every engine revolution. A
variable load is produced through the dynamometer, which is controlled by a DYN-
LOC IV speed/torque controller in conjunction with a DTC-1 throttle controller
installed by DyneSystems Company. The load torque and dynamometer speed are
obtained through a load cell and a tachometer, respectively. The throttle and the
dynamometer load reference inputs are generated through a computer program
and sent through an RS-232 serial communication line to the controller. Physical
quantities of interest are digitized and acquired utilizing a National Instruments
AT-MIO-16F-5 A/D timing board for a personal computer.

Computer

Dyno

ECM A/D

Tach

V�6 engine

DDSTC

DTC

EEC-IV

Transmission

Dyno speed

Load torque

Throttle command

Reference input

Engine speed

Dyno speed

Load torque

 Throttle
actuator

FIGURE 5.9 The experimental engine test cell
(figure taken from [109], c© IEEE).
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Due to government mandates, periodic inspections and maintenance for engines
are becoming more common. One such test developed by the Environmental Pro-
tection Agency (EPA) is the Inspection and Maintenance (IM) 240 cycle. The EPA
IM240 cycle (see Figure 5.10 for vehicle speed, in mph, plotted versus time) repre-
sents a driving scenario developed for the purpose of testing compliance of vehicle
emissions systems for contents of carbon monoxide (CO), unburned hydrocarbons
(HC), and nitrogen oxides (NOx). The IM240 cycle is designed to be performed
under laboratory conditions with a chassis dynamometer and is patterned after the
Urban Dynamometer Driving Schedule (UDDS), which approximates a portion of
a morning commute within an urban area. This test is designed to evaluate the
emissions of a vehicle under real-world conditions. In [97], the authors propose an
additional diagnostic test to be performed during the IM240 cycle to detect and iso-
late a class of minor engine faults that may hinder vehicle performance and increase
the level of exhaust emissions. Since the EPA proposes to make the test manda-
tory for all vehicles, performing an additional diagnostic analysis in parallel would
provide a controlled test that might allow for some minor faults to be detected and
corrected, thus reducing overall exhaust emissions in a large number of vehicles.
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FIGURE 5.10 The EPA IM240 engine
cycle (figure taken from [109], c© IEEE).

5.8.2 Fuzzy Estimator Construction and Results
In system identification, which forms the basis for our FDI technique, we wish to
construct a model of a dynamic system using input-output data from the system.
The types of engine faults that the FDI strategy is designed to detect include
the calibration faults given in Table 5.3. These faults directly affect the resulting
fuel-to-air ratio and spark timing in combustion, which subsequently affects the
level of exhaust gas emissions. The fault detection and isolation strategy relies on
estimates of ω (engine speed, in rpm), ma (mass rate of air entering the intake
manifold, in lb-m/sec), α (actuated throttle angle, expressed as a percentage of a
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TABLE 5.3 Types of Faults Detectable with FDI Strategy

Fault Type Description

ma sensor calibration Measures amount of air intake for combustion

ω sensor calibration Measures engine speed

α actuator calibration Actuates throttle angle

mf actuator calibration Actuates amount of fuel for combustion

full-scale opening), mf (mass of fuel entering the combustion chamber, in lb-m),
and TL (the load torque on the engine, in ft-lb) (which we denote by ω̂, m̂a, α̂, m̂f ,
and T̂L, respectively) that are provided by identifying models fω, fma , fα, fmf ,
and fTL of how the engine operates. In particular, we have

ω̂ = fω(xω) (5.58)
m̂a = fma (xma ) (5.59)

α̂ = fα(xα) (5.60)
m̂f = fmf (xmf ) (5.61)

T̂L = fTL(xTL). (5.62)

where the inputs are given in Equations (5.63)–(5.67) (k is a discrete time in the
crankshaft domain where physical quantities are sampled every turn of the engine
crankshaft)

xω = [ω̂(k − 1), ω̂(k − 2), ω̂(k − 3), α(k − 1), α(k − 2),
α(k − 3), mf(k − 1), mf (k − 2), mf (k − 3), T̂L(k − 2)]� (5.63)

xma = [m̂a(k − 1), m̂a(k − 2), m̂a(k − 3), α(k − 1), α(k − 2),
mf (k − 1), mf (k − 2), mf (k − 3), T̂L(k − 1), T̂L(k − 3)]� (5.64)

xα = [α̂(k − 1), α̂(k − 2), α̂(k − 3), ma(k − 1),
ma(k − 2), ma(k − 3), ωdy(k − 1), ωdy(k − 2)]� (5.65)

xmf = [m̂f(k − 1), m̂f(k − 2), m̂f(k − 3), ma(k − 1),

ma(k − 2), ma(k − 3), ω(k − 1), ω(k − 2), ω(k − 3)]� (5.66)
xTL = [T̂L(k − 1), T̂L(k − 2), T̂L(k − 3), α(k − 1), α(k − 2),

mf (k − 1), ma(k − 1), ma(k − 3), ωdy(k − 1), ωdy(k − 3)]� (5.67)

where ωdy is an output of the dynamometer. These regression vectors were chosen
using simulation and experimental studies to determine which variables are useful
in estimating others and how many delayed values must be used to get accurate
estimation.

One approach to nonlinear system identification that has been found to be par-
ticularly useful for this application [119, 120] and that we will employ in the current
study in addition to the fuzzy estimation approach is the NARMAX (nonlinear
ARMAX) method, which is an extension of the linear ARMAX system identifica-
tion technique. The general model structure for NARMAX uses scaled polynomial
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combinations of the arguments contained in the regression vector; here we use the
NARMAX model structure given by

ŷ(k) =
n∑

i=1

βixi +
n∑

i=1

n∑
j=1

βijxixj (5.68)

where βi, βij are parameters to be adjusted so that ŷ(k) is as close as possible to
y(k) for all x ∈ �n (i.e., we use only one second-order polynomial term in our
model structure). As is usual, in this case study we will use the standard batch
least squares approach to adjust the βi, βij since they enter linearly.

For training purposes, data were collected to calculate the necessary models fω ,
fma , fα, fmf , and fTL . Due to mechanical constraints on the electric dynamometer,
we reduced the IM240 cycle to only 7000 engine revolutions for the tests that we
ran. In addition, a uniformly distributed random signal was added to the throttle
and torque inputs in order to excite the system. The data generated were utilized
to construct five multi-input single-output fuzzy systems, one for each of the Equa-
tions (5.58)–(5.62). In fuzzy clustering we choose 10 clusters (R = 10), a fuzziness
factor m = 2, and tolerance εc = 0.01 for each of the constructed fuzzy systems.
These were derived via experimentation until desired accuracy was achieved (e.g.,
increasing R to more than 10 did not provide improved estimation accuracy). For
comparison purposes, we also calculated models utilizing the nonlinear ARMAX
technique based on the same experimental data. Then the experimental test cell
was run, and the models derived through fuzzy clustering and the nonlinear AR-
MAX technique were validated by collecting data for similar tests run on different
days.

The results in identification with the validation data (not the training data)
for both techniques are given in Figures 5.11, 5.12, 5.13, 5.14, and 5.15 (plots in
(a) show the results for the fuzzy identification approach and in (b) for the NAR-
MAX approach). We measure approximation error by evaluating the squared error
between the real and estimated value (which we denote by

∑
k e2 where k ranges

over the entire simulation time). As the results show, both techniques approximate
the real system fairly well; however, for the mass air and engine speed estimates,
the NARMAX technique performed slightly better than the clustering technique.
For the throttle, load torque, and the mass fuel estimates, the clustering technique
estimated slightly better than the NARMAX technique.

Overall, we see that there is no clear overall advantage to using NARMAX or
the fuzzy estimator even though the fuzzy estimator performs better for estimating
several variables. We would comment, however, that it took a significant amount
of experimental work to determine where to truncate the polynomial expansion in
Equation (5.68) for the NARMAX model structure. The parameters R, m, and εc

for the fuzzy estimator construction were, however, quite easy to select. Moreover,
the fuzzy estimation approach provides the additional useful piece of information
that the underlying system seems to be adequately represented by interpolating
between 10 linear systems each of which is represented by the output of the ten
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FIGURE 5.11 Mass air for (a) clustering, (noisy signal) measured, (smooth signal)
estimate and (b) for NARMAX, (noisy signal) measured, (smooth signal) estimate
(figure taken from [109], c© IEEE).
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FIGURE 5.12 Engine speed for (a) clustering, (measured one is higher than the
estimate near 7000 engine revolutions) and (b) for NARMAX, (solid) measured,
(dashed) estimate (figure taken from [109], c© IEEE).

rules (R = 10).

5.8.3 Failure Detection and Identification (FDI) Strategy
The models identified through fuzzy clustering and optimal output predefuzzifica-
tion allow us to utilize system residuals (e.g., ω̂−ω, m̂a −ma, α̂−α, and m̂f −mf )
to detect and isolate failures. A specific fault may be isolated by referring to the
fault isolation logic given in Table 5.4 that was developed by the “indirect decou-
pling method” outlined in [98]. In the body of Table 5.4 we indicate a pattern of
“zero”, “nonzero” and “—” (don’t care) residuals that will allow us to identify
the appropriate failure. We use thresholds to define what we mean by “zero” and
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FIGURE 5.13 Throttle for (a) clustering, (solid) measured, (dotted) estimate and
(b) for NARMAX, (noisy signal) measured, (smooth signal) estimate (figure taken
from [109], c© IEEE).
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FIGURE 5.14 Load torque for (a) clustering, (noisy signal) measured, (smooth
signal) estimate and (b) for NARMAX, (noisy signal) measured, (smooth signal)
estimate (figure taken from [109], c© IEEE).

“nonzero” and explain how we choose these thresholds below. As an example, if
the scaled values (we will explain how the residuals are scaled below) of |ω̂ − ω|,
|m̂a − ma|, and |m̂f − mf | are above some thresholds, and |α̂ − α| is below some
threshold, then we say that there is an mf actuator calibration fault. For an ma

sensor calibration fault, the (scaled) value of |ω̂ − ω| should be nonzero since this
residual is not completely decoupled, but it is very weakly coupled through the load
torque model. Therefore, we have the “—” (don’t care) term for the α̂−α residual
for an ma sensor calibration fault.

The models developed via fuzzy clustering and optimal output predefuzzifi-
cation are only approximations of the real engine dynamics. Therefore, since the
system residuals do not identically equal zero during nominal no-fault operation, it
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FIGURE 5.15 Mass fuel for (a) clustering, (noisy signal with peaks) measured,
(smooth signal) estimate and (b) for NARMAX, (dashed) measured, (thin solid)
estimate (figure taken from [109], c© IEEE).

TABLE 5.4 Catalog of System Residuals and Corresponding
Faults

Fault Location ω̂ − ω m̂a − ma α̂ − α m̂f − mf

ma sensor — Nonzero Nonzero Nonzero

ω sensor Nonzero Zero Nonzero Nonzero

α input Nonzero Nonzero Nonzero Zero

mf input Nonzero Nonzero Zero Nonzero

is necessary to perform some postprocessing of the residuals to detect and isolate
the faults we consider. We perform a low pass filtering of system residuals and a
setting of thresholds to determine nonzero residuals. We implement a fourth-order
Butterworth low pass filter with a cutoff frequency of π

100 and pass the residuals
through this filter. Next, we take the filtered residual and scale it by dividing by the
maximum value of the signal over the entire IM240 cycle. The filtered and scaled
residual is then compared against a threshold, and if the threshold is exceeded,
then a binary signal of one is given for that particular residual for the remainder
of the test. The threshold values for each residual used in the FDI strategy are
computed empirically by analyzing the deviation of the residuals from zero during
no-fault operation. These thresholds are given in Table 5.5 (e.g., from Table 5.5, if
the filtered and scaled residual for ma is greater than 0.30, then we say the m̂a−ma

residual threshold has been exceeded—i.e., that it is “nonzero”).
We perform tests utilizing the FDI strategy by simulating calibration faults

and using the filtered residuals. Specifically, calibration faults are simulated by
multiplying the experimental data for a specific fault by the desired calibration
fault value. For instance, to obtain a 20% ω calibration fault, we multiply ω by
1.20. Through experimentation we have found this to be an accurate representation
of a true calibration fault.
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TABLE 5.5 Thresholds
for System Residuals

Residual Threshold

m̂a − ma sensor ± 0.30

ω̂ − ω sensor ± 0.10

α̂ − α input ± 0.04

m̂f − mf input ± 0.15

We look at only a portion of the IM240 cycle when we test for faults. The
portion we observe is between 3000 and 5000 revolutions of the engine. During this
portion the best model matching occurred. Figure 5.16 shows the residuals lying
within the thresholds for the duration of the test, signaling a no-fault condition.
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FIGURE 5.16 System residuals with no fault (the
vertical axes are dimensionless; they represent the
size of the filtered residual divided by the maximum
value of the signal achieved over the IM240 cycle)
(figure taken from [109], c© IEEE).

In the second test a 20% calibration fault exists in the throttle actuator, mean-
ing that the throttle angle is 1.20 times the commanded value. As Figure 5.17
illustrates, all residuals exceed the threshold except the mf residual—which ac-
cording to Table 5.4, indicates that a throttle fault is present. Similar results are
obtained for a 20% calibration fault in the mass air sensor (meaning that the mass
air sensor reads 1.20 times the real value), a 40% calibration fault in the mass fuel
actuator (meaning that the mass fuel actuator injects 1.40 times the commanded
value), and a 20% calibration fault in the engine speed sensor. In a similar manner,
engine failures can be detected utilizing the models calculated via the NARMAX
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technique; however, the resulting residuals are not shown here as they were very
similar. Overall, we see that by combining the estimates from the fuzzy estimators
with the FDI logic, we were able to provide an effective FDI strategy for a class of
minor engine failures.
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FIGURE 5.17 System residuals with 20% throttle
calibration fault (the vertical axes are dimensionless;
they represent the size of the filtered residual divided
by the maximum value of the signal achieved over
the IM240 cycle) (figure taken from [109], c© IEEE).

5.9 Summary
In this chapter we have provided an introduction to several techniques on how
to construct fuzzy systems using numerical data. We used a simple example to
illustrate how several of the methods operate. The least squares method can be used
to train linear systems and should be considered as a conventional alternative to the
other methods (since it can sometimes be easier to implement). Gradient methods
are especially useful for training parameters that enter in a nonlinear fashion. The
clustering and optimal output predefuzzification method combined the conventional
least squares method with the c-means clustering technique that provided for the
specification of the input membership functions and served to interpolate between
the linear models that were specified via least squares. Clustering based on nearest
neighborhood methods helps to provide insight into fuzzy system construction. The
LFE and MLFE techniques provide unique insights into how to associate rules with
data pairs to train the fuzzy system to map the input-output data. The chapter
closed with a discussion on how to combine the methods of this chapter into hybrid
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training techniques and a design and implementation case study.
Upon completing this chapter, you should understand the following:

• The function approximation problem.

• How construction of models, estimators, predictors, and controllers can be viewed
as a special case of the function approximation problem.

• The issues involved in choosing a training data set.

• How to incorporate linguistic information into a fuzzy system that you train with
data.

• The batch and recursive least squares methods.

• How to train standard or Takagi-Sugeno fuzzy systems with least squares meth-
ods.

• The gradient algorithm method for training a standard or Takagi-Sugeno fuzzy
system.

• The clustering with optimal output predefuzzification method for constructing a
Takagi-Sugeno fuzzy system.

• The nearest neighborhood clustering method for training standard fuzzy systems.

• The learning from examples (LFE) method for constructing a fuzzy system.

• The modified learning from examples (MLFE) method for constructing a fuzzy
system.

• How different methods can be combined into hybrid training techniques for fuzzy
systems.

• How the clustering with optimal output predefuzzification method can be used
for failure detection and identification in an internal combustion engine.

Essentially, this is a checklist of the major topics of this chapter. The gradient or
recursive least squares methods are essential for understanding the indirect adaptive
fuzzy control method treated in Chapter 6, and some of the supervisory control
ideas in Chapter 7 rely on the reader’s knowledge of at least one method from this
chapter.

5.10 For Further Study
An earlier version of the problem formulation for the function approximation prob-
lem appeared in [108]. The idea of combining linguistic information with the fuzzy
system constructed from numerical training data has been used by several re-
searchers and is exploited in a particularly coherent way in [229].
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The idea of using least squares to train fuzzy systems was first introduced
in [207] and was later studied in [232] and other places. For more details on least
squares methods, see [127]. The gradient method for training fuzzy systems was
originally developed as the “back-propagation” approach for training neural net-
works, and many people recognized that such gradient methods could also be used
for training fuzzy systems (e.g., see [231] for a treatment of the steepest descent
approach). For more details on gradient methods, see [128, 22]. The clustering with
optimal output predefuzzification approach was introduced in [187] but is mod-
ified somewhat from its original form in our presentation. The nearest neighbor
clustering approach was introduced in [228]. For more details on fuzzy clustering,
see [24, 23, 89, 187, 236, 177]. The learning from examples technique was first in-
troduced in [233], and the modified learning from examples approach [108] was
developed using ideas from the approaches in [133, 233]. A slightly different ap-
proach to the computation in Equation (5.56) on page 287 is taken in [108], where
the MLFE was first introduced. The hybrid methods have been used by a variety
of researchers; a particularly nice set of applications were studied in [81, 82].

The case study in implementation of the fuzzy estimators for an internal com-
bustion engine was taken from [109]. All investigations in this case study were
performed using the experimental engine test cell in [129, 130]. We take the same
basic approach to FDI for minor engine faults as in [97] except that we utilize a
fuzzy estimation approach rather than the nonlinear ARMAX approach used in [97].
Related work on the use of nonlinear ARMAX is given in [130].

The case study in engine failure estimation used in the chapter and in the
problems at the end of the chapter, and the cargo ship failure estimation problem
used in the problems at the end of the chapter were developed in [143]. For a general
overview of the field of FDI, see [166].

Some other methods related to the topics in this chapter are given in [73, 18,
237, 117, 1, 76]. There is related work in the area of neural networks also. See,
for example, [150, 26]. A good introduction to the topical area of this chapter is
given in [188, 86], where the authors also cover wavelets, neural networks, and other
approximators and properties in some detail.

5.11 Exercises
Exercise 5.1 (Training Fuzzy Systems to Approximate a Simple Data
Set): In this problem you will study the training of standard and Takagi-Sugeno
fuzzy systems to represent the data in G in Equation (5.3) on page 236. This
is the data set that was used as an example throughout the chapter. You can
program the methods on the computer yourself or use the Matlab code provided
at the web and ftp sites listed in the Preface.

(a) Batch least squares: For the example in Section 5.3.3 on page 255, find the
value of θ̂ and compare it with the value found there. Also, test the fuzzy
system with the same six test inputs and verify that the outputs are as given
in Section 5.3.3. Next, let c1

1 = 0, c1
2 = 2, c2

1 = 2, and c2
2 = 4; find θ̂; and
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repeat the testing process for the six test inputs. Does the fuzzy system seem
to interpolate well?

(b) Weighted batch least squares: Choose W = diag([10, 1, 1]) so that we weight
the first data pair in G (i.e., ([0, 2]�, 1)) as being the most important one.
Does this make f([0, 2]�|θ̂) closer to one (y1) than for the fuzzy system
trained in (a)?

(c) Recursive least squares: Repeat (a) but use RLS with λ = 1.
(d) Weighted recursive least squares: Repeat (a) but use weighted RLS with

λ = 0.9.
(e) Gradient method: Verify all computed values for the gradient training of

the Takagi-Sugeno fuzzy system in Section 5.4.3 (this includes finding the
fuzzy system parameter values and the fuzzy system outputs for the six test
inputs).

(f) Clustering with optimal output predefuzzification: Verify all computed val-
ues for all cases in the example of Section 5.5.1. Be sure to include the case
where we use one more training data pair (i.e., when M = 4).

Exercise 5.2 (Training a Fuzzy System to Approximate a Simple Func-
tion): In this problem you will study methods for constructing fuzzy systems to
approximate the mapping defined by a quadratic function

y = 2x2
1 + x2

2 (5.69)

over the range x1 ∈ [−12, 12], x2 ∈ [−12, 12] (note that here x2
1 is x1 squared).

To train and test the fuzzy system, use the training data set G and the test
data set Γ, defined as

G = {([x1, x2]�, y) | x1, x2 ∈ {−12,−10.5,−9, . . . , 9, 10.5, 12}, y = 2x2
1 + x2

2}
(5.70)

Γ = {([x1, x2]�, y) | x1, x2 ∈ {−12,−11,−10, . . . , 10, 11, 12}, y = 2x2
1 + x2

2}
(5.71)

The training data set G and the test data set Γ are used for each technique in
this problem. Plot the function over the range of values provided in the input
portions of the data in Γ.

For each constructed fuzzy system for each part below, calculate the maximum
error, emax, defined as

emax = max{|f(x) − y| : (x, y) ∈ Γ}

where f is the fuzzy system output and y is the output of the quadratic function
and the “percentage maximum error,” which is defined as

epmax = 100
emax

y∗
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where y∗ is the y value of the quadratic function that makes the error maximum—
that is,

y∗ ∈ {y′ : (x′, y′) ∈ Γ and |f(x′) − y′| ≥ |f(x) − y| for all (x, y) ∈ Γ}

Clearly, we would like to construct the fuzzy system so that emax and epmax are
minimized.

(a) Batch least squares: Consider the fuzzy system

y = f(x|θ) =
∑R

i=1 biµi(x)∑R
i=1 µi(x)

(5.72)

where x = [x1, x2]� and µi(x) is the certainty of the premise of the ith

rule that is specified by Gaussian membership functions. We use singleton
fuzzification and product for premise and implication, and bi is the center of
the output membership function for the ith rule. The Gaussian membership
functions have the form

µ(x) = exp

(
−1

2

(
x − c

σ

)2
)

so that

µi(x) =
2∏

j=1

exp


−1

2

(
xj − ci

j

σi
j

)2



is defined where ci
j is the center of the membership function of the ith rule for

the jth universe of discourse and σi
j is the relative width of the membership

function of the ith rule of the jth universe of discourse.
We use nine membership functions for each input universe of discourse

with centers given by the elements of the set

{−12,−9,−6,−3, 0, 3, 6, 9, 12}

from which we can see that the membership functions are distributed uni-
formly. From these centers we will form R = 9 × 9 = 81 rules—that is, a
rule for every possible combination. We must specify the input membership
function centers ci

j. Let the columns of the matrix

[
−12 −12 · · · −12 −9 −9 · · · −9 · · · 12
−12 −9 · · · 12 −12 −9 · · · 12 · · · 12

]

be denoted by ci, and let ci = [ci
1, c

i
2]�, i = 1, 2, . . . , 81. The relative widths

of the membership functions, σi
j for all j = 1, 2 and i = 1, 2, . . . , R, are
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chosen as 4 to get a reasonable coverage of each universe of discourse.
Write a computer program to implement batch least squares to find the

output centers. Compute epmax, plot the input-output map of the resulting
fuzzy system, and compare it to the plot of the quadratic function.

(b) Gradient method: Use the “standard” fuzzy system defined in Section 5.4 for
which the update formulas are already derived in Equations (5.35), (5.36),
and (5.37). You have n = 2. The centers of the membership functions should
be initialized to the values that we used in part (a), and their relative widths
should be initialized as σi

j = 1. Also, let

bi = 2(ci
1)

2 + (ci
2)

2

for all i = 1, 2, . . . , 81 and j = 1, 2. Why is this a reasonable choice for the
initial values? As can be seen from the definition above, you use 9 mem-
bership functions for each input universe of discourse, which means 81 rules
(i.e., R = 81). Choose λ1, λ2, and λ3 as 0.0001. In your algorithm, cycle
through the entire training data set G many times, processing one data pair
in every step of the the gradient algorithm, until the error em is less than or
equal to 1.6.

Write a computer program to implement the gradient method to train the
fuzzy system. Compute epmax, plot the input-output map of the resulting
fuzzy system, and compare it to the plot of the quadratic function.

(c) Clustering with optimal output predefuzzification: Here, you train the fuzzy
system defined in the chapter. Choose R = 49, m = 2, and εc = 0.0001. In
this problem, two definitions of gj are used. The first one is given by

gj = aj,0 + aj,1x1 + aj,2x2

and the second one is defined as

gj = aj,0 + aj,1(x1)2 + aj,2(x2)2

where xi is the ith input value, j = 1, 2, . . . , R, and the (xi)2 terms repre-
sent that we assume in this case that we have special knowledge about the
function we want to approximate (i.e., in this case we assume that we know
it is a quadratic function). Initialize the cluster centers as

vj
i = (vj

i )
′ + εp(r − 0.5)

where (vj
i )

′ ∈ {−12,−8, . . . , 8, 12}, j = 1, 2, . . . , R, i = 1, 2, εp = 0.001, and
“r” is a random number between 0 and 1.

Write a computer program to implement the clustering with optimal
output predefuzzification method to train the fuzzy system. Compute epmax,
plot the input-output map of the resulting fuzzy system, and compare it to
the plot of the quadratic function.
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(d) Nearest neighborhood clustering: The fuzzy system used in this part is the
one that the nearest neighborhood clustering method was developed for in
the chapter. Initialize the parameters A1 = y1 = 432, B1 = 1, and v1

j = x1
j

for j = 1, 2 (i.e., v1
1 = −12 and v1

2 = −12). Let εf = 0.5 and the relative
width of the membership functions σ = 5, which affects the accuracy of the
approximation.

Write a computer program to implement the nearest neighborhood clus-
tering method to train the fuzzy system. What is the number of clusters that
are produced? Compute epmax, plot the input-output map of the resulting
fuzzy system, and compare it to the plot of the quadratic function.

(e) Learning from examples: For our fuzzy system we use singleton fuzzification,
minimum to represent the premise and implication, and “center of gravity”
(COG) defuzzification. Choose the effective universes of discourse for the
two inputs and the output as

X1 = [x−
1 , x+

1 ] = [−12, 12]

X2 = [x−
2 , x+

2 ] = [−12, 12]

Y = [y−, y+] = [0, 432]

This choice is made since we seek to approximate our unknown function
over x1 ∈ [−12, 12], x2 ∈ [−12, 12] and we know that for these values
y ∈ [0, 432]. You should use triangular-shaped membership functions for
µXj

1
(x1), µXj

2
(x2), µY j (y), associated with the fuzzy sets Xj

1 , Xj
2 , and Y j ,

respectively. In particular, use 9 membership functions for inputs x1 and x2

and 45 membership functions for the output y; these membership functions
are shown in Figures 5.18, 5.19, and 5.20.
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FIGURE 5.18 Membership functions for the x1 universe of discourse
(figure created by Mustafa K. Guven).
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FIGURE 5.19 Membership functions for the x2 universe of discourse
(figure created by Mustafa K. Guven).
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FIGURE 5.20 Membership functions for the y universe of discourse
(figure created by Mustafa K. Guven).

Write a computer program to implement the learning from examples
method to train the fuzzy system. Compute epmax, plot the input-output
map of the resulting fuzzy system, and compare it to the plot of the quadratic
function.

Note that the choice of G results in a “full” rule-base table (i.e., the
table is completely filled in). For this example, if you reduce the number of
training data enough, you will not end up with a full rule-base table.

(f) Modified learning from examples: For the fuzzy system use singleton fuzzi-
fication, Gaussian membership functions, product for the premise and im-
plication, and center-average defuzzification (i.e., the one used to introduce
the modified learning from examples technique in the chapter). To start
training, first initialize the fuzzy system parameters including the number
of rules, R = 1; the center of the output membership function for the first
rule, b1 = 432; the centers of the input membership functions for the first
rule, c1

1 = −12 and c1
2 = −12; and the relative widths of the membership

functions for the first rule, σ1
1 = 1 and σ1

2 = 1. This forms the first rule.
Choose εf = 0.001.

When a new rule is added, the relative widths of the membership functions
for the new rule should be updated. To do that, we need to compare the x2

1
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with the centers of the membership functions that are in the first universe
of discourse, ci

1 for all i = 1, 2, . . . , R and x2
2 with ci

2 for all i = 1, 2, . . . , R, to
find the nearest membership functions for each universe of discourse. Using
the distance between the input portion of the training data and the nearest
membership function, we determine the σi

j for all i = 1, 2, . . . , R and j = 1, 2.
Specifically, let

σi
j =

|ci
j − c

n∗
j

j |
W

for all i = 1, 2, . . . , R and j = 1, 2 and where W is the weighting factor,
which we choose as 2.

Since we have repeated numbers in our data set (i.e., there exist i′ and
j′ such that xi

j = xi′
j′ , for i �= i′, j �= j′), we will have a problem for some

σi
j for i = 1, 2, . . . , R and j = 1, 2. For instance, assume that we have R = 1

(i.e., we have one rule in our rule-base) and let

[c1
1, c

1
2]

� = [−12,−12]�

and the next training data is

([x1, x2]�, y) = ([−12,−10.5]�, 398.25)

For the x1 universe of discourse, the nearest membership function is the one
that has −12 as its center. Therefore, the distance and the σ2

1 will be zero.
Because of this, during testing of the fuzzy system, we will have

x1 − c2
1

σ2
1

=
x1 − c2

1

0

which is not well-defined.
To avoid this situation, the following procedure can be used. If for

[x1, x2]�, ci
j = xj, then let

σR+1
j = σR

j

for j = 1, 2. For our example,

σ2
1 = σ1

1

With this procedure, instead of updating the relative width of the new rule,
we will keep one of the old relative widths for the new rule. Other ways to
solve the problem of updating the relative widths are given in the chapter.

Write a computer program to implement the modified learning from
examples method to train the fuzzy system. Compute epmax, plot the input-
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output map of the resulting fuzzy system, and compare it to the plot of the
quadratic function.

Exercise 5.3 (Estimation of ζ for a Second-Order System): In this problem
suppose that you are given a plant that is perfectly represented by a second-order
transfer function

G(s) =
ω2

n

s2 + 2ζωns + ω2
n

Suppose that ωn = 1 and that you know 0.1 ≤ ζ ≤ 1, but that you do not know
its value and you would like to estimate it using input-output data from the plant.
Assume that you know that the input to G(s) and in each case below choose the
input trajectory and provide a rationale for your choice. Assume that you do not
know that the system is perfectly linear and second order (so that you cannot
simply use, e.g., standard least squares for estimating ζ).

(a) Generate the set G of training data. Provide a rationale for your choice.
(b) Use the batch least squares method to construct a fuzzy estimator for ζ.

Provide all the details on how you construct your estimator (including all
design parameters).

(c) Use the gradient method to construct a fuzzy estimator for ζ. Provide all
the details on how you construct your estimator (including all design pa-
rameters).

(d) Use the clustering with optimal output predefuzzification method to con-
struct a fuzzy estimator for ζ. Provide all the details on how you construct
your estimator (including all design parameters).

(e) Use the LFE method to construct a fuzzy estimator for ζ. Provide all the
details on how you construct your estimator (including all design parame-
ters).

(f) Use the MLFE method to construct a fuzzy estimator for ζ. Provide all the
details on how you construct your estimator (including all design parame-
ters).

(g) Test the ζ estimators that you constructed in (b)–(f). Be sure to test them
for data that you trained them with, and with data that you did not use in
training. Provide plots that show both the estimated and actual values of ζ
on the same plot.

Exercise 5.4 (Least Squares Derivation): Recall that for batch least squares
we had

V (θ, M) =
1
2
E�E

as a measure of the approximation error. In this problem you will derive several
of the least squares methods that were developed in this chapter.
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(a) Using basic ideas from calculus, take the partial of V with respect to θ and
set it equal to zero. From this derive an equation for how to pick θ̂. Compare
it to Equation (5.15). Hint: If m and b are two n × 1 vectors and A is an
n × n symmetric matrix (i.e., A = A�), then d

dm b�m = b, d
dmm�b = b, and

d
dmm�Am = 2Am.

(b) Repeat (a) for the weighted batch least squares approach, where V is chosen
as in Equation (5.16), and compare it to Equation (5.17).

(c) Derive the update Equations (5.26) for the weighted recursive least squares
approach.

Exercise 5.5 (Gradient Training of Fuzzy Systems): In this problem you
will derive gradient update formulas for fuzzy systems by directly building on the
discussion in the chapter.

(a) Derive the update equations for bi(k), ci
j(k), and σi

j(k) for the gradient
training method described in Section 5.4 on page 260. Show the full details
of the derivations for all three cases.

(b) Repeat (a) but for the Takagi-Sugeno fuzzy system so that you will find the
update formula for ai,j(k) rather than for bi(k).

(c) Repeat (a) but for a generalization of the Takagi-Sugeno fuzzy system (i.e., a
functional fuzzy system) with the same parameters as in the chapter except

gi(x) = ai,0 + ai,1(x1)2 + · · ·+ ai,n(xn)2

i = 1, 2, . . . , R. In this case our gradient method will try to train the ai,j, ci
j ,

and σi
j to find a fuzzy system that provides nonlinear interpolation between

R quadratic functions.

(d) Repeat (c) but for

gi(x) = ai,0 + exp
[
ai,1(x1)2

]
+ · · ·+ exp

[
ai,n(xn)2

]

5.12 Design Problems
Design Problem 5.1 (Identification of a Fuzzy System Model of a Tank):

Suppose that you are given the “surge tank” system that is shown in Figure 6.44
on page 399. Suppose that the differential equation representing this system is

dh(t)
dt

=
−c

√
2gh(t)

A(h(t))
+

1
A(h(t))

u(t)

where u(t) is the input flow (control input) that can be positive or negative (it
can pull liquid out of the tank), h(t) is the liquid level (the output y(t) = h(t)),
A(h(t)) is the cross-sectional area of the tank, g = 9.8 m/sec2 is acceleration due
to gravity, and c = 1 is the known cross-sectional area of the output pipe. Assume
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that a = 1 and that A(h) = ah2 + b where a = 1 and b = 2 (i.e., that we know
the tank characteristics exactly). Assume, however, that you have only an idea
about what the order of the system is. That is, assume that you do not know that
the system is governed exactly by the above differential equation. Hence, you will
treat this system as your physical system (“truth model”) when you gather data
to perform identification of the model. When you then want to test the validity
of the model that you construct with your identification approaches, you test it
against the truth model.

(a) Use the fuzzy clustering with optimal output predefuzzification approach to
construct a fuzzy system whose input-output behavior is similar to that of
the surge tank. Clearly explain your approach, any assumptions that you
make, and the design parameters you choose. Also, be careful in your choice
of the training data set. Make sure that the input u(t) properly excites the
system dynamics.

(b) Develop a second identification approach to producing a fuzzy system model,
different from the one in (a).

(c) Perform a comparative analysis between the approaches in (a) and (b) focus-
ing on how well the fuzzy system models you produced via the identification
approaches model the physical system represented by the truth model. To
do this, be sure to test the system with inputs different from those you used
to train the models.

Design Problem 5.2 (Gasket Leak Estimation for an Engine)�: Govern-
ment regulations that attempt to minimize environmental impact and safety haz-
ards for automobiles have motivated the need for estimation of engine parameters
that will allow us to determine if an engine has failed. In this problem you will de-
velop a fuzzy estimator for estimating the parameter k2 for the engine described
in Section 5.2.5 on page 243 (i.e., use the data in Gk2).

(a) Establish an engine failure simulator as it is described in Section 5.2.5 on
page 243. Demonstrate that your engine failure simulator produces the same
results as in Section 5.2.5. Develop the training data set Gk2 for the engine
as it is described in Section 5.2.5.

(b) Choose a method from the chapter and develop a fuzzy estimator for k2.
You can either use the data Gk2 or compute your own training data set.

(c) Next, test the failure estimator using the engine simulator for the failure
scenario for k2 in Table 5.2. The testing process is implemented using the
engine failure simulator and a constant step of Θ = 0.1 for both an ideal
no-disturbance condition and a disturbance input TL of the form shown in
Figure 5.4 on page 245. Plot the estimates and actual values on the same
graph, and evaluate the accuracy of the estimator.
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Design Problem 5.3 (Engine Friction Estimation)�: In this problem you
will use the data set Gk5 in Section 5.2.5 on page 243 to design parameter estima-
tors for the parameter k5, which can indicate whether there is excessive friction
in the engine.

(a) Establish an engine failure simulator as it is described in Section 5.2.5 on
page 243. Demonstrate that your engine failure simulator produces the same
results as in Section 5.2.5. Develop the training data set Gk5 for the engine
as it is described in Section 5.2.5.

(b) Choose a method from the chapter and develop a fuzzy estimator for k5.
You can either use the data Gk5 or compute your own training data set.

(c) Test the quality of the estimators that you developed in (b). The testing
process should be implemented using the engine failure simulator from (a)
and a constant step of Θ = 0.1 for both an ideal no-disturbance condition
and a disturbance input TL of the form shown in Figure 5.4 on page 245.
Plot the estimates and actual values on the same graph, and evaluate the
accuracy of the estimator.

Design Problem 5.4 (Cargo Ship Failure Estimator)�: In this problem we
introduce the cargo ship models and the failure modes to be considered, and you
will first develop a failure simulator test bed for the cargo ship. We use the cargo
ship model given in Chapter 6, Section 6.3.1 on page 333, where the rudder angle
δ is used to steer the ship along a heading ψ (see Figure 6.5). The reference
input is ψd and e = ψd − ψ. A simple control law, such as proportional-integral-
derivative (PID) control, is typically used in autopilot regulation of the ship. In
this problem we will use a proportional derivative (PD) controller of the form

δ = kpe + kdė (5.73)

where we choose kp = −3.1 and kd = 105. Closed-loop control of this form will
be used in both training and testing of failure estimators for the ship.

The inputs to the failure simulator should be the desired ship heading ψd and
the possible parameter changes representing failures. Again, there are training
and testing inputs; these are shown in Figure 5.21. Unlike the engine failure
simulator developed in Section 5.2.5, there exist two cargo ship models where the
model to be used depends whether we are constructing the failure identifier or
testing it. If the simulator is being used to train the fuzzy failure estimator, then
we select the training input and use the third-order linear model in Equation (6.6)
on page 334. We use the nonlinear model, in Equation (6.7) on page 335, when
testing the failure estimator methods.

There are two parameters that are varied to represent failures in the cargo ship.
They are the velocity parameter u (which represents an inaccurate speed sensor
reading), and a bias in the control variable δ. The value of the failed parameter for
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FIGURE 5.21 Failure simulator inputs (plots created by
Sashonda Morris).

the velocity u is determined by equations similar to Equations (5.11) and (5.12)
that were used for the engine failure simulator. The value of the rudder angle
failure δ(failure) is determined by adding a constant bias, ± δ̄, to the nominal
rudder angle value.

Table 5.6 shows the failure scenarios that we would like to be able to predict
(so we would like to estimate u and δ).

TABLE 5.6 Failure Scenarios for Cargo
Ship

Parameter Nominal Failure
Value Setting

u 5 m/s −80%

δ δ ∈ [−45◦, +45◦] δ̄ = ±5

(a) Do four simulations, all for the “testing” input for the ship when the nonlin-
ear ship model is used. The first should show the response of the closed-loop
control system for the nominal no-failure case. The second should show how
the closed-loop control system will respond to a speed sensor failure of −80%
induced at t = 0. The third (fourth) should show how the closed-loop control
system will respond to a rudder angle bias error of +5 degrees (−5 degrees)
that is induced at t = 0. Each of the four simulations should be run for 6000
seconds. What effect does the speed sensor failure have on rise-time, settling
time, and overshoot? What effect does the rudder angle bias have on the
steady-state error?

(b) Using the cargo ship failure simulator from (a) with the linear ship model and
the training input ψd shown in Figure 5.21, data sets should be generated
for training fuzzy estimators. The parameters u and δ should be varied over
a specified range of values to account for the possible failure scenarios the
cargo ship steering system might encounter. The parameter u should be
varied between 0% and 90% of its nominal value (i.e., ∆u ∈ [0, 0.9]) at 10%
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increments yielding Mu = 10 output responses. The constant bias value δ̄
should be varied between ± 10 at an increment of 2, yielding Mδ = 11
output responses. Plot the output responses when the parameters u and δ
are varied in this way.

Explain why a good way to estimate a failure in the velocity parameter u is
based on the rise-time and percent overshoot of the output responses, while
a failure in the control parameter δ is best characterized by the steady-state
error e = ψd − ψ. The percent overshoot can be best characterized by the
error e = ψd−ψ responses for the given parameter u. Plot the error responses
for variations in the velocity parameter u and the control parameter δ.

The error responses of the cargo ship when the parameter u is varied
should be used to form the data d(m) for training the estimators for the
velocity parameter. A moving window of length = 200 seconds should be
used to sample the response at an interval of T = 50 seconds. Notice that
most information about a particular failure is contained between 100 and
1200 seconds for a step input of ψd = 45◦, and between 3100 and 4200
seconds for a step input of ψd = 0◦. The error responses should be sampled
over these ranges. The full set of cargo ship failure data for the speed sensor
is then given by

Gu = {([ej(kT ), ej(kT − T ), ej(kT − 2T ), ej(kT − 3T ),
ej(kT − 4T )cej(kT )]�, uj) :
k ∈ {1, 2, . . . , 23}, 1 ≤ j ≤ Mu } (5.74)

where uj denotes the jth value (1 ≤ j ≤ Mu) of u and ej(kT ), ej(kT −
T ), ej(kT − 2T ), ej(kT − 3T ), ej(kT − 4T ), and cej(kT ) represent the cor-
responding values of e(kT ), e(kT − T ), e(kT − 2T ), e(kT − 3T ), e(kT − 4T ),
and ce(kT ) that were generated using this uj. The value of cej(kT ) is the
current change in error given by

cej(kT ) =
ej(kt) − ej(kT − T )

T
(5.75)

and uj represents the size of the failure and the parameter we want to
estimate. Generate the data set Gu.

(c) The failure data sets for the control parameter δ should be formed using
the error responses generated when the parameter δ was varied. Because the
responses for this parameter settle within 500 seconds, the fuzzy estimator
is trained between 50 and 500 seconds at a sampling period T = 50 seconds.
The full set of cargo ship failure data for the control variable δ is given by

Gδ = {([ej(kT ), ej(kT − T ), ej(kT − 2T )]�, δj) :
k ∈ {1, 2, . . . , 8}, 1 ≤ j ≤ Mδ} (5.76)

where ej(kT ), . . . , ej(kT − 2T ) are the sampled values of the error e = ψd −
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ψ, and δj represents the failure and the parameter we want to estimate.
Generate the data set Gδ.

(d) Using a method of your choice, train the estimators for both failures. Test
the quality of the estimators and provide plots of estimated and actual values
on the same graph.



C H A P T E R 6

Adaptive Fuzzy
Control

They know enough who know how to learn.

–Henry Brooks Adams

6.1 Overview
The design process for fuzzy controllers that is based on the use of heuristic in-
formation from human experts has found success in many industrial applications.
Moreover, the approach to constructing fuzzy controllers via numerical input-output
data, which we described in Chapter 5, is increasingly finding use. Regardless of
which approach is used, however, there are certain problems that are encountered
for practical control problems, including the following: (1) The design of fuzzy con-
trollers is performed in an ad hoc manner so it is often difficult to choose at least
some of the controller parameters. For example, it is sometimes difficult to know
how to pick the membership functions and rule-base to meet a specific desired
level of performance. (2) The fuzzy controller constructed for the nominal plant
may later perform inadequately if significant and unpredictable plant parameter
variations occur, or if there is noise or some type of disturbance or some other en-
vironmental effect. Hence, it may be difficult to perform the initial synthesis of the
fuzzy controller, and if the plant changes while the closed-loop system is operating
we may not be able to maintain adequate performance levels.

As an example, in Chapter 3 we showed how our heuristic knowledge can be
used to design a fuzzy controller for the rotational inverted pendulum. However,
we also showed that if a bottle half-filled with water is attached to the endpoint,
the performance of the fuzzy controller degraded. While we certainly could have
tuned the controller for this new situation, it would not then perform as well with-
out a bottle of liquid at the endpoint. It is for this reason that we need a way
to automatically tune the fuzzy controller so that it can adapt to different plant
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conditions. Indeed, it would be nice if we had a method that could automatically
perform the whole design task for us initially so that it would also synthesize the
fuzzy controller for the nominal condition. In this chapter we study systems that
can automatically synthesize and tune (direct) fuzzy controllers.

There are two general approaches to adaptive control, the first of which is
depicted in Figure 6.1. In this approach the “adaptation mechanism” observes the
signals from the control system and adapts the parameters of the controller to
maintain performance even if there are changes in the plant. Sometimes, the desired
performance is characterized with a “reference model,” and the controller then seeks
to make the closed-loop system behave as the reference model would even if the
plant changes. This is called “model reference adaptive control” (MRAC).

PlantController

Adaptation
mechanism

r(t) u(t) y(t)

FIGURE 6.1 Direct adaptive control.

In Section 6.2 we use a simple example to introduce a method for direct (model
reference) adaptive fuzzy control where the controller that is tuned is a fuzzy con-
troller. Next, we provide several design and implementation case studies to show
how it compares to conventional adaptive control for a ship steering application,
how to make it work for a multi-input multi-output (MIMO) fault-tolerant aircraft
control problem, and how it can perform in implementation for the two-link flexible
robot from Chapter 3 to compensate for the effect of a payload variation.

Following this, in Section 6.4 we show several ways to “dynamically focus” the
learning activities of an adaptive fuzzy controller. A simple magnetic levitation con-
trol problem is used to introduce the methods, and we compare the performance
of the methods to a conventional adaptive control technique. Design and imple-
mentation case studies are provided for the rotational inverted pendulum (with a
sloshing liquid in a bottle at the endpoint) and the machine scheduling problems
from Chapter 3.

In the second general approach to adaptive control, which is shown in Fig-
ure 6.2, we use an on-line system identification method to estimate the parameters
of the plant and a “controller designer” module to subsequently specify the param-
eters of the controller. If the plant parameters change, the identifier will provide
estimates of these and the controller designer will subsequently tune the controller.
It is inherently assumed that we are certain that the estimated plant parameters are
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equivalent to the actual ones at all times (this is called the “certainty equivalence
principle”). Then if the controller designer can specify a controller for each set of
plant parameter estimates, it will succeed in controlling the plant. The overall ap-
proach is called “indirect adaptive control” since we tune the controller indirectly
by first estimating the plant parameters (as opposed to direct adaptive control,
where the controller parameters are estimated directly without first identifying the
plant parameters). In Section 6.6 we explain how to use the on-line estimation
techniques described in Chapter 5 (recursive least squares and gradient methods),
coupled with a controller designer, to achieve indirect adaptive fuzzy control for
nonlinear systems. We discuss two approaches, one based on feedback linearization
and the other we name “adaptive parallel distributed compensation” since it builds
on the parallel distributed compensator discussed in Chapter 4.

PlantController

System
identification

Controller
designer

r(t) u(t) y(t)

Plant
parameters

Controller
parameters

FIGURE 6.2 Indirect adaptive control.

Upon completing this chapter, the reader will be able to design a variety of
adaptive fuzzy controllers for practical applications. The reader should consider this
chapter fundamental to the study of fuzzy control systems as adaptation techniques
such as the ones presented in this chapter have proven to be some of the most
effective fuzzy control methods. Given a firm understanding of Chapter 2 (and
parts of Chapter 3), it is possible to cover the material in this chapter on direct
adaptive fuzzy control in Sections 6.2–6.5 without having read anything else in
the book. The reader wanting to cover this entire chapter will, however, need a
firm understanding of all the previous chapters except Chapter 4. The reader does
not need to cover this chapter to understand the basic concepts in the next one;
however, a deeper understanding of the concepts in this chapter will certainly be
beneficial for the next chapter since fuzzy supervisory control provides yet another
approach to adaptive control.

6.2 Fuzzy Model Reference Learning Control
(FMRLC)

A “learning system” possesses the capability to improve its performance over time
by interacting with its environment. A learning control system is designed so that
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its “learning controller” has the ability to improve the performance of the closed-
loop system by generating command inputs to the plant and utilizing feedback
information from the plant.

In this section we introduce the “fuzzy model reference learning controller”
(FMRLC), which is a (direct) model reference adaptive controller. The term “learn-
ing” is used as opposed to “adaptive” to distinguish it from the approach to the
conventional model reference adaptive controller for linear systems with unknown
plant parameters. In particular, the distinction is drawn since the FMRLC will tune
and to some extent remember the values that it had tuned in the past, while the
conventional approaches for linear systems simply continue to tune the controller
parameters. Hence, for some applications when a properly designed FMRLC re-
turns to a familiar operating condition, it will already know how to control for that
condition. Many past conventional adaptive control techniques for linear systems
would have to retune each time a new operating condition is encountered.

The functional block diagram for the FMRLC is shown in Figure 6.3. It has four
main parts: the plant, the fuzzy controller to be tuned, the reference model, and
the learning mechanism (an adaptation mechanism). We use discrete time signals
since it is easier to explain the operation of the FMRLC for discrete time systems.
The FMRLC uses the learning mechanism to observe numerical data from a fuzzy
control system (i.e., r(kT ) and y(kT ) where T is the sampling period). Using this
numerical data, it characterizes the fuzzy control system’s current performance
and automatically synthesizes or adjusts the fuzzy controller so that some given
performance objectives are met. These performance objectives (closed-loop specifi-
cations) are characterized via the reference model shown in Figure 6.3. In a manner
analogous to conventional MRAC where conventional controllers are adjusted, the
learning mechanism seeks to adjust the fuzzy controller so that the closed-loop sys-
tem (the map from r(kT ) to y(kT )) acts like the given reference model (the map
from r(kT ) to ym(kT )). Basically, the fuzzy control system loop (the lower part of
Figure 6.3) operates to make y(kT ) track r(kT ) by manipulating u(kT ), while the
upper-level adaptation control loop (the upper part of Figure 6.3) seeks to make
the output of the plant y(kT ) track the output of the reference model ym(kT ) by
manipulating the fuzzy controller parameters.

Next, we describe each component of the FMRLC in more detail for the case
where there is one input and one output from the plant (we will use the design and
implementation case studies in Section 6.3 to show how to apply the approach to
MIMO systems).

6.2.1 The Fuzzy Controller
The plant in Figure 6.3 has an input u(kT ) and output y(kT ). Most often the
inputs to the fuzzy controller are generated via some function of the plant output
y(kT ) and reference input r(kT ). Figure 6.3 shows a simple example of such a map
that has been found to be useful in some applications. For this, the inputs to the
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FIGURE 6.3 Fuzzy model reference learning controller
(figure taken from [112], c© IEEE).

fuzzy controller are the error e(kT ) = r(kT ) − y(kT ) and change in error

c(kT ) =
e(kT ) − e(kT − T )

T

(i.e., a PD fuzzy controller). There are times when it is beneficial to place a smooth-
ing filter between the r(kT ) reference input and the summing junction. Such a filter
is sometimes needed to make sure that smooth and reasonable requests are made
of the fuzzy controller (e.g., a square wave input for r(kT ) may be unreasonable for
some systems that you know cannot respond instantaneously). Sometimes, if you
ask for the system to perfectly track an unreasonable reference input, the FMRLC
will essentially keep adjusting the “gain” of the fuzzy controller until it becomes
too large. Generally, it is important to choose the inputs to the fuzzy controller,
and how you process r(kT ) and y(kT ), properly; otherwise performance can be
adversely affected and it may not be possible to maintain stability.

Returning to Figure 6.3, we use scaling gains ge, gc, and gu for the error e(kT ),
change in error c(kT ), and controller output u(kT ), respectively. A first guess at
these gains can be obtained in the following way: The gain ge can be chosen so
that the range of values that e(kT ) typically takes on will not make it so that its
values will result in saturation of the corresponding outermost input membership
functions. The gain gc can be determined by experimenting with various inputs
to the fuzzy control system (without the adaptation mechanism) to determine the
normal range of values that c(kT ) will take on. Using this, we choose the gain
gc so that normally encountered values of c(kT ) will not result in saturation of
the outermost input membership functions. We can choose gu so that the range of
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outputs that are possible is the maximum one possible yet still so that the input
to the plant will not saturate (for practical problems the inputs to the plant will
always saturate at some value). Clearly, this is a very heuristic choice for the gains
and hence may not always work. Sometimes, tuning of these gains will need to be
performed when we tune the overall FMRLC.

Rule-Base

The rule-base for the fuzzy controller has rules of the form

If ẽ is Ẽj and c̃ is C̃ l Then ũ is Ũm

where ẽ and c̃ denote the linguistic variables associated with controller inputs e(kT )
and c(kT ), respectively, ũ denotes the linguistic variable associated with the con-
troller output u, Ẽj and C̃ l denote the jth (lth) linguistic value associated with ẽ
(c̃), respectively, and Ũm denotes the consequent linguistic value associated with ũ.
Hence, as an example, one fuzzy control rule could be

If error is positive-large and change-in-error is negative-small
Then plant-input is positive-big

(in this case ẽ = “error”, Ẽ4 = “positive-large”, etc.). We use a standard choice for
all the membership functions on all the input universes of discourse, such as the
ones shown in Figure 6.4. Hence, we would simply use some membership functions
similar to those in Figure 6.4, but with a scaled horizontal axis, for the c(kT ) input.

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 e(kT)

EEEEEEEEEEE
-5 -4 -3 -2 -1 0 1 2 3 4 5

1

FIGURE 6.4 Membership functions for input universe of
discourse (figure taken from [112], c© IEEE).

We will use all possible combinations of rules for the rule-base. For example, we
could choose to have 11 membership functions on each of the two input universes
of discourse, in which case we would have 112 = 121 rules in the rule-base. At first
glance it would appear that the complexity of the controller could make implemen-
tation prohibitive for applications where it is necessary to have many inputs to the
fuzzy controller. However, we must remind the reader of the results in Section 2.6
on page 97 where we explain how implementation tricks can be used to significantly
reduce computation time when there are input membership functions of the form
shown in Figure 6.4.
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Rule-Base Initialization

The input membership functions are defined to characterize the premises of the
rules that define the various situations in which rules should be applied. The input
membership functions are left constant and are not tuned by the FMRLC. The
membership functions on the output universe of discourse are assumed to be un-
known. They are what the FMRLC will automatically synthesize or tune. Hence,
the FMRLC tries to fill in what actions ought to be taken for the various situations
that are characterized by the premises.

We must choose initial values for each of the output membership functions.
For example, for an output universe of discourse [−1, 1] we could choose triangular-
shaped membership functions with base widths of 0.4 and centers at zero. This
choice represents that the fuzzy controller initially knows nothing about how to
control the plant so it inputs u = 0 to the plant initially (well, really it does know
something since we specify the remainder of the fuzzy controller a priori). Of course,
one can often make a reasonable best guess at how to specify a fuzzy controller
that is “more knowledgeable” than simply placing the output membership function
centers at zero. For example, we could pick the initial fuzzy controller to be the
best one that we can design for the nominal plant. Notice, however, that this choice
is not always the best one. Really, what you often want to choose is the fuzzy
controller that is best for the operating condition that the plant will begin in (this
may not be the nominal condition). Unfortunately, it is not always possible to pick
such a controller since you may not be able to measure the operating condition
of the plant, so making a best guess or simply placing the membership function
centers at zero are common choices.

To complete the specification of the fuzzy controller, we use minimum or prod-
uct to represent the conjunction in the premise and the implication (in this book
we will use minimum unless otherwise stated) and the standard center-of-gravity
defuzzification technique. As an alternative, we could use appropriately initialized
singleton output membership functions and center-average defuzzification.

Learning, Memorization, and Controller Input Choice

For some applications you may want to use an integral of the error or other prepro-
cessing of the inputs to the fuzzy controller. Sometimes the same guidelines that
are used for the choice of the inputs for a nonadaptive fuzzy controller are useful for
the FMRLC. We have found, however, times where it is advantageous to replace
part of a conventional controller with a fuzzy controller and use the FMRLC to
tune it (see the fault-tolerant control application in Section 6.3). In these cases the
complex preprocessing of inputs to the fuzzy controller is achieved via a conven-
tional controller. Sometimes there is also the need for postprocessing of the fuzzy
controller outputs.

Generally, however, choice of the inputs also involves issues related to the learn-
ing dynamics of the FMRLC. As the FMRLC operates, the learning mechanism will
tune the fuzzy controller’s output membership functions. In particular, in our ex-
ample, for each different combination of e(kT ) and c(kT ) inputs, it will try to learn
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what the best control actions are. In general, there is a close connection between
what inputs are provided to the controller and the controller’s ability to learn to
control the plant for different reference inputs and plant operating conditions. We
would like to be able to design the FMRLC so that it will learn and remember dif-
ferent fuzzy controllers for all the different plant operating conditions and reference
inputs; hence, the fuzzy controller needs information about these. Often, however,
we cannot measure the operating condition of the plant, so the FMRLC does not
know exactly what operating condition it is learning the controller for. Moreover, it
then does not know exactly when it has returned to an operating condition. Clearly,
then, if the fuzzy controller has better information about the plant’s operating con-
ditions, the FMRLC will be able to learn and apply better control actions. If it
does not have good information, it will continually adapt, but it will not properly
remember.

For instance, for some plants e(kT ) and c(kT ) may only grossly characterize
the operating conditions of the plant. In this situation the FMRLC is not able to
learn different controllers for different operating conditions; it will use its limited
information about the operating condition and continually adapt to search for the
best controller. It degrades from a learning system to an adaptive system that will
not properly remember the control actions (this is not to imply, however, that there
will automatically be a corresponding degradation in performance).

Generally, we think of the inputs to the fuzzy controller as specifying what
conditions we need to learn different controllers for. This should be one guideline
used for the choice of the fuzzy controller inputs for practical applications. A com-
peting objective is, however, to keep the number of fuzzy controller inputs low due
to concerns about computational complexity. In fact, to help with computational
complexity, we will sometimes use multiple fuzzy controllers with fewer inputs to
each of them rather than one fuzzy controller with many inputs; then we may, for
instance, sum the outputs of the individual controllers.

6.2.2 The Reference Model
Next, you must decide what to choose for the reference model that quantifies the
desired performance. Basically, you want to specify a desirable performance, but
also a reasonable one. If you ask for too much, the controller will not be able to
deliver it; certain characteristics of real-world plants place practical constraints on
what performance can be achieved. It is not always easy to pick a good reference
model since it is sometimes hard to know what level of performance we can expect,
or because we have no idea how to characterize the performance for some of the
plant output variables (see the flexible robot application in Section 6.3 where it is
difficult to know a priori how the acceleration profiles of the links should behave).

In general, the reference model may be discrete or continuous time, linear or
nonlinear, time-invariant or time-varying, and so on. For example, suppose that we
would like to have the response track the continuous time model

G(s) =
1

s + 1
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Suppose that for your discrete-time implementation you use T = 0.1 sec. Using a
bilinear (Tustin) transformation to find the discrete equivalent to the continuous-
time transfer function G(s), we replace s with 2

T
z−1
z+1 to obtain

Ym(z)
R(z)

= H(z) =
1
21

(z + 1)
z − 19

21

where Ym(z) and R(z) are the z-transform of ym(kT ) and r(kT ), respectively. Now,
for a discrete-time implementation we would choose

ym(kT + T ) =
19
21

ym(kT ) +
1
21

r(kT + T ) +
1
21

r(kT )

This choice would then represent that we would like our output y(kT ) to track a
smooth, stable, first-order type response of ym(kT ). A similar approach can be used
to, for example, track a second-order system with a specified damping ratio ζ and
undamped natural frequency ωn.

The performance of the overall system is computed with respect to the reference
model by the learning mechanism by generating an error signal

ye(kT ) = ym(kT ) − y(kT )

Given that the reference model characterizes design criteria such as rise-time and
overshoot and the input to the reference model is the reference input r(kT ), the
desired performance of the controlled process is met if the learning mechanism
forces ye(kT ) to remain very small for all time no matter what the reference input
is or what plant parameter variations occur. Hence, the error ye(kT ) provides a
characterization of the extent to which the desired performance is met at time kT .
If the performance is met (i.e., ye(kT ) is small), then the learning mechanism will
not make significant modifications to the fuzzy controller. On the other hand if
ye(kT ) is big, the desired performance is not achieved and the learning mechanism
must adjust the fuzzy controller. Next, we describe the operation of the learning
mechanism.

6.2.3 The Learning Mechanism
The learning mechanism tunes the rule-base of the direct fuzzy controller so that
the closed-loop system behaves like the reference model. These rule-base modifica-
tions are made by observing data from the controlled process, the reference model,
and the fuzzy controller. The learning mechanism consists of two parts: a “fuzzy
inverse model” and a “knowledge-base modifier.” The fuzzy inverse model performs
the function of mapping ye(kT ) (representing the deviation from the desired be-
havior), to changes in the process inputs p(kT ) that are necessary to force ye(kT )
to zero. The knowledge-base modifier performs the function of modifying the fuzzy
controller’s rule-base to affect the needed changes in the process inputs. We explain
each of these components in detail next.



326 Chapter 6 / Adaptive Fuzzy Control

Fuzzy Inverse Model

Using the fact that most often a control engineer will know how to roughly char-
acterize the inverse model of the plant (examples of how to do this will be given in
several examples in this chapter), we use a fuzzy system to map ye(kT ), and pos-
sibly functions of ye(kT ) such as yc(kT ) = 1

T (ye(kT ) − ye(kT − T )) (or any other
closed-loop system data), to the necessary changes in the process inputs p(kT ).
This fuzzy system is sometimes called the “fuzzy inverse model” since information
about the plant inverse dynamics is used in its specification. Some, however, avoid
this terminology and simply view the fuzzy system in the adaptation loop in Fig-
ure 6.3 to be a controller that tries to pick p(kT ) to reduce the error ye(kT ). This is
the view taken for some of the design and implementation case studies in the next
section.

Note that similar to the fuzzy controller, the fuzzy inverse model shown in
Figure 6.3 contains scaling gains, but now we denote them with gye, gyc , and gp.
We will explain how to choose these scaling gains below. Given that gyeye and
gycyc are inputs to the fuzzy inverse model, the rule-base for the fuzzy inverse
model contains rules of the form

If ỹe is Ỹ j
e and ỹc is Ỹ l

c Then p̃ is P̃ m

where Ỹ j
e and Ỹ l

c denote linguistic values and P̃ m denotes the linguistic value as-
sociated with the mth output fuzzy set. In this book we often utilize membership
functions for the input universes of discourse as shown in Figure 6.4, symmetric
triangular-shaped membership functions for the output universes of discourse, min-
imum to represent the premise and implication, and COG defuzzification. Other
choices can work equally well. For instance, we could make the same choices, except
use singleton output membership functions and center-average defuzzification.

Knowledge-Base Modifier

Given the information about the necessary changes in the input, which are repre-
sented by p(kT ), to force the error ye to zero, the knowledge-base modifier changes
the rule-base of the fuzzy controller so that the previously applied control action
will be modified by the amount p(kT ). Consider the previously computed control
action u(kT − T ), and assume that it contributed to the present good or bad sys-
tem performance (i.e., it resulted in the value of y(kT ) such that it did not match
ym(kT )). Hence, for illustration purposes we are assuming that in one step the plant
input can affect the plant output; in Section 6.2.4 we will explain what to do if it
takes d steps for the plant input to affect the plant output. Note that e(kT − T )
and c(kT −T ) would have been the error and change in error that were input to the
fuzzy controller at that time. By modifying the fuzzy controller’s knowledge-base,
we may force the fuzzy controller to produce a desired output u(kT − T ) + p(kT ),
which we should have put in at time kT − T to make ye(kT ) smaller. Then, the
next time we get similar values for the error and change in error, the input to the
plant will be one that will reduce the error between the reference model and plant
output.
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Assume that we use symmetric output membership functions for the fuzzy
controller, and let bm denote the center of the membership function associated
with Ũm. Knowledge-base modification is performed by shifting centers bm of the
membership functions of the output linguistic value Ũm that are associated with
the fuzzy controller rules that contributed to the previous control action u(kT −T ).
This is a two-step process:

1. Find all the rules in the fuzzy controller whose premise certainty

µi(e(kT − T ), c(kT − T )) > 0 (6.1)

and call this the “active set” of rules at time kT − T . We can characterize the
active set by the indices of the input membership functions of each rule that
is on (since we use all possible combinations of rules, there will be one output
membership function for each possible rule that is on).

2. Let bm(kT ) denote the center of the mth output membership function at time
kT . For all rules in the active set, use

bm(kT ) = bm(kT − T ) + p(kT ) (6.2)

to modify the output membership function centers. Rules that are not in the
active set do not have their output membership functions modified.

Notice that for our development, when COG is used, this update will guarantee
that the previous input would have been u(kT −T )+p(kT ) for the same e(kT −T )
and c(kT −T ) (to see this, simply analyze the formula for COG to see that adding
the amount p(kT ) to the centers of the rules that were on will make the output shift
by p(kT )). For the case where the fuzzy controller has input membership functions
of the form shown in Figure 6.4, there will only be at most four rules in the active
set at any one time instant (i.e., four rules with µi(e(kT − T ), c(kT − T )) > 0 at
time kT ). Then we only need to update at most four output membership function
centers via Equation (6.2).

Example

As an example of the knowledge-base modification procedure, assume that all the
scaling gains for both the fuzzy controller and the fuzzy inverse model are one.
Suppose that the fuzzy inverse model produces an output p(kT ) = 0.5, indicating
that the value of the output to the plant at time kT−T should have been u(kT−T )+
0.5 to improve performance (i.e., to force ye ≈ 0). Next, suppose that e(kT − T ) =
0.75 and c(kT − T ) = −0.2 and that the membership functions for the inputs to
the fuzzy controller are given in Figure 6.4. Then rules

R1: If E3 and C−1 Then U1

and
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R2: If E4 and C−1 Then U2

are the only rules that are in the active set (notice that we chose to use the indices
for the rule “1” and “2” simply for convenience). In particular, from Figure 6.4 we
have µ1 = 0.25 and µ2 = 0.75, so rules R1 and R2 are the only ones that have
their consequent fuzzy sets (U1, U2) modified. Suppose that at time kT −T we had
b1(kT − T ) = 1 and b2(kT − T ) = 3. To modify these fuzzy sets we simply shift
their centers according to Equation (6.2) to get

b1(kT ) = b1(kT − T ) + p(kT ) = 1 + 0.5 = 1.5

and

b2(kT ) = b2(kT − T ) + p(kT ) = 3 + 0.5 = 3.5

Learning, Memorization, and Inverse Model Input Choice

Notice that the changes made to the rule-base are only local ones. That is, the
entire rule-base is not updated at every time step, just the rules that needed to
be updated to force ye(kT ) to zero. Notice that this local learning is important
since it allows the changes that were made in the past to be remembered by the
fuzzy controller. Recall that the type and amount of memory depends critically
on the inputs to the fuzzy controller. Different parts of the rule-base are “filled in”
based on different operating conditions for the system (as characterized by the fuzzy
controller inputs), and when one area of the rule-base is updated, other rules are
not affected. Hence, if the appropriate inputs are provided to the fuzzy controller so
that it can distinguish between the situations in which it should behave differently,
the controller adapts to new situations and also remembers how it has adapted to
past situations.

Just as the choice of inputs to the fuzzy controller has a fundamental impact
on learning and memorization, so does the choice of inputs to the inverse model.
For instance, you may want to choose the inputs to the inverse model so that it
will adapt differently in different operating conditions. In one operating condition
we may want to adapt more slowly than in another. In some operating condition
the direction of adjustment of the output membership function centers may be
the opposite of that in another. If there are multiple fuzzy controllers, you may
want multiple inverse models to adjust them. This can sometimes help with com-
putational complexity since we could then be using fewer inputs per fuzzy inverse
model.

The choice of inputs to the fuzzy inverse model shown in Figure 6.3 indicates
that we want to adapt differently for different errors and error rates between the
reference model and plant output. The inverse model may be designed so that, for
example, if the error is small, then the adjustments to the fuzzy controller should
be small, and if the error is small but the rate of error increase is high, then the
adjustments should be larger. It is rules such as these that are loaded into the fuzzy
inverse model.
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6.2.4 Alternative Knowledge-Base Modifiers
Recall that we had assumed that the plant input u(kT ) would affect the plant
output in one time step so that y(kT + T ) would be affected by u(kT ). To remove
this assumption and hence generalize the approach, let d denote the number of time
steps that it takes for an input to the plant u(kT ) to first affect its output. That
is, y(kT + dT ) is affected by u(kT ). To handle this case, we use the same approach
but we go back d steps to modify the rules. Hence, we use

µi(e(kT − dT ), c(kT − dT )) > 0 (6.3)

to form the “active set” of rules at time kT − dT . To update the rules in the active
set, we let

bm(kT ) = bm(kT − dT ) + p(kT ) (6.4)

(when d = 1, we get the case in Equations (6.1) and (6.2)). This ensures that we
modify the rules that actually contributed to the current output y(kT ) that resulted
in the performance characterization ye(kT ). For applications we have found that
we can most often perform a simple experiment with the plant to find d (e.g., put
a short-duration pulse into the plant and determine how long it takes for the input
to affect the output), and with this choice we can often design a very effective
FMRLC. However, this has not always been the case. Sometimes we need to treat
d as a tuning parameter for the knowledge-base modifier.

There are several alternatives to how the basic knowledge-base modification
procedure can work that can be used in conjunction with the d-step back approach.
For instance, note that an alternative to Equation (6.1) would be to include rules
in the active set that have

µi(e(kT − dT ), c(kT − dT )) > α

where 0 ≤ α < 1. In this case we will not modify rules whose premise certainty is
below some given threshold α. This makes some intuitive sense since we will then
not modify rules if the fuzzy system is not too sure that they should be on. However,
one could argue that any rule that contributed to the computation of u(kT − dT )
should be modified. This approach may be needed if you choose to use Gaussian
membership functions for the input universes of discourse since it will ensure that
you will not have to modify all the output centers at each time step, and hence the
local learning characteristic is maintained.

There are also alternatives to the center update procedure given in Equa-
tion (6.2). For instance, we could choose

bm(kT ) = bm(kT − dT ) + µm(e(kT − dT ), c(kT − dT ))p(kT )

so that we scale the amount we shift the membership functions by the µm certainty
of their premises. Intuitively, this makes sense since we will then change the mem-
bership functions from rules that were on more by larger amounts, and for rules
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that are not on as much we will not modify them as much. This approach has
proven to be more effective than the one in Equation (6.2) for some applications;
however, it is difficult to determine a priori which approach to use. We usually try
the scaled approach if the one in Equation (6.2) does not seem to work well, par-
ticularly if there are some unwanted oscillations in the system that seem to result
from excessive modification of output membership function center positions.

Another modification to the center update law is also necessary in some prac-
tical applications to ensure that the centers stay in some prespecified range. For
instance, you may want the centers to always be positive so that the controller will
never provide a negative output. Other times you may want the centers no larger
than some prespecified value to ensure that the control output will become no larger
than this value. In general, suppose that we know a priori that the centers should
be in the range [bmin, bmax] where bmin and bmax are given scalars. We can modify
the output center update rule to ensure that if the centers start in this range they
will stay in the range by adding the following two rules after the update formula:

If bm(kT ) < bmin Then bm(kT ) = bmin

If bm(kT ) > bmax Then bm(kT ) = bmax.

In other words, if the centers jump over the boundaries, they are set equal to the
boundary values.

Notice that you could combine the above alternatives to knowledge-base mod-
ification so that we set a threshold for including rules in the active set, scale the
updates to the centers, bound the updates to the centers, and use any number of
time steps back to form the active set. There are yet other alternatives that can be
used for knowledge-base modification procedures. For instance, parts of the rule-
base could be left intact (i.e., we would not let them be modified). This can be
useful when we know part of the fuzzy controller that is to be learned, we embed
this part into the fuzzy controller that is tuned, and do not let the learning mech-
anism change it. Such an approach is used for the vibration damping problem for
the two-link flexible robot in Section 6.3. As another alternative, when a center is
updated, you could always wait d or more steps before updating the center again.
This can be useful as a more “cautious” update procedure. It updates, then waits
to see if the update was sufficient to correct the error ye before it updates again. We
have successfully used this approach to avoid inducing oscillations when operating
at a set-point.

6.2.5 Design Guidelines for the Fuzzy Inverse Model
In this section we provide some design guidelines for the fuzzy inverse model and
its scaling gains. The choice of a particular fuzzy inverse model is application-
dependent, so we will use the case studies in Section 6.3 to show how it is chosen.
There are, however, some general guidelines for the the choice of the fuzzy inverse
model that we will outline here.
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First, we note that for a variety of applications we find that the specification of
the fuzzy inverse model is not much more difficult than the specification of a direct
fuzzy controller. In fact, the fuzzy inverse model often takes on a form that is quite
similar to a direct fuzzy controller. For instance, as you will see in the case studies
in Section 6.3, the rule-base often has some typical symmetry properties.

Second, for some practical applications it is necessary to define the inverse
model so that when the response of the plant is following the output of the refer-
ence model very closely, the fuzzy inverse model turns off the adaptation (such an
approach is used in the aircraft application in Section 6.3). In this way once the
inputs to the fuzzy inverse model get close to zero, the output of the fuzzy inverse
model becomes zero. We think of this as forcing the fuzzy inverse model to be satis-
fied with the response as long as it is quite close to the reference model; there is no
need to make it exact in many applications. Designing this characteristic into the
fuzzy inverse model can sometimes help ensure stability of the overall closed-loop
system. Another way to implement such a strategy is to directly modify the output
of the fuzzy inverse model by using the rule:

If |p(kT )| < εp Then p(kT ) = 0

where εp > 0 is a small number that is specified a priori. For typical fuzzy inverse
model designs (i.e., ones where the size of the output of the fuzzy inverse model
is directly proportional to the size of the inputs to the fuzzy inverse model), this
rule will make sure that when the inputs to the fuzzy inverse model are in a region
of zero, its output will be modified to zero. Hence, for small fuzzy inverse model
inputs the learning mechanism will turn off. If, however, the error between the plant
output and the reference input grows, then the learning mechanism will turn back
on and it will try to reduce the error. Such approaches to modifying the adaptation
on-line are related to “robustification” methods in conventional adaptive control.

Next, we provide general tuning procedures for the scaling gains of a given fuzzy
inverse model. For the sake of discussion, assume that both the fuzzy controller and
fuzzy inverse model are normalized so that their input and output effective universes
of discourse are all [−1, 1].

Fuzzy Inverse Model Design Procedure 1

Generally, we have found the following procedure to be useful for tuning the scaling
gains of the inverse model:

1. Select the gain gye so that ye(kT ) will not saturate the input membership
function certainty (near the endpoints). This is a heuristic choice since we
cannot know a priori how big ye(kT ) will get; however, we have found that for
many applications intuition about the process can be quite useful in determining
the maximum value.

2. Choose the gain gp to be the same as for the fuzzy controller output gain gu.
Let gyc = 0.
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3. Apply a step reference input r(kT ) that is of a magnitude that may be typical
during normal operation.

4. Observe the plant and reference model responses. There are three cases:

(a) If there exist unacceptable oscillations in the plant output response about
the reference model response, then increase gyc (we need additional deriva-
tive action in the learning mechanism to reduce the oscillations). Go to
step 3.

(b) If the plant output is unable to “keep up” with the reference model re-
sponse, then decrease gyc . Go to step 3.

(c) If the plant response is acceptable with respect to the reference model
response, then the controller design is completed.

We will use this gain selection procedure for the ship steering application in Sec-
tion 6.3.

Fuzzy Inverse Model Design Procedure 2

For a variety of applications, the above gain selection procedure has proven to
be very successful. For other applications, however, it has been better to use an
alternative procedure. In this procedure you pick the fuzzy controller and inverse
model using intuition, then focus on tuning the scaling gain gp, which we will call
the “adaptation gain” using an analogy with conventional adaptive controllers. The
procedure is as follows:

1. Begin with gp = 0 (i.e., with the adaptation mechanism turned off) and simu-
late the system. With a well-designed direct fuzzy controller you should get a
reasonable response, but if there is good reason to have adaptive control you
will find that the performance is not what you specified in the reference model
(at least for some plant conditions).

2. Choose the gains of the inverse model so that there is no saturation on its input
universes of discourse.

3. Increase gp slightly so that you just turn on the learning mechanism and it
makes only small changes to the rule-base at each step. For small gp you will
allow only very small updates to the fuzzy controller so that the learning rate
(adaptation rate) will be very slow. Perform any necessary tuning for the inverse
model.

4. Continue to increase gp and subsequently tune the inverse model as needed.
With gp large, you increase the adaptation rate, and hence if you increase it
too much, you can get undesirable oscillations and sometimes instability. You
should experiment and then choose an adaptation rate that is large enough to
make it so that the FMRLC can quickly adapt to changes in the plant, yet slow
enough so that it does not cause oscillations and instability.
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This design approach is what we will use for the fault-tolerant aircraft control
problem in Section 6.3, and it is one that we have successfully used for several
other FMRLC applications.

6.3 FMRLC: Design and Implementation Case
Studies

The FMRLC has been used in simulation studies for a variety of applications,
including an inverted pendulum (translational for swing-up and balancing, and ro-
tational for balancing); rocket velocity control; a rigid two-link robot; fault-tolerant
control for aircraft; ship steering; longitudinal and lateral control for automated
highway systems; antilock brake systems; base braking control; temperature, pres-
sure, and level control in a glass furnace; and others. It has been implemented for
balancing the rotational inverted pendulum, a ball-on-a-beam experiment, a liquid
level control problem, a single-link flexible robot, the two-link flexible robot, and
an induction machine. See the references at the end of the chapter for more details.

In this section we will study the cargo ship and fault-tolerant aircraft control
problems in simulation and provide implementation results for the two-link flexible
robot that was studied in Chapter 3. The cargo ship application helps to illustrate
all the steps in how to design an FMRLC. Moreover, we design two conventional
adaptive controllers and compare their performance to that of the FMRLC. The
fault-tolerant aircraft control problem helps to illustrate issues in fuzzy controller
initialization and how to design a more complex fuzzy inverse model by viewing
it as a controller in the adaptation loop. The two-link flexible link robot applica-
tion is used to show how the FMRLC can automatically synthesize a direct fuzzy
controller; you will want to compare its performance with the one that we manu-
ally constructed in Chapter 3. It also illustrates how to develop and implement an
FMRLC that can tune the fuzzy controller to compensate for changes in a MIMO
plant—in this case, payload variations.

6.3.1 Cargo Ship Steering
To improve fuel efficiency and reduce wear on ship components, autopilot systems
have been developed and implemented for controlling the directional heading of
ships. Often, the autopilots utilize simple control schemes such as PID control.
However, the capability for manual adjustments of the parameters of the controller
is added to compensate for disturbances acting upon the ship such as wind and
currents. Once suitable controller parameters are found manually, the controller
will generally work well for small variations in the operating conditions. For large
variations, however, the parameters of the autopilot must be continually modified.
Such continual adjustments are necessary because the dynamics of a ship vary with,
for example, speed, trim, and loading. Also, it is useful to change the autopilot
control law parameters when the ship is exposed to large disturbances resulting
from changes in the wind, waves, current, and water depth. Manual adjustment of
the controller parameters is often a burden on the crew. Moreover, poor adjustment
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may result from human error. As a result, it is of great interest to have a method
for automatically adjusting or modifying the underlying controller.

Ship Model

Generally, ship dynamics are obtained by applying Newton’s laws of motion to the
ship. For very large ships, the motion in the vertical plane may be neglected since
the “bobbing” or “bouncing” effects of the ship are small for large vessels. The
motion of the ship is generally described by a coordinate system that is fixed to the
ship [11, 149]. See Figure 6.5.
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FIGURE 6.5 Cargo ship.

A simple model of the ship’s motion is given by

...

ψ (t) +
(

1
τ1

+
1
τ2

)
ψ̈(t) +

(
1

τ1 τ2

)
ψ̇(t) =

K

τ1 τ2

(
τ3 δ̇(t) + δ(t)

)
(6.5)

where ψ is the heading of the ship and δ is the rudder angle. Assuming zero initial
conditions, we can write Equation (6.5) as

ψ(s)
δ(s)

=
K(sτ3 + 1)

s(sτ1 + 1)(sτ2 + 1)
(6.6)

where K, τ1, τ2, and τ3 are parameters that are a function of the ship’s constant
forward velocity u and its length l. In particular,

K = K0

(u

l

)
τi = τi0

(
l

u

)
i = 1, 2, 3

where we assume that for a cargo ship K0 = −3.86, τ10 = 5.66, τ20 = 0.38, τ30 =
0.89, and l = 161 meters [11]. Also, we will assume that the ship is traveling in the
x direction at a velocity of 5 m/s.
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In normal steering, a ship often makes only small deviations from a straight-line
path. Therefore, the model in Equation (6.5) is obtained by linearizing the equations
of motion around the zero rudder angle (δ = 0). As a result, the rudder angle should
not exceed approximately 5 degrees, otherwise the model will be inaccurate. For our
purposes, we need a model suited for rudder angles that are larger than 5 degrees;
hence, we use the model proposed in [20]. This extended model is given by

...

ψ (t) +
(

1
τ1

+
1
τ2

)
ψ̈(t) +

(
1

τ1 τ2

)
H(ψ̇(t)) =

K

τ1 τ2

(
τ3 δ̇(t) + δ(t)

)
(6.7)

where H(ψ̇) is a nonlinear function of ψ̇(t). The function H(ψ̇) can be found from
the relationship between δ and ψ̇ in steady state such that

...

ψ= ψ̈ = δ̇ = 0. An
experiment known as the “spiral test” has shown that H(ψ̇) can be approximated
by

H(ψ̇) = āψ̇3 + b̄ψ̇

where ā and b̄ are real-valued constants such that ā is always positive. For our
simulations, we choose the values of both ā and b̄ to be one.

Simulating the Ship

When we evaluate our controllers, we will use the nonlinear model in simulation.
Note that to do this we need to convert the nth-order nonlinear ordinary differential
equations representing the ship to n first-order ordinary differential equations; for
convenience, let

a =
(

1
τ1

+
1
τ2

)

b =
(

1
τ1τ2

)

c =
Kτ3

τ1τ2

and

d =
K

τ1τ2

(this notation is not to be confused with the d-step delay of Section 6.2.4). We
would like the model in the form

ẋ(t) = F (x(t), δ(t))
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y(t) = G(x(t), δ(t))

where x(t) = [x1(t), x2(t), x3(t)]� and F = [F1, F2, F3]� for use in a nonlinear
simulation program. We need to choose ẋi so that Fi depends only on xi and δ for
i = 1, 2, 3. We have

...

ψ (t) = −aψ̈(t) − bH(ψ̇(t)) + cδ̇(t) + dδ(t) (6.8)

Choose

ẋ3(t) =
...

ψ (t) − cδ̇(t)

so that F3 will not depend on cδ̇(t) and

x3(t) = ψ̈(t) − cδ(t)

Choose ẋ2(t) = ψ̈(t) so that x2(t) = ψ̇(t). Finally, choose x1(t) = ψ. This gives us

ẋ1(t) = x2(t) = F1(x(t), δ(t))
ẋ2(t) = x3(t) + cδ(t) = F2(x(t), δ(t))
ẋ3(t) = −aψ̈(t) − bH(ψ̇(t)) + dδ(t)

But, ψ̈(t) = x3(t) + cδ(t), ψ̇(t) = x2(t), and H(x2) = x3
2(t) + x2(t) so

ẋ3(t) = −a (x3(t) + cδ(t)) − b
(
x3

2(t) + x2(t)
)

+ dδ(t) = F3(x(t), δ(t))

This provides the proper equations for the simulation. Next, suppose that the initial
conditions are ψ(0) = ψ̇(0) = ψ̈(0) = 0. This implies that x1(0) = x2(0) = 0 and
x3(0) = ψ̈(0) − cδ(0) or x3(0) = −cδ(0). For a discrete-time implementation, we
simply discretize the differential equations.

FMRLC Design

In this section we explain how to design an FMRLC for controlling the directional
heading of the cargo ship. The inputs to the fuzzy controller are the heading error
and change in heading error expressed as

e(kT ) = ψr(kT ) − ψ(kT )

and

c(kT ) =
e(kT ) − e(kT − T )

T

respectively, where ψr(kT ) is the desired ship heading (T = 50 milliseconds). The
controller output is the rudder angle δ(kT ) of the ship. For our fuzzy controller
design, 11 uniformly spaced triangular membership functions are defined for each
controller input, as shown in Figure 6.4 on page 322.
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The scaling controller gains for the error, change in error, and the controller
output are chosen via the design procedure to be ge = 1

π (since the error e(kT )
can never be over 180◦), gc = 100 (since we have found via simulations that the
ship does not move much faster than 0.01 rad/sec), and gu = 8π

18
(since we want

to limit δ between ±80◦, we have gu = 80π
180

= 8π
18

). The fuzzy sets for the fuzzy
controller output are assumed to be symmetric and triangular-shaped with a base
width of 0.4, and all centered at zero on the normalized universe of discourse (i.e.,
121 output membership functions all centered at zero).

The reference model was chosen so as to represent somewhat realistic perfor-
mance requirements as

ψ̈m(t) + 0.1 ψ̇m(t) + 0.0025 ψm(t) = 0.0025 ψr(t)

where ψm(t) specifies the desired system performance for the ship heading ψ(t).
The input to the fuzzy inverse model includes the error and change in error

between the reference model and the ship heading expressed as

ψe(kT ) = ψm(kT ) − ψ(kT )

and

ψc(kT ) =
ψe(kT ) − ψe(kT − T )

T

respectively. For each of these inputs, 11 symmetric and triangular-shaped member-
ship functions are defined that are evenly distributed on the appropriate universes
of discourse (the same as shown in Figure 6.4 on page 322). The normalizing con-
troller gains associated with ψe(kT ), ψc(kT ), and p(kT ) are chosen to be gψe = 1

π ,
gψc = 5, and gp = 8π

18
, respectively, according to design procedure 1 in Section 6.2.5.

For a cargo ship, an increase in the rudder angle δ(kT ) will generally result in
a decrease in the ship heading angle (see Figure 6.5). This is the information about
the inverse dynamics of the plant that we use in the fuzzy inverse model rules.
Specifically, we will use rules of the form

If ψ̃e is Ψ̃i
e and ψ̃c is Ψ̃j

c Then p̃ is P̃ m

Suppose that we name the center of the output membership function for this rule ci,j

to emphasize that it is the center associated with the output membership function
that has the ith membership function for the ψ̃e universe of discourse and the jth

membership function for the ψ̃c universe of discourse. The rule-base array shown in
Table 6.1 is employed for the fuzzy inverse model for the cargo ship. In Table 6.1,
Ψi

e denotes the ith fuzzy set associated with the error signal ψe, and Ψj
c denotes the

jth fuzzy set associated with the change in error signal ψc. The entries of the table
represent the center values of symmetric triangular-shaped membership functions
ci,j with base widths 0.4 for output fuzzy sets P m on the normalized universe of
discourse.
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TABLE 6.1 Knowledge-Base Array Table for the Cargo Ship Fuzzy Inverse
Model

Ψj
c

ci,j −5 −4 −3 −2 −1 0 1 2 3 4 5

−5 1 1 1 1 1 1 .8 .6 .4 .2 0
−4 1 1 1 1 1 .8 .6 .4 .2 0 −.2

−3 1 1 1 1 .8 .6 .4 .2 0 −.2 −.4
−2 1 1 1 .8 .6 .4 .2 0 −.2 −.4 −.6

−1 1 1 .8 .6 .4 .2 0 −.2 −.4 −.6 −.8

Ψi
e 0 1 .8 .6 .4 .2 0 −.2 −.4 −.6 −.8 −1

1 .8 .6 .4 .2 0 −.2 −.4 −.6 −.8 −1 −1

2 .6 .4 .2 0 −.2 −.4 −.6 −.8 −1 −1 −1

3 .4 .2 0 −.2 −.4 −.6 −.8 −1 −1 −1 −1
4 .2 0 −.2 −.4 −.6 −.8 −1 −1 −1 −1 −1

5 0 −.2 −.4 −.6 −.8 −1 −1 −1 −1 −1 −1

The meaning of the rules in Table 6.1 is best explained by studying the meaning
of a few specific rules. For instance, if i = j = 0 then we see from the table that
ci,j = c0,0 = 0 (this is the center of the table). This cell in the table represents
the rule that says “if ψe = 0 and ψc = 0 then y is tracking ym perfectly so you
should not update the fuzzy controller.” Hence, the output of the fuzzy inverse
model will be zero. If, on the other hand i = 2 and j = 1 then ci,j = c2,1 = −0.6.
This rule indicates that “if ψe is positive (i.e., ψm is greater than ψ) and ψc is
positive (i.e., ψm − ψ is increasing) then change the input to the fuzzy controller
that is generated to produce these values of ψe and ψc by decreasing it.” Basically,
this is because we want ψ to increase, so we want to decrease δ to achieve this (see
Figure 6.5). We see that the inverse model indicates that whatever the input was
in this situation, it should have been less so it subtracts some amount (the amount
affected by the scaling gain gp). It is a good idea for you to convince yourself that
other rules in Table 6.1 make sense. For instance, consider the case where i = −2
and j = −4 so that c−2,−4 = 1: explain why this rule makes sense and how it
represents information about the inverse behavior of the plant.

It is interesting to note that we can often pick a form for the fuzzy inverse
model that is similar in form to that shown in Table 6.1 (at least, the pattern of
the consequent membership function centers often has this type of symmetry, or
has the sequence of zeros along the other diagonal). At other times we will need
to incorporate additional inputs to the fuzzy inverse model or we may need to use
a nonlinear mapping for the output centers. For example, a cubic mapping of the
centers is sometimes useful, so if y is close to ym we will slow adaptation, but if
they are far apart we will speed up adaptation significantly.
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Gradient-Based Model Reference Adaptive Control

The controller parameter adjustment mechanism for the gradient approach to MRAC
can be implemented via the “MIT rule.” For this, the cost function

J(θ) =
1
2
ψ2

e(t)

where θ holds the parameters of the controller that will be tuned, ψe(t) = ψm(t)−
ψ(t), and

dθ

dt
= −γ

∂J

∂θ

so that

dθ

dt
= −γ ψe(t)

∂ψe(t)
∂θ

For developing the MIT rule for the ship we assume that the ship may be
modeled by a second-order linear differential equation. This model is obtained by
eliminating the process pole resulting from τ2 in Equation (6.5) since its associ-
ated dynamics are significantly faster than those resulting from τ1. Also, for small
heading variations the rudder angle derivative δ̇ is likely to be small and may be
neglected. Therefore, we obtain the following reduced-order model for the ship:

ψ̈(t) +
(

1
τ1

)
ψ̇(t) =

(
K

τ1

)
δ(t) (6.9)

The PD-type control law that will be employed for this process may be expressed
by

δ(t) = kp (ψr(t) − ψ(t)) − kd ψ̇(t) (6.10)

where kp and kd are the proportional and derivative gains, respectively, and ψr(t)
is the desired process output. Substituting Equation (6.10) into Equation (6.9), we
obtain

ψ̈(t) +
(

1 + K kd

τ1

)
ψ̇(t) +

(
K kp

τ1

)
ψ(t) =

(
K kp

τ1

)
ψr(t) (6.11)

It follows from Equation (6.11) that

ψ(t) =
K kp

τ1

p2 +
(

1+K kd

τ1

)
p +

(
K kp

τ1

)ψr(t) (6.12)

where p is the differential operator.



340 Chapter 6 / Adaptive Fuzzy Control

The reference model for this process is chosen to be

ψm(t) =
ω2

n

p2 + 2ζωn p + ω2
n

ψr(t) (6.13)

where to be consistent with the FMRLC design we choose ζ = 1 and ωn = 0.05.
Combining Equations (6.13) and (6.12) and finding the partial derivatives with
respect to the proportional gain kp and the derivative gain kd, we find that

∂ ψe

∂kp
=


 K

τ1

p2 +
(

1+K kd

τ1

)
p +

(
K kp

τ1

)

 (ψ − ψr) (6.14)

and

∂ ψe

∂kd
=


 K

τ1
p

p2 +
(

1+K kd

τ1

)
p +

(
K kp

τ1

)

ψ (6.15)

In general, Equations (6.14) and (6.15) cannot be used because the controller
parameters kp and kd are not known. Observe that for the “optimal values” of kp

and kd, we have

p2 +
(

1 + K kd

τ1

)
p +

(
K kp

τ1

)
= p2 + 2ζωn p + ω2

n

Furthermore, the term K
τ1

may be absorbed into the adaptation gain γ. However, this
requires that the sign of K

τ1
be known since, in general, γ should be positive to ensure

that the controller updates are made in the direction of the negative gradient. For a
forward-moving cargo ship the sign of K

τ1
happens to be negative, which implies that

the term γ with K
τ1

absorbed into it must be negative to achieve the appropriate
negative gradient. After making the above approximations, we obtain the following
differential equations for updating the PD controller gains:

d kp

dt
= −γ1

(
1

p2 + 2ζωnp + ω2
n

(ψ − ψr)
)

ψe

d kd

dt
= −γ2

(
p

p2 + 2ζωnp + ω2
n

ψ

)
ψe

where γ1 and γ2 are negative real numbers. After many simulations, the best values
that we could find for the γi are γ1 = −0.005 and γ2 = −0.1.

Lyapunov-Based Model Reference Adaptive Control

In this section we present a Lyapunov-based approach to MRAC that tunes a
proportional derivative (PD) control law. Recall that the ship dynamics may be
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approximated by a second-order linear time-invariant differential equation given by
Equation (6.9). We use a PD control law

δ(t) = kp (ψr(t) − ψ(t)) − kd ψ̇(t)

where kp and kd are the proportional and derivative gains, respectively, and ψr(t) is
the desired process output. The dynamic equation that describes the compensated
system is ψ̇ = Acψ + Bcψr where ψ = [ψ, ψ̇]� and

Ac =
[

0 1
−Kkp

τ1
− (1+Kkd)

τ1

]

Bc =
[

0
Kkp

τ1

]

The reference model is given by

ψ̇
m

= Amψ
m

+ Bmψ
r

(6.16)

where ψ
m

= [ψm, ψ̇m]T and

Am =
[

0 1
−ω2

n −2ζωn

]

Bm =
[

0
ω2

n

]

and where to be consistent with the FMRLC design we choose ζ = 1 and ωn = 0.05.
The differential equation that describes the error ψ

e
(t) = ψ

m
(t)−ψ(t) may be

expressed by

ψ̇
e

= Am(t)ψ
e
+ (Am(t) − Ac(t))ψ + (Bm(t) − Bc(t))ψr

(6.17)

The equilibrium point ψ
e

= 0 in Equation (6.17) is asymptotically stable if we
choose the adaptation laws to be

Ȧc(t) = γPψ
e
ψ� (6.18)

Ḃc(t) = γPψ
e
ψ�

r
(6.19)

where P ∈ �n×n is a symmetric, positive definite matrix that is a solution of the
Lyapunov equation

A�
mP + PAm = −Q < 0

Assuming that Q is a 2 × 2 identity matrix and solving for P , we find that

P =
[

p11 p12

p21 p22

]
=

[
25.0125 200.000
200.000 2005.00

]
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Solving for k̇p and k̇d in Equations (6.18) and (6.19), respectively, the adaptation
law in Equations (6.18) and (6.19) may be implemented as

k̇p = −γ1(p21ψe + p22ψ̇e)(ψ − ψr), (6.20)
k̇d = −γ2(p21ψe + p22ψ̇e)ψ̇. (6.21)

Equations (6.20) and (6.21) assume that the plant parameters and disturbance
are varying slowly. In obtaining Equations (6.20) and (6.21), we absorbed the term
K
τ1

into the adaptation gains γ1 and γ2. Recall that for the cargo ship, K
τ1

happens
to be a negative quantity. Therefore, both γ1 and γ2 must be negative. We found
that γ1 = −0.005 and γ2 = −0.1 were suitable adaptation gains.

Comparative Analysis of FMRLC and MRAC

For the simulations for both the FMRLC and the MRACs, we use the nonlinear
process model given in Equation (6.7) to emulate the ship’s dynamics. Figure 6.6
shows the results for the FMRLC, and we see that it was quite successful in gener-
ating the appropriate control rules for a good response since the ship heading tracks
the reference model almost perfectly. In fact, the maximum deviation between the
two signals was observed to be less than 1◦ over the entire simulation. This is the
case even though initially the right-hand sides of the control rules have membership
functions with centers all at zero (i.e., initially, the controller knows little about how
to control the plant), so we see that the FMRLC learns very fast.
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FIGURE 6.6 FMRLC simulation results (figure taken from [112],
c© IEEE).
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Compare the results for the FMRLC with those obtained for the gradient-based
and Lyapunov-based approaches to MRAC, which are shown in Figures 6.7 and
6.8. For the gradient-based and Lyapunov-based approaches, both system responses
converged to track the reference model. However, the convergence rate of both algo-
rithms was significantly slower than that of the FMRLC method (and comparable
control energy was used by the FMRLC and the MRACs). The controller gains kp

and kd for both MRACs were initially chosen to be 5. This choice of initial controller
gains happens to be an unstable case for the second-order linear process model (in
the case where the adaptation mechanism is disconnected). However, we felt this
to be a fair comparison since the fuzzy controller is initially chosen so that it would
put in zero degrees of rudder no matter what the controller input values were. We
would have chosen both controller gains to be zero, but this choice resulted in a
very slow convergence rate for the MRACs.
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FIGURE 6.7 Gradient-based MRAC simulation results (figure
taken from [112], c© IEEE).

The final set of simulations for the ship was designed to illustrate the ability of
the learning and adaptive controllers to compensate for disturbances at the process
input. A disturbance is injected by adding it to the rudder command δ then putting
this signal into the plant as the control signal. Specifically, the disturbance was
chosen to be be a sinusoid with a frequency of one cycle per minute and a magnitude
of 2◦ with a bias of 1◦ (see the bottom plot in Figure 6.9). The effect of this
disturbance is similar to that of a gusting wind acting upon the ship.

Figure 6.9 illustrates the results obtained for this simulation. To provide an
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FIGURE 6.8 Lyapunov-based MRAC simulation results (figure
taken from [112], c© IEEE).

especially fair comparison with the FMRLC algorithm, we initially loaded the PD
controllers in both MRAC algorithms with the controller gains that resulted at the
end of their 6000-second simulations in Figures 6.7 and 6.8. However, the centers of
the right-hand sides of the membership functions for the knowledge-base of the fuzzy
controller in the FMRLC algorithm were initialized with all zeros as before (hence,
we are giving the MRACs an advantage). Notice that the FMRLC algorithm was
nearly able to completely cancel the effects of the disturbance input (there is still
a very small magnitude oscillation). However, the gradient- and Lyapunov-based
approaches to MRAC were not nearly as successful.

Discussion: A Control-Engineering Perspective

In this section we summarize and more carefully discuss the conclusions from our
simulation studies. The results in the previous section seem to indicate that the
FMRLC has the following advantages:

• It achieves fast convergence compared to the MRACs.

• No additional control energy is needed to achieve this faster convergence.

• It has good disturbance rejection properties compared to the MRACs.

• Its design is independent of the particular form of the mathematical model of the
underlying process (whereas in the MRAC designs, we need an explicit mathe-
matical model of a particular form)
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disturbance rejection for the FMRLC, the
gradient-based approach to MRAC, and the
Lyapunov-based approach to MRAC (figure taken
from [112], c© IEEE).

Overall, the FMRLC provides a method to synthesize (i.e., automatically design)
and tune the knowledge-base for a direct fuzzy controller. As the direct fuzzy con-
troller is a nonlinear controller, some of the above advantages may be attributed to
the fact that the underlying controller that is tuned inherently has more significant
functional capabilities than the PD controllers used in the MRAC designs.

While our application may indicate that FMRLC is a promising alternative to
conventional MRAC, we must also emphasize the following:

• We have compared the FMRLC to only two types of MRACs, for only one appli-
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cation, for a limited class of reference inputs, and only in simulation. There is a
wide variety of other adaptive control approaches that also deserve consideration.

• There are no guarantees of stability or convergence; hence, we can simply pick a
different reference input, and the system may then be unstable (indeed, for some
applications, we have been able to destabilize the FMRLC, especially if we pick
the adaptation gain gp large).

• “Persistency of excitation”[77] is related to the learning controller’s ability to
always generate an appropriate plant input and to generalize the results of what
it has learned earlier and apply this to new situations. In this context, for the
ship we ask the following questions: (1) What if we need to turn the ship in a
different direction? Will the rule-base be “filled in” for this direction? (2) Or will
it have to learn for each new direction? (3) If it learns for the new directions, will
it forget how to control for the old ones?

• In terms of control energy, we may have just gotten lucky for this application
and for the chosen reference input (although with additional tests, this does not
seem to be the case). There seem to be no analytical results that guarantee that
the FMRLC or any other fuzzy learning control technique minimizes the use of
control energy for a wide class of plants.

• This is a very limited investigation of the disturbance rejection properties (i.e.,
only one type of wind disturbance is considered).

• The design approach for the FMRLC, although it did not depend on a mathemat-
ical model, is somewhat ad hoc. What fundamental limitations will, for example,
nonminimum phase systems present? Certainly there will be limitations for classes
of nonlinear systems. What will these limitations be? It is important to note that
the use of a mathematical model helps to show what these limitations will be
(hence, it cannot always be considered an advantage that many fuzzy control
techniques do not depend on the specification of a mathematical model). Also,
note that due to our avoidance of using a mathematical model of the plant, we
have also ignored the “model matching problem” in adaptive control [77].

• There may be gains in performance, but are these gains being made by paying a
high price in computational complexity for the FMRLC? The FMRLC is some-
what computationally intensive (as are many neural and fuzzy learning control
approaches), but we have shown implementation tricks in Chapter 2 that can sig-
nificantly reduce problems with computation time. The FMRLC can, however,
require significant memory since we need to store each of the centers of the output
membership functions of the rules, and with increased numbers of inputs to the
fuzzy controller, there is an exponential increase in the numbers of these centers
(assuming you use all possible combinations of rules). The FMRLC in this section
required us to store and update 121 output membership function centers.
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6.3.2 Fault-Tolerant Aircraft Control
There are virtually an unlimited number of possible failures that can occur on
a sophisticated modern aircraft such as the F-16 that we consider in this case
study. While preplanned pilot-executed response procedures have been developed
for certain anticipated failures, especially catastrophic and high-probability failures,
certain unanticipated events can occur that complicate successful failure accommo-
dation. Indeed, aircraft accident investigations sometimes find that even with some
of the most severe unanticipated failures, there was a way in which the aircraft
could have been saved if the pilot had taken proper actions in a timely fashion. Be-
cause the time frame during a catastrophic event is typically short, given the level
of stress and confusion during these incidents, it is understandable that a pilot may
not find the solution in time to save the aircraft.

With the recent advances in computing technology and control theory, it ap-
pears that the potential exists to implement a computer control strategy that can
assist (or replace) the pilot in helping to mitigate the consequences of severe fail-
ures in aircraft. In this case study we will investigate the use of the FMRLC for
failure accommodation; however, we must emphasize that our study is somewhat
academic. The reader should be aware that there currently exists no completely
satisfactory solution to the fault-tolerant aircraft control problem. Indeed, it is an
important area of current research. For instance, in this case study we will only
study a certain class of actuator failures where in some aircraft sensor failures are
of concern. We do not compare and contrast the fuzzy control approach to other
conventional approaches to fault tolerant control (e.g., conventional adaptive con-
trol approaches). We do not study stability and robustness of the resulting control
system. These, and many other issues, are interesting areas for future research.

Aircraft Model

The F-16 aircraft model used in this case study is based on a set of five linear per-
turbation models (that are extracted from a nonlinear model at the five operating
conditions1) (Ai, Bi, Ci, Di), i ∈ {1, 2, 3, 4, 5}:

ẋ = Aix + Biu
y = Cix + Diu (6.22)

where the variables are defined as follows (see Figure 6.10):

• Inputs u = [δe, δde, δa, δr]�:

1. δe = elevator deflection (in degrees)

2. δde = differential elevator deflection (in degrees)

3. δa = aileron deflection (in degrees)

4. δr = rudder deflection (in degrees)

1. All information about the F-16 aircraft models was provided by Wright Laboratories,

WPAFB, OH.
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• System state x = [α, q, φ, β, p, r]�:

1. α = angle of attack (in degrees)

2. q = body axis pitch rate (in degrees/second)

3. φ = Euler roll angle (in degrees)

4. β = sideslip angle (in degrees)

5. p = body axis roll rate (in degrees/second)

6. r = body axis yaw rate (in degrees/second)

The output is y = [x�, Az]� where Az is the normal acceleration (in g).
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FIGURE 6.10 The F-16 aircraft (figure taken from [103], c© IEEE).

Nominal Control Laws

The nominal control laws for the F-16 aircraft used in this study consist of two
parts, one for the lateral channel as shown in Figure 6.11, and the other for the
longitudinal channel. The inputs to the controller are the pilot commands and the
F-16 system feedback signals. For the longitudinal channel, the pilot command is
the desired pitch Azd, and the system feedback signals are normal acceleration Az ,
angle of attack α, and pitch rate q. For the lateral channel, the pilot commands are
the desired roll rate pd as well as the desired sideslip βd, and the system feedback
signals are the roll rate p, yaw angle r, and sideslip β. The controller gains for the
longitudinal channel and K(q̄) for the lateral channel in Figure 6.11 are scheduled
as a function of different dynamic pressures q̄. The dynamic pressure for all five
perturbation models is fixed at 499.24 psf, which is based on an assumption that



6.3 FMRLC: Design and Implementation Case Studies 349

the F-16 aircraft will operate with constant speed and altitude. For the lateral
channel we have

K(499.24) =
[

0.47 0.14 0.14 −0.56 −0.38
−0.08 −0.056 0.78 −1.33 −4.46

]
(6.23)
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FIGURE 6.11 Nominal lateral control system (figure taken from [103],
c© IEEE).

The transfer function 20
s+20 is used to represent the actuator dynamics for each

of the aircraft control surfaces, and the actuators have physical saturation limits so
that −21◦ ≤ δe ≤ 21◦, −21◦ ≤ δde ≤ 21◦, −23◦ ≤ δa ≤ 20◦, and −30◦ ≤ δr ≤ 30◦.
The actuator rate saturation is ±60◦/sec for all the actuators.

To simulate the closed-loop system, we interpolate between the five perturba-
tion models based on the value of α, which produces a nonlinear simulation of the
F-16. For all the simulations, a special “loaded roll command sequence” is used.
This command sequence is as follows: At time t = 0.0, a 60◦/sec roll rate command
(pd) is held for 1 second. At time t = 1.0, a 3 g pitch command (Azd) is held for 9
seconds. At time t = 4.5, a −60◦/sec roll rate command (pd) is held for 1.8 seconds.
Finally, at time t = 11.5, a 60◦/sec roll rate command (pd) is held for 1 second.
The sideslip command βd is held at zero throughout the sequence.

Failure Scenarios

Many different failures can occur on a high-performance aircraft such as the F-16.
For instance, there are two major types of actuator failures:

1. Actuator malfunction: Two main types are possible:

(a) Actuator performance degradation (e.g., a bandwidth decrease).

(b) Actuator stuck at a certain angle (e.g., an arbitrary angle during a motion,
or at the maximum deflection).

2. Actuator damage: Again, two main types are possible:
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(a) Actuator damaged so that the control surface oscillates in an uncontrol-
lable fashion.

(b) Control surface loss due to severe structural damage.

Here we focus on actuator malfunctions for the F-16.

FMRLC for the F-16

In this section we develop a MIMO FMRLC for the fault-tolerant aircraft control
problem. We use the same basic structure for the FMRLC as in Figure 6.3 on
page 321 with a slightly different notation for the variables. In particular, we use
underlines for vector quantities so that y

r
(kT ) is the vector of reference inputs,

y
f
(kT ) is the vector of outputs from the MIMO fuzzy inverse model, e(kT ) is the

vector of error inputs to the fuzzy controller, y
e
(kT ) is the vector of error inputs

to the inverse model, and c(kT ) and y
c
(kT ) are the change-in-error vectors to the

fuzzy controller and inverse model, respectively. The scaling gains are denoted as,
for example, g

e
= [ge1, . . . , ges]� if there are s inputs to the fuzzy controller—

similarly for the other scaling gains (the gains on the inverse model output y
f
(kT )

will be denoted with g
f
) so that geiei(kT ) is an input to the fuzzy controller. The

gains g
e

are chosen so that the range of values of geiei(kT ) lies on [−1, 1], and g
u

is chosen by using the allowed range of inputs to the plant in a similar way. The
gains g

c
are determined by experimenting with various inputs to the system to

determine the normal range of values that c(kT ) will take on; then g
c

is chosen so
that this range of values is scaled to [−1, 1]. We utilize r MISO fuzzy controllers,
one for each process input un (equivalent to using one MIMO controller). Each of
the fuzzy controllers and fuzzy inverse models has the form explained in Section 6.2.

To begin the design of the FMRLC, it is important to try to use some intuition
that we have about how to achieve fault-tolerant control. For instance, generally it
is not necessary to utilize all the control effectors to compensate for the effects of the
failure of a single actuator on the F-16. If the ailerons in the lateral channel fail, the
differential elevators can often be used for compensation, or vice versa. However,
the elevators may not aid in reconfiguration for an aileron failure unless they are
specially designed to induce moments in the lateral channel. Hence, it is sufficient
to redesign only part of the nominal controller to facilitate control reconfiguration.
Here, we will replace the K(q̄) portion of the lateral nominal control laws (see
Figure 6.11) with a fuzzy controller and let the learning mechanism of the FMRLC
tune the fuzzy controller to perform control reconfiguration for an aileron failure
(see Figure 6.12).

To apply the FMRLC in the F-16 reconfigurable control application, it is of
fundamental importance that for an unimpaired aircraft, the FMRLC must behave
at least as good as (indeed, the same as) the nominal control laws. In normal op-
eration, the learning mechanism is inactive or used only to maintain the aircraft
performance at the level of specified reference models. In the presence of failures,
where the performance becomes different from the specified reference model, the
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FIGURE 6.12 FMRLC for reconfigurable control in case of aileron or differential
elevator failures (figure taken from [103], c© IEEE).

learning mechanism can then tune the fuzzy controller to achieve controller recon-
figuration. In the next section, we explain how to pick the initial fuzzy controller
shown in Figure 6.12 so that it will perform the same as the nominal controller
when there is no failure (the procedure is different from the initialization approach
where you simply choose all output membership functions to be centered at zero).
Following this we introduce the reference model and learning mechanism.

The Fuzzy/Nominal Controller

Notice that the gain matrix block K(q̄) in Figure 6.11 is replaced by a fuzzy con-
troller in Figure 6.12, which will be adjusted by the FMRLC to reconfigure part of
the control laws in case there is a failure. Therefore, to copy the nominal control
laws, all that is necessary is for the fuzzy controller to simulate the effects of the
portion of the gain matrix K(q̄) that affects the aileron and differential elevator
outputs. In this way, the FMRLC is provided with the very good initial guess of
the control strategies (i.e., nominal control laws resulting from years of experience
of the designer). We have shown how to make a fuzzy controller form a weighted
sum of its inputs for the rotational inverted pendulum in Chapter 3. A similar
approach is used here to produce the fuzzy controller that approximates the gain
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matrix K(q̄). If we name the gains g0−g5 for the five inputs to the fuzzy controller,
then using the procedure from Chapter 3 we get

[g0, g1, g2, g3, g4, g5] =
[
14,

1
29.79

,
1

100
,

1
100

,− 1
25

,− 1
36.84

]
(6.24)

With this choice the direct fuzzy controller (i.e., with the adaptation mechanism
turned off) performs similarly to the nominal control laws.

F-16 Reference Model Design

As discussed in the previous subsection, the reference model is used to character-
ize the closed-loop specifications such as rise-time, overshoot, and settling time.
The performance of the overall system is computed with respect to the reference
model by generating error signals between the reference model output and the
plant outputs–that is, yeφ(kT ), yep(kT ), and yeṗ(kT ) in Figure 6.12. (Note that we
use the notation yeṗ to denote the signal that is the approximate derivative of the
change in error of the roll rate p. The use of “ṗ” in the subscript does not denote the
use of a continuous-time signal.) To achieve the desired performance, the learning
mechanism must force yeφ(kT ) ≈ 0, yep(kT ) ≈ 0, and yeṗ(kT ) ≈ 0 for all k ≥ 0.
For the aircraft, the reference model must be chosen so that the closed-loop system
will behave similarly to the unimpaired aircraft when the nominal control laws are
used, and so that unreasonable performance requirements are not requested. With
these two constraints in mind, we choose a second-order transfer function

H(s) =
ω2

n

s2 + 2ζωns + ω2
n

where ωn =
√

200 and ζ = 0.85 for the reference models for the roll rate and H(s)/s
for the reference model of the roll angle. An alternative choice for the reference
model would be to use the actual nominal closed-loop system with a plant model
since the objective of this control problem is to design an adaptive controller that
will try to make a failed aircraft behave like the nominal unfailed aircraft.

Learning Mechanism Design Procedure

The learning mechanism consists of two parts: (1) a fuzzy inverse model, which
performs the function of mapping the necessary changes in the process output er-
ror yeφ(kT ), yep(kT ), and yeṗ(kT ), to the relative changes in the process inputs
yf (kT ), so that the process outputs will match the reference model outputs, and
(2) a knowledge-base modifier that updates the fuzzy controller’s knowledge-base.
As discussed earlier, from one perspective the fuzzy inverse model represents in-
formation that the control engineer has about what changes in the plant inputs
are needed so that the plant outputs track the reference model outputs. From an-
other point of view that we use here, the fuzzy inverse model can be considered as
another fuzzy controller in the adaptation loop that is used to monitor the error
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signals yeφ(kT ), yep(kT ), and yeṗ(kT ), and then choose the controller parameters
in the main loop (i.e., the lower portion of Figure 6.12) in such a way that these
errors go to zero. With this concept in mind, we introduce the following design pro-
cedure for the FMRLC, which we have found to be very useful for the fault-tolerant
control application (it is based on the two procedures in Section 6.2.5):

1. Initialize the fuzzy controller by designing its rule-base to achieve the highest
performance possible when the learning mechanism is disconnected. (If you wish
to initialize the fuzzy controller rule-base so that all the output membership
functions are located at zero (as in Section 6.2), then this design procedure
should be applied iteratively where for each pass through the design proce-
dure the trained fuzzy controller from steps 5–6 is used to initialize the fuzzy
controller in step 1.)

2. Choose a reference model that represents the desired closed-loop system be-
havior (you must be careful to avoid requesting unreasonable performance).

3. Choose the rule-base for the fuzzy inverse model in a manner similar to how
you would design a standard fuzzy controller (if there are many inputs to the
fuzzy inverse model, then follow the approach taken in the application of this
procedure below).

4. Find the range in which the ith input to the fuzzy inverse model lies for a
typical reference input and denote this by [−R̄i, R̄i] (i = 1, 2, . . . , n where n
denotes the number of inputs).

5. Construct the FMRLC with the domain interval of the output universe of
discourse [−R̄0, R̄0] to be [0, 0], which is represented by the output gain m0 of
the fuzzy inverse model set at zero. Then, excite the system with a reference
input that would be used in normal operation (such as a series of step changes,
but note that simulations must be run long enough so that possible instabilities
are detected). Then, increase the gain m0 and observe the process response
until the desired overall performance is achieved (i.e., the errors between the
reference models and system outputs are minimum).

6. If there are difficulties in finding a value of m0 that improves performance, then
check the following three cases:

(a) If there exist unacceptable oscillations in a given process output response
about the reference model response, then choose the domain intervals
of the input universes of discourse for the fuzzy inverse model to be
[−aiR̄i, aiR̄i] where ai is a scaling factor that must be selected (typically,
it lies in the range 0 < ai ≤ 10), and go back to step 5. Note that the
value of ai should not be chosen too small, nor too large, such that the
resulting domain interval [−aiR̄i, aiR̄i] is out of the operating range of the
system output; often you would choose to enlarge the input universes of
discourse by decreasing ai.
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(b) If a process response is acceptable but there exist unacceptable oscillations
in the command input to the plant, then adjust the rule-base of the fuzzy
inverse model and go back to step 4.

(c) If the process output is unable to follow the reference model response,
then choose a different reference model (typically at this point, you would
want to choose a “slower” (i.e., less demanding) reference model), and go
back to step 3.

It is important to note that for step 5, investigations have shown that the choice
of m0 significantly affects the learning capabilities and stability of the system.
Generally, the size of m0 is proportional to the learning rate, and with m0 = 0
learning capabilities are turned off completely. Hence, for applications where a good
initial guess for the controller is known and only minor variations occur in the plant,
you may want to choose a relatively small value of m0 to ensure stability yet allow
for some learning capabilities. For other applications where significant variations in
the plant are expected (e.g., failures), you may want to choose a larger value for
m0 so that the system can quickly learn to accommodate for the variation. In such
a situation there is, however, a danger that the larger value of m0 could lead to an
instability. Hence, you generally want to pick m0 large enough so that the system
can quickly adapt to variations, yet small enough to ensure a stable operation.
Moreover, we would like to emphasize that if a single step response is used as an
evaluation during the tuning procedure, there exists the danger that the resulting
system may not be stable for other inputs. Thus, a long enough reference input
sequence must be used to show whether using a specific m0 will result in a stable
overall system. Next, we finish the design of the FMRLC by using the above design
procedure to choose the learning mechanism.

In the F-16 aircraft application, step 1 of the design procedure was presented
earlier where the fuzzy controller was picked so that it emulated the gain matrix
of the nominal controller. After the equivalent fuzzy controller was constructed,
the reference models were picked as described in step 2. Following step 3, the rule-
base of the fuzzy inverse model is constructed. To ensure smooth performance
at all times, we would like the fuzzy inverse model (viewed as a controller) to
provide the capability to correct a big error quickly and adjust more slowly for
minor errors; that is indicated in the input-output map for the fuzzy inverse model
in Figure 6.13. To realize the map in Figure 6.13 we use (1) a similar rule-base
initialization procedure to the one discussed in the fuzzy controller design, where
we picked a set of uniformly spaced input membership functions for each of the
three input universes of discourse, and (2) the centers of the output membership
functions given by a nonlinear function of the input membership function centers.

According to step 4, the difference between the reference model responses and
the system outputs are measured when m0 = 0. Based on this information, the
ranges of all the three inputs to the fuzzy inverse model yeφ(kT ), yep(kT ), and
yeṗ(kT ) are found to be [−4.4, 4.4] , [−8.4, 8.4], and [−97.6, 97.6]. For the first
iteration, we will choose ai = 1 (where i = 1, 2, 3).
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FIGURE 6.13 Input-output relationships
for yeφ, yep, and yeṗ to yf maps (figure
taken from [103], c© IEEE).

In order to apply step 5, the loaded roll sequence is repeated several times.
In this first iteration of the design procedure, the gain m0 is found to be 0.02,
which is a relatively small value that will not give significant learning capabilities.
Therefore, we will proceed to step 6, and apply condition (a) where the scaling
factors ai (i = 1, 2, 3) are selected to obtain a higher m0. After a few iterations, the
scaling factors are found to be a1 = 2.273, a2 = 5.952, and a3 = 2.049 such that
the domain intervals for the input universes of discourse for the fuzzy inverse model
are [−10, 10], [−50, 50], and [−200,−200], which correspond to yeφ(kT ), yep(kT ),
and yeṗ(kT ). Then, m0 is found to be 0.1, and the tuning procedure is completed.

Notice that the actual acceptable m0, where the difference between the reference
models and the system outputs is deemed small enough, is found to be in the range
[0.05, 0.11] (i.e., a range of m0 values worked equally well). Due to the fact that
we would like the largest possible value of m0 (i.e., higher learning capabilities)
to adapt to failures in the aircraft, and we would like to ensure stability of the
overall system, we picked the value of m0 = 0.1. Moreover, we will not consider
conditions (b) and (c) under step 6 because we assumed that the rule-base of the
fuzzy inverse model represents good knowledge about how to minimize the errors
between the reference model and the aircraft, and the reference models are indeed
the design specifications for the aircraft that must be met in all cases.

Simulation Results

In this section, the F-16 aircraft with the FMRLC is simulated using the sampling
time T of 0.02 seconds, and tested with an aileron failure at 1 second. We found that
the FMRLC performed equally well when failures were induced at other times. The
t = 1 sec failure time was chosen as it represents the first time maximum aileron
deflection is achieved. Figure 6.14 compares the performance of the FMRLC to the
nominal control laws for the case where there is no failure. All six plots show that
the FMRLC performs as good as, if not better than, the nominal control laws. No-
tice that the FMRLC achieves its goal of following the reference models of the roll
angle and the roll rate, except for slight steady-state errors (see the portions of the
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response indicated by the arrows in Figure 6.14) where the responses of the FMRLC
do not exactly match that of the nominal control laws. These errors are due to the
fact that simple, second- or third-order, zero steady-state error reference models
(roll rate/roll angle) are picked for the closed-loop multiple perturbation models
of the aircraft. This discrepancy between the nominal controller and FMRLC re-
sponses is due to the difficulties you encounter in defining the reference models that
can accurately emulate the nominal behavior of a given closed-loop system.
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FIGURE 6.14 Unimpaired F-16 system outputs with FMRLC (figure taken from [103],
c© IEEE).

In case of failure, when the ailerons stick at 1 sec, the responses are shown in
Figure 6.15. The FMRLC system responses are acceptable since all the responses
eventually match that of the unimpaired aircraft. However, the performance in the
first 9 seconds of the command sequence is obviously degraded as compared to
the unimpaired responses (the portions of the roll angle and roll rate responses
highlighted with arrows in Figure 6.15) but improves as time goes on. The perfor-
mance degradation precipitates from the actuator failure. As shown in the actuator
responses in Figure 6.15, the differential elevator (δde) swings between −1.30 and
10.00 with a bias of about 4.5 degrees for the impaired aircraft with FMRLC. The
actuation of the differential elevator replaces the original function of the aileron
with the bias so that the effect of the failure is canceled. We see that via reconfig-
urable control, the differential elevator can be made to have the same effectiveness
as the ailerons as a roll effector for this particular failure. This application will be
revisited in Chapter 7 when we study supervision of adaptive fuzzy controllers.
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6.3.3 Vibration Damping for a Flexible Robot
For the two-link flexible robot considered here and in Chapter 3, our goal of achiev-
ing fast slews over the entire workspace with a minimum amount of endpoint vi-
bration is complicated by two factors:

1. The manner in which varying the inertial configuration of the links has an effect
on structural parameters (e.g., its effects on the modes of vibration).

2. Unknown payload variations (i.e., what the robot picks up), which significantly
affect the plant dynamics.

Using several years of experience in developing conventional controllers for the robot
mechanism, coupled with our intuitive understanding of the dynamics of the robot,
in Chapter 3 we developed a fuzzy controller that achieves adequate performance for
a variety of slews. However, even though we were able to tune the fuzzy controller
to achieve such performance for varying configurations, its performance generally
degrades when there is a payload variation at the endpoint.

While some would argue that the solution to such a performance degradation
problem is to “load more expertise into the rule-base,” there are several limitations
to such a philosophy including the following:

1. The difficulties in developing (and characterizing in a rule-base) an accurate
intuition about how to best compensate for the unpredictable and significant
payload variations that can occur while the robot is in any position in its
workspace.
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2. The complexities of constructing a fuzzy controller that potentially has a large
number of membership functions and rules.

Moreover, our experience has shown that it is possible to tune fuzzy controllers
to perform very well if the payload is known. Hence, the problem does not result
from a lack of basic expertise in the rule-base, but from the fact that there is no
facility for automatically redesigning (i.e., retuning) the fuzzy controller so that it
can appropriately react to unforeseen situations as they occur.

In this case study, we develop an FMRLC for automatically synthesizing and
tuning a fuzzy controller for the flexible robot. We use the FMRLC structure shown
in Figure 6.16, which tunes the coupled direct fuzzy controller from Chapter 3 and
is simply a MIMO version of the one shown in Figure 6.3 on page 321. Next, we
will describe each component of the FMRLC for the two-link flexible robot.
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The Fuzzy Controller and Reference Model

We use the same basic structure for the fuzzy controller as was used in Chapter 3
with the same input fuzzy sets as shown in Figure 3.4 on page 131 and Figure 3.8
on page 136, but the difference here is that the output fuzzy sets for both con-
trollers are all initially centered at zero, resulting in rule-bases filled with zeros (we
tried to initialize the fuzzy controller with the one from Chapter 3 but it works
best if it is initialized with zeros and constructs its own controller). This implies
that the fuzzy controller by itself has little knowledge about how to control the
plant. As the algorithm executes, the output membership functions are rearranged
by the learning mechanism, filling up the rule-base. For instance, once a slew is
commanded, the learning mechanism described below will move the centers of the
output membership functions of the activated rules away from zero and begin to
synthesize the fuzzy controller.

The universe of discourse for the position error input e1 to the shoulder link
controller was chosen to be [−100, +100] degrees, and the universe of discourse
for the endpoint acceleration a1 is [−10, +10] g. For the elbow link controller, the
universe of discourse for the position error e2 is [−80, +80] degrees, and the universe
of discourse for the acceleration input a2 is [−10, +10] g. The universe of discourse
for the shoulder link acceleration input a12 to the elbow link controller is [−8, +8]
g. We choose the output universe of discourse for v1 and v2 by letting gv1 = 0.125
and gv2 = 1.0. We determined all these values from our experiences experimenting
with the fuzzy controller in Chapter 3 and from our experiments with the FMRLC.

The desired performance is achieved if the learning mechanism forces

ye1(kT ) ≈ 0, ye2(kT ) ≈ 0

for all k ≥ 0. It is important to make a proper choice for a reference model so that
the desired response does not dictate unreasonable performance requirements for
the plant to be controlled. Through experimentation, we determined that

3
s + 3

is a good choice for the reference models for both the shoulder and the elbow links.

The Fuzzy Inverse Models

There are several steps involved in specifying the fuzzy inverse models and these
are outlined next.

Choice of Inputs: For our robot there are two fuzzy inverse models, each with
three inputs yej(t), ycj(t), and aj(t) (j = 1 corresponding to the shoulder link and
j = 2 corresponding to the elbow link, as shown in Figure 6.16). Several issues
dictated the choice of these inputs: (1) we found it easy to specify reference models
for the shoulder and elbow link position trajectories (as we discussed above) and
hence the position error signal is readily available; (2) we found via experimentation
that the rates of change of position errors, ycj(t), j = 1, 2, and acceleration signals



360 Chapter 6 / Adaptive Fuzzy Control

aj(t), j = 1, 2, were very useful in deciding how to adjust the fuzzy controller;
and (3) we sought to minimize the number of inputs to the fuzzy inverse models
to ensure that we could implement the FMRLC with a short enough sampling
interval (in our case, 15 milliseconds). The direct use of the acceleration signals
aj(t), j = 1, 2, for the inverse models actually corresponds to choosing reference
models for the acceleration signals that say “no matter what slew is commanded, the
desired accelerations of the links should be zero” (why?). While it is clear that the
links cannot move without accelerating, with this choice the FMRLC will attempt
to accelerate the links as little as possible to achieve the command slews, thereby
minimizing the amount of energy injected into the modes of vibration. Next, we
discuss rule-base design for the fuzzy inverse models.

Choice of Rule-Base: For the rule-bases of the fuzzy inverse models, we use
rules similar to those described in Tables 3.3–3.9 beginning on page 137, for both
the shoulder and elbow links except that the cubical block of zeros is eliminated
by making the pattern of consequents uniform. These rules have premises that
quantify the position error, the rate of change of the position error, and the amount
of acceleration in the link. The consequents of the rules represent the amount of
change that should be made to the direct fuzzy controller by the knowledge-base
modifier. For example, fuzzy inverse model rules capture knowledge such as (1) if
the position error is large and the acceleration is moderate, but the link is moving
in the correct direction to reduce this error, then a smaller change (or no change)
is made to the direct fuzzy controller than if the link were moving to increase the
position error; and (2) if the position error is small but there is a large change in
position error and a large acceleration, then the fuzzy controller must be adjusted
to avoid overshoot. Similar interpretations can be made for the remaining portions
of the rule-bases used for both the shoulder and elbow link fuzzy inverse models.

Choice of Membership Functions: The membership functions for both the
shoulder and elbow link fuzzy inverse models are similar to those used for the el-
bow link controller shown in Figure 3.8 on page 136 except that the membership
functions on the output universe of discourse are uniformly distributed and there
are different widths for the universes of discourse, as we explain next (these widths
define the gains gyej , gycj , gaj, and gpj for j = 1, 2). We choose the universe of
discourse for yei to be [−80, +80] degrees for the shoulder link and [−50, +50] for
the elbow link. We have chosen a larger universe of discourse for the shoulder link
inverse model than for the elbow link inverse model because we need to keep the
change of speed of the shoulder link gradual so as not to induce oscillations in the
elbow link (the elbow link is mounted on the shoulder link and is affected by the
oscillations in the shoulder link). The universe of discourse for yc1 is chosen to be
[−400, +400] degrees/second for the shoulder link and [−150, +150] degrees/second
for yc2 of the elbow link. These universes of discourse were picked after experimental
determination of the angular velocities of the links. The output universe of discourse
for the fuzzy inverse model outputs (p1 and p2) is chosen to be relatively small to
keep the size of the changes to the fuzzy controller small, which helps ensure smooth
movement of the robot links. In particular, we choose the output universe of dis-
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course to be [−0.125, +0.125] for the shoulder link inverse model, and [−0.05, +0.05]
for the elbow link inverse model. Choosing the output universe of discourse for the
inverse models to be [−1, +1] causes the learning mechanism to continually make
the changes in the rule-base of the controller so that the actual output is exactly
equal to the reference model output, making the actual plant follow the reference
model closely. This will cause significant amounts of speed variations in the motors
as they try to track the reference models exactly, resulting in chattering along a
reference model path. The choice of a smaller width for the universe of discourse
keeps the actual output below the output of the reference model until it reaches
the set-point. This increases the settling time slightly, but the response is much less
oscillatory. This completes the definition of two fuzzy inverse models in Figure 6.16.

The Knowledge-Base Modifier

Given the information (from the inverse models) about the necessary changes in the
input needed to make ye1 ≈ 0 and ye2 ≈ 0, the knowledge-base modifier changes the
knowledge-base of the fuzzy controller so that the previously applied control action
will be modified by the amount specified by the inverse model outputs pi, i = 1, 2.
To modify the knowledge-base, the knowledge-base modifier shifts the centers of
the output membership functions (initialized at zero) of the rules that were “on”
during the previous control action by the amount p1(t) for the shoulder controller
and p2(t) for the elbow controller.

Note that to achieve good performance, we found via experimentation that
certain enhancements to the FMRLC knowledge-base modification procedure were
needed. In particular, based on the physics of the flexible robot, we know that if
the errors e1 and e2 are near zero, the fuzzy controller should choose v1 = v2 = 0.0.
Hence, using this knowledge about how to control the plant, we use the same
FMRLC knowledge-base modification procedure as in Section 6.2.3 except that we
never modify the rules at the center of the rule-base so the fuzzy controller will
always output zero when there is zero error. Essentially, we make this adjustment
to the knowledge-base modification procedure to overcome a high gain effect near
zero that we observed in previous experiments.

Experimental Results

The total number of rules used by the FMRLC is 121 for the shoulder controller,
plus 343 for the elbow controller, plus 343 for the shoulder fuzzy inverse model,
plus 343 for the elbow fuzzy inverse model, for a total of 1150 rules. Even with
this number of rules, we were able to keep the same sampling time of T = 15
milliseconds that was used for the direct fuzzy controller in Chapter 3.

Experimental results obtained from the use of the FMRLC are shown in Figure
6.17 for a slew of 90◦ for each link (see inset for inertial configuration). The rise-
time for the response is about 1.0 sec and the settling time is approximately 1.8
sec. Comparing this response to the direct fuzzy control response (Figure 3.9 on
page 140), we see an improvement in the endpoint oscillation and the settling time.
Notice that the settling time for the robot is slightly larger than that of the reference
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model (1.5 sec). This is because of the way the learning mechanism modified the
rule-base of the controller to keep the response below that of the reference model.
For counterrelative or small-angle slews, we get good results that are comparable
to the direct fuzzy control case.
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FIGURE 6.17 Endpoint position for FMRLC controller
design (figure taken from [144], c© IEEE).

Figure 6.18 shows the robot response for the loaded endpoint case. The elbow
link endpoint is loaded with a 30-gram mass of aluminum and is commanded to
slew 90◦ in each joint. The response with the payload here is superior to that of
the direct fuzzy controller (see Figure 3.10 on page 141). To achieve the improved
performance shown in Figure 6.18, the FMRLC exploits (1) the information that we
have about how to control the flexible robot that is represented in the fuzzy inverse
model and (2) data gathered during the slewing operation, as we discuss next.
During the slew, the FMRLC observes how well the fuzzy controller is performing
(using data from the reference model and robot) and seeks to adjust it so that the
performance specified in the reference model is achieved and vibrations are reduced.
For instance, in the initial part of the slew the position errors are large, the change
in errors are zero, the accelerations are zero, and the fuzzy controller has all its
consequent membership functions centered at zero. For this case, the fuzzy inverse
model will indicate that the fuzzy controller should generate voltage inputs to the
robot links that will get them moving in the right direction. As the position errors
begin to change and the change in errors and accelerations vary from zero, the
fuzzy inverse model will cause the knowledge-base modifier to fill in appropriate
changes to the fuzzy controller consequent membership functions until the position
trajectories match the ones specified by the reference models (notice that the fuzzy
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inverse model was designed so that it will continually adjust the fuzzy controller
until the reference model behavior is achieved). Near the end of the slew (i.e., when
the links are near their commanded positions), the FMRLC is particularly good at
vibration damping since in this case the plant behavior will repeatedly return the
system to the portion of the fuzzy controller rule-base that was learned the last time
a similar oscillation occurred (i.e., the learning capabilities of the FMRLC enable
it to develop, remember, and reapply a learned response to plant behaviors).
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FIGURE 6.18 Endpoint position for loaded elbow link for
FMRLC (figure taken from [144], c© IEEE).

Different payloads change the modal frequencies in the link/payload combi-
nation (e.g., heavier loads tend to reduce the frequencies of the modes of oscilla-
tion) and the shapes of the error and acceleration signals e1(t), e2(t), and a1(t)
(e.g., heavier loads tend to slow the plant responses). Hence, changing the payload
simply results in the FMRLC developing, remembering, and applying different re-
sponses depending on the type of the payload variation that occurred. Essentially,
the FMRLC uses data from the closed-loop system that is generated during on-line
operation of the robot to specially tailor the manner in which it designs/tunes the
fuzzy controller. This enables it to achieve better performance than the direct fuzzy
controller described in Chapter 3.

Finally, we note that if a series of slews is made we do not use the fuzzy
controller that is learned by the end of one slew to initialize the one that is tuned
in the next slew. We found experimentally that it is a bit better to simply zero all
the elements of the rule-base for each slew and have it re-learn the rule-base each
time. The reason for this is that the fuzzy controller that is learned for a slew is in
a sense optimized for the vibration damping near the end of the slew and not the
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large angle movements necessary in the initial part of the slew (note that most of
the time, the rule-base modifications are being made during the vibration damping
phase). This shows that there is some room for improvement of this FMRLC where
additional inputs to the fuzzy controller may allow it to learn and remember the
appropriate controllers in different operating regions so they do not have to be
re-learned.

6.4 Dynamically Focused Learning (DFL)
As we pointed out at the beginning of Section 6.2, a learning system possesses the
capability to improve its performance over time by interacting with its environment.
A learning control system is designed so that its learning controller has the ability to
improve the performance of the closed-loop system by generating command inputs
to the plant and utilizing feedback information from the plant. Learning controllers
are often designed to mimic the manner in which a human in the control loop would
learn how to control a system while it operates. Some characteristics of this human
learning process may include the following:

1. A natural tendency for the human to focus her or his learning by paying par-
ticular attention to the current operating conditions of the system since these
may be most relevant to determining how to enhance performance.

2. After the human has learned how to control the plant for some operating con-
dition, if the operating conditions change, then the best way to control the
system may have to be relearned.

3. A human with a significant amount of experience at controlling the system in
one operating region should not forget this experience if the operating condition
changes.

To mimic these types of human learning behavior, in this section we introduce
three strategies that can be used to dynamically focus a learning controller onto the
current operating region of the system. We show how the subsequent “dynamically
focused learning” (DFL) can be used to enhance the performance of the FMRLC
that was introduced and applied in the last two sections, and we also perform
comparative analysis with a conventional adaptive control technique.

Ultimately, the same overall objectives exist as for the FMRLC. That is, we
seek to provide a way to automatically synthesize or tune a direct fuzzy controller
since it may be hard to do so manually or it may become “detuned” while in
operation. With DFL, however, we will be tuning not only the centers of the output
membership functions, but also the input membership functions of the rules. A
magnetic ball suspension system is used throughout this section to perform the
comparative analyses, and to illustrate the concept of dynamically focused fuzzy
learning control.
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6.4.1 Magnetic Ball Suspension System: Motivation for DFL
In this section we develop a conventional adaptive controller and an FMRLC for
a magnetic ball suspension system and perform a comparative analysis to assess
the advantages and disadvantages of each approach. At the end of this section,
we highlight certain problems that can arise with the FMRLC and use these as
motivation for the dynamically focused learning enhancement to the FMRLC.

Magnetic Ball Suspension System

The model of the magnetic ball suspension system shown in Figure 6.19 is given by
[102]

M
d2y(t)
dt2

= Mg − i2(t)
y(t)

v(t) = Ri(t) + L
di(t)
dt

(6.25)

where y(t) is the ball position in meters, M = 0.1 kg is the ball mass, g = 9.8
m/s2 is the gravitational acceleration, R = 50 Ω is the winding resistance, L = 0.5
Henrys is the winding inductance, v(t) is the input voltage, and i(t) is the winding
current. The position of the ball is detected by a position sensor (e.g., an infrared,
microwave, or photoresistive sensor) and is assumed to be fully detectable over the
entire range between the magnetic coil and the ground level. We assume that the
ball will stay between the coil and the ground level (and simulate the system this
way). In state-space form, Equation (6.25) becomes

dx1(t)
dt

= x2(t)

dx2(t)
dt

= g − x2
3(t)

Mx1(t)
dx3(t)

dt
= −R

L
x3(t) +

1
L

v(t) (6.26)

where [x1(t), x2(t), x3(t)]� = [y(t), dy(t)
dt , i(t)]�. Notice that the nonlinearities are

induced by the x2
3(t) and 1

x1(t)
terms in the dx2(t)

dt equation. By linearizing the plant
model in Equation (6.26), assuming that the ball is initially located at x1(0) = y(0),
we can find a linear system by calculating the Jacobian matrix at y(0). The linear
state-space form of the magnetic ball suspension system is given as

dx1(t)
dt

= x2(t)

dx2(t)
dt

=
g

y(0)
x1(t) − 2

√
g

My(0)
x3(t)

dx3(t)
dt

= −R

L
x3(t) +

1
L

v(t) (6.27)
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FIGURE 6.19 Magnetic ball suspension
system (figure taken from [103], c© IEEE).

Since the ball position y(t) is the only physical output of the plant, by assuming
that all initial conditions are zero for the linear perturbation model, we can rewrite
the model as a transfer function

Y (s)
V (s)

=
− 2

L

√
g

My(0)

(s2 − g
y(0))(s + R

L )
(6.28)

Note that there are three poles (two stable and one unstable) and no zeros in the
transfer function in Equation (6.28). Two poles (one stable and one unstable) and
the DC gain change based on the initial position of the ball so that the system
dynamics will vary significantly depending on the location of the ball. From Fig-
ure 6.19, the total distance between the magnetic coil and the ground level is 0.3
m, and the diameter of the ball is 0.03 m. Thus, the total allowable travel is 0.27 m,
and the initial position of the ball y(0) can be anywhere between 0.015 m (touching
the coil) and 0.285 m (touching the ground). For this range the numerator of the
transfer function

− 2
L

√
g

My(0)

varies from −323.3 (ball at 0.015 m) to −74.17 (ball at 0.285 m), while the two
poles move from ±25.56 to ±5.864.

Clearly, then, the position of the ball will affect our ability to control it. If it is
close to the coil it may be difficult to control since the unstable pole moves farther
out into the right-half plane, while if it is near the ground level it is easier to control.
The effect of the ball position on the plant dynamics can cause problems with the
application of fixed linear controllers (e.g., ones designed with root locus or Bode
techniques that assume the plant parameters are fixed). It is for this reason that
we investigate the use of a conventional adaptive controller and the FMRLC for
this control problem. We emphasize, however, that our primary concern is not with
the determination of the best control approach for the magnetic ball suspension
system; we simply use this system as an example to compare control approaches
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and to illustrate the ideas in this section.

Conventional Adaptive Control

In this section a model reference adaptive controller (MRAC) is designed for the
magnetic ball suspension system. The particular type of MRAC we use is described
in [180] (on p. 125); it uses the so-called “indirect” approach to adaptive control
where the updates to the controller are made by first identifying the plant param-
eters. To design the MRAC, a linear model is required. To make the linear model
most representative of the range of dynamics of the nonlinear plant, we assume
that the ball is initialized at the middle between the magnetic coil and the ground
level where y(0) = 0.15 m to perform our linearization. In order to simplify the
MRAC design, we will assume that the plant is second-order by neglecting the pole
at −100 since its dynamics are much faster than the remaining roots in the plant.
We found via simulation that the use of this second-order linear model has no sig-
nificant effect on the low-frequency responses compared to the original third-order
linear model. Hence, the transfer function of the system is rewritten as (note that
the DC gain term kp is changed accordingly)

Y (s)
V (s)

=
−1.022

s2 − 65.33
(6.29)

A reference model is used to specify the desired closed-loop system behavior. Here,
the reference model is chosen to be

−25
s2 + 10s + 25

(6.30)

This choice reflects our desire to have the closed-loop response with minimal over-
shoot, zero steady-state error, and yet a stable, fast response to a reference input.
Moreover, to ensure that the “matching equality” is achieved (i.e., that there will
exist a set of controller parameters that can achieve the behavior specified in the
reference model [180]) we choose the order of the reference model to be the same
as that of the plant.

We use a “normalized gradient algorithm with projection” [180] to update the
parameters of a controller. Since the plant is assumed to be second-order, based on
the theory of persistency of excitation [180], the identifier parameters will converge
to their true values if an input that is “sufficiently rich” of an order that is at
least twice the order of the system is used. Therefore, an input composed of the
sum of two sinusoids will be used to obtain richness of order four according to the
theory. In order to pick the two sinusoids as the input, it would be beneficial to
study the frequency response of the plant model. The way to pick the inputs is
that the frequency selected should be able to excite most of the frequency range
we are interested in. A Bode plot of the third-order linear system suggested that
the cutoff frequency (3dB cutoff) of the plant is about 6 rad/sec. Hence, we picked
two sinusoids (1 rad/sec and 10 rad/sec) to cover the most critical frequency range.
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The amplitude of the input is chosen to force the system, as well as the reference
model, to swing approximately between ±0.05 m around the initial ball position
(i.e., at 0.15 m, where the total length of the system is 0.3 m); hence, we choose
r(t) = 0.05(sin(1t) + sin(10t)). Note that this input will drive the system into
different operating conditions where the plant behavior will change due to the
nonlinearities.

Next, the adaptive controller will be simulated with two different plant models
to demonstrate the closed-loop performance. The two plant models used are (1)
the second-order linear model, and (2) the original nonlinear system (i.e, Equa-
tion (6.26)).

Second-Order Linear Plant: With an appropriate choice for the adaptation
gains, we get the responses shown in Figure 6.20, where the identifier error ei = yi−y
(where yi is the output of the identifier model) is approaching zero in 0.5 sec, while
the plant output error eo = ym − y is still slowly converging after 20 sec (i.e.,
swinging between ±0.005 m) but y(t) is capable of matching the response specified
by the reference model in about 15 sec. Notice that there is a fairly large transient
period in the first 2 seconds when both the identifier and the controller parameters
are varying widely. We see that the system response is approaching the one specified
by the reference model, but the convergence rate is quite slow (even with relatively
large adaptation gains). Note that the voltage input v in Figure 6.20 is of acceptable
magnitude compared with the implementation in [15]; in fact, all control strategies
studied in this case study produced acceptable voltage control inputs to the plant
compared to [15].
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FIGURE 6.20 Responses using MRAC design (reduced order linear model, sinusoidal
input sequence) (figure taken from [103], c© IEEE).

Nonlinear Plant: In this section, the adaptive controller will be simulated with
the nonlinear model of the ball suspension system with the same controller and
initial conditions so that the ball starts at 0.15 m. Figure 6.21 shows the responses
for the nonlinear model. It is observed that the ball first drops to the ground level
since the adaptation mechanism is slow and it cannot keep up with the fast-moving
system. After about 2.5 sec, the system starts to recover and tries to keep up with
the plant. The identifier error ei dies down after about 5 sec to where it swings
between ±0.001 m; however, the plant output error swings between ±0.03 m and
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appears to maintain at the same level (i.e., the plant output never perfectly matches
that of the reference model). The plant output is not capable of matching the one
specified by the reference model mainly because the indirect adaptive controller is
not designed for the nonlinear model. We also observe that the ball position reacts
better in the range where the ball is close to the ground level (0.3 m), whereas the
response gets worse in the range where the ball is close to the magnetic coil (0 m)
(i.e., the nonzero identifier error is found and the control input is more oscillatory
in the instants when the ball position is closer to 0 m). This behavior is due to
the nature of the nonlinear plant, where the system dynamics vary significantly
with the ball position, and the adaptive mechanism is not fast enough to adapt the
controller parameters with respect to the system dynamics.
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FIGURE 6.21 Responses for MRAC design (nonlinear model, sinusoidal input
sequence) (figure taken from [103], c© IEEE).

In order to keep the ball from falling to the ground level or lifting up to the coil,
one approach is to apply the previously adapted controller parameters to initialize
the adaptive controller. It is hoped that this initialization process would help the
adaptation mechanism to keep up with the plant dynamics at the beginning of the
simulation. As shown in Figure 6.22, when this approach is employed, the ball does
not fall to the ground level (compared to Figure 6.21). Despite the fact that the
system appears to be stable, the identifier error does not approach zero and swings
between ±0.001 m and the plant output error swings between ±0.03 m (i.e., the
closed-loop response of the plant is still not matching that of the reference model).
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FIGURE 6.22 Responses for MRAC design after “training” (nonlinear model,
sinusoidal input sequence) (figure taken from [103], c© IEEE).
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Unfortunately, if a step input sequence is used as the reference input to the
nonlinear plant, as shown in Figure 6.23, the MRAC does a very poor job of fol-
lowing the reference model. However, the DFL strategies will significantly improve
on this performance.
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FIGURE 6.23 Responses for MRAC (nonlinear model, step input sequence) (figure
taken from [103], c© IEEE).

Fuzzy Model Reference Learning Control

In this section, the FMRLC will be designed for the magnetic ball suspension sys-
tem. Note that the design of the FMRLC does not require the use of a linear plant
model, and thus from now on we will always use the nonlinear model of the mag-
netic ball suspension system. The fuzzy controller uses the error signal e(kT ) =
r(kT ) − y(kT ) and the change in error of the ball position c(kT ) = e(kT )−e(kT−T )

T
to decide what voltage to apply so that y(kT ) → r(kT ) as k → ∞. For our fuzzy
controller design, the gains ge, gc, and gv were employed to normalize the universe
of discourse for the error e(kT ), change in error c(kT ), and controller output v(kT ),
respectively. The gain ge is chosen so that the range of values of gee(kT ) lies on
[−1, 1], and gv is chosen by using the allowed range of inputs to the plant in a
similar way. The gain gc is determined by experimenting with various inputs to the
system to determine the normal range of values that c(kT ) will take on; then gc is
chosen so that this range of values is scaled to [−1, 1]. According to this procedure,
the universes of discourse of the inputs to the fuzzy controller e(t) and c(t) are
chosen to be [−0.275, 0.275] and [−2.0, 2.0], respectively. This choice is made based
on the distance between the coil and ground level of the magnetic ball suspension
system and an estimate of the maximum attainable velocity of the ball that we
obtain via simulations. Thus, the gains ge and gc are 1

0.275 and 1
2 , respectively. The

output gain gv is then chosen to be 30, which is the maximum voltage we typically
would like to apply to the plant.

We utilize one MISO fuzzy controller, which has a rule-base of If-Then control
rules of the form

If ẽ is Ẽa and c̃ is C̃b Then ṽ is Ṽ a,b
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where ẽ and c̃ denote the linguistic variables associated with controller inputs e(kT )
and c(kT ), respectively; ṽ denotes the linguistic variable associated with the con-
troller output v; Ẽa denotes the ath linguistic value associated with ẽ; C̃b denotes
the bth linguistic value associated with c̃; and Ṽ a,b denotes the consequent linguis-
tic value associated with ṽ. We use 11 fuzzy sets (triangular-shaped membership
function with base widths of 0.4) on the normalized universes of discourse for e(kT )
and c(kT ), as shown in Figure 6.24(a).
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FIGURE 6.24 Input-output universes of discourse and rule-base for the fuzzy controller
(figure taken from [103], c© IEEE).

Assume that we use the same fuzzy sets on the c(kT ) normalized universes
of discourse (i.e., Cb = Ea). As shown in Figure 6.24(a), we initialize the fuzzy
controller knowledge-base with 121 rules (using all possible combinations of rules)
where all the right-hand-side membership functions are triangular with base widths
of 0.2 and centers at zero.

We use a discretized version of the same reference model as was used for the
MRAC of the previous section for the conventional MRAC. The performance of the
overall system is computed with respect to the reference model by generating error
signals

ye(kT ) = ym(kT ) − y(kT )

and

yc(kT ) =
ye(kT ) − ye(kT − T )

T

The fuzzy inverse model is set up similar to the fuzzy controller with the same
input membership functions as in Figure 6.24 for ye(kT ) and yc(kT ), but there
are 21 triangular output membership functions that are uniformly spaced across a
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[−1, 1] effective universe of discourse. The rule-base is chosen so that it represents
the knowledge of how to update the controller when the error, the change of error
between the reference model, and the plant output are given. In particular, the
centers of the membership functions for Y a,b

f (the inverse model output membership
functions) are given by

−(a + b)
10

so that the rule-base has a similar form to the one in Table 6.1 on page 338 but has
different off-diagonal terms. The gains of the fuzzy inverse model are then initially
chosen to be gye = 1

0.275 , gyc = 0.5, and gf = 30. Note that all the gains are
chosen based on the physical properties of the plant, so that gye = ge, gyc = gc,
and gf = gv (more details on the rationale and justification for this choice for the
gains is provided in Section 6.2).

According to the second design procedure in Section 6.2.3, a step input can be
used to tune the gains gc and gyc of the FMRLC. Here, we chose a step response
sequence. Notice in the ball position plot in Figure 6.25 that the FMRLC design was
quite successful in generating the control rules such that the ball position tracks the
reference model almost perfectly. It is important to note that the FMRLC design
here required no iteration on the design process. However, this is not necessarily
true in general, and some tuning is most often needed for different applications.
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FIGURE 6.25 Responses for FMRLC (step input sequence) (figure taken from [103],
c© IEEE).

While the FMRLC seems quite successful, it is possible that there exists an
input sequence that will cause the FMRLC to fail since stability of the FMRLC
depends on the input (as it does for all nonlinear systems). For example, if the
sinusoidal input sequence r(t) = 0.05(sin(1t)+sin(10t)) is used (as it was used in the
adaptive controller design), the plant response is unstable, as shown in Figure 6.26,
in the sense that the ball hits the coil and stays there. Notice that the ball hits the
coil and even with a small (or zero) voltage is held there; this is a characteristic
of the somewhat academic plant model, the saturations due to restricting the ball
movements between the coil and ground level, and the way that the system is
simulated. Although exhaustive tuning of the gains (except ge, gv, gye , and gf since
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we artificially consider these to be set by the physical system) are performed to
improve the FMRLC, Figure 6.26 indeed shows one of the best responses we can
obtain.
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FIGURE 6.26 Responses for FMRLC (sinusoidal input sequence) (figure taken from
[103], c© IEEE).

Motivation for Dynamically Focused Learning

To gain better insight into why the FMRLC fails, in Figure 6.27 we show the learned
rule-base of the fuzzy controller in the FMRLC (after the step input sequence
in Figure 6.25 is applied to the system for 20 sec). This shows that the fuzzy
controller actually utilized only 9 of the 121 possible rules. In fact, the 9 rules that
are learned lie within the center section. With such a small number of rules, the
learning mechanism of the FMRLC performed inadequately because the resulting
control surface can capture only very approximate control actions. In other words,
for more complicated control actions, such a rule-base may not be able to force the
plant to follow the reference model closely.

To improve FMRLC performance, one possible solution is to redesign the con-
troller so that the rule-base has enough membership functions at the center, where
the most learning is needed. Yet, we will not consider this approach because the
resulting controller will then be limited to a specific range of the inputs that hap-
pen to have been generated for the particular reference input sequence. Another
possible solution is to increase the number of rules (by increasing the number of
membership functions on each input universe of discourse) used by the fuzzy con-
troller. Therefore, the total number of rules (for all combinations) is also increased,
and we enhance the capability of the rule-base to memorize more distinct control
actions (i.e., to achieve “fine control”).

For instance, if we increase the number of membership functions on each input
universe of discourse from 11 to, say 101 (but keeping all other parameters, such
as the scaling gains, the same), the total number of rules will increase from 121
to 10,201—that is, there is a two order of magnitude increase in the number of
rules (we chose this number of membership functions by trial and error and found
that further increases in the number of membership functions had very little effect
on performance), and we get the responses shown in Figure 6.28 for the FMRLC.
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FIGURE 6.27 Rule-base of the learned fuzzy controller (step input
sequence) (figure taken from [103], c© IEEE).

Clearly, as compared to Figure 6.26, we have drastically improved the performance
of the FMRLC to the extent that it performs similarly to the MRAC for the non-
linear model (see Figure 6.22). Notice that in Figure 6.28 the output error swings
between ±0.027 m even after 15 sec of simulation, and the plant output is oscilla-
tory. Longer simulations have shown that this FMRLC appears to be stable, but
the plant cannot perfectly follow the response of the reference model.

Even though we were able to significantly improve performance, enlarging the
rule-base has many disadvantages: (1) the number of rules increases exponentially
for an increase in membership functions and inputs to the fuzzy controller, (2) the
computational efficiency decreases as the number of rules increases, and (3) a rule-
base with a large number of rules will require a long time period for the learning
mechanism to fill in the correct control laws since smaller portions of the rule-
base map in Figure 6.27 will be updated by the FMRLC for a higher-granularity
rule-base (unless, of course, you raise the adaptation gain). Hence, the advantages
of increasing the number of rules will soon be offset by practical implementation
considerations and possible degradations in performance.

This motivates the need for special enhancements to the FMRLC so that we
can (1) minimize the number of membership functions and therefore rules used, and
(2) at the same time, maximize the granularity of the rule-base near the point where
the system is operating (e.g., the center region of the rule-base map in Figure 6.27)
so that very effective learning can take place.

FMRLC Learning Dynamics

Before introducing the DFL strategies that will try to more effectively use the rules,
we clarify several issues in FMRLC learning dynamics including the following: (1)
the effects of gains on linguistic values, and (2) characteristics of the rule-base such



6.4 Dynamically Focused Learning (DFL) 375

0 5 10 15 20
Time (sec)

0.1

0.15

0.2

M
et

er
s

PlantReference model

0 5 10 15 20
Time (sec)

-0.04

-0.02

0

0.02

M
et

er
s

0 5 10 15 20
Time (sec)

0

20

40

60

V
ol

ts

Ball position (y ) Voltage input (v ) Output error (y   )e    

FIGURE 6.28 Responses for FMRLC (nonlinear model, sinusoidal input sequence)
(figure taken from [103], c© IEEE).

as granularity, coverage, and the control surface.

Effects on Linguistic Values: The fuzzy controller in the FMRLC used for the
magnetic ball suspension system has 11 membership functions for each input (e(kT )
and c(kT )). There are a total of 121 rules, with all the output membership function
centers initialized at zero. The universes of discourse for each process input are
normalized to the interval [−1, 1] by means of constant scaling factors. For our fuzzy
controller design, the gains ge, gc, and gv were employed to normalize the universe of
discourse for the error e(kT ), change in error c(kT ), and controller output v(kT ),
respectively. The gains ge and gc then act as the scaling factors of the physical
range of the inputs. By changing these gains, the meanings of the premises of the
linguistic rules will also be changed. An off-line tuning procedure for selecting these
gains (such as the one described in Section 6.2) is essentially picking the appropriate
meaning for each of the linguistic variables (recall our discussion in Chapter 2 on
tuning scaling gains). For instance, one of the membership functions E4 on e(kT )
is defined as “PositiveBig” (see Figure 6.24), and it covers the region [0.6, 1.0] on
e(kT ). With the gain ge = 1

0.275 , the linguistic term “PositiveBig” quantifies the
position errors in the interval [0.165, 0.275]. If the gain is increased to ge = 1

0.05
(i.e., reducing the domain interval of the universe of discourse from [−0.275, 0.275]
to [−0.05, 0.05]), then the linguistic term “PositiveBig” quantifies position errors in
the interval [0.03, 0.05].Note that the range covered by the linguistic term is reduced
by increasing the scaling factor (decreasing the domain interval of the universe of
discourse), and thus the true meanings of a membership function can be varied by
the gains applied. The reader should keep this in mind when studying the DFL
strategies in subsequent sections.

Rule-Base Coverage: As explained in Chapter 2, the fuzzy controller rule-base
can be seen as a control surface. Then, a two-input single-output fuzzy controller
can be viewed as a functional map that maps the inputs to the output of the fuzzy
controller. Therefore, the FMRLC algorithm that constructs the fuzzy controller is
essentially identifying this control surface for the specified reference model. With
the “granularity” chosen by the number of membership functions and the gain,
this control surface is normally most effective on the domain interval of the in-
put universes of discourse (at the outer edges, the inputs and output of the fuzzy
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controller saturate). For example, the gain ge = 1
0.275 is chosen to scale the input

e(kT ) onto a normalized universe of discourse [−1, 1]. The domain interval of the
input universe of discourse on e(kT ) is then bounded on [−0.275, 0.275]. Hence, a
tuning procedure that changes the gains ge and gc is altering the “coverage” of the
control surface. Note that for a rule-base with a fixed number of rules, when the
domain interval of the input universes of discourse are large (i.e., small ge and gc),
it represents a “coarse control” action; and when the input universes of discourse
are small (i.e., large ge and gc), it represents a “fine control” action. Hence, we can
vary the “granularity” of a control surface by varying the gains ge and gc.

Based on the above intuition about the gains and the resulting fuzzy controller,
it is possible to develop different strategies to adjust the gains ge and gc so that
a smaller rule-base can be used on the input range needed the most. This is done
by adjusting the meaning of the linguistic values based on the most recent input
signals to the fuzzy controller so that the control surface is properly focused on the
region that describes the system activity. In the next section, we will give details
on three techniques that we will be able to scale (i.e., “auto-tune”), to move (i.e.,
“auto-attentive”), and to move and remember (i.e., “auto-attentive with memory”)
the rule-base to achieve dynamically focused learning for FMRLC.

For comparison purposes, all the fuzzy controllers in the following sections have
121 rules, where each of the input universes of discourse have 11 uniformly spaced
membership functions (the same ones that were used in Figure 6.24). The initial
gains ge and gc are chosen to be 1

0.05 and 1
0.5 , respectively (this choice will make

the initial rule-base of the fuzzy controller much smaller than the center learned
region in Figure 6.27), in order to ensure various DFL approaches for FMRLC are
activated so that we can study their behavior. It is interesting to note that with this
choice of gains, the FMRLC (without dynamically focused learning) will produce
the unstable responses shown in Figure 6.29 (see the discussion on Figure 6.26 where
similar behavior is observed). In the following sections we will introduce techniques
that will focus the rule-base so that such poor behavior (i.e., where the ball is lifted
to hit the coil) will be avoided.
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FIGURE 6.29 Responses for FMRLC with reduced rule-base and no DFL (sinusoidal
input sequence) (figure taken from [103], c© IEEE).
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6.4.2 Auto-Tuning Mechanism
In the standard FMRLC design for the magnetic ball suspension system, the input
sequence does not excite the whole range of the designated input universes of dis-
course (see Figure 6.27). Instead, the rule-base learned for the input sequence only
covered the center part of the rule-base. Hence, to achieve an adequate number
of rules to enhance the granularity of the rule-base near the center, it would be
necessary to design the rule-base so that it is located at exactly where most of the
rules are needed. However, we would like to ensure that we can adapt the fuzzy
rule-base should a different input sequence drive the operation of the system out of
this center region.

Auto-Tuning

Based on our experience in tuning the FMRLC, it is often observed that the gains
ge and gc are chosen as bounds on the inputs to the controller so that the rule-base
represents the active region of the control actions (e.g., see the cargo ship FMRLC
design example in Section 6.3.1 on page 333). We base our on-line auto-tuning
strategy for the input scaling gains on this idea. Let the maximum of each fuzzy
controller input over a time interval (window) of the last TA seconds be denoted
by maxTA{e(kT )} and maxTA{c(kT )}. Then this maximum value is defined as the
gain of each input e(kT ) and c(kT ) so that

ge =
1

maxTA{e(kT )}

and

gc =
1

maxTA{c(kT )}

For the magnetic ball suspension system, after some experimentation, we chose
TA = 0.1 sec (it was found via simulations that any TA ∈ [0.05, 0.3] sec can be
used equally effectively). Longer time windows tend to slow down the auto-tuning
action; while a shorter window often speeds up the auto-tuning, but the resulting
control is more oscillatory. Once the gains are changed, it is expected that the
learning mechanism of the FMRLC will adjust the rules accordingly when they are
reactivated, because the scaling will alter all the rules in the rule-base.

Note that the learning process now involves two individual, distinct compo-
nents: (1) the FMRLC learning mechanism that fills in the appropriate consequents
for the rules, and (2) the auto-tuning mechanism (i.e., an adaptation mechanism)
that scales the gains that actually redefine the premise membership functions. Nor-
mally, we make the learning mechanism operate “at a higher rate” than the auto-
tuning mechanism for the premise membership functions in order to try to assure
stability. If the auto-tuning mechanism is designed to be “faster” than the FMRLC
learning mechanism, the learning mechanism will not be able to keep up with the
changes made by the auto-tuning mechanism so it will never be able to learn the
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rule-base correctly. The different rates in learning and adaptation can be achieved
by adjusting the sampling period T of the FMRLC and the window length TA of
the auto-tuning mechanism.
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FIGURE 6.30 Dynamics of auto-tuning for FMRLC (figure taken from [103],
c© IEEE).

Figure 6.30 illustrates how the gain scaling implemented by auto-tuning affects
the input membership functions. Note that the center of the output membership
functions defined on the v(kT ) universe of discourse in Figure 6.30 are filled with
a “standard” set of rules such that they represent a typical choice (for illustration
purposes) from a control engineer’s experience for the fuzzy controller. For example,
at the beginning, the centers of each of the input membership functions are shown
in the rule-base in Figure 6.30. In the next time instant, if the values maxTA{e(kT )}
and maxTA{c(kT )} are halved, the gains

ge =
1

maxTA{e(kT )}

and

gc =
1

maxTA{c(kT )}

are now doubled. Then, the overall effect is that each of the membership functions
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on the input universes of discourse is given a new linguistic meaning, and the
domain of the control surface is expanded as shown by the centers of each input
membership function after the auto-tuning action (see Figure 6.30).

Notice that we will require a maximum gain value; otherwise, each input uni-
verse of discourse for the fuzzy system may be reduced to zero (where the gains ge

and gc go to infinity) so that controller stability is not maintained. For the magnetic
ball suspension system, the maximum gain is chosen to be the same as the initial
value (i.e., ge = 1

0.05 and gc = 1
0.5). Other gains gv, gye , gyc and gf (the gain on the

output of the model) are the same as those used in the standard FMRLC.

Auto-Tuning Results

For FMRLC with auto-tuning, Figure 6.31 shows that the ball position can follow
the sinusoidal input sequence very closely, although perfect tracking of the refer-
ence response is not achieved. However, this result is better than the case where
conventional adaptive control is used (see Figure 6.22), and definitely better than
the standard FMRLC design (see Figure 6.26). Notice that the results shown in
Figure 6.31 are similar to those shown in Figure 6.28, where 10,201 rules are used;
however, the auto-tuning approach used only 121 rules. There are extra compu-
tations needed to implement the auto-tuning strategy to take the maximum over
a time interval in computing the gains. Figure 6.32 shows excellent responses for
the same auto-tuned FMRLC with the step input sequence where the ball position
follows the reference model without noticeable difference (compare to Figures 6.23
and 6.25 for the MRAC and FMRLC, respectively).
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FIGURE 6.31 Responses for FMRLC with auto-tuning (sinusoidal input sequence)
(figure taken from [103], c© IEEE).

6.4.3 Auto-Attentive Mechanism
One of the disadvantages of auto-tuning the FMRLC is that all the rules in the
rule-base are changed by the scaling of the gains, which may cause distortions in
the rule-base and require the learning mechanism to relearn the appropriate control
laws. Hence, instead of scaling, in this section we will consider moving the entire
rule-base with respect to a fixed coordinate system so that the fuzzy controller can
automatically “pay attention” to the current inputs.
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FIGURE 6.32 Responses for FMRLC with auto-tuning (step input sequence) (figure
taken from [103], c© IEEE).

Auto-Attentive Approach

To explain the auto-attentive mechanism, it is convenient to define some new terms
that are depicted in Figure 6.33. First of all, the rule-base of the fuzzy controller
is considered to be a single cell called the “auto-attentive active region,” and it
represents a fixed-size rule-base that is chosen by the initial scaling gains (i.e.,
ge and gc must be selected a priori). The outermost lightly shaded region of the
rule-base is defined as the “attention boundary.” The four lightly shaded rules
(note that there are at most four rules “on” at one time due to our choice for
membership functions shown in Figure 6.24) in the lower right portion of the rule-
base are referred as the FMRLC “active learning region”; this is where the rules
are updated by the learning mechanism of the FMRLC. Finally, the white arrow in
Figure 6.33 indicates the direction of movement of the active learning region.
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FIGURE 6.33 Auto-attentive mechanism for FMRLC (before shifting) (figure taken
from [103], c© IEEE).

For the auto-attentive mechanism, if the FMRLC active learning region moves
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into the attention boundary, a “rule-base shift” is activated. For example, if the
active learning region hits the lower-right attention boundary, as shown in Fig-
ure 6.34, the result is that the rule-base will be shifted down one unit and to the
right one unit (i.e., the width of a membership function). We chose the convention
that shifting the rule-base to the right and downward both correspond to positive
offsets and shifting the rule-base to the left and upward both correspond to nega-
tive offsets. This choice is made to be compatible with the convention used in the
input universes of discourse in the rule-base (as shown in Figures 6.33 and 6.34).
Hence, the shift in the rule-base is represented by the “offset” of the rule-base from
its initial position, which is (Eoffset, Coffset) = (1, 1) as shown in Figure 6.34 for
this example. With the offset values, the shift of the rule-base is obtained simply
by adding the offset values to each of the premise membership functions. After the
rule-base is shifted, the active attention region is moved to the region in the large
dashed box shown in Figure 6.34. In the new unexplored region (i.e., the darkly
shaded row and column), the consequents of the rules will be filled with zeros since
this represents that there is no knowledge of how to control in the new region.
Another approach would be to extrapolate the values from the adjacent cells since
this may provide a more accurate guess at the shape of the controller surface.

Conceptually, the rule-base is moving and following the FMRLC active learning
region. We emphasize, however, that if the active learning region never hits the
attention boundary, there will never be a rule-base shift and the controller will
behave exactly the same as the standard FMRLC. Overall, we see that the auto-
attentive mechanism seeks to keep the controller rule-base focused on the region
where the FMRLC is learning how to control the system (one could think of this as
we did with the auto-tuning mechanism as adapting the meaning of the linguistic
values). If the rule-base shifts frequently, the system will “forget” how to control
in the regions where it used to be, yet learn how to control in the new regions
where adaptation is needed most. Note that we can consider the width of the
attention boundary to be a design parameter, but we found that it is best to set the
attention boundary as shown in Figure 6.33 since this choice minimizes oscillations
and unnecessary shifting of the rule-base for this example.

Similar to the auto-tuning DFL strategy, there are two distinct processes here:
(1) the FMRLC learning mechanism that fills in appropriate consequents for the
rules, and (2) the auto-attentive mechanism (another adaptation mechanism) that
moves the entire rule-base. Moreover, we think of the FMRLC learning mechanism
as running at a higher rate compared to the auto-attentive mechanism (in order to
try to assure stability), since we only allow a shift of the entire rule-base by a single
unit in any direction in any time instant. The rate of adaptation can be controlled
by using a different attention boundary to activate the rule-base movement. For
example, if the attention boundary shown in Figure 6.33 is in the inner part of
the rule-base (say, the second outermost region of the rule-base instead of the
outermost region), then the rule-base will be shifted more often and thus increase
the adaptation rate of the auto-attentive mechanism.
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Auto-Attentive Mechanism Results

For the magnetic ball suspension system, the input universes of discourse are chosen
as [−0.05, 0.05] and [−0.5, 0.5] (i.e., the gains ge and gc are 1

0.05 and 1
0.5 , respec-

tively), while all the other gains are the same as the ones used in the standard
FMRLC design in Section 6.4.1. Figure 6.35 illustrates the performance of the FM-
RLC with the auto-attentive mechanism. We see that the ball position can follow the
input sequence very closely, although perfect tracking of the reference model cannot
be achieved (with maximum output error ye within ±0.0078 m), but this result is
better than the case with the conventional adaptive controller (see Figure 6.22), the
standard FMRLC with 10201 rules (see Figure 6.28) and the auto-tuning FMRLC
(see Figure 6.31); and definitely better than the case with the unstable standard
FMRLC (see Figure 6.26, where the ball is lifted to the coil).
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FIGURE 6.35 Responses for FMRLC with auto-attentive mechanism (sinusoidal input
sequence) (figure taken from [103], c© IEEE).
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To gain insight into the dynamics of the auto-attentive mechanism, Figures 6.36(a)
and (b) show the Eoffset and Coffset values throughout the simulation, and Fig-
ure 6.36(c) depicts the first five movements of the rule-base. The double arrows
in Figure 6.36(c) denote the movement of the rule-base from the initial position
(shown as an empty box) to an outer region (shown as a shaded box), while the
number next to the shaded box is the rule-base at the next time instant where
the rule-base moved (the shades also change to deeper gray as time progresses).
Hence, the rule-base is actually oscillating about to the (Eoffset, Coffset) origin as
time progresses, and it also moves around the initial position in a counterclockwise
circular motion (this motion is induced by the sinusoids that the rule-base is trying
to track). Note that we have done simulation tests for different sizes of the active
attention region for improving the responses from the auto-attentive FMRLC. How-
ever, we found that smaller active attention regions result in excessive motion for
the rule-base, while larger auto-attention active regions will have the same low rule-
base “granularity” problem as the standard FMRLC. Figure 6.37 shows excellent
responses for the same auto-attentive FMRLC design with a step input sequence,
which is basically the same as in the case of standard FMRLC (see Figure 6.25).
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6.4.4 Auto-Attentive Mechanism with Memory
Note that in the auto-attentive DFL strategy, every shift of the rule-base will create
a new unexplored region (i.e., the darkly shaded row and column in Figure 6.34).
This region will be filled with zeros since this represents that we have no knowledge
of how to control when we move into a new operating condition. Having to learn
the new regions from scratch after every movement of the rule-base can cause
degradations in the performance of the auto-attentive FMRLC since it will require
the learning mechanism to fill in the unknown rules (i.e., additional time for learning
will be needed). For example, if an auto-attentive FMRLC has been operating for
a long time on an input sequence, then at some time instant a disturbance affected
the controller inputs and forced the rule-base to leave its current position, some of
the rules are lost and replaced by new rules that will accommodate the disturbance.
When the temporary disturbance is stopped and the rule-base returns to its initial
position again, its previous experience is lost and it has to “relearn” everything
about how to control in a region where it actually has gained a significant amount
of experience.

Auto-Attentive Approach with Memory

There are two main components to add to the auto-attentive mechanism to obtain
the auto-attentive mechanism with memory. These are the fuzzy experience model
and its update mechanism.

Fuzzy Experience Model: To better reflect the “experience” that a controller
gathers, we will introduce a third fuzzy system, which we call the “fuzzy experience
model” for the FMRLC, as the memory to record an abstraction of the control laws
that are in the region previously reached through the auto-attentive mechanism.
The rule-base of this fuzzy experience model (i.e., the “experience rule-base”) is
used to represent the “global knowledge” of the fuzzy controller. In this case, no
matter how far off the auto-attentive mechanism has offset the rule-base, there is a
rough knowledge of how to control in any region the controller has visited before. In
other words, this fuzzy controller not only possesses learning capabilities from the
learning mechanism and adaptation abilities from the auto-attentive algorithm; it
also maintains a representation of the “experience” it has gathered on how to control
in an additional fuzzy system (an added level of memory and hence learning—with
some imagination you can envision how to add successive nested learning/auto-
attentive mechanisms and memory models for the FMRLC).

As shown in Figure 6.38, the fuzzy experience model has two inputs ecenter(kT )
and ccenter(kT ), which represent the center of the auto-attentive active region that
is defined on e(kT ) and c(kT ). For our example, these inputs have five symmetric,
uniformly spaced membership functions, and there are a total of 25 rules (i.e., 25
output membership functions that are initialized at zero). The universes of discourse
for each of these inputs are normalized to the interval [−1, 1] by means of constant
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FIGURE 6.38 The fuzzy experience model for the auto-attentive mechanism with
memory for FMRLC (figure taken from [103], c© IEEE).

scaling factors. To represent the global knowledge, the gains

gecenter =
1

0.275

and

gccenter =
1

2.0

were employed to normalize the universe of discourse for the error ecenter(kT ) and
change in error ccenter(kT ). The same gains used in the standard FMRLC design
are employed here since these are assumed to represent the complete universes
of discourse (determined by the physical limits) for the magnetic ball suspension
system. The output universe of discourse is selected to be [−1, 1] with gain gvcenter =
1, which preserves the original information from the fuzzy experience model without
scaling.

Learning Mechanism for Fuzzy Experience Model: The learning mecha-
nism for this fuzzy experience model is similar to the learning mechanism for the
FMRLC except that the fuzzy inverse model is not needed for the fuzzy experi-
ence model. The two inputs ecenter(kT ) and ccenter(kT ) are used to calculate the
“experience” value vcenter(kT ) for the current auto-attentive active region, and the
“activation level” of all the rules, while only the rules with activation levels larger
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than zero will be updated (i.e., the same as the method used in the FMRLC learning
mechanism in Section 6.2.3). Each time after the fuzzy controller rule-base (i.e., the
auto-attentive active region) is updated, the numerical average value of the auto-
attentive rule-base consequent centers, denoted by vcenter(avg)(kT ), will be taken
for the corresponding fuzzy experience model. Hence, the change of the consequent
fuzzy sets of the experience rule-base that have premises with nonzero activation
levels, can be computed as

vcenter(chg) = vcenter(avg)(kT ) − vcenter(kT )

and vcenter(chg) is used to update the fuzzy experience model exactly the same way
as the fuzzy controller is updated in Section 6.2.3.

For example, the shaded area in Figure 6.38 (the active learning region for the
experience rule-base) is activated by the inputs ecenter(kT ) and ccenter(kT ) (i.e.,
these are the rules that have nonzero activation level). First, assume that the centers
of all membership functions on vcenter(kT ) are zero at the beginning, and thus the
output of the fuzzy experience model vcenter(kT ) is zero. Then, assume we found
vcenter(avg)(kT ) = 0.5 to be the average value of the control surface (i.e., average
value of the centers of the output membership functions) for the auto-attentive
active region; hence, the update of the fuzzy experience model vcenter(chg) = 0.5
can be found. Hence, the consequent membership functions of the fuzzy experience
model will be shifted to 0.5, as shown in the shaded region of Figure 6.38.

It is obvious that there are numerous other methods to obtain an abstract
representation of the rule-base in the auto-attentive active region besides using the
average. In fact, more complicated methods, such as using least squares to find a lin-
ear surface that best fits the control surface, could be used. However, we have found
that such a method significantly increases the computational complexity without
major performance improvements (at least, for the magnetic ball suspension sys-
tem example). Our approach here uses a simple method to represent experience
and hence provides a rough estimate of the unknown control laws.

Using Information from the Fuzzy Experience Model: As the auto-attentive
active region moves, the shaded region at the boundary of the auto-attentive active
region in Figure 6.34 can be filled in using the information recorded in the fuzzy
experience model, instead of filling with zeros in the consequent of the rules. To do
this we will need to perform a type of interpolation that pulls information off the
experience model and puts it in the shaded region on the boundary. The interpo-
lation is achieved by finding the consequent fuzzy sets for the unexplored region
(see the shaded region in Figure 6.39) given the centers of each of the premise
fuzzy sets. The enlarged active learning region for the experience rule-base shown
in Figure 6.39 illustrates that there are 21 unexplored rules in the auto-attentive
active region that needed to be estimated. We could simply compute the output
of the experience model for each of the 21 cells in the shaded region and put
these values in the shaded region. However, these computations are expensive for
obtaining the guesses for the unexplored region, and thus we choose to compute
only the consequent fuzzy sets for the center of the column (i.e., with input at
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(ecenter(column)(kT ), ccenter(kT )) as shown in Figure 6.39) and the row (i.e., with
input at (ecenter(kT ), ccenter(row)(kT )) as shown in Figure 6.39) of the unexplored
region, and then fill the entire column or row with their center values.

Note that the auto-attentive mechanism that uses the fuzzy experience model
for memory essentially performs a multidimensional interpolation, where a coarse
rule-base is used to store the general shape of the global control surface and this
information is used to fill in guesses for the auto-attentive active region as it shifts
into regions that it has visited before. There are many other ways to store informa-
tion in the experience rule-base and load information from it. For instance, we could
use some of the alternatives to knowledge-base modification, or we could simply use
the center value of the auto-attentive active region rule-base in place of the average.
Sometimes you may know how to specify the experience rule-base a priori. Then
you could omit the updates to the experience model and simply pull information
off it as the auto-attentive active region moves.
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FIGURE 6.39 The enlargement of the active learning region for the experience
rule-base (figure taken from [103], c© IEEE).

Auto-Attentive Mechanism with Memory Results

As shown in Figure 6.40, when the auto-attentive mechanism with memory is used,
the ball position can follow the input sequence almost perfectly with maximum
output error ye within ±0.0022 m (i.e., about 3.5 times smaller than for the auto-
attentive FMRLC without memory shown in Figure 6.35). Figure 6.41 shows the
results for the same technique when we use a step input sequence. Notice that in
terms of output error, these are the best results that we obtained (compared to the
results from MRAC and the two other dynamic focusing techniques).
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FIGURE 6.40 Responses for FMRLC with auto-attentive mechanism with memory
(sinusoidal input sequence) (figure taken from [103], c© IEEE).
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FIGURE 6.41 Responses for FMRLC with auto-attentive mechanism with memory
(step input sequence) (figure taken from [103], c© IEEE).

6.5 DFL: Design and Implementation Case
Studies

In this section we provide two case studies in the design and implementation of
DFL strategies. In the first, we will simply use the auto-tuning strategy on a direct
fuzzy controller (not an FMRLC) for the rotational inverted pendulum case study of
Chapter 3. Next, we will use similar auto-tuning strategy for the machine scheduling
problem in Chapter 3. We refer the reader to the appropriate sections in Chapter 3
for background on the problem formulations and studies in direct fuzzy control for
these problems.

6.5.1 Rotational Inverted Pendulum
While the direct fuzzy controller synthesized in Chapter 3 using the LQR gains
performed adequately for the nominal case, its performance degraded significantly
when a bottle of sloshing liquid was added to the endpoint. It is the objective of this
section to use the auto-tuning method to try to achieve good performance for both
the nominal and perturbed conditions without any manual tuning in between the
two experiments. We will not auto-tune the FMRLC as we did in the last section.
Here, we simply tune a direct fuzzy controller. This helps show the versatility of
the dynamically focused learning concepts.
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Auto-Tuning Strategy

The auto-tuning method for a direct fuzzy controller essentially expands on the
idea of increasing the “resolution” of the fuzzy controller by dynamically increasing
or decreasing the density of the input membership functions. For the rotational
inverted pendulum, if we increase the number of membership functions on each
input to 25, improved performance (and smoother control action) can be obtained.
To increase the resolution of the direct fuzzy controller with a limited number of
membership functions (as before, we will impose a limit of seven), we propose to
use auto-tuning to dynamically focus the membership functions to regions where
they are most useful.

Ideally, the auto-tuning algorithm should not alter the nominal control algo-
rithm near the center; we therefore do not adjust each input gain independently.
We can, however, tune the most significant input gain, and then adjust the rest of
the gains based on this gain as we did in Chapter 3. For the inverted pendulum
system, the most significant controller input is the position error of the pendulum,
e3 = θ1. The input-output gains are updated every ns samples in the following
manner:

1. Find the maximum e3 over the most recent ns samples and denote it by emax
3 .

2. Set the input gain g3 = 1
|emax

3 | .

3. Recalculate the remaining gains using the technique discussed in Chapter 3 so
as to preserve the nominal control action near the center.

We note that the larger ns is, the slower the updating rate is, and that too fast an
updating rate may cause instability.

Auto-Tuning Results

Simulation tests with ns = 50 and g3 = 2 reveal that when the fuzzy controller
is activated after swing-up, the input gains gradually increase while the output
gain decreases, as the pendulum moves closer to its inverted position. As a result,
the input and output universes of discourses contract, and the resolution of the
fuzzy system increases. In practice, it is important to constrain the maximum value
for g3 (for our system, to a value of 10) because disturbances and inaccuracies in
measurements could have adverse effects. As g3 reaches its maximum value, the
control action near θ1 = 0 is smoother than that of direct fuzzy control with 25
membership functions, and very good balancing performance is achieved.

When turning to actual implementation on the laboratory apparatus described
in Chapter 3, some adjustments were done in order to optimize the performance of
the auto-tuning controller. As with the direct fuzzy controller, the value of g3 was
adjusted upward, and the tuning (window) length was increased to ns = 75 samples.
In the first experiment we applied the scheme to the nominal system. In this case,
the auto-tuning mechanism improved the response of the direct fuzzy controller
(see Figure 3.15 on page 151) by varying the controller resolution on-line. That
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is, as the resolution of the fuzzy controller increased over time, the high-frequency
effects diminished.

However, the key issue with the adaptive (auto-tuning) mechanism is whether it
can adapt its controller parameters as the process dynamics change. Once again we
investigate the performance when the “sloshing liquid” dynamics (and additional
weight) are added to the endpoint of the pendulum. As expected from simulation
exercises, the auto-tuning mechanism effectively suppressed the disturbances caused
by the sloshing liquid, as clearly shown in Figure 6.42. Overall, we see that the auto-
tuning method provides a very effective controller for this application.
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FIGURE 6.42 Experimental results: Auto-tuned fuzzy control on the
pendulum with sloshing liquid at its endpoint (figure taken from [244],
c© IEEE).

6.5.2 Adaptive Machine Scheduling
In this section we develop an adaptive fuzzy scheduler (AFS) for scheduling the sin-
gle machine by augmenting the fuzzy scheduler in Chapter 3 with an auto-tuning
mechanism. In the AFS there is an adaptation mechanism that can automatically
synthesize a fuzzy scheduler, independent of the machine parameters. Moreover, if
there are machine parameter changes during operation that still satisfy the neces-
sary conditions for stability (see Chapter 3), the AFS will tune the parameters of the
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fuzzy scheduler so that high-performance operation is maintained. The universally
stabilizing supervisory mechanism (USSM) that is described in Chapter 3 governs
the AFS to ensure that it is stable. Therefore, the complete scheduler consists of
three layers: The bottom layer is simply the fuzzy scheduler itself, the middle layer
is the adaptation mechanism to be introduced here, and the top layer is the USSM
that supervises the lower two layers to ensure stable operation.

If the parameters of the machine change, the USSM may not guarantee sta-
bility anymore since it assumes that the machine parameters stay constant. The
parameter γ of the USSM is dependent on the parameters of the machine, whereas
the parameters zi are not. If the parameter γ is chosen large enough, the USSM
may still provide stability over a large class of machine parameters. However, since
the USSM assumes constant machine parameters, stability is not guaranteed when
the machine parameters change even if γ is large enough for the new machine pa-
rameters. It is for this reason that we split the adaptation problem into controller
synthesis (i.e., determining the positioning of a fixed number of fuzzy sets by au-
tomatically picking Mp) and controller tuning (i.e., tuning the positioning of the
fuzzy sets by changing Mp to react to machine parameter changes). In synthesis we
are guaranteed stability, while in tuning we have no proof that the policy is stable.

Automatic Scheduler Synthesis

In this section, we introduce the AFS that has an adaptive mechanism that observes
xp, p ∈ {1, 2, 3, . . . , P } and automatically tunes the values of Mp (see Chapter 3).
This adaptation mechanism, shown in Figure 6.43, adjusts the parameters Mp of
the fuzzy scheduler by using a moving window. The size of the window is not fixed
but is equal to the length of time for a fixed number of production runs. In this
section we will use a window size of 10 production runs, while in the next section
we will use a larger window size. Throughout this window the buffer levels xp are
recorded. The window slides forward at the end of each production run, and the
values of Mp are updated to the maximum values of xp over the last window frame.
As Mp is updated, the fuzzy sets on the universe of discourse for xp are shifted
so that they remain symmetric and uniformly distributed. The fuzzification and
defuzzification strategies, the output fuzzy sets, and the rule-base remain constant
so that the adaptation mechanism adjusts only the input membership functions to
improve machine performance. Basically, the AFS tunes the Mp values in search of
a lower η. It does this by automatically adjusting the premise membership functions
of the rules of the fuzzy scheduler so that they appropriately fit the machine.

Next, we show how the automatic tuning method can be used to synthesize the
fuzzy scheduler for the single machine. In particular, we will show how without any
knowledge of the machine parameters, our adaptation mechanism can synthesize a
fuzzy scheduler that can perform as well as the CPK policy (see Chapter 3). We
shall first consider the same machines used in Chapter 3. For each of the following
machines, the number of fuzzy sets is set to 5. The parameter Mp is initially set to
1. The adaptation mechanism will adjust Mp at the end of each production run.

When simulating the AFS for machine 1 (see Chapter 3 for its description),
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FIGURE 6.43 Adaptive fuzzy scheduler
(AFS) for a single machine.

by the end of 15 production runs M1 = 30.993, M2 = 34.605, and M3 = 12.4519
(and for later production runs, the Mp values stay near these values). After 10,000
production runs, we find that η = 1.0263, which is the same as that produced
by CPK after 10,000 production runs. But the AFS automatically constructed its
scheduler without knowledge of the machine parameters. The CPK policy uses
machine parameters to help specify the policy and is therefore tailored specifically
to the machine.

When simulating the AFS for machine 2 (see Chapter 3 for its description), we
find that the values of Mp converge slowly compared to the previous machine (it
took until about 700 production runs to get convergence). After 10,000 production
runs, η = 1.0993 which is worse than the η = 1.0017 produced by CPK after
10,000 production runs. However, when Mp is initially 10,000 instead of 1 and the
adaptation mechanism updates the Mp every other 10 production runs, η from
fuzzy scheduler improves to 1.0018. This highlights an inherent problem with the
adaptation mechanism: the window size and Mp update strategy must be chosen
in an ad hoc manner with no guarantees on performance levels.

Automatic Scheduler Tuning
In this section we investigate whether the AFS and CPK can adjust themselves
to disturbances or failures that may occur during the operation of a machine. The
disturbance or failure may be in the form of changes in arrival rates, processing
times, or setup times. In order to observe how the fuzzy scheduler and CPK adjust
to machine parameter changes, first we use the same machine parameters and part-
types, and switch the part-types to arrive at different buffers. Following this, we will
investigate the tuning capabilities of the adaptation mechanism by examining the
effects of changing the machine load. In the simulations, the machine parameters
stay constant for the first 10,000 production runs, then the machine parameters
are changed and remain constant at different values for the next 10,000 production
runs. When the parameters are changed, the parameters Mp of the fuzzy scheduler
are continued from the last production run. For the last 10,000 production runs,
the CPK schedules based on the former machine parameters, while the AFS adjusts
itself to improve performance.
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1. Switching buffers:

(a) Case 1:
Old machine: d1 = 7, d2 = 9, d3 = 3, τ1 = 1/100, τ2 = 1/51, τ3 = 1/27.
New machine: d2 = 7, d3 = 9, d1 = 3, τ2 = 1/100, τ3 = 1/51, τ1 = 1/27.
The AFS maintains the same η at 1.026, whereas η of CPK degrades from
1.027 to 1.237.

(b) Case 2:
Old Machine: d1 = 18, d2 = 3, d3 = 1, τ1 = 1/35, τ2 = 1/7, τ3 = 1/20.
New Machine: d2 = 18, d3 = 3, d1 = 1, τ1 = 1/35, τ2 = 1/7, τ3 = 1/20.
The value of η of the AFS improves from 1.0993 to 1.0018, whereas η of
CPK degrades from 1.0017 to 1.1965.

The AFS is expected to perform similarly since the parameters of the machines
are similar. However, as you can see from the rule-base for the fuzzy scheduler,
there are some rules in the rule-base of the fuzzy scheduler that are biased
toward some part-types. Therefore, when we switch the order of indexing the
part-types, the performance of the fuzzy scheduler can be different.

2. Machine load variations:

(a) Case 3:
Old machine (ρ = 0.99286): d1 = 18, d2 = 3, d3 = 1, τ1 = 1/35, τ2 = 1/7,
τ3 = 1/20.
New machine (ρ = 0.35758): d1 = 7, d2 = 9, d3 = 3, τ1 = 1/100, τ2 =
1/51, τ3 = 1/27.
This is a transition from a high to a low machine load. The value of η of
the AFS changes from 1.0993 to 1.0263, as expected. On the other hand,
η of CPK changes from 1.0017 to 1.0477 instead of 1.0263. Note that CPK
can still perform reasonably well as the machine parameters change from
a highly loaded to a lightly loaded machine.

(b) Case 4:
Old machine (ρ = 0.35758): d1 = 7, d2 = 9, d3 = 3, τ1 = 1/100, τ2 = 1/51,
τ3 = 1/27.
New machine (ρ = 0.99286): d1 = 18, d2 = 3, d3 = 1, τ1 = 1/35, τ2 = 1/7,
τ3 = 1/20.
This is a transition from a low to a high machine load. The value of η of
the AFS changes from 1.0263 to 1.0993, as expected. On the other hand,
η of CPK changes from 1.0263 to 1.106 instead of 1.0017—that is, its
performance degrades.

The results show that the AFS we have developed has the capability to main-
tain good performance even if there were significant changes in the underlying
machine parameters (representing, e.g., machine failures). CPK, on the other hand,
is dependent on the exact specification of the machine parameters, and hence its
performance can degrade if the parameters change. We found similar improvements
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in performance as compared to the CLB and CAF policies that are described in
Chapter 3.

6.6 Indirect Adaptive Fuzzy Control
In this section we take the “indirect” approach to adaptive fuzzy control where we
use an on-line identification method to estimate the parameters of a model of the
plant. The estimated model of the plant is then used by a “controller designer”
that specifies the controller parameters. See Figure 6.2 on page 319. There is an
inherent assumption by the controller designer that the model parameter estimates
provided at each time instant represent the plant perfectly. Then the controller
designer specifies a controller assuming that this is a perfect model. The resulting
control law is called a “certainty equivalence controller” since it was specified by
assuming that we were certain that the plant model estimates were equivalent to
those of the actual plant.

One strength of the indirect approach is that it is modular in the sense that
the design of the plant model identifier can be somewhat independent of the way
that we specify the controller designer. In this section we will first introduce two
methods from Chapter 5 that can be used for on-line plant model estimation; these
are the gradient and least squares methods. Following this we discuss an approach
based on feedback linearization, then we introduce the “adaptive parallel distributed
compensator” that builds on the parallel distributed compensator from Chapter 4.
We close the section with a simple example of how to design an indirect adaptive
fuzzy controller.

6.6.1 On-Line Identification Methods
Several of the methods for identification in Chapter 5 were inherently batch ap-
proaches so they cannot be used in indirect adaptive control since an on-line ad-
justment method is needed. For instance, in the learning from examples approaches,
there are only methods for adding rules to the system so they do not provide the
appropriate adjustment capabilities for achieving the on-line tracking of dynamic
changes in the plant. Similar comments can be made about the batch least squares
method and the clustering with optimal output predefuzzification methods.

Two methods from Chapter 5 do lend themselves to on-line implementation;
these are the recursive least squares and gradient training methods. For each of
these we can easily establish an “identifier structure” (i.e., the structure for the
model that has its parameters tuned). Then we use the RLS or gradient method
to tune the parameters of the model (e.g., the membership function centers). We
should note that RLS only allows for tuning parameters that enter the model in
a linear fashion (e.g., the output membership function centers), while the gradient
method allows for tuning parameters that enter in a nonlinear fashion (e.g., the
input membership function widths). It is for this reason that the gradient method
may have an enhanced ability to tune the fuzzy system to act like the plant. How-
ever, we must emphasize that we will not be providing stability or convergence
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results showing that either method will succeed in their tasks. Ours is simply a
heuristic construction procedure for the adaptive fuzzy controllers; we cannot say
a priori which tuning method to choose.

6.6.2 Adaptive Control for Feedback Linearizable Systems
In the case of conventional indirect adaptive control for linear systems with constant
but unknown parameters, the certainty equivalence control law is used and the
controller designer may use, for example, “model reference control” [77] or pole
placement methods (e.g., LQR or polynomial methods). As the adaptive control
problem for linear systems is well studied and many methods exist for that case, we
briefly focus here on the use of adaptive control for nonlinear (feedback linearizable)
systems.

Following the approach in [189], we assume that our plant is in the form

ẋ(t) = f(x(t)) + g(x(t))u(t)
y(t) = h(x(t))

where x is the state, u is the input, and y is the output of the plant. Under certain
assumptions by differentiating the plant output it is possible to transform the plant
model into the form

y(r) = α(x(t)) + β(x(t))u(t) (6.31)

where y(d) denotes the dth derivative of y and d denotes the “relative degree” of the
nonlinear plant. If d < n then there can be “zero dynamics” [223], and normally you
must assume that these are stable, as we do here. We assume that β(x(t)) ≥ β0 > 0
for all x(t) for some given β0. Note that if at some x(t) we have β(x(t)) = 0, then
u is not able to affect the system at this state.

For the plant in Equation (6.31) we can use the controller

u(t) =
1

β(x(t))
(−α(x(t)) + ν(t)) (6.32)

where ν will be specified below. Now, if we substitute this control law into Equa-
tion (6.31), the closed-loop system will become

y(d) = ν(t)

(which is a linear system with input ν(t)). We see that the control law uses feedback
to cancel the nonlinear dynamics of the plant and replaces them with ν(t). Hence,
all we have to do is choose ν(t) so that it represents the kind of dynamics that we
would like to have in our closed-loop system. For example, suppose that the relative
degree is the same as the order of the plant and is equal to two (i.e., d = n = 2).
In this case we could choose

ν(t) = ae(1)
o (t) + beo(t)
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where eo(t) = r(t) − y(t), e
(i)
o is the ith derivative of eo(t), r(t) is the reference

input, and a and b are design parameters. Notice that with this choice

y(2) = ae(1)
o (t) + beo(t)

or

y(2) + ay(1) + by(t) = ar(1)(t) + br(t)

to make the closed-loop system linear. Hence,

Y (s)
R(s)

=
as + b

s2 + as + b

so that if we pick a > 0 and b > 0, we will have a stable closed-loop system
(you can use the quadratic formula to show this). Also, we see that we can pick a
and b to specify the type of closed-loop response we want (i.e., fast, slow, with a
specific amount of overshoot, etc.). The same general approach works for higher-
order systems (show how by repeating the above analysis for an arbitrary value of
d = n).

Now, the above design procedure for nonlinear controllers for the nonlinear
system in Equation (6.31) assumes that we have perfect knowledge of the plant
dynamics (i.e., that we know α(x(t)) and β(x(t)) and the order of the plant). Here,
we will assume that we do not know α(x(t)) or β(x(t)) but that we do know that
β(x(t)) ≥ β0 > 0 for all x(t) for some given β0. Then, we will use on-line identifiers
to estimate the plant dynamics α(x(t)) and β(x(t)) with α̂(x(t)) and β̂(x(t)), which
will be fuzzy systems. With this we use the certainty equivalence control law for
the plant in Equation (6.31), which, based on Equation (6.32), would be

u(t) =
1

β̂(x(t))
(−α̂(x(t)) + ν(t)) (6.33)

We will choose ν(t) the same way as we did above. This control law specifies the
“controller designer.” That is, it is the recipe for specifying the control law given
the estimates of the plant dynamics. Intuitively, we know that if our identifier can
do a good job at identifying the dynamics of the plant then it will be possible to
achieve the closed-loop behavior (which we characterize above via a and b).

The complete indirect adaptive fuzzy controller consists of an on-line estimator
for the fuzzy systems α̂(x(t)) and β̂(x(t)). If recursive least squares is used with a
standard fuzzy system, then the output membership function centers of the fuzzy
systems α̂(x(t)) and β̂(x(t)) are tuned. If recursive least squares is used with α̂(x(t))
and β̂(x(t)) defined as Takagi-Sugeno fuzzy systems, then the parameters of the
output functions are tuned. If a gradient method is used, then all the parameters
of the fuzzy systems α̂(x(t)) and β̂(x(t)) (either standard or Takagi-Sugeno) can be
tuned to try to make α̂(x(t)) → α(x(t)) and β̂(x(t)) → β(x(t)) so that a feedback
linearizing control law is found and the nonlinear dynamics are replaced by the
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designed dynamics specified in ν(t) (note that even if we do not get this convergence
we can often still obtain a successful adaptive controller).

As a final note we must emphasize, however, that there are no guarantees
that you will achieve good performance or stable operation with this approach.
If you want guarantees, you should study the methods that are shown to achieve
stable operation (see For Further Study at the end of this chapter). There, work is
described that explains the full details on how to define the fuzzy system parameter
update methods and the entire indirect adaptive fuzzy controller that will ensure
stable operation.

6.6.3 Adaptive Parallel Distributed Compensation
In Chapter 4 we studied the parallel distributed compensator for Takagi-Sugeno
fuzzy systems. For that controller we assumed that either via system identification
or modeling we have a Takagi-Sugeno model of the nonlinear plant. From this
model we constructed a parallel distributed compensator that could provide a global
asymptotically stable equilibrium for the closed-loop system.

Here, we do not assume that the Takagi-Sugeno model of the plant is known
a priori. Instead, we use an on-line identification method to adjust the parameters
of a Takagi-Sugeno “identifier model” to try to make it match the behavior of the
plant. Then, using the certainty equivalence principle, we employ the parameters
of the Takagi-Sugeno identifier model in a standard control design method for the
standard parallel distributed compensator. In this way, as the identifier becomes
more accurate, the controller parameters of the parallel distributed compensator
will be adjusted, and if the identifier succeeds in its task, the controller should too.

Suppose that the identifier model is specified by R rules

If y(k) is Ãj
1 and, . . . , and y(k − n + 1) is Ã�

n

Thenŷi(k + 1) = αi,1y(k) + · · ·+ αi,ny(k − n + 1) + βi,1u(k) + · · ·+ βi,mu(k − m + 1)

which have as consequents discrete-time linear systems (see Exercise 4.6 on page 227
for stability results for the discrete-time case). Here, u(k) and y(k) are the plant
input and output, respectively; Ãj

i is the linguistic value; αi,j, βi,p, i = 1, 2, . . . , R,
j = 1, 2, . . . , n, and p = 1, 2, . . . , m are the parameters of the consequents; and
ŷi(k + 1) is the identifier model output considering only rule i. Suppose that µi

denotes the premise certainty for rule i. Using center-average defuzzification, we
get the identifier model output

ŷ(k + 1) =
∑R

i=1 ŷi(k + 1)µi∑R
i=1 µi

Let

ξi =
µi∑R
i=1 µi

(6.34)
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ξ =




y(k)ξ1

y(k)ξ2

...
y(k)ξR

...
u(k − m + 1)ξ1

u(k − m + 1)ξ2

...
u(k − m + 1)ξR




, θ =




α1,1

α2,1

...
αR,1

...
β1,m

...
βR,m




so that

ŷ(k + 1) = θ�ξ

is the identifier model output. An on-line method such as RLS could adjust the
αi,j and βi,p parameters since they enter linearly. Gradient methods could be used
to adjust the αi,j and βi,p parameters and the parameters of the premises (e.g.,
the input membership function centers and spreads if Gaussian input membership
functions are used).

For the controller, we can use Takagi-Sugeno rules of the form

If y(k) is Ãj
1 and, . . . , and y(k − n + 1) is Ã�

n Then ui(k) = Li(·)

where Li(·) is a linear function of its arguments that can depend on past plant
inputs and outputs and the reference input, and ui(k) is the controller output
considering only rule i. For example, for some applications it may be appropriate
to choose

Li(r(k), y(k)) = ki,0r(k) − ki,1y(k)

which is simply a proportional controller with gains ki,0 and ki,1. For other applica-
tions you may need a more complex linear mapping in the consequents of the rules.
In any case, the identifier will adjust the gains of the Li functions using a certainty
equivalence approach. For example, the gains ki,0 and ki,1 could be chosen at each
time step to try to meet some stability or performance specifications. In the next
section we give an example of how to do this.

6.6.4 Example: Level Control in a Surge Tank
In this section we use a level control problem for a surge tank to show how to
design an indirect adaptive fuzzy controller using the adaptive parallel distributed
compensation approach. In particular, suppose that you are given the “surge tank”
that is shown in Figure 6.44.
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h(t)

u(t)

FIGURE 6.44 Surge tank.

The differential equation representing this system is

dh(t)
dt

=
−c

√
2gh(t)

A(h(t))
+

1
A(h(t))

u(t)

where u(t) is the input flow (control input), which can be positive or negative (it
can both pull liquid out of the tank and put it in); h(t) is the liquid level (the
output of the plant); A(h(t)) is the cross-sectional area of the tank; g = 9.8m/sec2

is gravity; and c = 1 is the known cross-sectional area of the output pipe. Let r(t)
be the desired level of the liquid in the tank (the reference input). Assume that
h(0) = 1. Also assume that a is unknown but that a ∈ [a1, a2], a1 ≥ 0, for some
fixed real numbers a1 and a2, and that A(h) = ah2 + b where a ∈ [a1, a2], a1 ≥ 0,
and b ∈ [b1, b2], b1 > 0, where a1 = 0.5, a2 = 4, b1 = 1, b2 = 3 are all fixed.

First, we will choose a = 1 and b = 2 as the nominal plant parameters. Also,
since we will be using a discrete-time identifier, we discretize the plant and use it
in all our simulations. In particular, using an Euler approximation

h(k + 1) = h(k) + T

[
−
√

19.6h(k)
h2(k) + 2

+
1

h2(k) + 2
u(k)

]

where T = 0.1. We have additional restrictions on the plant dynamics. In particular,
we assume the plant input saturates at ±50 so that if the controller generates an
input u′(k)

u(k) =




50 if u′(k) > 50
u′(k) if −50 ≤ u′(k) ≤ 50
−50 if u′(k) < −50

Also, to ensure that the liquid level never goes negative (which is physically impos-
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sible), we simulate our plant using

h(k + 1) = max

{
0.001, h(k) + T

[
−
√

19.6h(k)
h2(k) + 2

+
1

h2(k) + 2
u(k)

]}

We can use either gradient or RLS to tune the parameters of the Takagi-Sugeno
fuzzy system that we use as our identifier model. Here, we use the RLS method to
tune to the consequent parameters and specify a priori the parameters that define
the premise certainties. In particular, we use only five rules (R = 5), n = 1, and
m = 1, in the last section. Hence, one rule of our identifier model would be

If h(k) is Ãj
1 Then ĥi(k + 1) = αi,1h(k) + βi,1u(k)

We use Gaussian input membership functions on the h(k) universe of discourse of
the form

µ(h(k)) = exp


−1

2

(
h(k) − cj

i

σ

)2



where c1
1 = 0, c2

1 = 2.5, c3
1 = 5, c4

1 = 7.5, c5
1 = 10, and σ = 0.5. Notice that since

there is only one input, µi(h(k)) = µ(h(k)); that is, the membership function cer-
tainty is the premise membership function certainty for a rule. Also, if h(k) ≤ c1

1,
then we let µ1(h(k)) = 1, and if h(k) ≥ c5

1, then we let µ5(h(k)) = 1. This causes
saturation of the outermost input membership functions. With center-average de-
fuzzification our fuzzy system is

ĥ(k + 1) = θ�ξ(h(k))

where ξi is defined in Equation (6.34) and

ξ(h(k)) =




h(k)ξ1

h(k)ξ2

...
h(k)ξR

u(k)ξ1

u(k)ξ2

...
u(k)ξR




, θ =




α1,1

α2,1

...
α5,1

β1,1

β2,1

...
β5,1




We use a nonweighted (i.e., λ = 1) RLS algorithm with update formulas given
by

P (k + 1) =
1
λ

(I − P (k)ξ(h(k))(λI + (ξ(h(k)))�P (k)ξ(h(k)))−1(ξ(h(k)))�)P (k)
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θ(k + 1) = θ(k) + P (k)ξ(h(k))(h(k + 1) − (ξ(h(k)))�θ(k))

Notice that we have adjusted the time indices in these equations so that they solve
the identification problem of trying to estimate the output of the identifier model
(i.e., h(k + 1)). We choose θ(0) = [0, 2, 4, 6, . . . , 18]� and P (0) = Pβ(0) = 2000I
where I is the identity matrix. The choice of θ(0) is simply one that is not close
to the final tuned values (to see this consider the rules of the Takagi-Sugeno fuzzy
system for this case and how, based on our understanding of the dynamics of a
tank, how these could not properly represent it).

Our controller that is tuned is given by

u(k) =
∑R

i=1 ui(k)µi∑R
i=1 µi

where we choose

ui(k) = Li(r(k), h(k)) = ki,0r(k) − ki,1h(k)

Using a certainty equivalence approach for the parallel distributed compensator, we
view each rule of the controller as if it were controlling only one rule of the plant, and
we assume that the identifier is accurate. In particular, we assume that ĥ(k) = h(k)
and ĥi(k) = hi(k), where hi(k) represents the ith component of the plant model
(assuming it can be split this way), so that the identifier is also perfectly estimating
the dynamics represented by each rule in the plant. If the plant is operating near
its ith rule and there is little or no affect from its other rules, then h(k) = hi(k) so

ĥi(k + 1) = hi(k + 1) = αi,1hi(k) + βi,1 [ki,0r(k) − ki,1hi(k)] (6.35)

We pick ki,0 and ki,1 for each i = 1, 2, . . . , R so that the pole of the closed-loop sys-
tem is at 0.1 and the steady-state error between h(k) and r(k) is zero. In particular,
if Hi(z) and R(z) are the z-transforms of hi(k) and r(k), respectively, then

Hi(z)
R(z)

=
βi,1ki,0

z + βi,1ki,1 − αi,1

Choose

ki,1βi,1 − αi,1 = −0.1

to get the placement of the pole so that our controller designer in our indirect
adaptive scheme will pick

ki,1 =
αi,1 − 0.1

βi,1
(6.36)

i = 1, 2, . . . , R, at each time step using the estimates of αi,1 and βi,1 from the
identifier. Notice that we must ensure that βi,1 > 0 and we can do this by specifying
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a priori some β > 0 and adding a rule to the adaptation scheme that says that if
at some time the RLS updates any βi,1 so that it becomes less than β, we let it
be equal to β. In this way the lowest value that βi,1 will take is β. Another way to
specify the update method for the ki,1 (and ki,0 below) would be to use the stability
conditions for the parallel distributed compensator from Chapter 4.

Next, we want a zero steady-state error, so we want hi(k + 1) = hi(k) = r(k)
for large k and all i = 1, 2, . . . , R, so from Equation (6.35) we want

1 = αi,1 + βi,1ki,0 − βi,1ki,1

so our controller designer will choose

ki,0 =
1 − αi,1 + βi,1ki,1

βi,1
(6.37)

i = 1, 2, . . . , R. Equations (6.36) and (6.37) specify the controller designer for the
indirect adaptive scheme, and the identifier will provide the values of αi,1 and βi,1

at each time step so that the ki,0 and ki,1 can be updated at each time step. Notice
that the modifications to Equation (6.36) with β above will also ensure that we will
not divide by zero in Equation (6.37).

The results of the RLS-based adaptive parallel distributed compensator are
shown in Figure 6.45. Notice that the output of the plant h(k) tracks the reference
input r(k) quite well. Next, we show values of ĥ(k) and h(k) in Figure 6.46. Notice
that with only five rules in the identifier model we get a reasonably good estimate
of h(k), and hence we can see why our closed-loop response tracks the reference
input so well.

6.7 Summary
In this chapter we have provided an overview of several adaptive fuzzy control
methods. First, we introduced the fuzzy model reference learning controller and
provided several guidelines for how to design it. We showed three case studies in
design and implementation, including the ship steering problem where we compared
it against some conventional model reference adaptive control methods. We showed
how it could be used for fault-tolerant aircraft control, and provided implementation
results for the flexible-link robot.

Next, we showed how “dynamically focused learning” could be used for the
FMRLC. We introduced the three DFL strategies (auto-tuning, auto-attentive,
and auto-attentive with memory) via a simple academic magnetic levitation con-
trol problem. We provided two case studies in DFL design and implementation. In
particular, we showed how to design auto-tuning mechanisms for direct fuzzy con-
trollers for the rotational inverted pendulum and the machine scheduling problems
studied in Chapter 3.

Finally, we introduced indirect adaptive fuzzy control. There, we discussed
indirect adaptive fuzzy control for feedback linearizable systems, introduced the
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FIGURE 6.45 Response of RLS-based adaptive parallel
distributed compensator for the tank (plot produced by
Mustafa K. Guven).

adaptive parallel distributed compensator, and studied a tank application.
The overall approach that we take to adaptive control in this chapter is a

heuristic one as opposed to a mathematical one. We focused on the use of intuition
to motivate why adaptation is needed, and we provided natural extensions to the
direct fuzzy control methods described in Chapters 2 and 3.

Upon completing this chapter, the reader should understand the following top-
ics:

• Basic schemes for adaptive control (e.g., model reference adaptive control and
direct versus indirect schemes).

• Fuzzy model reference learning control (FMRLC).

• Design methods for the FMRLC.

• Issues in adaptive versus learning control.

• The issues that must be considered in comparing or evaluating conventional versus
adaptive fuzzy control.

• How failures can be viewed as a significant plant variation that can be accommo-
dated for via adaptive control.
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FIGURE 6.46 The values of ĥ(k) and h(k) for the RLS-based
adaptive parallel distributed compensator for the tank (plot
produced by Mustafa K. Guven).

• Dynamically focused learning (DFL) strategies (auto-tuning, auto-attentive, and
auto-attentive with memory).

• How to apply DFL strategies to both the FMRLC and a direct fuzzy controller.

• The concept of a certainty equivalence control law.

• How the RLS and gradient methods can be used for on-line identification of a
plant model and hence used in indirect adaptive fuzzy control (and in direct
adaptive control for identification of a controller; see Design Problem 6.10).

• The feedback linearization and adaptive parallel distributed compensation ap-
proaches to indirect adaptive fuzzy control.

• How to construct an indirect adaptive fuzzy controller for a surge tank.

Essentially, this is a checklist of the major topics of this chapter. We encourage
the reader to test the adaptive fuzzy control methods by doing some problems at
the end of the chapter or by trying them out on your own applications. Additional
adaptive methods are introduced in the next chapter.
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6.8 For Further Study
The reader wishing to strengthen her or his background in conventional adaptive
control should consult [77, 180, 149, 11]. The FMRLC algorithm was first introduced
in [111, 112] and grew from research performed on the linguistic self-organizing
controller (SOC) presented in [170] (with applications in [181, 214, 78, 40, 39,
38, 239]) and ideas in conventional “model reference adaptive control” (MRAC)
[149, 11]. The ship steering application is described in [11, 149] which are the
sources for the problem formulation for this chapter. The ship steering section,
where the FMRLC is used, is based on [112]. Examples of Lyapunov-based MRAC
designs are illustrated in [149, 220]; in the case study in this chapter we use the
approach in [149] to design our Lyapunov-based MRAC. The fault-tolerant aircraft
control section is based on [104], and the application to the two-link flexible robot
is based on [144]. The FMRLC has also been used for a robotics problem and a
rocket velocity control problem [113], a cart-pendulum system [111], the control of
an experimental induction machine, an automated highway system, in automobile
suspension control, for liquid level control in a surge tank [251], for the rotational
inverted pendulum of Chapter 3, for a single-link flexible robot, and for a ball on
a beam experiment; it has also been used to improve the performance of antiskid
brakes on adverse road conditions [114].

The section on dynamically focused fuzzy learning control is based on [103].
For a discussion on how to program rule-base shifts and a detailed analysis of the
computational complexity of the DFL strategies relative to conventional MRAC,
see [103]. The section on the rotational inverted pendulum is based on [235], and
the adaptive machine scheduling work is based on [6]. While in this chapter we
have considered only the single machine case (and only for a limited number of
types of machines in simulation), in [6] the authors show how to use the the AFS
on each machine in a network of machines to improve overall scheduling perfor-
mance of a flexible manufacturing system (FMS). Basically, this is done by using
the fuzzy scheduler, adaptation mechanism, and USSM on each machine in the
network. Generally, we can find topologies of FMS for which the AFS can fine-tune
themselves so that they optimize certain performance measures (e.g., minimizing
the maximum backlog in the FMS). This often involves having the local schedulers
on some machines sacrifice their local throughput performance to make it possible
to achieve higher performance for the entire FMS. See [6] for more details.

Other alternatives to FMRLC, DFL, and SOC are contained in [47, 87, 26, 229]
and in [17, 208, 184]. Other work is also given in [173], where the authors present a
knowledge-based fuzzy control system that is constructed off-line. Another example
of indirect adaptive fuzzy control presented by Graham and Newell in [62, 61] uses a
fuzzy identification algorithm developed by Czoga
la and Pedrycz [36, 37] to identify
a fuzzy process model that is then used to determine the control actions. Batur and
Kasparian [19] present a methodology to adapt the initial knowledge-base of a fuzzy
controller to changing operating conditions. The output membership functions of
their fuzzy controller are adjusted in response to the future or past performance of
the overall system, where the prediction is obtained through a linear process model
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updated by on-line identification. Other indirect approaches to adaptive fuzzy con-
trol are shown in [26, 224]. In addition to all these, there are many other adaptive
fuzzy system applications that, to name a few, choose to use neural networks for
identification and reinforcement learning [26, 126] or genetic algorithms for natural
selection of controller parameters as the learning mechanism (for some references on
the genetic algorithm approach to tuning fuzzy systems see the For Further Study
section at the end of Chapter 8).

Recent work on adaptive fuzzy systems has focused on merging concepts and
techniques from conventional adaptive systems into a fuzzy systems framework and
performing stability analysis to guarantee properties of the operation of adaptive
fuzzy control systems. For example, the reader could consider the work in [229] and
the references contained therein. More recent work on the development of stable
direct and indirect adaptive fuzzy controllers is contained in [85, 200, 195, 196, 198,
197, 194, 199, 202, 201, 203] (for a more complete treatment of the literature see the
references in [200]). The reader interested in the feedback linearization approach to
indirect (and direct) adaptive fuzzy control in Section 6.6.2 starting on page 395
should consult these references.

This is a fairly representative sampling of the literature in adaptive fuzzy con-
trol; we emphasize, however, that it is not complete as the amount of literature
in this area is quite large, especially considering the many heuristic adaptive ap-
proaches that are used for all types of applications.

6.9 Exercises
Exercise 6.1 (FMRLC Programming and Operation): In this problem we
will consider an academic control problem for the purpose of focusing on how to
program the operation of the FMRLC. In this way we focus only on the operation
of the FMRLC and avoid application-specific details. Suppose that you are given
a plant

G(s) =
kp

s2 + 2ζpωps + w2
p

where kp is the gain in the numerator, ζp is the damping ratio, and ωp is the
undamped natural frequency (all unknown but constant). Nominally, we have
kp = 1, ζp = 0.707, and ωp = 1. The reference model is a first-order system

M(s) =
kr

s + ar

where kr = 1 and ar = 1. Use r(t) = sin(0.6t) as the reference input.

(a) Design a direct (nonadaptive) fuzzy controller for the plant that as nearly
as possible achieves the performance specified in the reference model. Use
two inputs to the fuzzy controller, the error e = r − y where r is the refer-
ence input and y is the plant output, and the change in this error (i.e., its
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derivative approximated by a backward difference).

(b) Design an FMRLC for the plant to make it track the reference model as
closely as possible. Use the fuzzy controller designed in (a) to initialize the
controller that the FMRLC tunes. Provide the tuned rule-base at the end
of the simulation and compare it to the rule-base from (a). Is the FMRLC
still tuning the rule-base at the end of the simulation (i.e., are the output
centers still moving)?

(c) Repeat (b) except initialize the direct fuzzy controller the same as in (a)
except let all the output membership function centers be zero. Provide the
tuned rule-base that results at the end of the simulation, and compare it to
the ones from (a) and (b).

Exercise 6.2 (Rule-Base Update Procedure for the FMRLC): Consider
the rule-base update procedure for the FMRLC given by Equations (6.1) and (6.2).
Notice that for our development, when COG is used, this update will guarantee
that the previous input would have been u(kT − T ) + p(kT ). Prove this for both
the center-average and COG defuzzification methods.

Exercise 6.3 (Dynamically Focused Learning Methods): In this problem
you will explain various characteristics of the DFL methods used in the chapter
and propose how to extend these methods.

(a) Explain in words the analogies between the auto-tuning, auto-attentive, and
auto-attentive with memory strategies and the way that humans appear to
learn.

(b) We have used the auto-tuning method for both tuning a direct fuzzy con-
troller for the rotational inverted pendulum and for adaptive machine schedul-
ing. Suppose that you design an adaptive fuzzy controller by simply using
the auto-tuning strategy for a direct fuzzy controller. Suppose that you now
want to augment this learning strategy with an ability to remember the
control map in regions where it has operated in the past (so you use the
auto-tuning method as the basic fuzzy learning controller and add a certain
type of fuzzy system experience model). Explain in words how to do this (use
rule-base diagrams in your explanation similar to those used in the chapter).

(c) Explain in words how you could add a successive hierarchy of auto-attentive
with memory strategies.

6.10 Design Problems
Design Problem 6.1 (FMRLC for Cargo and Tanker Ship Steering):
In this problem we will study the use of the FMRLC for steering various ships.

(a) Verify the results in the chapter for the cargo ship by simulating the FM-
RLC under the same conditions. In particular, generate the plots shown in
Figure 6.6.
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(b) In this part you will study the steering of a “tanker ship” defined in [11].
The tanker (under “ballast” conditions) has the same differential equations
describing its behavior as the cargo ship, but it has K0 = 5.88, τ10 = −16.91,
τ20 = 0.45, and τ30 = 1.43, and its length is l = 350 (assume that the ship
velocity is u = 5). Assume that the rudder input to the tanker saturates at
±π/2, but also assume that this is the only way that the rudder movement
is constrained (i.e., do not assume that there are extra actuator dynamics or
a rate limiter on the rudder’s movement). Design an FMRLC for the tanker.
Initialize it either with your best direct fuzzy controller or in the way we
did for the cargo ship in the chapter. It is your responsibility to choose a
reasonable reference model, and you must justify your choice. Is the one for
the cargo ship appropriate? If you believe so, then justify this choice. Next,
design the learning mechanism similar to how we did for the cargo ship
but keep in mind that the tanker has somewhat different dynamics so that
you may need to tune the fuzzy inverse model. Use the design procedures
provided in the chapter to tune the FMRLC.

(c) Evaluate the performance of the tanker closed-loop system using a simula-
tion. Does the system appear to be stable? Is the rise-time, overshoot, and
settling time adequate for your system? Use a reference input that com-
mands +45◦ for 500 sec, then commands 0◦ for 500 sec, then commands
−45◦ for 500 sec, then commands 0◦ for the next 500 sec. Then repeat this
2000-sec sequence at least twice so that the FMRLC has adequate time to
adapt.

(d) Study the effects of plant parameter variations and the ability of the tanker
control system to adapt to these changes. In particular, for the tanker run
a simulation for 2000 sec, and then suddenly at t = 2000 sec switch the
parameters of the tanker to K0 = 0.83, τ10 = −2.88, τ20 = 0.38, τ30 = 1.07
(this represents the tanker being “full” rather than “ballast,” i.e., a weight
change on the ship) and study how the FMRLC adapts to such a plant
parameter variation.

(e) Study the effects of changing the speed of the ship during the simulations
(note that increasing the speed will likely make it possible to improve the
performance, while decreasing the speed will make it more difficult to follow
the reference trajectory). For example, increasing the speed to u = 7 m/sec
typically makes the ship a bit easier to control, while changing it to u = 3
m/sec makes it much harder to control. If under the speed changes the tanker
does not perform too well, tune the controller until acceptable performance
is achieved (but make sure it works for the original parameters also—that is,
that the values you tune the parameters to do not destroy the performance
that you were able to achieve for (c)).

(f) Study the effects of a wind disturbance on the rudder of the tanker as we
did in the chapter for the cargo ship.
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Design Problem 6.2 (FMRLC for a Surge Tank): Suppose that you are
given the surge tank system that is shown in Figure 6.44 on page 399. Recall that
the differential equation representing this system is

dh(t)
dt

=
−c

√
2gh(t)

A(h(t))
+

1
A(h(t))

u(t)

where u(t) is the input flow (control input), which can be positive or negative
(i.e., it can also pull liquid out of the tank); h(t) is the liquid level (the output
y(t) = h(t)); A(h(t)) is the cross-sectional area of the tank; g = 9.8m/sec2 is
gravity; and c = 1 is the known cross-sectional area of the output pipe. Let hd(t)
be the desired level of the liquid in the tank. Assume that h(0) = 0. Also assume
that a is unknown but that a ∈ [a1, a2], a1 ≥ 0, for some fixed real numbers a1

and a2, and that A(h) = ah2 + b where a ∈ [a1, a2], a1 ≥ 0, and b ∈ [b1, b2],
b1 > 0, where a1 = 0.5, a2 = 4, b1 = 1, b2 = 3 are all fixed. For this problem
assume that the input to the plant is saturated at ±50.

(a) Choose a = 1 and b = 2 as the nominal plant parameters. Choose a reference
model for the system and justify your choice (i.e., explain why it is a reason-
able performance request yet one that would represent good performance
objectives).

(b) Design an FMRLC for the tank. Use a PD fuzzy controller as the controller
that is tuned, and provide the full details on the rationale for your choice
of the fuzzy inverse model. Fully explain all of the design choices that you
make for the FMRLC (including how you initialize it).

(c) Next, use the following reference input signals to test the performance of the
FMRLC: (i) a step input of amplitude 4; (ii) a sinusoid 2 + 2 sin( π

20t); (iii)
a sinusoid 2 + 2 sin(2π

5
t); and (iv) a square wave with a period of T = 20

seconds, with a peak-to-peak amplitude of 4, but a constant term of two
added to it. Provide simulations that illustrate the performance of your
FMRLC for each of these cases.

(d) In this part, you will study how the FMRLC performs when the plant param-
eters change. In particular, from t = 30 seconds to t = 35 seconds parameter
a decreases from 1 to 0.5, and parameter b decreases linearly from 2 to 1.
After that, from t = 35 seconds to t = 45 seconds a increases linearly from
0.5 to 4 and b increases linearly from 1 to 3 and then they remain constant
at these new values. Simulate the system using reference inputs (i), (ii),
and (iii) from part (c) above to illustrate the performance of the FMRLC.
Hint: It is possible to tune the FMRLC to overcome the effects of the plant
parameter variations so that performance similar to that obtained in (c) is
obtained. It is your objective to tune it so that this is the case.

(e) Let a = 4 and b = 3 be fixed. Let the reference input be a step of amplitude 7.
Simulate the system to illustrate the performance of the FMRLC. Compare
to (c) above. Discuss.
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Design Problem 6.3 (FMRLC for Rocket Velocity Control): In this prob-
lem you will develop an FMRLC that is used to control the velocity of the single-
stage rocket that is described in Design Problem 3.8 on page 180.

(a) Design a discrete FMRLC (T = 100 milliseconds). Provide all your design
variables. Notice that for the design of the inverse model for the rocket
process, an increase in the exhaust gas velocity will generally result in an
increase in the process output.

(b) Pick an altitude trajectory y(t) and simulate the closed-loop system to verify
the performance (i.e., that the output tracks the reference model output).

Design Problem 6.4 (FMRLC for the Base Braking Control Problem):
This problem focuses on the development of an FMRLC for the base braking

control problem described in Design Problem 3.7 on page 177. You should design
your FMRLC so that it is able to track the reference torque trajectory within
less than 100 ft-lbs over the entire operation of the brakes with zero steady-state
error, even when they heat up and cool down while the FMRLC is operating
(use the reference input specified in Chapter 3). Provide a three-dimensional
plot of the fuzzy controller surface (the one being tuned) at t = 0, 8, 16, and 24
seconds. Explain the connection between the changing shape of the surface and
the objectives the FMRLC is trying to achieve.

Design Problem 6.5 (FMRLC and Auto-Tuning for the Rotational In-
verted Pendulum): In this problem you will develop an FMRLC and an auto-
tuner for the rotational inverted pendulum.

(a) Design an FMRLC to be the balancing controller for the rotational inverted
pendulum that is studied in Chapter 3. You should seek to obtain a perfor-
mance comparable to that achieved in implementation.

(b) Design an auto-tuned direct fuzzy controller for the rotational inverted pen-
dulum that is studied in Chapter 3. Use the same approach as we did in
the case study in this chapter (but simply study the control for the nominal
case).

Design Problem 6.6 (Adaptive Machine Scheduling via Auto-Tuning):
In this problem you will take the same approach as in the chapter to design an
adaptive scheduler for a machine.

(a) Simulate the AFS for machine 3 (see Chapter 3) and show how each Mp is
adjusted for the first 14 production runs. In particular, show that for later
production runs, M1 remains around 12.338, M2 around 14.9886, and M3

around 5.1753. Use the same type of rule-base as the one in the chapter and
five membership functions on each input universe of discourse. Let Mp = 1
for all p initially.
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(b) Show that after 10,000 production runs, η = 1.031 (which is the same as
that produced by CPK after 10,000 production runs).

Design Problem 6.7 (DFL for the Magnetically Suspended Ball): In this
problem you will study DFL for the magnetically suspended ball studied in this
chapter.

(a) Design two FMRLCs for the magnetically levitated ball problem studied in
Section 6.4—one that fails and one that succeeds, just as we did in Sec-
tion 6.4. Use the exact same FMRLCs as we used in the chapter (i.e., repro-
duce the results there).

(b) Augment the FMRLC with the auto-tuning mechanism and reproduce the
results in the chapter for this case.

(c) Repeat (b) but for the auto-attentive mechanism.

(d) Repeat (b) but for the auto-attentive mechanism with memory.

Design Problem 6.8 (Indirect Adaptive Fuzzy Control for a Tank: RLS
Identifier): Repeat the design of the indirect adaptive fuzzy controller (using
the adaptive parallel distributed compensation approach) for the tank that was
presented in Section 6.6.4 on page 398, simulate the closed-loop system, and
provide plots like those shown.

Design Problem 6.9 (Indirect Adaptive Fuzzy Control: Gradient Identifier)�:
Design an indirect adaptive fuzzy controller for the tank that was presented in
Section 6.6.4 on page 398 using the gradient approach for tuning of the mem-
bership functions and the consequent parameters. Use the adaptive parallel dis-
tributed compensator approach. Simulate the system to show that you achieve
good performance. Fully specify your algorithm and give values for all the design
parameters.

Design Problem 6.10 (Alternatives for Direct Adaptive Fuzzy Control)�:
Aside from their use in indirect adaptive control, on-line identification techniques
can be used for the direct tuning of a controller by using plant data.

(a) Design a direct adaptive control scheme for the surge tank in Design Prob-
lem 6.2. To do this, use the gradient approach to identification and simply
specify the adaptive control algorithm equations (you do not have to simu-
late it).

(b) Repeat part (a) except use the RLS-based identifier.

Note that you may want to see the references in the For Further Study section
of this chapter to complete this problem.
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C H A P T E R 7

Fuzzy Supervisory
Control

If we could first know where we are,

and whither we are tending,

we could better judge what to do,

and how to do it.

–Abraham Lincoln

7.1 Overview
This chapter focuses on yet another set of adaptive system and control methods;
in this sense they can be grouped with those of Chapters 5 and 6 and in some
cases can be viewed as extensions or augmentations of those methods. The general
approach in this chapter is, however, distinctly different from that of past chapters
in that we study methods to supervise existing controllers, whether they be fuzzy
or conventional ones, adaptive or nonadaptive.

In this chapter we study a multilayer (hierarchical) controller with the supervi-
sor at the highest level, as shown in Figure 7.1. The supervisor can use any available
data from the control system to characterize the system’s current behavior so that
it knows how to change the controller and ultimately achieve the desired specifica-
tions. In addition, the supervisor can be used to integrate other information into the
control decision-making process. It can incorporate certain user inputs, or inputs
from other subsystems. For example, in an automotive cruise control problem, in-
puts from the driver (user) may indicate that she or he wants the cruise controller
to operate either like a sports car or more like a sluggish family car. The other
subsystem information that a supervisor could incorporate for supervisory control
for an automotive cruise control application could include data from the engine
that would help integrate the controls on the vehicle (i.e., engine and cruise control

413
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integration). Given information of this type, the supervisor can seek to tune the
controller to achieve higher performance operation or a performance that is more
to the liking of the driver.

PlantController

Fuzzy supervisory controller

OutputReference
input

User inputs
Information from 
other systems

FIGURE 7.1 Supervisory controller.

Conceptually, the design of the supervisory controller can then proceed in the
same manner as it did for direct fuzzy controllers: either via the gathering of heuris-
tic control knowledge or via training data that we gather from an experiment. The
form of the knowledge or data is, however, somewhat different than in the simple
fuzzy control problem. For instance, the type of heuristic knowledge that is used in
a supervisor may take one of the following two forms:

1. Information from a human control system operator who observes the behavior
of an existing control system (often a conventional control system) and knows
how this controller should be tuned under various operating conditions.

2. Information gathered by a control engineer who knows that under different
operating conditions controller parameters should be tuned according to certain
rules.

Some may view the distinction between a supervisory controller and a conven-
tional direct fuzzy controller as quite subtle, but this is not the case. Basically, the
distinction in the past has been simply to call it a “supervisor” if its focus is on
the use of inputs that are not traditionally inputs to, for example, a PID controller.
Furthermore, the outputs of the supervisor are most often not direct command in-
puts to the plant. Rather, they dictate changes to a controller that generates these
command inputs. Supervisory control is a type of adaptive control since it seeks
to observe the current behavior of the control system and modify the controller
to improve the performance. In supervisory control, however, we do not constrain
ourselves to the conventional structures and methods of adaptive control (e.g., di-
rect or indirect). In fact, in some cases a supervisor is used to tune an adaptive
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controller. Supervisory control seeks to integrate a whole variety of information and
bring it to bear on a control problem.

This chapter is broken into two main parts: supervision of conventional con-
trollers in Section 7.2, and supervision of fuzzy controllers in Section 7.3. For the
supervision of conventional controllers, we begin by discussing the supervision of
PID controllers and how the supervisor can act as a gain scheduler. For the super-
vision of fuzzy controllers, we first study the supervision of direct fuzzy controllers
where the supervisor simply chooses between different fixed rule-bases. We also
study how to supervise the operation of an adaptive fuzzy controller. Applications
to the two-link flexible robot from Chapter 3 (which was also studied in Chapter 6),
and the fault-tolerant aircraft control problem from Chapter 6 are used to illustrate
these ideas.

The techniques discussed in this chapter are quite pragmatic, often useful in
industry, and help to show some more of the fundamental advantages of fuzzy
control. This chapter augments the previous adaptive methods with a new set of
ideas; hence, to fully understand this chapter, many of the topics in Chapters 5 and 6
must be fully understood. In this sense, for a full understanding of this chapter,
all the previous chapters, except Chapter 4, but including the parallel distributed
compensator, need to be studied before this one. At the same time, the high-level
concepts (e.g., the controller block diagrams) can be understood quite easily once
the reader understands the basics of fuzzy control as described in Chapter 2. Hence,
we recommend that the reader at least skim this chapter after completing Chapter 2,
focusing on the ideas characterized by the controller block diagrams.

7.2 Supervision of Conventional Controllers
Most controllers in operation today have been developed using conventional con-
trol methods. There are, however, many situations where these controllers are not
properly tuned and there is heuristic knowledge available on how to tune them
while they are in operation. There is then the opportunity to utilize fuzzy control
methods as the supervisor that tunes or coordinates the application of conventional
controllers.

7.2.1 Fuzzy Tuning of PID Controllers
Over 90% of the controllers in operation today are PID controllers. This is because
PID controllers are easy to understand, easy to explain to others, and easy to
implement. Moreover, they are often available at little extra cost since they are
often incorporated into the programmable logic controllers (PLCs) that are used
to control many industrial processes. Unfortunately, many of the PID loops that
are in operation are in continual need of monitoring and adjustment since they can
easily become improperly tuned.

Suppose for the sake of discussion that a PID controller is placed in a unity
feedback control system where the input to the plant is u, the plant output is y,
the reference input is r, and the error input to the PID controller is e = r − y. The
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basic form for the PID controller is

u(t) = Kpe(t) + Ki

∫ t

0

e(τ )dτ + Kd
de(t)
dt

where Kp is the proportional gain, Ki is the integral gain, and Kd is the derivative
gain.

Because PID controllers are often not properly tuned (e.g., due to plant param-
eter variations or operating condition changes), there is a significant need to develop
methods for the automatic tuning of PID controllers. While there exist many con-
ventional methods for PID auto-tuning, here we will strictly focus on providing
the basic ideas on how you would construct a fuzzy PID auto-tuner. The basic
approach is summarized in Figure 7.1, where the supervisor is trying to recognize
when the controller is not properly tuned and then seeks to adjust the PID gains
to obtain improved performance. The other user inputs or subsystem inputs may
be particularly useful in practical situations to, for example, provide the supervisor
with an indication that there will be different effects on the control system that
will cause it to become out of tune.

A more detailed figure showing how a fuzzy PID auto-tuner may work is shown
in Figure 7.2. There, the “behavior recognizer” seeks to characterize the current
behavior of the plant in a way that will be useful to the PID designer. The whole
(upper-level) supervisor may be implemented in a similar fashion to an indirect
adaptive controller as described in Chapter 6. Alternatively, simple tuning rules
may be used where the premises of the rules form part of the behavior recognizer
and the consequents form the PID designer. In this way, a single fuzzy system is
used to implement the entire supervisory control level. Some candidate rules for
such a fuzzy system may include the following:

• If steady-state error is large Then increase the proportional gain.

• If the response is oscillatory Then increase the derivative gain.

• If the response is sluggish Then increase the proportional gain.

• If the steady-state error is too big Then adjust the integral gain.

• If the overshoot is too big Then decrease the proportional gain.

Alternatively, you could use the Zeigler-Nichols PID tuning rules [54] but represent
them with a fuzzy system.

We would like to emphasize, however, that while such rules appear to offer
a very simple solution to the PID auto-tuning problem, it is not always easy to
measure the quantities that are listed in the premises above. For example, when
is the system in steady-state operation? How do we precisely quantify “sluggish”
behavior? How do we measure a degree of oscillatory behavior? How do we measure
the overshoot on-line when we cannot be guaranteed that the system will have a step
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FIGURE 7.2 Fuzzy PID auto-tuner.

for a reference input? The answers to these questions tend to be very application-
dependent. Overall, we see that the behavior recognizer will also need to contain
some algorithms for preprocessing data from the plant before it can be used in the
above rules.

For some applications, it is best to have a tuning phase and an on-line operation
phase where tuning does not occur. In the tuning phase, the system takes over and
generates a set of reference inputs (e.g., a step) and observes and analyzes the step
response to determine the values of the parameters of the premises of the above
rules. Then the rule-base is applied to these, the new PID gains are found, and
the closed-loop control system is put into operation with these new gains. Clearly,
however, it may be unacceptable to expect the system to be taken off-line for
such tests and retuning. On the other hand, for some applications (e.g., in process
control) it is possible to follow such a retuning scenario.

Overall, we would emphasize that fuzzy PID auto-tuners tend to be very appli-
cation dependent and it is difficult to present a general approach to on-line fuzzy
PID auto-tuning that will work for a wide variety of applications. At this point,
however, the reader who understands how a fuzzy system operates and has a specific
application in mind, can probably quickly write down a set of rules that quantifies
how to keep the PID controller properly tuned. This is often the primary advantage
of the fuzzy systems approach to PID auto-tuning over conventional methods.

7.2.2 Fuzzy Gain Scheduling
Conventional gain scheduling involves using extra information from the plant, en-
vironment, or users to tune (via “schedules”) the gains of a controller. The overall
scheme is shown in Figure 7.3. There are many applications where gain scheduling
is used. For instance, in aircraft control you often perform linear control designs
about a whole range of operating points (e.g., for certain machs and altitudes).
These control designs provide a set of gains for the controller at each operating
condition over the entire flight envelope. A gain schedule is simply an interpolator
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that takes as inputs the operating condition and provides values of the gains as
its outputs. One way to construct this interpolator is to view the data associations
between operating conditions and controller gains as forming a large table. Then,
when we encounter an operating condition that is not in the table, we simply in-
terpolate between the ones in the table to find an interpolated set of gains. In this
way, as the aircraft moves about its flight envelope, the gain scheduler will keep
updating the gains of the controller with the ones that we would have picked based
on a linear design about an operating point. This general gain scheduling approach
is widely used in the aircraft industry (e.g., also for engine control).

PlantController

Gain
schedules

r(t) u(t) y(t)

Extra information
(e.g., from plant, 
environment, users)

FIGURE 7.3 Conventional gain scheduler.

Notice that Figure 7.1 could be viewed as a gain scheduling approach to control
where we come up with a fixed mapping between operating conditions, plant data,
and external inputs (e.g., the user inputs) and the controller parameters. The fuzzy
system is a static nonlinearity just like many conventional gain schedules, and
it simply offers another type of interpolator for gain scheduling. So, what does
the fuzzy system methodology offer to conventional gain scheduling approaches?
First, as we discuss next, it offers three different methodologies for gain schedule
construction.

Heuristic Gain Schedule Construction

It may be possible to use intuition to write down a rule-base that characterizes
how the gains should be tuned based on certain operating conditions. In this case
the design of a set of linear controllers for various operating conditions may not be
necessary as it may be possible to simply specify, in a heuristic fashion, how the
gains should change. The use of rules may be particularly useful here. For example,
consider the tank level control application described in Section 6.6.4 on page 398.
We could use a rule-base to schedule the gain of a linear proportional controller
based on our knowledge that for higher liquid levels we will have bigger cross-
sectional areas for the tank. In this case the rules may represent that we want to
have a lower proportional gain for lower liquid levels since for lower levels the tank
will fill faster with smaller amounts of liquid but for high levels the controller will
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have to pump more liquid to achieve the same change in liquid level. We see that
some practical knowledge of the tank’s shape, which is not normally used in the
design of a linear controller, can possibly be effectively used to schedule the gain of
a linear controller for the tank. It is clear that the knowledge used to construct the
gain schedule can be highly application-specific; hence, it is difficult to provide a
general methodology for the heuristic construction of fuzzy gain schedulers beyond
what has already been presented for techniques to design standard fuzzy controllers.

Identification for Gain Schedule Construction

In the case where we have a set of controller designs (based on linear or nonlinear
theory) for each set of operating conditions that we can measure, we can use the
methods for function approximation described in Chapter 5 to identify the func-
tion that the data inherently represents. This function that interpolates between
the data is the gain schedule, and the methods of Chapter 5 can be used for its
construction. To use the methods of Chapter 5, consider how we would schedule
just one of the (possibly) many gains of the controller. To do this we view the
operating condition–gain associations produced by the design of the controllers as
data pairs

(xi, yi) ∈ G

where xi is the ith operating point and yi is the gain that the controller design
procedure produced at this operating point. The set G is the set of all such data
pairs—that is, operating condition–controller associations. Now, the problem is
formulated in exactly the same manner as the one for Chapter 5 and hence any of
the methods there can apply. For instance, we can use the learning from examples
methods, a least squares method, a gradient technique, or a clustering approach.

Parallel Distributed Compensation

Here we consider the case where the plant to be controlled is a nonlinear interpola-
tion of R linear models as discussed in Chapter 2, Section 2.3.7 on page 73, and in
Chapter 4, Section 4.3.5 on page 200. Recall that we had rules of a Takagi-Sugeno
fuzzy system representing the plant that are of the form

If x̃1 is Ãj
1 and x̃2 is Ãk

2 and, . . . , and x̃n is Ãl
n Then ẋi(t) = Aix(t) + Biu(t)

Similar rules could be created with consequents that use a discrete-time state-
space representation or transfer functions, either discrete or continuous. Here we
will simply use the continuous-time linear state-space models as consequents for
convenience, but the same basic concepts hold for other forms.

No matter what form the rules are in, there are basically two ways that the
rules can be constructed to represent the plant. First, for some nonlinear systems
the mathematical differential equations describing the plant can be transformed
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into

ẋ(t) =

(
R∑

i=1

Aiξi(x(t))

)
x(t) +

(
R∑

i=1

Biξi(x(t))

)
u(t) (7.1)

which is the model resulting from the above rules. A second approach would be to
use system identification to construct the rules (e.g., use the least squares, gradi-
ent, or clustering with optimal output predefuzzification methods of Chapter 5).
While it is possible to modify the identification methods so that they apply di-
rectly to continuous-time systems, it may be easier to simply use a discrete-time
representation in the consequents and directly use the methods of Chapter 5.

Recall that in Chapter 4 our controller for the above plant used the rules

If x̃1 is Ãj
1 and x̃2 is Ãk

2 and, . . . , and x̃n is Ãl
n Then ui = Kix(t)

where Ki, i = 1, 2, . . . , R, are 1 × n vectors of control gains, and the premises of
the rules are identical to the premises of the plant rules. In this case

u(t) =
R∑

j=1

Kjξj(x(t))x(t) (7.2)

Under certain conditions this controller can be used to stabilize the plant (see
Section 4.3.5 on page 200).

Many view parallel distributed compensation as a form of gain scheduling since
we have shown in Chapter 4 that we can achieve stability by designing the Kj ,
j = 1, 2, . . . , R then using Equation (7.2) to interpolate between these gains. Some
view this interpolation as a “smooth switching” between the gains so that the
controller gains for each rule compensate for their corresponding local linear model
for the plant.

The above approach may be particularly appealing since under the conditions
outlined in Chapter 4 the gain schedule construction method guarantees global
asymptotic stability of the equilibrium point of the closed-loop system. However,
it is important to note that the method can sometimes be effectively applied in a
more heuristic manner when, for example, the plant cannot be transformed into
Equation (7.1) so that we may not be able to guarantee stability. For instance, you
may use the above approach to interpolate between different nonlinear controllers
when a plant can be viewed as an interpolation of R nonlinear systems. Such an
approach can be very valuable in practical applications.

Gain Schedule Implementation

Regardless of which of the above methodologies is used to construct the gain sched-
ule, these approaches also automatically provide for the fuzzy system implementa-
tion of the gain scheduler (interpolator), which can at times be an advantage over
conventional methods. That is, the fuzzy system approach provides methods to
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construct gain schedules, and then as a by-product of the construction procedure,
one obtains a method for implementing the fuzzy gain scheduler.

It is important to note that computational complexity is of concern in the im-
plementation of a gain scheduler. Sometimes it is not computation time that is
the main problem (since the interpolator is usually relatively simple), but memory
storage since the tables of gains can be quite large for practical applications. Some
may think that the fuzzy system methodologies could offer an approach to reduce
the memory storage requirements since the rules will tend to provide an interpola-
tion that may make it possible to omit some data. However, we have found that for
practical applications this is sometimes simply wishful thinking. The conventional
methods used for gain scheduling use interpolation techniques that are basically
quite similar (sometimes identical) to what is implemented by a fuzzy system. If
the original designers found that the extra data were needed to make the map-
ping that the gain scheduler implements more accurate, then these extra data are
probably needed for the fuzzy system also.

7.2.3 Fuzzy Supervision of Conventional Controllers
In the two previous subsections we have studied how to use a fuzzy system (super-
visor) to tune the gains of a PID controller and schedule controller gains. Each of
these subsections offers a method for fuzzy supervision of conventional controllers.
In general, however, we view the supervisory control approach as offering more gen-
eral functionalities than the simple tuning of gains: They also provide the capability
to completely switch which controllers are operating at the lower level. That is, they
can switch between linear and nonlinear controllers, controllers of different order or
structure, or between controllers that regulate and actuate different signals. Next,
we briefly consider an application where we have found it necessary to both tune
the gains of the lower-level controllers and switch between different controllers.

In particular, it has been shown [57] that for a two-link flexible robot (the one
studied in Chapters 3 and 6 and later in this chapter) we can design very good
conventional controllers for certain operating conditions and slews of the robot. For
instance, after years of experience with this robot, we know that for small slews we
need a certain type of controller, whereas for large slews and counterrelative slews
we need a different kind of controller. Past work showed, however, that none of the
controllers developed for one set of slew conditions would work perfectly for other
sets of conditions. However, in [57] it was shown that since we know what slew
is commanded by the user, this information can be incorporated into a supervisor
that simply tunes the lower-level controllers or selects the proper controller for the
slew that is commanded. This supervisory control approach proved to be successful.
However, it could not accommodate for unknown effects such as adding a payload
to the endpoint of the second link as we did in Chapter 6. The reason that this
sort of condition could not be accommodated for in this supervisory method is that
it cannot be directly measured and used to tune the controllers. We emphasize,
however, that if you were to add some preprocessing (e.g., on-line frequency domain
analysis), it is possible to guess what payload has been added by correlating the
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movement of the modes of vibration with the known effects of mass loading. We did
not, however, pursue this as the adaptive methods in Chapter 6 and the rule-base
supervision approach presented in the next section proved to be quite effective.

7.3 Supervision of Fuzzy Controllers
The basic architecture for the operation of a supervisor for fuzzy controllers is the
same as the one shown in Figure 7.1 with the controller at the lower level being a
fuzzy controller or adaptive fuzzy controller that is tuned by the supervisor. The
supervisor could be in the same form as a basic fuzzy controller or it could be a
general rule-based expert system. We have not yet found, however, a clear need for
the general knowledge-base and inference strategies found in conventional expert
systems. It is for this reason that in this section we will consider the use of fuzzy
systems or simple sets of rules for the tuning of fuzzy controllers (note that simple
sets of crisp rules can actually be represented by fuzzy systems with an appropriate
choice of membership functions and inference strategy; in this sense we really only
consider fuzzy supervision of fuzzy controllers).

This section is broken into two parts, each of which has an associated design case
study. First, we discuss the supervision of a direct fuzzy controller by supervising
its rule-base. Next, we discuss the supervision of an adaptive fuzzy controller by
supervision of its adaptation mechanism.

7.3.1 Rule-Base Supervision
When you consider the possibility of tuning direct fuzzy controllers, you may be
struck by the possibility of automatically adjusting each and every component of the
fuzzy controller. This is, however, not usually a good idea. Since there are very few
heuristic ideas on why it is best to choose a certain fuzzification or defuzzification
method, it is very difficult to know when or how to tune these on-line. Moreover,
it is difficult to gather on-line information that suggests how these components of
a fuzzy system should be tuned. It is possible to develop tuning methods for the
parameters of the inference mechanism, but some parameterization of the inference
strategy is needed and a rationale for tuning must be specified.

It is for these reasons that most often the focus is on tuning the rule-base
(both membership functions and rules), which we often have good heuristic ideas
on how to tune, and on-line signals that tell us what tuning needs to be done.
For instance, when we design a direct fuzzy controller we may initially have had
a certain set of operating conditions in mind. We may also know that if different
operating conditions are encountered, the controller’s performance will degrade and
a different controller should be used. The higher-level knowledge of when different
controllers are needed for different operating conditions can be loaded into the
rule-based supervisor.

The supervisory tuning of rule-bases is, however, very application-specific; this
is not surprising as the very design of the rule-base for the direct fuzzy controller
that we seek to tune is application-specific. It is for this reason that to further
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explain how rule-bases can be supervised, we provide a design and implementation
case study for a rule-base supervisor.

7.3.2 Case Study: Vibration Damping for a Flexible Robot
The experiments using direct and adaptive fuzzy control for the two-link flexible
robot described in Chapters 3 and 6 show a considerable improvement over the no-
control case shown in Figure 3.2 on page 127, but are not quite the best possible.
The uncoupled direct fuzzy controller described in Chapter 3 has a fast rise-time
but has the drawback of having a large overshoot and oscillations near its set-
point. Coupling the two controllers via the endpoint acceleration signal reduces the
overshoot and oscillation problems considerably but makes the overall response a
bit slower due to the reduction of speed of the elbow link while the shoulder link
is moving fast. This reduction of speed of the elbow link was necessary to prevent
the oscillations of the elbow link endpoint near the set-point, caused by the inertia
of the links.

We can overcome this problem if we are able to make a smooth transition in the
speed of the shoulder link. This can be achieved by using a higher level of control
for monitoring and adjusting the direct fuzzy controller. Here, we will use a simple
“expert controller,” shown in Figure 7.4, which monitors the position error input
e1(t) to the shoulder motor controller and changes the fuzzy sets and the rule-base
of the shoulder motor controller. As we saw in the response for the coupled direct
fuzzy controller (see Figure 3.9 on page 140), the main cause for the hump appearing
at about 0.9 seconds in the plot is the sudden change in speed of the shoulder link.
The elbow link is coupled to the shoulder link using the endpoint acceleration from
the shoulder link, and its speed is varied depending on the oscillation of the shoulder
link. To eliminate the hump, we use the expert controller to vary the speed of the
shoulder link gradually so as to avoid exciting oscillatory modes, which result in
excessive endpoint vibrations.

The rule-base for the expert controller consists of two single-input multiple-
output rules:

1. If |e1(t)| ≥ 20◦ Then use Rule-Base 1 (Table 7.1) and use expanded universes
of discourse.

2. If |e1(t)| < 20◦ Then use Rule-Base 2 (Table 7.2) and use compressed universes
of discourse.

The expert controller expands or compresses the universes of discourse by sim-
ply changing the scaling gains (explained below). When the universe of discourse
is expanded, a “coarse control” is achieved, and when it is compressed, a “fine con-
trol” is achieved. You may think of this as being similar to the dynamically focused
learning that we studied in Chapter 6; it is a type of auto-tuning strategy. The form
of the premises of the rules of the supervisor guarantees that one (and only one) of
the rules will be enabled and used at each time step. Since the control objectives
can be achieved using only these two rules and since only one rule will be enabled
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FIGURE 7.4 Fuzzy control system with a supervisory level
(figure taken from [145], c© IEEE).

at each time step, there is no need for the use of complex inference strategies in the
expert controller.

Clearly, it would be possible to view the premises of the above rules as linguistic
statements then define membership functions to quantify their meaning. We could
also use membership functions to quantify the meaning of the consequents (how?).
Then, our supervisor would be a fuzzy system that would gradually rather than
abruptly switch between the two conditions. Here, we did not pursue this approach.
Instead, we made sure that the rule-bases were designed so that a smooth transition
would occur as the supervisor switched between the rules.

Rule-Base Construction

The membership functions and the rule-base for the elbow link controller were kept
the same as in Figure 3.8 on page 136. In addition to the rule-base in Table 7.1, an-
other rule-base was added for the shoulder motor controller. The expert controller
therefore switches between these two rule-bases for the shoulder link, for “coarse
control” and “fine control.” The membership functions for the coarse controller are
similar to those used in the coupled direct fuzzy controller case (see Figure 3.4 on
page 131) where the universe of discourse is [−250, +250] degrees for the position
error, [−2, +2] g for the endpoint acceleration, and [−1.5, +1.5] volts for the output
voltage. The fine controller, with rule-base shown in Table 7.2, uses the same shape
for the membership functions as shown in Figure 3.4 except the universes of dis-
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course for the inputs and the outputs are compressed. The universe of discourse for
the position error is [−25, +25] degrees, and the universe of discourse for the end-
point acceleration is [−1, +1] g. The output universe of discourse is [−0.15, +0.15]
volts.

TABLE 7.1 Rule-Base for Coarse Control

Ak
1

V m
1 −5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −5 −5 −5 −4 −4 −3 −3 −2 −2 −1 0
−4 −5 −5 −4 −4 −3 −3 −2 −2 −1 0 1
−3 −5 −4 −4 −3 −3 −2 −2 −1 0 1 2
−2 −4 −4 −3 −3 −2 −2 −1 0 1 2 2
−1 −4 −3 −3 −2 −2 −1 0 1 2 2 3

Ej
1 0 −3 −3 −2 −2 −1 0 1 2 2 3 3

1 −3 −2 −2 −1 0 1 2 2 3 3 4
2 −2 −2 −1 0 1 2 2 3 3 4 4
3 −2 −1 0 1 2 2 3 3 4 4 5
4 −1 0 1 2 2 3 3 4 4 5 5
5 0 1 2 2 3 3 4 4 5 5 5

Notice that while going from the coarse to the fine control, the widths of the
universes of discourse for the position error and the output of the shoulder link
controller have been reduced by a factor of ten, while the width of the universe of
discourse for the endpoint acceleration is reduced by a factor of two. This choice
was made after several experiments where it was found that when the width of
the universe of discourse for the acceleration was reduced by a large factor, the
controller became too sensitive near the set-point.

Tables 7.1 and 7.2 show the rule-bases used for the coarse and fine control,
respectively. Notice that in row j = 0 for the rule-base for fine control there are
extra zeros as before to reduce the sensitivity of the controller to a noisy acceleration
signal. The rule-base for coarse control does not have these zeros as the offset voltage
from the accelerometers is of no consequence as long as the controller is operating
in this region. Also notice that while the patterns in the bodies of the tables shown
in Tables 7.1 and 7.2 are similar, there are differences included to reflect the best
way to control the robot. Notice that the center values in the fine control rule-base
change more rapidly as we move away from the center of the rule-base as compared
to the coarse control rule-base. This causes a bigger change in the output of the
controller for smaller changes in the input, resulting in better control over the shaft
speed of the motor, preventing it from overshooting its set-point and at the same
time causing gradual braking of the motor speed. Finally, we note that the fine
control rule-base was selected so that the output is not changed too much when the
rule-bases are switched, promoting a smooth transition between the rule-bases.

The number of rules used by the supervisory control algorithm is 121 for the
coarse controller, plus 121 for the fine controller, plus 343 for the elbow controller,
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TABLE 7.2 Rule-Base for Fine Control

Ak
1

V m
1 −5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −5 −5 −5 −5 −4 −4 −3 −3 −2 −1 0
−4 −5 −5 −5 −4 −4 −3 −3 −2 −1 0 1
−3 −5 −5 −4 −4 −3 −3 −2 −1 0 1 2
−2 −5 −4 −4 −3 −3 −2 −1 0 1 2 3
−1 −4 −4 −3 −3 −2 −1 0 1 2 3 3

Ej
1 0 −4 −3 −2 −1 0 0 0 1 2 3 4

1 −3 −3 −2 −1 0 1 2 3 3 4 4
2 −3 −2 −1 0 1 2 3 3 4 4 4
3 −2 −1 0 1 2 3 3 4 4 5 5
4 −1 0 1 2 3 3 4 4 5 5 5
5 0 1 2 3 3 4 4 5 5 5 5

plus 2 for the expert controller, resulting in a total of 587 rules. As either the coarse
controller or the fine controller is active at any time, effectively the number of rules
used is 587 − 121 = 466 rules (which is similar to what was used for the coupled
direct fuzzy controller in Chapter 3).

Experimental Results

Experimental results obtained using this supervisory scheme are shown in Fig-
ure 7.5. The requested slew is 90◦ for both links as shown in the inset. The response
is relatively fast with very little overshoot. Comparing this response to the response
obtained for the coupled direct fuzzy controller (see Figure 3.9 on page 140), we can
see that the response from the supervisory controller has a much smaller settling
time and that the hump in the initial portion of the graph is almost eliminated.
Note that this is similar to what we obtained for the FMRLC (see Figure 6.17 on
page 362).

The response of the robot to a counterrelative slew is better than the response
when using the direct fuzzy controllers (coupled or uncoupled). The responses for
small-angle slews are similar to those obtained for the direct fuzzy controller and
the FMRLC. Figure 7.6 shows the response of the robot with a 30-gram payload on
the endpoint. The commanded slew is 90◦ for both the links, as shown in the inset.
The response is significantly improved as compared to the response from the direct
fuzzy control schemes (see Figures 3.6 and 3.10 on pages 134 and 141) and slightly
better than that of the FMRLC (see Figure 6.18 on page 363). The oscillations in
the endpoint due to the added inertia, visible in the direct fuzzy control case (see
Figures 3.6 and 3.10), are eliminated here.

From the results obtained for the direct fuzzy control techniques (see Chap-
ter 3), the FMRLC (see Chapter 6), and the supervisory control technique (here),
we see that the results from the latter are superior in all the cases tested. The
supervisor gave better results in the case of large, counterrelative, and loaded-tip
slews, and was comparable to the results obtained from the direct fuzzy controller
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FIGURE 7.5 Endpoint position for supervisory control (figures taken
from [145], c© IEEE).

in the case of small slews. Compared to the FMRLC, the supervisor did slightly
better on the counterrelative slew and the case where there is a payload; not only
that but the FMRLC needed 1150 rules compared to the 466 needed for the su-
pervisory approach. The major difference in the implementation of the supervisory
controller and the direct fuzzy controllers is the addition of the expert controller,
and the additional rule-base for the shoulder link controller. This addition does
increase the complexity of the control algorithm but not to a large extent (recall
that we used 464 rules for the coupled controller and only 466 for the supervisory
controller with an extra 121 for the second shoulder controller). The loop execution
time increased very little, and the same sampling time (15 milliseconds) as in the
direct fuzzy control case was used. The supervisory control does use extra memory
as compared to the direct fuzzy algorithms since the second rule-base (with 121
rules) for the shoulder controller had to be stored; however, in implementation, the
supervisor simply has to select one rule-base or the other.

Overall, we see that rule-base supervision can be used to significant benefit in a
practical application. Next, we study how to supervise an adaptive fuzzy controller.

7.3.3 Supervised Fuzzy Learning Control
A supervisor for an adaptive fuzzy controller could serve to supervise the adaptation
mechanism and fuzzy controller in the case of direct adaptive fuzzy control, or the
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FIGURE 7.6 Endpoint position for supervisory controller design with
payload (figure taken from [145], c© IEEE).

identifier and controller designer in the case of indirect adaptive control. If a model
reference approach is used then there may be a need to supervise the reference
model. Basically, supervision allows for the incorporation of additional information
on how the adaptation process should proceed. In the indirect case, certain extra
information may be useful in helping tune the model of the plant. Or it may be the
case that certain information can be used by the controller designer. The supervision
of the adaptation mechanism is useful to speed or slow the adaptation rate or to
try to maintain stable operation. A supervisor for a reference model will update it
so that it continually represents the desired specifications.

The number of possibilities for supervising adaptive fuzzy controllers is quite
extensive. At present there are no general guidelines on which approach to choose,
so the designer is often left to use intuition to make a best guess at an approach
to take (especially for complex applications). As with the previous supervisory
control approaches, the supervision method for adaptive fuzzy controllers is highly
dependent on the application at hand.

To illustrate the ideas, we will provide a case study where we supervise the
learning mechanism and reference model of the FMRLC for a fault-tolerant control
application.
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7.3.4 Case Study: Fault-Tolerant Aircraft Control
The FMRLC designed for the fault-tolerant aircraft control case study in Chapter 6
gives promising results; however, the learning process takes considerable time to
completely reconfigure the control laws due to the actuator failure (approximately
9 seconds, as shown in Figure 6.15 on page 357). This time requirement arises
from the fact that we are forced to use a “slower” learning mechanism to ensure
stable operation for a wide variety of failures, and the FMRLC does not use special
information about the actuator failure (e.g., information about when the failure
occurs and where the actuator is stuck). Basically, no matter what kind of failure
occurs, the FMRLC of Chapter 6 will try to redistribute the remaining control
authority to the healthy channels so that the aircraft will behave, if not exactly
the same, as close as possible to its unimpaired condition. It is, however, somewhat
unreasonable to expect the FMRLC to achieve performance levels comparable to the
unimpaired case if, for example, the aileron becomes stuck at near full deflection. For
such failures, we would find it acceptable to achieve somewhat lower performance
levels.

In this section, we will show that if failure detection and identification (FDI)
information is exploited, a supervisory level can be added to the FMRLC to tune
the reference model characterization of the desired performance according to the
type of failure that occurred. We show that if the supervisory level uses FDI in-
formation to tune the reference model, and if it appropriately adjusts the learning
mechanism for different failures, then adequate performance levels can be achieved,
even for more drastic failures. We begin by investigating two such supervised FM-
RLC techniques, one that uses limited FDI information, and the other that uses
perfect FDI knowledge. Moreover, utilizing the approach and results in [108], we
explain how a fuzzy system can be used for failure estimation and can be coupled
with the fuzzy supervisor so that we do not need to assume that we have perfect
knowledge about failures.

FMRLC Supervision with Limited FDI Information

We will first consider the case where only limited failure information is available. In
particular, we assume that we have an FDI system that can only indicate whether
or not an actuator has failed; hence, while it indicates when an actuator failure
occurs, it does not indicate the severity of the failure (we also assume it provides
no false alarms). A supervised FMRLC that uses such failure information is shown
in Figure 7.7. The FMRLC supervisor consists of an FDI system, which gives binary
information about an actuator failure, and a control supervisor, which will tune the
reference model and learning mechanism when an actuator failure is detected.

Because only limited knowledge about the nature of the actuator failure is
provided by our FDI system, it is not possible to design very complex supervision
strategies. In general, in this case there are two approaches to supervising the
FMRLC. One possible supervision strategy is to increase the learning capabilities
of the FMRLC (i.e., increase the output gain m0 of the fuzzy inverse model) so that
the failure recovery can be accelerated. However, in order to obtain an adequate
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FIGURE 7.7 Supervised FMRLC using FDI information (figure taken from [104],
c© IEEE).

increased output gain for the fuzzy inverse model, the reference model needs to
be “slowed down” to help ensure stability. Therefore, the reference models must
be designed much more carefully to represent achievable performance levels of the
impaired aircraft. Intuitively, the pilot will probably not push the performance of
an impaired aircraft to the same level as its unimpaired condition. In the case of
an aileron actuator malfunction, the pilot loses the primary roll control effector.
Even though the differential elevator can be used to reconfigure for this failure, the
pilot will never expect a full recovery of the original performance, realizing that
the differential elevators alone do not have enough control authority to overcome
the failure and replace all the functions originally designed for the ailerons. In all
cases, when an aircraft loses a control surface, it loses some performance. Hence,
there is a general decrease in performance expectations from the pilot, which can
be mimicked by the change in the functionality provided by the reference model in
the FMRLC design.

Hence, as soon as a failure is detected, a different set of reference models should
be used. The second- and third-order reference models chosen for the FMRLC have
two parameters available for modification; they are ζ and ωn (which are 0.85 and
14.14, respectively, in Chapter 6, Section 6.3.2). In the case of actuator failures, a
pilot would expect the aircraft to react in a much slower fashion with overdamped
responses. Hence, this expectation is translated to a larger ζ (i.e., ζ > 0.85) and
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a smaller ωn (i.e., ωn < 14.4). We find that the values ζ = 1.0 and ωn = 10.0 are
reasonable choices—that is, they do not jeopardize performance too much.

With this set of slower reference models, the fuzzy inverse model is re-tuned
(using the approach introduced in the Chapter 6 case study), and it is found that
the output gain m0 is 0.6. Here, by reducing the performance requested by the
reference model, the learning capabilities (i.e., its adaptation rate) are increased
by a factor of six. This greater learning capacity will then speed up the control
reconfiguration process.

As an alternative approach, the fuzzy controller can be modified directly in the
direction of how the learning mechanism will do the control reconfiguration. Refer-
ring to the F-16 nominal controller of the lateral channel as shown in Figure 6.11 on
page 349, the effectiveness of the differential elevators as the roll effector is actually
depressed by a factor of four compared to the ailerons (see the 0.25 factor between
the δa and δde controller outputs). Thus, in the control reconfiguration process,
the learning mechanism of the standard FMRLC needs to bring the effectiveness
of the differential elevators up to the level of the ailerons, and then further fine-
tune the control laws (i.e., the rule-base of the fuzzy controller) to compensate for
the actuator failure. With this process in mind, another approach to accelerate the
learning process is to assist the learning mechanism in increasing the effectiveness
of the differential elevators. This approach can be achieved simply by increasing the
output gain of the fuzzy controller for the differential elevators by a factor of, for
example, four as soon as the stuck aileron is detected. Using this direct controller
modification, instead of using a slower learning mechanism to achieve the same
goal, the control reconfiguration process will definitely be accelerated.

Notice that in the first approach, the learning capabilities are increased by re-
ducing the requirements posed by the reference model, whereas the second method
allows a direct change in the configuration of the controller itself. The results of
applying these two supervision approaches are actually similar, and in both cases
it is necessary to incorporate them in a fashion that helps ensure stability. After
some simulation studies, it was found that it is best to use a combination of the
two methods. The output gain m0 = 0.3 is chosen with the slower reference model
given above in the first approach, and the controller output gain of the differential
elevators is increased by a factor of two to 0.5. This choice reflects a moderate
contribution from each approach, but detailed simulation studies show that virtu-
ally any combination of the two approaches will also work with relatively minor
differences. Hence, as soon as the FDI system detects the aileron failure, the super-
visor will switch the reference models, increase the output gain of the fuzzy inverse
model, and alter the fuzzy controller as described above.

FMRLC Supervision Results

Figure 7.8 shows the responses of the F-16 using the supervised FMRLC. By com-
paring these to the responses in which no FDI information is used (see the dotted
line in Figure 7.8), the results show improvements in that there are fewer oscilla-
tions in the first 9 seconds (see, e.g., the arrows in the roll rate and the roll angle



432 Chapter 7 / Fuzzy Supervisory Control

plots) compared with the unsupervised case. The supervised FMRLC ensures that
the system follows the “slower” reference models in case of failure, which prevents
the controller from pushing the aircraft beyond its capabilities. By allowing the
FMRLC to learn the failure situation more rapidly, the actuator response of the
differential elevators is more active than that of the response in the FMRLC with-
out the supervisor (see the arrows in the differential elevator plots in Figure 7.8).
However, the choice of a set of slower reference models results in a larger steady
state error in the roll angle after and during the maneuver (see the arrows in the
roll angle plot in Figure 7.8). This is due to the fact that the slower roll rate model
causes the final value of the roll angle to shift. This phenomenon is a characteristic
of the new set of reference models. From the simulation results, this study shows
that a “slower” reference model for FMRLC will often give a less oscillatory overall
response; clearly, there exists a trade-off between performance and stability for an
impaired aircraft.

We have also shown that if there is a delay in the FDI system providing its
failure information, there is little degradation in performance. Actually, a 0.5-second
delay in obtaining FDI information does not further degrade the response of the
aircraft; rather, the time delay only briefly suspends the enhancement made by the
supervised FMRLC.
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FMRLC Supervision: Failure Estimation and Other Scenarios

In more advanced FDI systems, estimation of the actual failure condition is pos-
sible. For instance, the actuator position can be estimated from the input-output
measurements of the aircraft, which allows the supervisor to accelerate the con-
trol reconfiguration. Actually, if either exact FDI information or estimated failure
information is provided by a fuzzy estimator, then we can further improve the
performance of the fault-tolerant control strategy (even if there is some delay in
obtaining the FDI information). Basically, the supervised FMRLC with perfect FDI
information will accelerate the control reconfiguration so that there is no noticeable
oscillation in the learning process and will outperform the supervised FMRLC that
uses only limited FDI information.

The supervised FMRLC with perfect information gives excellent results com-
pared to the standard FMRLC of Chapter 6, Section 6.3.2, and when fuzzy failure
estimation is used, we get essentially the same results. However, there is at least one
more problem that must be addressed. In the case where the failed aileron sticks
at near maximum deflection, the differential elevator is saturated by the control
reconfiguration process since its roll capabilities are less than that of the ailerons.
This causes an instability due to the fact that when the healthy channels are sat-
urated under the standard FMRLC, the learning mechanism modifies the control
laws in the wrong direction with even more severe saturation. As an illustration,
assume that the fuzzy controller gives a control output that saturates the actuator.
If the plant responses are significantly slower than that of the reference models,
this results in larger inputs to the fuzzy inverse model (i.e., the larger errors be-
tween the plant and the reference models). Hence, the monotonic relationship given
by the fuzzy inverse model will try to update the fuzzy controller to increase its
output in the direction of further saturating the actuator. Finally, the system will
go unstable because the learning mechanism is not working in its designed fashion
to “memorize” the past successful actions. Note that if there are extra redundant
control surfaces for control reconfiguration, this situation may not occur.

In order to accommodate for the actuator failures at high deflection angle,
which will cause the healthy channel to saturate, an extra (crisp) rule is used in
the supervisor to correct the deficiency in the standard FMRLC:

If any actuator is saturated Then do not update the corresponding fuzzy
controller.

With this rule, the controller update is ceased by the saturation of any actuator
in the healthy channels. This action assumes that the controller output at which
the saturation occurred is the best control signal the plant can handle, and further
modification should not be made.

Since we have studied only aileron failures to this point, we now investigate a
bit more severe failure in the differential elevator. To simulate the failure in the
differential elevator, at the time of failure instant t = 1 second, we will force the
differential elevator to move at its highest rate until 85% of maximum deflection is
reached (for the F-16 simulation, a failure at 100% maximum deflection in either the
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aileron or the differential elevator results in severe performance degradation, to the
extent that the loaded roll sequence cannot be followed in the manner specified by
the reference model, at least using the present control methods). The rule described
above is used in the supervisor for the standard FMRLC (i.e., no other previous
supervision strategies are used), and the results are compared with the impaired
and unimpaired F-16 with the nominal controller, as shown in Figure 7.9. The rule
can also be applied to the FMRLC with the FDI-based supervisors, but the results
are similar to those in Figure 7.9 because any further improvements in performance
are hindered by actuator saturation. We note that the responses with the standard
FMRLC are extremely oscillatory (as it cannot recover the performance requested
by the reference model), and are therefore not shown in Figure 7.9.
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As shown in the aileron actuator plot in Figure 7.9, the actuator output is
saturated during certain parts of the loaded roll sequence. The resulting roll rate
plot shows that the plant output is degraded in the positive side of the motion (as
indicated by the arrows where the output is slower than the reference responses).
Moreover, the overall roll rate responses are oscillatory, and the sideslip peaked
at 2.6◦ at 1.8 seconds. The performance degradation is due to the momentary
suspension of learning by the supervisor rule given above, which hinders the normal
reconfiguration process. However, the roll angle response is reasonably well behaved.



7.4 Summary 435

Discussion: Significant Further Investigations Needed

While in some respects the supervised FMRLC approach appears promising, there
is a significant need to investigate the following:

• The performance of the supervised FMRLC for a more complete nonlinear sim-
ulation model, and for a wider range of failures over more aircraft operating
conditions.

• Stability and convergence issues.

• Robustness issues for the developed techniques, including determining if accept-
able plant parameter variations can cause the failure estimation techniques to
produce false alarms, and determining if the reconfiguration strategies can ac-
commodate for other types of failures (including simultaneous and intermittent
failures).

• Comparative analyses between some of the conventional approaches to recon-
figurable control and FDI, and the fuzzy reconfigurable control and fuzzy FDI
approaches investigated in this case study, in order to determine the achievable
performance levels and computational complexity.

Moreover, issues related to proper interface between the pilot and the reconfigura-
tion strategy are critical to the development of a reconfigurable control system.

The reader is cautioned to view the above application as being illustrative of an
approach to supervising an adaptive fuzzy controller. It is not to be interpreted as a
solution to the general problem of fault-tolerant aircraft control. We must emphasize
that the solution studied in this case study falls significantly short of providing a
practical solution to this very important problem (but many other “solutions” have
the same basic problems). Significant research needs to be done, including flight
tests, before you could come to trust a control reconfiguration strategy.

7.4 Summary
In this chapter we have provided an overview of the variety of methods that are
available for fuzzy supervisory control. Basically, the techniques should be viewed
as providing design methodologies for hierarchical controllers for nonlinear systems.
We have found the methods to be very practical and useful for industrial applica-
tions.

The chapter was basically divided into two parts. In the first part, we showed
how to supervise conventional controllers, including a PID controller, and explained
how fuzzy systems are useful for gain scheduling. In the second part, we showed
how to supervise both direct fuzzy controllers (i.e., rule-base supervision) and an
adaptive fuzzy controller. We used the two-link flexible robot implementation case
study to illustrate one way to perform rule-base supervision, and we used the fault-
tolerant aircraft control problem to illustrate how to supervise an adaptive fuzzy
controller.
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Upon completing this chapter, the reader should understand the following:

• The basic approach to using fuzzy systems to tune PID controllers.

• How to use heuristic information to construct fuzzy gain schedulers.

• How to use the identification methods of Chapter 5 to construct fuzzy gain sched-
ules when you are given as set of controllers designed at a set of measurable
operating conditions.

• How the “parallel distributed compensator” can be viewed as a gain scheduling
methodology.

• Basic ideas in the tuning and supervision of conventional controllers.

• Rule-base supervision via tuning of membership functions and switching between
rule-bases.

• How rule-base supervision can be used for control of a two-link flexible robot.

• How both direct and indirect adaptive fuzzy controllers can be supervised (e.g.,
via supervision of the reference model or learning mechanism).

• How supervised adaptive fuzzy control provides an approach to “performance
adaptive” control (in the sense that it seeks an appropriate performance level
based on the failure conditions) and fault-tolerant control for an aircraft.

• The limitations of the methods for fault-tolerant aircraft control and the need for
future research.

Essentially, this is a checklist of the major topics of this chapter. We must em-
phasize that this chapter is different from the past ones in that realistic applications
of these approaches are difficult to define in a short amount of space. Hence, while
it is easy to explain the ideas at a conceptual level, it is difficult to provide gen-
eral design guidelines for supervisory control approaches. It is our hope, however,
that with the foundation built by the first six chapters of this book, the concepts
discussed here can be readily used for your own applications.

7.5 For Further Study
A variety of conventional PID auto-tuning methods are presented in [9] (a summary
of several of the ideas in this book is contained in [121]). In addition to [57], the
authors in [221, 152, 42, 216, 147] study fuzzy supervisory controllers that tune
conventional controllers, especially ones that tune PID controllers. Conventional
gain scheduling has been studied extensively in the literature, especially for a wide
range of practical applications. See [182, 176, 183] for some more theoretical studies
of gain scheduling. The connections between fuzzy supervision and gain scheduling
have been highlighted by several researchers. A more detailed mathematical study of
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the connections is provided in [154]. The idea of using a supervisor for conventional
adaptive controllers was studied earlier in [8, 6]. The case study for supervisory
control of the two-link flexible robot was first presented in [145]. The approach
to supervision there bears some similarity to the one in [125]. The case study for
the fault-tolerant aircraft control problem was taken from [104]. General issues in
hierarchical fuzzy control are discussed in [43].

7.6 Design Problems
Design Problem 7.1 (Fuzzy Gain Scheduling for Liquid Level Control)�:

In this problem you will study how to heuristically construct a fuzzy gain sched-
uler for the tank problem described in in Section 6.6.4. This problem is only
partly specified. It is up to you to fully define the assumptions and approach.

(a) Design a conventional controller for the tank and use simulations to show
how it performs in regulating the liquid level.

(b) Design a fuzzy scheduler for the controller you designed in (a) based on
your knowledge that the tank has a larger cross-section at the top of the
tank (but do not assume that you know A(h) perfectly). Use a simulation to
show how the gain scheduler performs. Compare it to the results in (a). If
you design the problem correctly, you should be able to show that by using
the additional information on the cross-sectional area of the tank you can
achieve better performance than in the case where this information is not
used in (a).

Design Problem 7.2 (Gain Scheduling and PID Tuning for the Cargo
Ship)�: Suppose that you consider the speed u of the cargo ship described in
Chapter 6 to dictate the ship’s operating conditions and allow it to be an input
to a gain scheduler. Note that if the ship is traveling very fast, a small change in
the rudder angle will result in a large change in the heading. On the other hand,
if the ship is traveling very slowly, then the rudder loses its control authority and
the ship is harder to control. In this problem you will study the use of a gain
scheduler for the control of the cargo ship. This problem is only partly specified.
It is up to you to fully define the assumptions and approach. Overall, however,
you should recognize that if a gain scheduler can properly tune the parameters of
a controller, it should be possible to make the performance of the ship (in terms
of heading response) less sensitive to changes in the ship’s speed.

(a) Develop a PD controller for the cargo ship. Illustrate its performance in
simulation. For a guideline for the type of performance that you should be
able to achieve, use the plots shown in the cargo ship case study in Chapter 6
and the reference models provided there.

(b) Design a fuzzy gain scheduler that tunes the PD gains based on the speed
as which the ship operates. Use a heuristic approach to specify the rules for
a fuzzy gain scheduler that uses the above knowledge.
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(c) Develop several PD controllers for a variety of speeds, and then use the
methods of Chapter 5 to construct a gain schedule from the operating point–
controller design data pairs. Illustrate how this and the methods in (b) can
be used to improve performance over the case where no speed input is used
(i.e., compare to (a)).

(d) Use the parallel distributed compensator approach to construct a gain sched-
uled control law for the plant. Illustrate its performance in simulation.

Design Problem 7.3 (Gain Scheduling and PID Tuning for the Tanker
Ship)�: This problem focuses on the construction of gain schedulers for the tanker
ship.

(a) Repeat Design Problem 7.2 for the tanker ship defined in Design Problem 6.1
on page 407 for the case where there are ballast conditions.

(b) Suppose that you can also obtain from the ship’s captain an indication of
the weight of the ship (e.g., when it is “full”). Explain how to design a gain
scheduler using this information. Do not fully design the gain scheduler;
simply provide a block diagram explaining how it would operate.
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Perspectives on
Fuzzy Control

He who knows only his own side of the case,

knows little of that.

–John Stuart Mill

8.1 Overview
Fuzzy control does not exist as an isolated topic devoid of relationships to other
fields, and it is important to understand how it relates to these other fields in order
to strengthen your understanding of it. We have emphasized that fuzzy control
has its foundations in conventional control and that there are many relationships
to techniques, ideas, and methodologies there. Fuzzy control is also an “intelligent
control” technique, and hence there are certain relationships between it and other
intelligent control methods. In this chapter we will provide a brief overview of some
of the basic relationships between fuzzy control and other control methods. This
will give the reader who has a good understanding of fuzzy control a glimpse of
related topics in other areas. Moreover, it will give the reader who has a good
understanding of other areas of control an idea of what the field of fuzzy control is
concerned with.

We begin the chapter in Section 8.2 by providing a conventional control engi-
neering perspective on fuzzy control. This is essentially a summary of many of the
points that we have made throughout the text, but here we bring them all together.
Following this, in Section 8.3 we introduce two popular areas in neural networks,
the multilayer perceptron and the radial basis function neural network. We explain
that a class of radial basis function neural networks is identical to a class of fuzzy
systems. Moreover, we explain how techniques covered in this book (e.g., gradient
training and adaptive control) can be used for neural networks. In Section 8.4 we

439
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explain genetic algorithms, their relationship to the field of control, and particularly
their use with fuzzy systems. Next, in Section 8.5 we provide an overview of some
of the relationships to knowledge-based systems, particularly expert systems (and
hence expert control) and planning systems. Finally, in Section 8.6 we provide an
overview of the general area of (hierarchical) intelligent and autonomous control
where we offer some ideas on how to define the field of intelligent control and how
some of the most general intelligent controllers operate. We use an “intelligent ve-
hicle highway system” problem to illustrate the use of the intelligent autonomous
controller functional architecture.

This chapter is meant to provide a view of, and motivation for, the main areas
in the field of intelligent control. The reader interested only in fuzzy control can
certainly ignore this chapter; we do not, however, advise this as the relationships to
other fields often suggest ideas on how to expand the basic fuzzy control methods
and may provide key ideas on how to solve a control problem for a particular
application.

8.2 Fuzzy Versus Conventional Control
What are the advantages and disadvantages of fuzzy control as compared to con-
ventional control? What are the perspectives of conventional control engineers on
fuzzy control? In this section we will attempt to give answers to these questions
by asking, and at least partially answering, a series of questions that we have ac-
cumulated over the years from a variety of engineers in industry and universities
concerned about whether to use fuzzy or conventional control. We break the ques-
tions into three categories and use the questions to summarize several points made
in earlier chapters.

8.2.1 Modeling Issues and Design Methodology
First, we will discuss several issues related to modeling and the overall fuzzy con-
troller design methodology.

1. Is the fuzzy controller design methodology viable? Success in a variety of appli-
cations (e.g., the flexible-link robot application studied in this book) has proven
fuzzy control to be a viable methodology and therefore worthy of consideration.

2. Do engineers like the methodology? Some do, and some do not. Engineers who
have found success with it tend to like it. Often, we find that if engineers
invest the time into learning it, they find it to be a tool with which they are
comfortable working (they feel like it is “one more tool in their toolbox”).
This may be because fuzzy systems are interpolators and engineers are used to
thinking about using interpolation as a solution to a wide variety of problems.

3. Will the methodology always work? No. The reason we can be so definite in
this answer is that it is not the methodology that ultimately leads to success;
it is the clever ideas that the control engineer uses to achieve high-performance
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control. Fuzzy control is a vehicle, and the engineer is the driver. Some find
that the vehicle is comfortable and that they can coax it into performing all
kinds of functions for them. Others are not so comfortable with it.

4. Does the design methodology always shorten the “lead time” to design and
implementation? In talking with many people in industry, we have found that
most often it does (and this is very important, especially in today’s competitive
climate), but we have also heard of instances where people factor in the cost
of having their engineers learn the method and then found the membership
functions very hard to tune. In these cases the clear answer from the engineers
was that it did not make things easier. We have heard from some that fuzzy
logic implements, in a similar way, the standard logic and interpolation methods
they already use. Sometimes such engineers find that the fuzzy control jargon
clouds the issues that are central to the control problem. Others like that it
helps to formalize what they have been doing and helps to suggest ideas for
other approaches.

5. Is a model used in the fuzzy control design methodology? It is possible that
a mathematical model is not used. However, often it is used in simulation to
redesign a fuzzy controller. Others argue that a model is always used: even if
it is not written down, some type of model is used “in your head.”

6. Since most people claim that no formal model is used in the fuzzy control design
methodology, the following questions arise:

(a) Is it not true that there are few, if any, assumptions to be violated by fuzzy
control and that the technique can be indiscriminately applied? Yes, and
sometimes it is applied to systems where it is clear that a PID controller
or look-up table would be just as effective. So, if this is the case, then why
not use fuzzy control? Because it is more computationally complex than
a PID controller and the PID controller is much more widely understood.

(b) Are heuristics all that are available to perform fuzzy controller design?
No. Any good models that can be used, probably should be.

(c) By ignoring a formal model, if it is available, is it not the case that a
significant amount of information about how to control the plant is ig-
nored? Yes. If, for example, you have a model of a complex process, we
often use simulations to gain an understanding of how best to control the
plant—and this knowledge can be used to design a fuzzy controller.

(d) Can standard control theoretic analysis be used to verify the operation
of the resulting control system? Sometimes, if the fuzzy control system
satisfies the assumptions needed for the mathematical analysis. This will
be discussed in more detail in the next section.

(e) Will it be difficult to clearly characterize the limitations of various fuzzy
control techniques (i.e., to classify which plants can be controlled best with
different fuzzy or conventional controllers)? Yes.
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(f) Will it be difficult to clearly relate the results of using the fuzzy con-
troller to previous work in conventional control to definitively show that
contributions are being made to the field of control? Yes.

7. Is there always a formal model available for control design? No, but for most
systems there is at least an approximate model available. This information is
often valuable and should not be ignored.

8. Does the use of fuzzy controllers limit the design methodology as compared to
the use of more general expert controllers? Expert controllers use more general
knowledge-representation schemes and inference strategies (see more details in
Section 8.5.1), so for some plants it may be advantageous to use the expert
controller. It is, however, not clear at this point what class of plants call for the
use of expert control.

8.2.2 Stability and Performance Analysis
Next, we will discuss several issues related to the performance analysis of fuzzy
control systems.

1. Is verification and certification of fuzzy control systems important? Yes, espe-
cially for safety-critical systems (e.g., an aircraft). It may not be as important
for certain applications (e.g., a washing machine with a fuzzy control system).

2. What are the roles of simulation and implementation in evaluating the per-
formance of fuzzy control systems? They play exactly the same role as for
conventional control systems.

3. What are the roles of the following nonlinear analysis approaches in fuzzy con-
trol system design?

(a) Phase plane analysis (see the references at the end of Chapter 4, in Sec-
tion 4.9 on page 223).

(b) Describing function analysis (see Chapter 4, Section 4.6 on page 214).

(c) Stability analysis: Lyapunov’s first and second methods (see Chapter 4,
Section 4.3 on page 193); absolute stability (see Section 4.4 on page 204);
and the small gain theorem (see Section 4.9 on page 223).

(d) Analysis of steady-state errors (see Chapter 4, Section 4.5 on page 210) .

(e) Method of equivalent gains (see Section 4.9 on page 223).

(f) Cell-to-cell mapping approaches (see the references at the end of Chapter 4
in Section 4.9 on page 223).

Several of these approaches may apply to the analysis of the behavior of the
fuzzy control system you design. As you can see, in Chapter 4 we discussed
many of these topics.
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4. What are the problems with utilizing mathematical analysis for fuzzy control
system verification? The techniques take time to learn. The problems for which
fuzzy control are particularly well suited, and where there is often very good
motivation to use fuzzy rather than conventional control, are the control prob-
lems where the plant has complex nonlinear behavior, and where a model is
hard to derive due to inherent uncertainties. Each of these characteristics often
makes the assumptions that are needed for the nonlinear analysis techniques
invalid, so the theory often does not end up offering much when it is really
needed.

5. Does fuzzy control provide “robust control”? If so, can this be demonstrated
mathematically or experimentally? There has been a recent focus in research
on stability analysis to show that fuzzy control does provide robust control. It
is very difficult, of course, to show robustness via experimentation since by its
very definition robustness verification requires extensive experimentation (e.g.,
you could not call the fuzzy controller for the rotational inverted pendulum
case study in Chapter 3 or Chapter 6 “robust” when it was only shown to be
successful for one disturbance condition).

8.2.3 Implementation and General Issues
Finally, we will discuss several issues related to implementation and the overall
fuzzy controller design methodology.

1. Are there computational advantages in using fuzzy control as compared to
conventional control? Not always. PID control is simpler than fuzzy control;
however, there are some types of conventional control that are very difficult to
implement where a fuzzy controller can be simpler. It depends on the applica-
tion and the methods you choose.

2. Should I use a conventional or “fuzzy processor” for implementation? We have
typically found that our needs can be met if we use a conventional processor
that has a better track record with reliability; however, there may be some
advantages to fuzzy processors when large rule-bases are used and fast sampling
times are needed.

3. Are there special “tricks of the trade” in the implementation of fuzzy controllers
that have many rules? Yes. Several of these are listed in Chapter 2, in Section 2.6
beginning on page 97.

4. Does fuzzy control provide for a user-friendly way to tune the controller during
implementation studies? Often it does. We have found in field studies that when
you know generally what to do to get a controller to work, it is sometimes hard
to get this information into the gains of a conventional controller and easier to
express it in rules and load them into a fuzzy controller or fuzzy supervisor.
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Overall, in comparing fuzzy to conventional control, it is interesting to note that
there are conventional control schemes that are analogous to fuzzy ones: (1) direct
fuzzy control is analogous to direct nonlinear control, (2) fuzzy adaptive control is
analogous to conventional adaptive control (e.g., model reference adaptive control),
and (3) fuzzy supervisory control is analogous to hierarchical control. Does there
exist an analogous conventional approach to every fuzzy control scheme? If so,
then in doing fuzzy control research it seems to be very important to compare and
contrast the performance of the fuzzy versus the conventional approaches.

8.3 Neural Networks
Artificial neural networks are circuits, computer algorithms, or mathematical rep-
resentations of the massively connected set of neurons that form biological neural
networks. They have been shown to be useful as an alternative computing technol-
ogy and have proven useful in a variety of pattern recognition, signal processing,
estimation, and control problems. Their capabilities to learn from examples have
been particularly useful.

In this section we will introduce two of the more popular neural networks and
discuss how they relate to the areas of fuzzy systems and control. We must em-
phasize that there are many topics in the area of neural networks that are not
covered here. For instance, we do not discuss associative memories and Hopfield
neural networks, recurrent networks, Boltzmann machines, or Hebbian or compet-
itive learning. We refer the reader to Section 8.8, For Further Study, for references
that cover these topics in detail.

8.3.1 Multilayer Perceptrons
The multilayer perceptron is a feed-forward neural network (i.e., it does not use past
values of its outputs or other internal variables to compute its current output). It
is composed of an interconnection of basic neuron processing units.

The Neuron

For a single neuron, suppose that we use xi, i = 1, 2, . . . , n, to denote its inputs and
suppose that it has a single output y. Figure 8.1 shows the neuron. Such a neuron
first forms a weighted sum of the inputs

z =

(
n∑

i=1

wixi

)
− θ

where wi are the interconnection “weights” and θ is the “bias” for the neuron (these
parameters model the interconnections between the cell bodies in the neurons of a
biological neural network). The signal z represents a signal in the biological neuron,
and the processing that the neuron performs on this signal is represented with an
“activation function.” This activation function is represented with a function f ,
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and the output that it computes is

y = f(z) = f

((
n∑

i=1

wixi

)
− θ

)
(8.1)

Basically, the neuron model represents the biological neuron that “fires” (turns on)
when its inputs are significantly excited (i.e., z is big enough). The manner in which
the neuron fires is defined by the activation function f . There are many ways to
define the activation function:

• Threshold function: For this type of activation function we have

f(z) =
{

1 if z ≥ 0
0 if z < 0

so that once the input signal z is above zero the neuron turns on.

• Sigmoid function: For this type of activation function we have

f(z) =
1

1 + exp(−bz)
(8.2)

so that the input signal z continuously turns on the neuron an increasing amount
as it increases (plot the function values against z to convince yourself of this). The
parameter b affects the slope of the sigmoid function. There are many functions
that take on a shape that is sigmoidal. For instance, one that is often used in
neural networks is the hyperbolic tangent function

f(z) = tanh
(z

2

)
=

1 − exp(z)
1 + exp(z)

Equation (8.1), with one of the above activation functions, represents the com-
putations made by one neuron in the neural network. Next, we define how we
interconnect these neurons to form a neural network—in particular, the multilayer
perceptron.

Network of Neurons

The basic structure for the multilayer perceptron is shown in Figure 8.2. There,
the circles represent the neurons (weights, bias, and activation function) and the
lines represent the connections between the inputs and neurons, and between the
neurons in one layer and those in the next layer. This is a three-layer perceptron
since there are three stages of neural processing between the inputs and outputs.
More layers can be added by concatenating additional “hidden” layers of neurons.

The multilayer perceptron has inputs xi, i = 1, 2, . . . , n, and outputs yj , j =
1, 2, . . . , m. The number of neurons in the first hidden layer (see Figure 8.2) is n1.
In the second hidden layer there are n2 neurons, and in the output layer there are
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FIGURE 8.1 Single neuron model.

m neurons. Hence, in an N layer perceptron there are ni neurons in the ith hidden
layer, i = 1, 2, . . . , N − 1.
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FIGURE 8.2 Multilayer perceptron model.

The neurons in the first layer of the multilayer perceptron perform computa-
tions, and the outputs of these neurons are given by

x
(1)
j = f

(1)
j

((
n∑

i=1

w
(1)
ij xi

)
− θ

(1)
j

)
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with j = 1, 2, . . . , n1. The neurons in the second layer of the multilayer perceptron
perform computations, and the outputs of these neurons are given by

x
(2)
j = f

(2)
j

((
n1∑
i=1

w
(2)
ij x

(1)
i

)
− θ

(2)
j

)

with j = 1, 2, . . . , n2. The neurons in the third layer of the multilayer perceptron
perform computations, and the outputs of these neurons are given by

yj = fj

((
n2∑
i=1

wijx
(2)
i

)
− θj

)

with j = 1, 2, . . . , m.
The parameters (scalar real numbers) w

(1)
ij are called the weights of the first

hidden layer. The w
(2)
ij are called the weights of the second hidden layer. The wij

are called the weights of the output layer. The parameters θ
(1)
j are called the biases

of the first hidden layer. The parameters θ
(2)
j are called the biases of the second

hidden layer, and the θj are the biases of the output layer. The functions fj (for
the output layer), f

(2)
j (for the second hidden layer), and f

(1)
j (for the first hidden

layer) represent the activation functions. The activation functions can be different
for each neuron in the multilayer perceptron (e.g., the first layer could have one
type of sigmoid, while the next two layers could have different sigmoid functions or
threshold functions).

This completes the definition of the multilayer perceptron. Next, we will intro-
duce the radial basis function neural network. After that we explain how both of
these neural networks relate to the other topics covered in this book.

8.3.2 Radial Basis Function Neural Networks
A locally tuned, overlapping receptive field is found in parts of the cerebral cortex,
in the visual cortex, and in other parts of the brain. The radial basis function neural
network model is based on these biological systems.

A radial basis function neural network is shown in Figure 8.3. There, the inputs
are xi, i = 1, 2, . . . , n, and the output is y = f(x) where f represents the processing
by the entire radial basis function neural network. Let x = [x1, x2, . . . , xn]�. The
input to the ith receptive field unit is x, and its output is denoted with Ri(x). It
has what is called a “strength” which we denote by ȳi. Assume that there are M
receptive field units. Hence, from Figure 8.3,

y = f(x) =
M∑
i=1

ȳiRi(x) (8.3)

is the output of the radial basis function neural network.
There are several possible choices for the “receptive field units” Ri(x):
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FIGURE 8.3 Radial basis function
neural network model.

1. We could choose

Ri(x) = exp
(
−|x − ci|2

σ2
i

)

where ci = [ci
1, c

i
2, . . . , c

i
n]�, σi is a scalar, and if z is a vector then |z| =

√
z�z.

2. We could choose

Ri(x) =
1

1 + exp
(
− |x−c

i
|2

σ2
i

)
where ci and σi are defined in choice 1.

There are also alternatives to how to compute the output of the radial basis
function neural network. For instance, rather than computing the simple sum as in
Equation (8.3), you could compute a weighted average

y = f(x) =
∑M

i=1 ȳiRi(x)∑M
i=1 Ri(x)

(8.4)

It is also possible to define multilayer radial basis function neural networks.
This completes the definition of the radial basis function neural network. Next,

we explain the relationships between multilayer perceptrons and radial basis func-
tion neural networks and fuzzy systems.
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8.3.3 Relationships Between Fuzzy Systems and Neural
Networks

There are two ways in which there are relationships between fuzzy systems and
neural networks. First, techniques from one area can be used in the other. Second,
in some cases the functionality (i.e., the nonlinear function that they implement) is
identical. Some label the intersection between fuzzy systems and neural networks
with the term “fuzzy-neural” or “neuro-fuzzy” to highlight that techniques from
both fields are being used. Here, we avoid this terminology and simply highlight
the basic relationships between the two fields.

Multilayer Perceptrons

The multilayer perceptron should be viewed as a nonlinear network whose nonlin-
earity can be tuned by changing the weights, biases, and parameters of the activa-
tion functions. The fuzzy system is also a tunable nonlinearity whose shape can be
changed by tuning, for example, the membership functions. Since both are tunable
nonlinearities, the following approaches are possible:

• Gradient methods can be used for training neural networks to perform system
identification or to act as estimators or predictors in the same way as fuzzy
systems were trained in Chapter 5, Section 5.4, beginning on page 260. Indeed,
the gradient training of neural networks, called “back-propagation training,” was
introduced well before the gradient training of fuzzy systems, and the idea for
training fuzzy systems this way came from the field of neural networks.

• Hybrid methods for training, which were covered in Chapter 5, Section 5.7, on
page 291, can also be used for neural networks. For instance, gradient methods
may be used in conjunction with clustering methods applied to neural networks.

• Indirect adaptive control, which was covered in Chapter 6, Section 6.6 on page 394,
can also be achieved with a multilayer perceptron. To do this we use two multi-
layer perceptrons as the tunable nonlinearities in the certainty equivalence control
law and the gradient method for tuning.

• Gain scheduled control, covered in Chapter 7, Section 7.2.2, on page 417 may
be achieved by training a multilayer perceptron to map the associations between
operating conditions and controller parameters.

This list is by no means exhaustive. It simply shows that multilayer perceptron
networks can take on a similar role to that of a fuzzy system in performing the
function of being a tunable nonlinearity. An advantage that the fuzzy system may
have, however, is that it often facilitates the incorporation of heuristic knowledge
into the solution to the problem, which can, at times, have a significant impact on
the quality of the solution (see Section 5.2.4 on page 241).
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Radial Basis Function Neural Networks

Some radial basis function neural networks are equivalent to some standard fuzzy
systems in the sense that they are functionally equivalent (i.e., given the same
inputs, they will produce the same outputs). To see this, suppose that in Equa-
tion (8.4) we let M = R (i.e., the number of receptive field units equal to the
number of rules), ȳi = bi (i.e., the receptive field unit strengths equal to the output
membership function centers), and choose the receptive field units as

Ri(x) = µi(x)

(i.e., choose the receptive field units to be the same as the premise membership
functions). In this case we see that the radial basis function neural network is
identical to a certain fuzzy system that uses center-average defuzzification. This
fuzzy system is then given by

y = f(x) =
∑R

i=1 biµi(x)∑R
i=1 µi(x)

It is also interesting to note that the functional fuzzy system (the more general
version of the Takagi-Sugeno fuzzy system), which was covered in Section 2.3.7 on
page 73, is equivalent to a class of two-layer neural networks [200].

The equivalence between this type of fuzzy system and a radial basis function
neural network shows that all the techniques in this book for the above type of fuzzy
system work in the same way for the above type of radial basis function neural
network (or, using [200], the techniques for the Takagi-Sugeno fuzzy system can be
used for a type of multilayer radial basis function neural network).

Due to the above relationships between fuzzy systems and neural networks,
some would like to view fuzzy systems and neural networks as identical areas. This
is, however, not the case for the following reasons:

• There are classes of neural networks (e.g., dynamic neural networks) that may
have a fuzzy system analog, but if so it would have to include not only standard
fuzzy components but some form of a differential equation component.

• There are certain fuzzy systems that have no clear neural analog. Consider, for
example, certain “fuzzy dynamic systems” [48, 167]. We can, however, envision
how you could go about designing a neural analog to such fuzzy systems.

• The neural network has traditionally been a “black box” approach where the
weights and biases are trained (e.g., using gradient methods like back-propagation)
using data, often without using extra heuristic knowledge we often have. In fuzzy
systems you can incorporate heuristic information and use data to train them
(see Chapter 5, Section 5.2.4 on page 241). This last difference is often quoted as
being one of the advantages of fuzzy systems over neural networks, at least for
some applications.
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Regardless of the differences, it is important to note that many methods in
neural control (i.e., when we use a neural network for the control of a system) are
quite similar to those in adaptive fuzzy control. For instance, since the fuzzy system
and radial basis function neural network can be linearly parameterized (see [200]),
we can use them as the identifier structures in direct or indirect adaptive control
schemes and use gradient or least squares methods to update the parameters (see
Chapters 5 and 6 and [200, 229, 50]). Indeed, we could have used neural networks
as the structure that we trained for all of the identification methods in Chapter 5.
In this sense we can use neural networks in system identification, estimation, and
prediction, and as a direct (fixed) controller that is trained with input-output data.
Basically, to be fluent with the methods of adaptive fuzzy systems and control, you
must know the methods of neural control—and vice versa.

8.4 Genetic Algorithms
A genetic algorithm (GA) uses the principles of evolution, natural selection, and
genetics from natural biological systems in a computer algorithm to simulate evolu-
tion. Essentially, the genetic algorithm is an optimization technique that performs
a parallel, stochastic, but directed search to evolve the most fit population. In this
section we will introduce the genetic algorithm and explain how it can be used for
design and tuning of fuzzy systems.

8.4.1 Genetic Algorithms: A Tutorial
The genetic algorithm borrows ideas from and attempts to simulate Darwin’s theory
on natural selection and Mendel’s work in genetics on inheritance. The genetic
algorithm is an optimization technique that evaluates more than one area of the
search space and can discover more than one solution to a problem. In particular,
it provides a stochastic optimization method where if it “gets stuck” at a local
optimum, it tries to simultaneously find other parts of the search space and “jump
out” of the local optimum to a global one.

Representation and the Population of Individuals

The “fitness function” measures the fitness of an individual to survive in a popula-
tion of individuals. The genetic algorithm will seek to maximize the fitness function
J(θ) by selecting the individuals that we represent with θ. To represent the genetic
algorithm in a computer, we make θ a string. In particular, we show such a string in
Figure 8.4. A string is a chromosome in a biological system. It is a string of “genes”
that can can take on different “alleles.” In a computer we use number systems to
encode alleles. Hence, a gene is a “digit location” that can take on different values
from a number system (i.e., different types of alleles).

For instance, in a base-2 number system, alleles come from the set {0, 1},
while in a base-10 number system, alleles come from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Hence, a binary chromosome has zeros or ones in its gene locations. As an example,
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Gene = digit location

Values here = alleles

String of genes = chromosome

FIGURE 8.4 String for representing an individual.

consider the binary chromosome

1011110001010

which is a binary string of length 13. If we are seeking to optimize parameters
of a system that come in a base-10 number system then we will need to encode
the numbers into the binary number system (using the standard method for the
conversion of base-10 numbers to base-2 numbers). We will also need to decode the
binary strings into base-10 numbers to use them. Here, we will develop the genetic
algorithm for base-2 or base-10 number systems but we will favor the use of the
base-10 representation since then there is no need for encoding or decoding (which
can be computationally expensive for on-line, real-time applications).

As an example of a base-10 chromosome, consider

8219345127066

that has 13 gene positions. For such chromosomes we add a gene for the sign of the
number (either “+” or “−”) and fix a position for the decimal point. For instance,
for the above chromosome we could have

+821934.5127066

where there is no need to carry along the decimal point; the computer will just have
to remember its position. Note that you could also use a floating point representa-
tion where we could code numbers in a fixed-length string plus the number in the
exponent (e.g., as XXX × 10Y Y ). The ideas developed here work just as readily
for this number representation system as for standard base-2 or base-10.

Since we are interested in applying the genetic algorithm to controller or es-
timator design and tuning, we will have as individuals parameters that represent,
for instance, a conventional or fuzzy controller (i.e., a vector of parameters). The
vector of parameters that encodes a fuzzy or conventional controller can be loaded
into a single chromosome. For example, suppose that you have a PD controller with

Kp = +5.12, Kd = −2.137

then we would represent this in a chromosome as

+051200− 021370
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which is a concatenation of the digits, where we assume that there are six digits
for the representation of each parameter plus the sign digit (this is why you see the
extra padding of zeros). The computer will have to keep track of where the decimal
point is. We see that each chromosome will have a certain structure (its “genotype”
in biological terms), but here rather than a set of chromosomes for the structure
we just concatenate the parameters and use one one chromosome for convenience.
Each chromosome represents a point in the search space of the genetic algorithm
(i.e., a “phenotype” in biological terms).

Next, we develop a notation for representing a whole set of individuals (i.e., a
population). Let θj

i (k) be a single parameter at time k (a fixed-length string with
sign digit), and suppose that chromosome j is composed of N of these parameters,
which are sometimes called “traits.” Let

θj(k) =
[
θj
1(k), θj

2(k), . . . , θj
N (k)

]�
be the jth chromosome. Note that earlier we had concatenated elements in a string
while here we simply take the concatenated elements and form a vector from them.
We do this simply because this is probably the way that you will want to code the
algorithm in the computer. We will at times, however, still let θj be a concatenated
string when it is convenient to do so.

The population of individuals at time k is given by

P (k) =
{
θj(k)|j = 1, 2, . . . , S

}
(8.5)

and the number of individuals in the population is given by S. We want to pick S to
be big enough so that the population elements can cover the search space. However,
we do not want S to be too big since this increases the number of computations we
have to perform.

Genetic Operations

The population P (k) at time k is often referred to as the “generation” of individuals
at time k. Evolution occurs as we go from a generation at time k to the next
generation at time k + 1. Genetic operations of selection, crossover, and mutation
are used to produce one generation from the next.

Selection: Basically, according to Darwin the most qualified individuals survive
to mate. We quantify “most qualified” via an individual’s fitness J(θj(k)) at time
k. For selection we create a “mating pool” at time k, which we denote by

M(k) =
{
mj(k)|j = 1, 2, . . . , S

}
(8.6)

The mating pool is the set of chromosomes that are selected for mating. We select
an individual for mating by letting each mj(k) be equal to θi(k) ∈ P (k) with
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probability

pi =
J(θi(k))∑S

j=1 J(θj(k))
(8.7)

To clarify the meaning of this formula and hence the selection strategy, Goldberg
[58] uses the analogy of spinning a unit circumference roulette wheel where the
wheel is cut like a pie into S regions where the ith region is associated with the ith

element of P (k). Each pie-shaped region has a portion of the circumference that
is given by pi in Equation (8.7). You spin the wheel, and if the pointer points at
region i when the wheel stops, then you place θi into the mating pool M(k). You
spin the wheel S times so that S elements end up in the mating pool. Clearly,
individuals who are more fit will end up with more copies in the mating pool;
hence, chromosomes with larger-than-average fitness will embody a greater portion
of the next generation. At the same time, due to the probabilistic nature of the
selection process, it is possible that some relatively unfit individuals may end up in
the mating pool.

Reproduction Phase, Crossover: We think of crossover as mating in biological
terms, which at a fundamental biological level involves the process of combining
chromosomes. The crossover operation operates on the mating pool M(k). First,
you specify the “crossover probability” pc (usually chosen to be near one since
when mating occurs in biological systems, genetic material is swapped between the
parents). The procedure for crossover consists of the following steps:

1. Randomly pair off the individuals in the mating pool M(k) (i.e., form pairs to
mate by the flip of a coin). If there are an odd number of individuals in M(k),
then, for instance, simply take the last individual and pair it off with another
individual who has already been paired off.

2. Consider chromosome pair θj , θi that was formed in step 1. Generate a random
number r ∈ [0, 1].

(a) If r < pc then cross over θj and θi. To cross over these chromosomes select
at random a “cross site” and exchange all the digits to the right of the
cross site of one string with those of the other. This process is pictured
in Figure 8.5. In this example the cross site is position five on the string,
and hence we swap the last eight digits between the two strings. Clearly,
the cross site is a random number between one and the number of digits
in the string minus one.

(b) If r > pc then we will not cross over; hence, we do not modify the strings,
and we go to the mutation operation below.

3. Repeat step 2 for each pair of strings that is in M(k).
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θ i 1 2 3 4 5 6 7 8 9 10 11 12 13

θ j 1 2 3 4 5 6 7 8 9 10 11 12 13

Cross site

Switch these two parts of the strings

FIGURE 8.5 Crossover operation example.

As an example, suppose that S = 10 and that in step 1 above we randomly pair off
the chromosomes. Suppose that θ5 and θ9 (j = 5, i = 9) are paired off where

θ5 = +2.9845

and

θ9 = +1.9322

Suppose that pc = 0.9 and that when we randomly generate r we get r = 0.34.
Hence, by step 2 we will cross over θ5 and θ9 . According to step 2 we randomly
pick the cross site. Suppose that it is chosen to be position three on the string. In
this case the strings that are produced by crossover are

θ5 = +2.9322

and

θ9 = +1.9845

Besides the fact that crossover helps to model the mating part of the evolution pro-
cess, why should the genetic algorithm perform crossover? Basically, the crossover
operation perturbs the parameters near good positions to try to find better solutions
to the optimization problem. It tends to help perform a localized search around the
more fit individuals (since on average the individuals in the mating pool at time k
are more fit than the ones in the population at time k).

Reproduction Phase, Mutation: Like crossover, mutation modifies the mating
pool (i.e., after selection has taken place). The operation of mutation is normally
performed on the elements in the mating pool after crossover has been performed.
The biological analog of our mutation operation is the random mutation of genetic
material. To perform mutation in the computer, first choose a mutation probability
pm. With probability pm, change (mutate) each gene location on each chromosome
randomly to a member of the number system being used. For instance, in a base-2
genetic algorithm, we could mutate

1010111
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to

1011111

where the fourth bit was mutated to one. For a base-10 number system you would
simply pick a number at random to replace a digit with if you are going to mutate
a digit location.

Besides the fact that this helps to model mutation in a biological system, why
should the genetic algorithm perform mutation? Basically, it provides random ex-
cursions into new parts of the search space. It is possible that we will get lucky and
mutate to a good solution. It is the mechanism that tries to make sure that we do
not get stuck at a local maxima and that we seek to explore other areas of the search
space to help find a global maximum for J(θ). Usually, the mutation probability is
chosen to be quite small (e.g., less than 0.01) since this will help guarantee that all
the individuals in the mating pool are not mutated so that any search progress that
was made is lost (i.e., we keep it relatively low to avoid degradation to exhaustive
search via a random walk in the search space).

After mutation we get a modified mating pool at time k, M(k). To form the
next generation for the population, we let

P (k + 1) = M(k)

where this M(k) is the one that was formed by selection and modified by crossover
and mutation. Then the above steps repeat, successive generations are produced,
and we thereby model evolution (of course it is a very crude model).

Optional Features: There have been many different options used in the defini-
tion of a genetic algorithm. These include the following:

• There is the possibility of using other genetic operators. For instance, there is an
operation called “elitism” where the most fit individual in P (k) is copied directly
to P (k + 1) without being changed by the other operations. This operator is
sometimes used to try to make sure that there will be a reasonably fit individual
present in the population at every time step; it helps to avoid having all the
strings get modified by crossover and mutation in a way so that no good solution
exists at some time k.

• Some use a “population splitting” approach where the population of S members
is partitioned into subsets and the genetic operations are constrained to only mix
within these partitions. This can produce different subpopulations that will seek
different solutions.

• There are many options for the crossover operation. For instance, some consider
crossing over at every site in the chromosome. Others will perform crossover for
each separate parameter (trait) on the chromosome.

• Some will grow and shrink the population.
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There are many other options besides the ones listed above. The interested reader
should consult Section 8.8, For Further Study, for more details about genetic algo-
rithms.

Termination Conditions, Initialization, and Implementation Issues

The above discussion showed how to produce successive generations and thereby
simulate evolution. While the biological evolutionary process continues, perhaps
indefinitely, there are many times when we would like to terminate our artificial
one and find the following:

• The population individual—say, θ∗(k)—that best maximizes the fitness function.
Notice that to determine this we also need to know the generation number k where
the most fit individual existed (it is not necessarily in the last generation). You
may want to design the computer code that implements the genetic algorithm to
always keep track of the highest J value and the generation number and individual
that achieved this value of J .

• The value of the fitness function J(θ∗(k)). While for some applications this value
may not be important, for others it is critical (e.g., in many function optimization
problems).

• Information about the way that the population has evolved, which areas of the
search space were visited, and how the fitness function has evolved over time. You
may want to design the code that implements the genetic algorithm to provide
plots or printouts of all the relevant genetic algorithm data.

There is then the question of how to terminate the genetic algorithm. There are
many ways to terminate a genetic algorithm, many of them similar to termination
conditions used for conventional optimization algorithms. To introduce a few of
these, let ε > 0 be a small number and M1 > 0 and M2 > 0 be integers. Consider
the following options for terminating the genetic algorithm:

• Stop the algorithm after generating generation P (M2)—that is, after M2 gener-
ations.

• Stop the algorithm after at least M2 generations have occurred and at least M1

steps have occurred where the maximum (or average) value of J for all population
members has increased by no more than ε.

• Stop the algorithm once J takes on a value above some fixed value.

Of course, there are other possibilities for termination conditions. The above ones
are easy to implement on a computer but sometimes you may want to watch the
parameters evolve and decide yourself when to stop the algorithm.

Initialization of the genetic algorithm is done by first choosing the represen-
tation to be used (including the structure of the chromosomes, the number base,
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and the number of digits to be used). Next, you need to specify the size of the
population, decide which genetic operations will be used, specify the crossover and
mutation probabilities pc and pm, and pick a termination method (if it is needed).

Sometimes for problems that are solved by the genetic algorithm it is known
that the parameters that are manipulated by the genetic algorithm will lie in a
certain fixed range (e.g., you may know that you would never want to make the
proportional gain of a PID controller negative). Suppose, for the sake of discussion,
that θ is a scalar and we know a priori that it will stay in a certain interval—
say, [θmin, θmax]. It is important to note that crossover and mutation can generate
strings that are out of a fixed range even if parameters all start within the proper
ranges (provide an example of this). Due to this there is a problem when it comes
to implementing the genetic algorithm of what to do when the algorithm generates
a chromosome that is out of range. There are several approaches to solving this
problem. For instance, if a scalar parameter θ is to lie in [θmin, θmax], and at time
k crossover or mutation makes θ(k) > θmax, then simply choose θ(k) = θmax. If
at time k crossover or mutation makes θ(k) < θmin, then simply choose θ(k) =
θmin. An alternative approach would be to simply repeat the crossover or mutation
operation again and hope that the newly generated parameters will be in range. Of
course, this may not solve the problem since the next time they are generated they
may also be out of range (and the number of tries that it takes to get in range is
random).

8.4.2 Genetic Algorithms for Fuzzy System Design and Tuning
There are basically two ways that the genetic algorithm can be used in the area
of fuzzy systems: They can be used for the off-line design of fuzzy systems and in
their on-line tuning. Both of these options are considered next.

Computer-Aided Design of Fuzzy Systems

The genetic algorithm can be used in the (off-line) computer-aided design of control
systems since it can artificially evolve an appropriate controller that meets the
performance specifications to the greatest extent possible. To do this, the genetic
algorithm maintains a population of strings that each represent a different controller
(digits on the strings characterize parameters of the controller), and it uses a fitness
measure that characterizes the closed-loop specifications. Suppose, for instance, that
the closed-loop specifications indicate that you want, for a step input, a (stable)
response with a rise-time of t∗r , a percent overshoot of M∗

p , and a settling time of t∗s.
We need to define the fitness function so that it measures how close each individual
in the population at time k (i.e., each controller candidate) is to meeting these
specifications. Suppose that we let tr , Mp, and ts denote the rise-time, overshoot,
and settling time, respectively, for a given individual (we compute these for an
individual in the population by performing a simulation of the closed-loop system
with the candidate controller and a model of the plant). Given these values, we let
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(for each individual and every time step k)

J̄ = w1(tr − t∗r)
2 + w2(Mp − M∗

p )2 + w3(ts − t∗s)
2

where wi > 0, i = 1, 2, 3, are positive weighting factors. The function J̄ characterizes
how well the candidate controller meets the closed-loop specifications where if J̄ = 0
it meets the specifications perfectly. The weighting factors can be used to prioritize
the importance of meeting the various specifications (e.g., a high value of w2 relative
to the others indicates that the percent overshoot specification is more important
to meet than the others).

Now, we would like to minimize J̄ , but the genetic algorithm is a maximiza-
tion routine. To minimize J̄ with the genetic algorithm, we can choose the fitness
function

J =
1

J̄ + ε

where ε > 0 is a small positive number. Maximization of J can only be achieved
by minimization of J̄ , so the desired effect is achieved. Another way to define the
fitness function is to let

J(θ(k)) = −J̄(θ(k)) + max
θ(k)

{J̄(θ(k))}

The minus sign in front of the J̄(θ(k)) term turns the minimization problem into
a maximization problem (to see this, consider J̄(θ) = (θ)2 , where θ is a scalar, as
an example). The maxθ(k){J̄(θ(k))} term is needed to shift the function up so that
J(θ(k)) is always positive. We need it positive since in selection, Equation (8.7)
defines a probability that must always be positive and between one and zero.

This completes the definition of how to use a genetic algorithm for computer-
aided control system design. Note that the above approach depends in no way
on whether the controller that is evolved is a conventional controller (e.g., a PID
controller) or a fuzzy system or neural network. For instance, you could use a
Takagi-Sugeno fuzzy system or a standard fuzzy system for the controller and let
the genetic algorithm tune the appropriate parameters. Moreover, we could take
any of the controllers described in Chapters 6 or 7 and parameterize them and
use the above approach to tune these adaptive or supervisory controllers. We have
used the genetic algorithm to tune direct, adaptive, and supervisory controllers for
several applications, and while this approach is computationally intensive, and we
did have to make some application-dependent modifications to the above fitness
evaluation approach, it did produce successful results (see, e.g., [27]).

The above approach can also be used in system identification and for the con-
struction of estimators and predictors, just as we used gradient optimization for
these in Chapter 5. The genetic algorithm can be used for the tuning of fuzzy sys-
tem parameters that enter in a nonlinear fashion and can be used in conjunction
with other methods from Chapter 5 to form hybrid approaches such as those de-
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scribed in Section 5.7 on page 291. To use the genetic algorithm for tuning fuzzy
systems as estimators, we could choose J̄ to be Equation (5.7) or (5.6) on page 238.
Then we would choose the fitness function J similarly to how we did above. We
have used such an approach to construct a Takagi-Sugeno fuzzy system that acted
as a gain scheduler. One possible advantage that the GA approach could offer over,
for example, a gradient method is that it may be able to better avoid local optima
and hence find the global optimum.

On-Line Tuning of Fuzzy Systems

Traditionally, genetic algorithms have been used for off-line design, search, and op-
timization. There are ways, however, to evolve controllers (fuzzy or conventional)
while the system is operating, rather than in off-line design. Progress in this direc-
tion has been made by the introduction of the “genetic model reference adaptive
controller” (GMRAC) shown in Figure 8.6. As in the FMRLC, the GMRAC uses a
reference model to characterize the desired performance. For the GMRAC there is
a genetic algorithm that maintains a population of strings each of which represents
a candidate controller. This genetic algorithm uses a process model (e.g., a linear
model of the process) and data from the process to evaluate the fitness of each
controller in the population. It does this evaluation at each time step by simulating
out into the future with each candidate controller and forming a fitness function
based on the error between the predicted output for each controller and that of
the reference model. Using this fitness evaluation, the genetic algorithm propagates
controllers into the next generation via the standard genetic operations. The con-
troller that is the most fit one in the population at each time step is used to control
the system.
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FIGURE 8.6 Genetic model reference adaptive
controller (figure taken from [158], c© IEEE).

This allows the GMRAC to automatically evolve a controller from generation
to generation (i.e., from one time step to the next, but of course multiple genera-
tions could occur between time steps) and hence to tune a controller in response
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to changes in the process or due to user change of the specifications in the ref-
erence model. Overall, the GMRAC provides unique features where alternative
controllers can be quickly applied to the problem if they appear useful (e.g., the
process (re)enters a new operating condition) and since it has some inherent capa-
bilities to learn via evolution of its population of controllers. It is also possible to
use the genetic algorithm in on-line tuning of estimators. The closest analogy to
such an approach is the use of the gradient method for on-line estimator tuning.
You can adapt the GMRAC approach above for such a purpose.

8.5 Knowledge-Based Systems
In this section we will introduce two types of knowledge-based approaches to control
that can be viewed as more general forms of controllers than the basic (knowledge-
based) fuzzy controller. First, we provide an overview of how to use an expert
system as a controller (i.e., “expert control”); then we highlight ideas on how to
use planning systems for control.

8.5.1 Expert Control
For the sake of our discussion, we will simply view the expert system that is used
here as a controller for a dynamic system, as is shown in Figure 8.7. Here, we have
an expert system serving as feedback controller with reference input r and feedback
variable y. It uses the information in its knowledge-base and its inference mechanism
to decide what command input u to generate for the plant. Conceptually, we see
that the expert controller is closely related to the fuzzy controller.
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FIGURE 8.7 Expert control system.

There are, however, several differences:

1. The knowledge-base in the expert controller could be a rule-base but is not nec-
essarily so. It could be developed using other knowledge-representation struc-
tures, such as frames, semantic nets, causal diagrams, and so on.

2. The inference mechanism in the expert controller is more general than that
of the fuzzy controller. It can use more sophisticated matching strategies to
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determine which rules should be allowed to fire. It can use more elaborate
inference strategies. For instance, some expert systems use (a) “refraction,”
where if a rule has fired recently it may not be allowed back into the “conflict
set” (i.e., the set of rules that are allowed to fire), (b) “recency,” where rules
that were fired most recently are given priority in being fired again, and (c)
various other priority schemes.

It is in fact the case that an expert system is in a sense more general than a
fuzzy system since it can be shown that a single rule in an expert controller can
be used to represent an entire fuzzy controller [163]. From another perspective, we
can “fuzzify” the expert controller components and make it a more general fuzzy
system. Regardless, it is largely a waste of time to concern ourselves with which
is more general. What is of concern is whether the traditional ideas from expert
systems offer anything on how to design fuzzy systems. The answer is certainly af-
firmative. Clearly, certain theory and applications may dictate the need for different
knowledge-representation schemes and inference strategies.

Next, we should note that Figure 8.7 shows a direct expert controller. As we
pointed out in Chapter 7, it is also possible to use an expert system in adaptive
or supervisory control systems. Expert systems can be used in a supervisory role
for conventional controllers or for the supervision of fuzzy controllers (e.g., for
supervision of the learning mechanism and reference model in an adaptive fuzzy
controller). Expert systems themselves can also be used as the basis for general
learning controllers.

8.5.2 Planning Systems for Control
Artificially intelligent planning systems (computer programs that emulate the way
experts plan) have been used in path planning and high-level decisions about control
tasks for robots. A generic planning system can be configured in the architecture
of a standard control system, as shown in Figure 8.8. Here, the “problem domain”
(the plant) is the environment that the planner operates in. There are measured
outputs yk at step k (variables of the problem domain that can be sensed in real
time), control actions uk (the ways in which we can affect the problem domain),
disturbances dk (which represent random events that can affect the problem do-
main and hence the measured variable yk), and goals gk (what we would like to
achieve in the problem domain). There are closed-loop specifications that quantify
performance specifications and stability requirements.

It is the task of the planner in Figure 8.8 to monitor the measured outputs and
goals and generate control actions that will counteract the effects of the disturbances
and result in the goals and the closed-loop specifications being achieved. To do this,
the planner performs “plan generation,” where it projects into the future (usually
a finite number of steps, and often using a model of the problem domain) and
tries to determine a set of candidate plans. Next, this set of plans is pruned to
one plan that is the best one to apply at the current time (where “best” can be
determined based on, e.g., consumption of resources). The plan is then executed,
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FIGURE 8.8 Closed-loop planning system (figure taken from [162],
c© Hemisphere Publishing Corp.).

and during execution the performance resulting from the plan is monitored and
evaluated. Often, due to disturbances, plans will fail, and hence the planner must
generate a new set of candidate plans, select one, then execute that one.

While not pictured in Figure 8.8, some planning systems use “situation as-
sessment” to try to estimate the state of the problem domain (this can be useful
in execution monitoring and plan generation); others perform “world modeling,”
where a model of the problem domain is developed in an on-line fashion (similarly
to on-line system identification), and “planner design” uses information from the
world modeler to tune the planner (so that it makes the right plans for the current
problem domain). The reader will, perhaps, think of such a planning system as a
general adaptive controller.

The role of planning systems in fuzzy control could be any one of the follow-
ing: (1) the use of a fuzzy planner as a controller, (2) the use of fuzzy “situation
assessment” in determining control actions, (3) the use of fuzzy “world modeling”
to generate a model of the plant that is useful in making control decisions, (4) the
use of a fuzzy adaptive planning system (e.g., a fuzzified version of the adaptive
planner in [162]), or (5) the use of a planning system in a supervisory control role.

8.6 Intelligent and Autonomous Control
Autonomous systems have the capability to independently perform complex tasks
with a high degree of success. Consumer and governmental demands for such sys-
tems are frequently forcing engineers to push many functions normally performed
by humans into machines. For instance, in the emerging area of intelligent vehicle
and highway systems (IVHS), engineers are designing vehicles and highways that
can fully automate vehicle route selection, steering, braking, and throttle control to
reduce congestion and improve safety. In avionic systems a “pilot’s associate” com-
puter program has been designed to emulate the functions of mission and tactical
planning that in the past may have been performed by the copilot. In manufac-
turing systems, efficiency optimization and flow control are being automated, and
robots are replacing humans in performing relatively complex tasks.

From a broad historical perspective, each of these applications began at a low
level of automation, and through the years each has evolved into a more autonomous
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system. For example, today’s automotive cruise controllers are the ancestors of the
controllers that achieve coordinated control of steering, braking, and throttle for
autonomous vehicle driving. And the terrain following, terrain avoidance control
systems for low-altitude flight are ancestors of an artificial pilot’s associate that
can integrate mission and tactical planning activities. The general trend has been
for engineers to incrementally “add more intelligence” in response to consumer,
industrial, and government demands and thereby create systems with increased
levels of autonomy. In this process of enhancing autonomy by adding intelligence,
engineers often study how humans solve problems, then try to directly automate
their knowledge and techniques to achieve high levels of automation. Other times,
engineers study how intelligent biological systems perform complex tasks, then seek
to automate “nature’s approach” in a computer algorithm or circuit implementation
to solve a practical technological problem (e.g., in certain vision systems). Such
approaches where we seek to emulate the functionality of an intelligent biological
system (e.g., the human) to solve a technological problem can be collectively named
“intelligent systems and control techniques.” It is by using such techniques that
some engineers are trying to create highly autonomous systems such as those listed
above.

In this section we will explain how “intelligent” control methods can be used
to create autonomous systems. First we will define “intelligent control.” Next, we
provide a framework for the operation of autonomous systems to clarify the ultimate
goal of achieving autonomous behavior in complex technological systems.

8.6.1 What Is “Intelligent Control”?
Since the answer to this question can get rather philosophical, let us focus on a
working definition that does not dwell on definitions of “intelligence” (since there
is no widely accepted one partly because biological intelligence seems to have many
dimensions and appears to be very complex) and issues of whether we truly model
or emulate intelligence, but instead focuses on (1) the methodologies used in the
construction of controllers and (2) the ability of an artificial system to perform
activities normally performed by humans.

“Intelligent control” techniques offer alternatives to conventional approaches by
borrowing ideas from intelligent biological systems. Such ideas can either come from
humans who are, for example, experts at manually solving the control problem, or
by observing how a biological system operates and using analogous techniques in
the solution of control problems. For instance, we may ask a human driver to pro-
vide a detailed explanation of how she or he manually solves an automated highway
system intervehicle distance control problem, then use this knowledge directly in a
fuzzy controller. In another approach, we may train an artificial neural network to
remember how to regulate the intervehicle spacing by repeatedly providing it with
examples of how to perform such a task. After the neural network has learned the
task, it can be implemented on the vehicle to regulate the intervehicle distance by
recalling the proper throttle input for each value of the intervehicle distance that
is sensed. In another approach, genetic algorithms may be used to automatically
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synthesize and tune a control algorithm for the intervehicle spacing control problem
by starting with a population of candidate controllers and then iteratively allowing
the most fit controller, which is determined according to the performance specifica-
tions, to survive in an artificial evolution process implemented in a computer. In this
way the controller evolves over time, successively improving its performance and
adapting to its environment, until it meets the prespecified performance objectives.

Such intelligent control techniques may exploit the information represented in
a mathematical model or may heavily rely on heuristics on how best to control
the process. The primary difference from conventional approaches, such as PID
control, is that intelligent control techniques are motivated by the functionality of
intelligent biological systems, either in how they perform the control task or in
how they provide an innovative solution to another problem that can be adapted
to solve a control problem. This is not to say that systems that are not developed
using intelligent systems and control techniques such as those listed above cannot
be called “intelligent”; traditionally, we have often called any system intelligent if
it is designed to perform a task that has normally been performed by humans (e.g.,
we use the term “intelligent” vehicle and highway systems).

A full discussion on defining intelligent control involves considering additional
issues in psychology, human cognition, artificial intelligence, and control. The in-
terested reader is referred to the articles listed at the end of this chapter for a more
detailed exposition that considers these issues.

8.6.2 Architecture and Characteristics
Figure 8.9 shows a functional architecture for an intelligent autonomous controller
with an interface to the process involving sensing (e.g., via conventional sensing
technology, vision, touch, smell, etc.), actuation (e.g., via hydraulics, robotics, mo-
tors, etc.), and an interface to humans (e.g., a driver, pilot, crew, etc.) and other
systems.

The “execution level” has low-level numeric signal processing and control algo-
rithms (e.g., PID, optimal, adaptive, or intelligent control; parameter estimators,
failure detection and identification (FDI) algorithms). The “coordination level”
provides for tuning, scheduling, supervision, and redesign of the execution-level
algorithms, crisis management, planning and learning capabilities for the coordi-
nation of execution-level tasks, and higher-level symbolic decision making for FDI
and control algorithm management. The “management level” provides for the su-
pervision of lower-level functions and for managing the interface to the human(s)
and other systems. In particular, the management level will interact with the users
in generating goals for the controller and in assessing the capabilities of the sys-
tem. The management level also monitors performance of the lower-level systems,
plans activities at the highest level (and in cooperation with humans), and performs
high-level learning about the user and the lower-level algorithms.

Intelligent systems or intelligent controllers (e.g., fuzzy, neural, genetic, expert,
and planning) can be employed as appropriate in the implementation of various
functions at the three levels of the intelligent autonomous controller. For example,
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adaptive fuzzy control may be used at the execution level for adaptation, genetic
algorithms may be used in the coordination level to pick an optimal coordination
strategy, and planning systems may be used at the management level for sequencing
operations. Hierarchical controllers composed of a hybrid mix of intelligent and con-
ventional systems are commonly used in the intelligent control of complex dynamic
systems. This is because to achieve high levels of autonomy, we often need high
levels of intelligence, which calls for incorporating a diversity of decision-making
approaches for complex dynamic learning and reasoning.

There are several fundamental characteristics that have been identified for in-
telligent autonomous control systems. For example, there is generally a successive
delegation of duties from the higher to lower levels, and the number of distinct
tasks typically increases as we go down the hierarchy. Higher levels are often con-
cerned with slower aspects of the system’s behavior and with its larger portions, or
broader aspects. There is then a smaller contextual horizon at lower levels—that
is, the control decisions are made by considering less information. Higher levels are
typically concerned with longer time horizons than lower levels. It is said that there
is “increasing intelligence with decreasing precision as one moves from the lower
to the higher levels” (see [179]). At the higher levels there is typically a decrease
in time-scale density, a decrease in bandwidth or system rate, and a decrease in
the decision (control action) rate. In addition, there is typically a decrease in the
granularity of models used—or, equivalently, an increase in model abstractness at
the higher levels.

Finally, we note that there is an ongoing evolution of the intelligent functions of
an autonomous controller so that by the time you implement its functions, they no
longer appear intelligent, just algorithmic. It is because of this evolution principle,
doubts about our ability to implement “artificial intelligence,” and the fact that
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implemented intelligent controllers are nonlinear controllers, that many researchers
feel more comfortable focusing on enhancing autonomy rather than achieving intel-
ligent behavior.

8.6.3 Autonomy
Next, we explain how to incorporate the notion of autonomy into the conventional
manner of thinking about control problems. Consider the general control system
shown in Figure 8.10 where P is a model of the plant, C represents the controller,
and T represents specifications on how we would like the closed-loop system to
behave (i.e., closed-loop specifications). For some classical control problems, the
scope is limited so that C and P are linear and T simply represents, for example,
stability, robustness, rise-time, and overshoot specifications. In this case intelligent
control techniques may not be needed. As engineers, we must remember that the
simplest solution that works is the best one. We tend to need more complex con-
trollers for more complex plants (where, for example, there is a significant amount
of uncertainty) and more demanding closed loop specifications T . Consider the case
where the following statements hold:

• P is so complex that it is most convenient to represent it with ordinary differential
equations and discrete-event system (DES) models [70] (or some other hybrid mix
of models), and for some parts of the plant the model is not known (or is too
expensive to determine).

• T is used to characterize the desire to make the system perform well and act
with high degrees of autonomy (i.e., via [6] “so that the system performs well
under significant uncertainties in the system and its environment for extended
periods of time, and compensates for significant system failures without external
intervention”).

The general control problem is how to construct C, given P , so that T holds. The
intelligent autonomous controller described briefly in the previous section provides
a general architecture for C to achieve highly autonomous behavior specified by T
for very complex plants P .

T

C P

FIGURE 8.10 General control system.



468 Chapter 8 / Perspectives on Fuzzy Control

From a control engineer’s perspective, we are trying to solve the general control
problem (i.e., we are trying to find C to enhance autonomy). Often, in practice,
engineers in intelligent (and conventional) control are often examining portions of
the above general control problem and trying to make incremental progress toward
a solution. For example, a simple direct fuzzy controller could, perhaps, be called an
“intelligent controller” (although some would never call a controller without adap-
tation capabilities an intelligent controller) but not an “autonomous controller,”
as most of them do not achieve high levels of autonomous operation but merely
help enhance performance as many conventional controllers do (adaptive and su-
pervisory approaches slightly increase performance but typically do not achieve full
autonomy). It is important to note that researchers in intelligent control have been
naturally led to focus on the very demanding general control problem described
above for two reasons: (1) in order to address pressing needs for practical applica-
tions, and (2) since often there is a need to focus on representing more aspects of
the process so that they can be used to reduce the uncertainty in making high-level
decisions about how to perform control functions that are normally performed by
humans.

Have we achieved autonomous control via intelligent control or any other meth-
ods? This is a difficult question to answer since certain levels of autonomy have
certainly been achieved but there are no rigorous definitions of “degrees of auton-
omy.” For instance, relatively autonomous robots and autonomous vehicles have
been implemented. It is clear that current intelligent systems only roughly model
their biological counterparts, and hence from one perspective they can achieve rel-
atively little. What will we be able to do if we succeed in emulating the functions of
their biological counterparts? Achieve full autonomy via the correct orchestration
of intelligent control?

8.6.4 Example: Intelligent Vehicle and Highway Systems
To make the operation of autonomous systems and the notion of autonomy more
concrete, let us examine an intelligent vehicle and highway systems (IVHS) problem
of automating a highway system. One possible general functional architecture for
automated highway systems is shown in Figure 8.11. Here, suppose that we have
many vehicles operating on a large roadway system in the metropolitan area of a
large city.

Execution Level

Each vehicle is equipped with a (1) vehicle control system that can control the
brakes, throttle, and steering to automate the driving task (for normal operation
or collision avoidance). In addition, suppose that there is a (2) vehicle informa-
tion system in each vehicle that provides information to the driver (e.g., platoon
lead vehicle information; vehicle health status; information on traffic congestion,
road construction, accidents, weather, road conditions, lodging, and food; etc.) and
information to the overall system about the vehicle (e.g., if the vehicle has had
an accident or if the vehicle’s brakes have failed). For the roadway there are (3)
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the traffic signal controllers (e.g., for intersections and ramp metering) and (4)
the roadway information systems that provide information to the driver and other
subsystems (e.g., automatic signing systems that provide rerouting information in
case of congestion, road condition warning systems, accident information, etc.). It is
these four components that form the “execution level” in the intelligent autonomous
controller, and clearly these components will be physically distributed across many
vehicles, roadways, and areas of the metropolitan area.
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FIGURE 8.11 Intelligent autonomous controller for an intelligent vehicle and highway
system (figure taken from [158], c© IEEE).

Coordination Level

In the coordination level shown in Figure 8.11, there is a manager for vehicle control
that (1) may coordinate the control of vehicles that are in close proximity to form
“platoons,” maneuver platoons, and avoid collisions; and (2) provide information
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about such control activities to the rest of the system. In addition, there is a man-
ager for vehicle information that (1) makes sure that appropriate vehicles get the
correct information about road, travel, and traffic conditions; and (2) manages and
distributes the information that comes in from vehicles on accidents and vehicle
failures (e.g., so that the control manager can navigate platoons to avoid colli-
sions). The manager for traffic signal control could (1) utilize information from the
roadway information system (e.g., on accidents or congestion) to adaptively change
the traffic light sequences at several connected intersections to reduce congestion;
and (2) provide information to the other subsystems about signal control changes
(e.g., to the vehicle information systems). The manager for roadway information
(1) provides information on road conditions, accidents, and congestion to the other
subsystems; and (2) provides information from the other subsystems to the road-
way for changeable message signs (e.g., rerouting information from the traffic signal
control manager). As indicated in Figure 8.11, there are multiple copies of each of
the managers and the entire coordination level as needed for different areas in the
metropolitan region.

Management Level

The management level is the traffic and vehicle management center, which provides
for high-level management of traffic flow. It provides an interface to other automated
highway systems (perhaps in rural areas or other nearby metropolitan areas) and to
traffic authorities (e.g., to provide information to police and emergency services on
accidents and to input information on construction, weather predictions, and other
major events that affect traffic flow). It can interact with traffic authorities to
advise them on the best way to avoid congestion given current weather conditions,
construction, and expected traffic loads. It can monitor the performance of all
the lower-level subsystems in the coordination and execution levels, and suggest
corrective actions if there are problems.

Fundamental Characteristics

Notice that in terms of the fundamental characteristics of intelligent autonomous
control systems discussed in Section 8.6.2, we find a successive delegation of duties
as we go down the hierarchy of the controller in Figure 8.11. For example, high-
level tasks at the management level may involve reconfiguring traffic signaling due to
construction and weather. The coordination-level manager for roadway information
and traffic signal control may develop a new signaling strategy. This strategy would
be implemented in the execution level on the changeable message signs (to inform
drivers) and the traffic signal control strategy. The higher levels of the hierarchy are
often concerned with slower and broader aspects of the system behavior (of course,
in an accident situation the traffic and vehicle management center would react as
quickly as possible to alert emergency vehicles). The lower levels of the system
have a smaller “contextual horizon” since they consider much less information in
making decisions. Also, the decision rate tends to be higher at the lower levels
(e.g., the rate at which control corrections are made as a vehicle automatically
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steers around a curve may be on the order of milliseconds, while the decision rate
at the management level may be on the order of minutes or hours).

Clearly, there is the need for a significant amount of interdisciplinary activity to
implement such a complex control system that involves a wide range of technologies
and falls beyond the traditional scope of control problems. There is no single control
technique (conventional or intelligent) that can be used to solve the diversity of
problems that is found in a complex automated highway system problem. While
conventional systems and control technologies will certainly find wide use in IVHS,
it seems likely that intelligent systems and control techniques will prove to be useful
for at least some functions, especially considering the focus on automating what
has traditionally been largely a human control activity. Similar statements seem to
hold for many complex autonomous systems.

8.7 Summary
In this chapter we have provided an overview of the relationships between fuzzy
control and intelligent control. Our overall objective is twofold. First, we wish to
provide the reader who understands the basics of fuzzy control with a view of the
other areas of intelligent control, as this tends to strengthen one’s understanding
of fuzzy control. Second, we wish to provide the reader who knows some other
area of intelligent control with a view of fuzzy control. We provided an overview
of a conventional control-engineering perspective on fuzzy control. Next, we high-
lighted some ideas from expert control, planning systems, neural networks, genetic
algorithms, and intelligent autonomous control.

Upon completing this chapter, the reader should understand the following:

• The general ideas in how conventional control compares to fuzzy control.

• The basics of the operation of the multilayer perceptron and the radial basis
function neural network.

• The general ideas on how fuzzy systems and neural networks are related and how
techniques from each of the fields can be used in the other.

• The basic mechanics of the operation of the genetic algorithm.

• How genetic algorithms can be used for the design of fuzzy estimators or control
systems, and some basic ideas on how a genetic algorithm can be used in an
adaptive controller to tune a fuzzy or conventional controller.

• The connections to expert control, particularly in how expert systems use more
general knowledge representation and inference.

• The basics of how a planning system operates and how a planning system might
be used in a fuzzy control system.

• A general definition of intelligent controllers.
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• The general hierarchical functional architecture for intelligent autonomous control
systems.

• Some of the basic characteristics of intelligent autonomous control systems.

• How to view the autonomous control problem as a general control problem.

• Basic ideas in how to form an intelligent autonomous controller for an IVHS
application.

Essentially, this is a checklist of the major topics of this chapter. This chapter
serves as the concluding remarks for the entire book and tries to motivate the reader
to branch out into the many other interesting areas in intelligent control.

8.8 For Further Study
The section on fuzzy versus conventional control has developed over the years and
has been woven throughout many of the papers published by our Ohio State group.
Section 8.2 appeared, however, in an earlier form in [157]. Other articles on the
relationships between conventional and intelligent control can be found in [160,
156, 159]. There are many books and articles on neural networks [68, 67, 96]. For
neural control, consider, for example, the books [142, 234, 64, 26] and the articles
[150, 74]. Nice introductions to neural control and learning control are contained in
[50, 51]. For more details on genetic algorithms, see the books [58, 139] or article
[204]. Computer-aided design of fuzzy controllers via genetic algorithms has been
studied in a variety of places including [88, 79, 155, 222, 116]. An example of how to
use a genetic algorithm to design direct, adaptive, and supervisory fuzzy controllers
for a robot is given in [27]. The genetic model reference adaptive controller was
first introduced in [169]. For more details on (direct) expert control, see [163], or
[131] for a control-engineering analysis of the feedback loop that is inherent in
the expert system inference process. The idea of using expert systems to supervise
adaptive control systems was first introduced in [8] and is also reported on in
[6]. The section on planning systems is based on [162], where the authors also
discuss situation assessment, world modeling, and adaptive planning systems. For
an artificial intelligence perspective on planning systems that attempts to relate
planning ideas to control theory, see [44]. For a general introduction to intelligent
control, see the books [6, 64, 219, 234] or articles [5, 2, 205]. For a particularly
easy-to-read introduction that provides a brief overview of many of the areas of
intelligent control, see [158] (several parts of this chapter are based on that article,
e.g., the IVHS example).

8.9 Exercises
Exercise 8.1 (Conventional Versus Fuzzy Control): In this problem you
will compare and contrast conventional versus fuzzy control.
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(a) When and how is a mathematical model used in the fuzzy control design
methodology?

(b) What are the disadvantages of not using a mathematical model in the control
design process?

(c) Why is the verification of the behavior of a fuzzy control system important?
When is it unimportant?

(d) Can a fuzzy controller be implemented on a conventional microprocessor?

Exercise 8.2 (Back-Propagation Training of Multilayer Perceptrons):
Suppose that you use a three-layer multilayer perceptron and the sigmoidal acti-
vation function given in Equation (8.2) on page 445 for all neurons in the network.

(a) Use the gradient approach to training that is developed in Chapter 5, Sec-
tion 5.4, on page 260, to develop training algorithms for the weights, biases,
and b parameters of the activation functions (i.e., their slopes).

(b) Choose n = n1 = n2 = 2 and m = 1, and use the algorithm in (a) to train
the network to map the data set G used in Chapter 5, Equation (5.3), on
page 236. Test the interpolation capabilities of the network by seeing how it
will map an input that is not in the data set G.

Exercise 8.3 (Gradient Training of Radial Basis Function Neural Net-
works): Consider training the radial basis function shown in Figure 8.3 on
page 448.

(a) Use the gradient approach to develop update laws for ci = [ci
1, c

i
2, . . . , c

M
n ]�,

σi, and ȳi, i = 1, 2, . . . , M . Develop the parameter update laws for the
following four cases: (1) For the output, choose Equation (8.3) on page 447
to compute its output and use “choice 1” for the receptive field unit; (2)
For the output, choose Equation (8.3) on page 447 to compute its output
and use “choice 2” for the receptive field unit; (3) For the output, choose
Equation (8.4) on page 448 to compute its output and use “choice 1” for
the receptive field unit; and (4) For the output, choose Equation (8.4) on
page 448 to compute its output and use “choice 2” for the receptive field
unit.

(b) Suppose our unknown function is

y = 2x2 = g(x)

where x and y are scalars. Suppose that we know that f(x|θ) = θx2, which
is not a fuzzy system (i.e., we know that our unknown system squares its
input, but we do not know how it scales it). Develop a gradient algorithm
that will estimate θ given

G = {(i, g(i)) : i = 5, 6, 7, . . . , 60}
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Cycle through the data once and use only one gradient update step for each
data pair. Hint: You will need a small step size.

(c) You will use the RBF training formulas obtained in part (a), case 1, to train
an RBF f(x|θ) where θ holds the parameters of the RBF neural network.
Use the training data set G from (b). Use the same basic training approach
as in (b) except cycle through the data repeatedly until the error between
the output of the RBF neural network and the output portion of the training
data is less than 10 for all the training data.

(d) Repeat (c) but for g(x) = (7/500)x2.

Exercise 8.4 (Genetic Algorithms for Optimization): In this problem you
will use the genetic algorithm to solve some simple optimization problems. You
will need to write a computer program that simulates the genetic algorithm.

(a) Suppose that you are given the function

f(x) = x sin(10πx) + 1

which is taken from [139]. Design and implement on a computer a genetic
algorithm for finding the maximum of this function over the range x ∈
[−0.5, 1]. Plot the best individual, best fitness, and average fitness against
the generation. Plot the function to verify the results.

(b) Suppose that you are given the function

f(x) = sinc(x + 2) =
sin(x + 2)

x + 2
.

Design and implement on a computer a genetic algorithm for finding the
maximum of this function over the range x ∈ [−10, 10]. Plot the best in-
dividual, best fitness, and average fitness against the generation. Plot the
function to verify the results.

(c) Suppose that you are given the function

z = 0.8x exp
(
−x2 − (y + 1.3)2

)
+ x exp

(
−x2 − (y − 1)2

)
+ 1.15x exp

(
−x2 − (y + 3.25)2

)
.

Design and implement on a computer a genetic algorithm for finding the
maximum of this function over the range x ∈ [−5, 2], y ∈ [−2, 2]. Plot the
best individual, best fitness, and average fitness against the generation. Plot
the function to verify the results.

(d) Suppose that you are given the function

z = 1.5sinc(x) + 2sinc(y) + 3sinc(x + 8) + sinc(y + 8) + 2.
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Design and implement on a computer a genetic algorithm for finding the
maximum of this function over the range x ∈ [−12, 12], y ∈ [−12, 12]. Plot
the best individual, best fitness, and average fitness against the generation.
Plot the function to verify the results.

Overall, the objective of this exercise is for you to get a genetic algorithm oper-
ating in the computer. From there you can apply the genetic algorithm to the
design or tuning of fuzzy systems, as we discussed in the chapter.

Exercise 8.5 (Knowledge-Based Control): In this problem you will study
some general issues in knowledge-based control.

(a) Describe an inference strategy that is not used in a standard fuzzy system
but may be useful in expert control.

(b) Draw the block diagrams for a planning system–based controller that uses
a “situation assessor.” Draw the block diagrams for a planning system–
based controller that uses “world modeling” in conjunction with a “planner
designer.” In each case build on the planning system–based controller shown
in Figure 8.8 on page 463.

Exercise 8.6 (Defining Intelligent Control): Based on your reading of this
book, and particularly Section 8.6 of this chapter, provide a definition for the
field of “intelligent control.” Your definition should clearly reflect whether you
believe that current computers can exhibit intelligent behavior. Moreover, you
should pay special attention to how the word “intelligent” is defined.

Exercise 8.7 (Intelligent Autonomous Controller Functional Architectures)�:
In this problem you will design a functional hierarchy for an intelligent au-
tonomous controller for two different applications.

(a) Draw the block diagram for the functional architecture for a multilayer hier-
archical controller for solving a robot control problem (one where planning,
learning, and low-level control is used).

(b) Repeat (a) but for an autonomous land or underwater vehicle problem.
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