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In this paper we investigate the decentralized output regulation problem of a class of nonlinear

systems. It is shown that the results of decentralized output regulation of linear systems can
be easily adapted to nonlinear systems within the Isidori-Byrnes framework. The resulting
decentralized controller consists of local controllers, each of which is a parallel connection

of a stabilizer and a (partial) internal model. We present only local results.

1. Introduction

The output regulation problem, or the so-called

servomechanism problem, has been studied extensively

in the past few decades. For the class of linear systems,

the problem was studied and solved in the 1970’s. See for

example Davison and Goldenberg (1975), Davison

(1976), Francis and Wonham (1976), and Francis

(1977). The output regulation of nonlinear systems was

first pursued by Huang and Rugh (1990) for systems

with constant exogenous signals and by Isidori and

Byrnes (1990) for more general class of exosystems

(see also Isidori (1995)). In Huang and Rugh (1992a)

the servomechanism problem for systems with slowly

varying but not necessarily bounded exogenous signals

was addressed, and a solution method based on the

series expansion of the system functions and the solution

of the regulator equations was presented. It was also

shown that the solution of the problem depends also

on the higher-order harmonics of the system. Later

Huang and Rugh (1992b) extended the results to present

an approximate method for calculating the solution of

the regulator equations and showed that under the

developed strategy a ‘‘guaranteed’’ bounded tracking is
achieved where the bound on the tracking error depends

on the quality of the approximation. Similarly, in Chu
and Huang (1999), Wang et al. (2000) neural networks

were used to approximate the solutions of the regulator
equations. Recent research in this area has been focusing

on robust regional, semiglobal, or global regulation of
nonlinear systems. See for example Khalil (2000),
Serrani et al. (2000), Serrani and Isidori (2000), and

Serrani et al. (2001). In Serrani et al. (2001) the author
used adaptive internal model for semiglobal output reg-

ulation in presence of unknown (but parameterized)
linear exosystem.

The decentralized servomechanism problem for linear

systems was considered by Davison (1976), where
he provides necessary and sufficient conditions for the

solvability of the problem. Here, we extend his results
for the regulation of nonlinear systems in the framework
of Isidori and Byrnes (1990) (see also Isidori (1995)). An

initial version of this article was published in Gazi and
Passino (2001). Later, in Ye and Huang (2003) decentra-

lized adaptive output regulation of large-scale systems
composed of sub-systems of the form of those discussed

in Serrani and Isidori (2000), but with adaptive internal
model as in Serrani et al. (2001) were considered.

Note that our results are different from those in Ye
and Huang (2003) and were obtained independently
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(and before) of the results in Ye and Huang (2003).

In particular, they consider a class of interconnected

systems in which each subsystem is minimum phase

and has constant relative degree, whereas no such

assumptions are made here. On the other hand, in Ye

and Huang (2003) the authors use adaptive internal

models and obtain global results, whereas we do not

use parameter adaptation and our results are local.
Decentralized systems and in particular

interconnected systems may arise in a variety of different

applications. One possible application is the formation

control (or in more general sense coordination and

control) of multi-agent systems where each agent has

its own vehicle dynamics; however, their motion is

mutually constrained due to the coordination strategy.

Preliminary work on application of the decentralized

output regulation concepts to the formation control

problem can be found in Gazi (2005).

2. The decentralized output regulation problem

In this section we consider the problem of finding a

decentralized controller for the output regulation of a

class of decentralized nonlinear systems of the form

shown in figure 1. In other words, we consider systems

which have � local input and output terminals and are
described by

_x ¼ fðx,w, u1, . . . , u�Þ,

ei ¼ hiðx,wÞ, 1 � i � �,
ð1Þ

where x 2 R
n is the state, ui 2 R

mi and
ei 2 R

mi , 1 � i � �, (m ¼
P�

i¼1 mi) are the control
inputs and outputs at each local station, respectively.
The functions f and hi, i ¼ 1, . . . , �, are known and
smooth, and mi, i ¼ 1, . . . , �, and � are known. The
signal w 2 R

r represents the exogenous inputs, that
are the reference inputs, that need to be tracked, and
the disturbances, that need to be rejected. It is assumed
that all the exogenous signals are generated by a
neutrally stable exosystem

_w ¼ sðwÞ, ð2Þ

where the function s is known and smooth.
The problem is to regulate each of the local outputs

ei, i ¼ 1 . . . �, to zero using decentralized controls
ui, i ¼ 1 . . . �, that use only local error feedback. In
other words, the control inputs ui use the information
only from their corresponding (local) outputs ei as can
be seen from figure 1. We define the problem as follows.

Decentralized Output Regulation Problem
(DORP): Given a nonlinear system of the form
of (1) and a neutrally stable exosystem in the form
of (2), find, if possible, � integers p1, p2 . . . , p�, and map-
pings �ið�i, eiÞ and �ið�iÞ, 1 � i � �, where �i 2 R

pi , such
that the following conditions are satisfied:

(S) The equilibrium ðx, �1, . . . , ��Þ ¼ ð0, 0, . . . , 0Þ of

_x ¼ fðx, 0, �1ð�1Þ; . . . , ��ð��ÞÞ,

_�i ¼ �ið�i, hiðx, 0ÞÞ, 1 � i � �,
ð3Þ

is locally exponentially stable.
(R) There exists a neighborhood V of the origin of
X���W, where � ¼ �1 � � � � ���, with �i � R

pi ,
such that, for each initial condition
ðxð0Þ, �ð0Þ,wð0ÞÞ 2 V (where �ð0Þ ¼ ½�>1 ð0Þ, . . . , �

>
� ð0Þ�

>),
the solution of the system

_x ¼ fðx,w, �1ð�1Þ, . . . , ��ð��ÞÞ,

_�i ¼ �ið�i, hiðx,wÞÞ, 1 � i � �,

_w ¼ sðwÞ

ð4Þ

satisfies the condition

lim
t!1

hiðxðtÞ,wðtÞÞ ¼ 0, ð5Þ

for all 1 � i � �.
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input/output terminals
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Figure 1. Decentralized system with � input/output terminals.
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Above the condition (S) stands for stability and the
condition (R) stands for regulation. In the following
analysis we use the linearization of the system around
the operating point (the origin). Therefore, before
proceeding we make the following definitions. Let

A ¼
@f

@x
ð0, 0, 0Þ,Bi ¼

@f

@ui
ð0, 0, 0Þ,Ci ¼

@hi
@x

ð0, 0Þ,

S ¼
@s

@w
ð0Þ,Fi ¼

@�i
@�i

ð0, 0Þ,Gi ¼
@�i
@ei

ð0, 0Þ,

and

Hi ¼
@�i
@�i

ð0Þ:

Then, using these define B ¼ ½B1, . . . ,B��,
C ¼ ½C>

1 , . . . ,C
>
� �

>, F¼ bd½F1, . . . ,F��,G¼ bd½G1, . . . ,G��,
and H¼ bd½H1, . . . ,H��, where bd stands for block
diagonal. Now, we have the following result, which is a
decentralized version of those in Isidori and Byrnes
(1990).

Lemma 1: Assume that for some �ið�i, eiÞ
and �ið�iÞ, 1 � i � �, the condition (S) is satisfied. Then,
the condition (R) is also satisfied if, and only if, there
exist mappings x ¼ �ðwÞ and �i ¼ �iðwÞ, 1 � i � �,
with �ð0Þ ¼ 0 and �ið0Þ ¼ 0, 1 � i � �, defined in
a neighborhood Wo of the origin of R

r satisfying the
conditions

@�

@w
sðwÞ ¼ fð�ðwÞ,w, �1ð�1ðwÞÞ, . . . , ��ð��ðwÞÞÞ,

@�i
@w

sðwÞ ¼ �ið�iðwÞ, 0Þ, 1 � i � �,

0 ¼ hið�ðwÞ,wÞ, 1 � i � �,

ð6Þ

for all w 2 Wo.

Proof: Necessity: Since the system satisfies condition
(S) with the above controller we have that the eigenva-
lues of the matrix (that is the linearization of the
closed loop system around the origin)

A BH
GC F

� �

are located on the open left-half complex plane, whereas,
the eigenvalues of S (the linearization of the exosystem)
are all on the imaginary axis (because of its neutral
stability). From the center manifold theory [20] we
know that there exists a center manifold x ¼ �ðwÞ and

�i ¼ �iðwÞ, 1 � i � �, such that the following equations
are satisfied

@�

@w
sðwÞ ¼ fð�ðwÞ,w, �1ð�1ðwÞÞ, . . . , ��ð��ðwÞÞÞ,

@�i
@w

sðwÞ ¼ �ið�iðwÞ, hið�ðwÞ,wÞÞ, 1 � i � �:

ð7Þ

Now, assume that the condition (R) is satisfied but
the last equalities in (6) do not hold. Then, there is an
output i, 1 � i � �, such that for some wo and �ðwoÞ

we have

khið�ðw
oÞ,woÞÞk ¼ Mi > 0

and there exists a neighborhood U of ð�ðwoÞ,woÞ such
that

khið�ðwÞ,wÞÞk >Mi=2

for all ð�ðwÞ,wÞ 2 U. On the other hand, since condition
(R) holds there exists a time T > 0 such that for all t > T

khið�ðwðtÞÞ,wðtÞÞÞk <Mi=2:

However, since the exosystem is neutrally stable, always
there is some time t1 > T such that ð�ðwðt1ÞÞ,wðt1ÞÞ 2 U
which leads to a contradiction. Therefore, the last
equalities in (6) hold. Substituting hið�ðwÞ,wÞ ¼ 0 in (7)
implies that all the equalities in (6) hold.

Sufficiency: Assume that (6) are satisfied. Then, by
construction x ¼ �ðwÞ and �i ¼ �iðwÞ, 1 � i � �,
constitute a center manifold for the system. From the
properties of the center manifolds we know that
for some M > 0 and a > 0 we have

k �xðtÞ � ��ðwðtÞÞk � Me�atk �xð0Þ � ��ðwð0ÞÞk, 8t � 0,

where �x ¼ ½x, �1, . . . , ���
> and �� ¼ ½�, �1, . . . , ���

>.
Define ~x ¼ xðtÞ � �ðwðtÞÞ. Then, since as t ! 1 we
have ~x ! 0 exponentially fast, we obtain

lim
t!1

eiðtÞ ¼ lim
t!1

hið�ðwðtÞÞþ ~xðtÞ,wðtÞÞ ¼ hið�ðwðtÞÞ,wðtÞÞ ¼ 0,

for all 1 � i � �. Therefore, the condition (R) is satisfied,
and this completes the proof. œ

In order to be able to achieve output regulation using
decentralized controller one needs to be able to achieve
stabilization using decentralized controller. Moreover,
in the problem of decentralized stabilization the issue
of decentralized fixed modes plays an important role.
Therefore, since we are concerned with the problem of
decentralized output regulation in this paper, before
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proceeding further we have to discuss the notion of
fixed modes, a concept introduced first by Davison
(1976) and Wang and Davison (1973).
Consider a linear time invariant system described

by the triple ðC,A,BÞ 2 R
m�n

�R
n�n

�R
n�m. Let K be

a set of matrices in R
m�m. Then, the set of fixed modes

of ðC,A,BÞ with respect to the set K is defined as
follows:

�ðC,A,B,KÞ ¼
\
K2K

�ðAþ BKCÞ,

where �ðAþ BKCÞ is the set of eigenvalues
of ðAþ BKCÞ.
In other words, the set of fixed modes with respect to

a given set of matrices are the set of eigenvalues that
cannot be changed by an output feedback with a gain
matrix from this set. Note that �ðC,A,B,Rm�m

Þ is the
set of the modes of A that are either uncontrollable
or unobservable. Due to the decentralized structure
of our problem, we consider only the set of block diag-
onal gain matrices

Kbd ¼ K : K ¼ bd ½K1, . . . ,K��,Ki 2 R
mi�mi , i ¼ 1, . . . , �

� �
:

Note that the fixed modes of the system with respect
to Kbd are called the decentralized fixed modes of the
system. The location of the decentralized fixed modes
is crucial for the solvability of the decentralized stabili-
zation problem and therefore also for the solvability
of the DORP.
Now, we are ready to state the conditions for the

solvability of the DORP.

Theorem 1: The DORP is solvable if, and only if,
there exist mappings x ¼ �ðwÞ and ui ¼ ciðwÞ, 1 � i � �,
with �ð0Þ ¼ 0 and cið0Þ ¼ 0, 1 � i � �, all defined in a
neighborhood Wo of the origin of R

r and satisfying
the conditions

@�

@w
sðwÞ ¼ fð�ðwÞ,w, c1ðwÞ, . . . , c�ðwÞÞ,

0 ¼ hið�ðwÞ,wÞ, 1 � i � �,

ð8Þ

for all w 2 Wo, and such that the autonomous systems

_w ¼ sðwÞ, ui ¼ ciðwÞ, 1 � i � �, ð9Þ

are immersed into

_�i ¼ ’ið�iÞ,

ui ¼ �ið�iÞ, 1 � i � �,
ð10Þ

defined on neighborhoods �i, 1 � i � �, of the origins
of R

pi , respectively, in which ’ið0Þ ¼ 0 and �ið0Þ ¼ 0,
1 � i � �, and the matrices

�i ¼
@’i
@�i

� �
�i¼0

and �i ¼
@�i
@�i

� �
�i¼0

for 1 � i � � are such that all the fixed modes with
respect to Kbd (the decentralized fixed modes) of the
triple

�C ¼ C 0
� �

, �A ¼
A B�
NC �

� �
, �B ¼

B
0

� �
, ð11Þ

where � ¼ bd½�1, . . . ,��� and � ¼ bd½�1, . . . ,���, have
negative real parts, for some choice of
N ¼ bd½N1, . . . ,N��.

Proof: Necessity: Suppose that the local controllers

_�i ¼ �ið�i, eiÞ,

ui ¼ �ið�iÞ, 1 � i � �,

solve the decentralized output regulation problem.
Then, by lemma 1 there exist mappings x ¼ �ðwÞ and
�i ¼ �iðwÞ, 1 � i � �, with �ð0Þ ¼ 0 and
�ið0Þ ¼ 0, 1 � i � �, such that (6) are satisfied. Set
ciðwÞ ¼ �ið�iðwÞÞ, �ið�iÞ ¼ �ið�iÞ, ’ið�iÞ ¼ �ð�i, 0Þ,
1 � i � �. Now, note that these satisfy (8). Moreover,
we have ð@�i=@wÞsðwÞ ¼ ’ið�iðwÞÞ and ciðwÞ ¼ �ið�iðwÞÞ,
1 � i � �, implying that (9) are immersed into (10) for
all 1 � i � �: Moreover, since the given local controllers
solve the regulation problem, the eigenvalues of the
matrix

A B�
GC �

� �

are all located in the open left-half plane. This, on the
other hand, implies that all the fixed modes of the
triple ð �C, �A, �BÞ in (11) have negative real parts for
N ¼ G, i.e., Ni ¼ Gi, 1 � i � �.

Sufficiency: Choose Ni, 1 � i � �, such that the triple
ð �C, �A, �BÞ in (11) has all of its fixed modes with negative
real parts. Then from theorem 1 in Wang and Davison
(1973) we know that the decentralized stabilization
problem of the system described by the above triple
is solvable using dynamic output feedback. In other
words, there exist integers q1, . . . , q�, all greater than
or equal to zero, and real constant matrices of
the form M ¼ bd½M1, . . . ,M��,L ¼ bd½L1, . . . ,L��, and
� ¼ bd½�1, . . . ,���, where Li 2 R

qi�mi ,Mi 2 R
mi�qi , and

�i 2 R
qi�qi , such that the roots of the polynomial
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detð�I� Ae � BeKeCeÞ have negative real parts. Above
the matrices Ke, Ae, Be, and Ce are

0 M
L �

� �
,

�A 0
0 0

� �
,

�B 0
0 I

� �
,

�C 0
0 I

� �
,

respectively, and �C, �A, and �B are the matrices in (11).
Then choose the dynamics of each of the stabilizing

local compensators as

_	i ¼ �i	i þ Liei, 1 � i � �, ð12Þ

and the overall control input as

ui ¼ �ið�iÞ þMi	i, ð13Þ

which render the matrix ðAe þ BeKeCeÞ ¼

A B1�1 B2�2 . . . B��� B1M1 . . . B�M�

N1C1 �1 0 . . . 0 0 . . . 0

N2C2 0 �2
. .
. ..

. ..
. ..

.

..

. ..
. . .

. . .
.

0 ..
. ..

.

N�C� 0 . . . 0 �� 0 ..
.

L1C1 0 . . . 0 �1
. .
. ..

.

..

. ..
. . .

. . .
.

0

L�C� 0 . . . . . . . . . . . . 0 ��

2
6666666666666666664

3
7777777777777777775

Hurwitz. In other words, the system is rendered exponen-
tially stable in the first approximation. Moreover, by
hypothesis there exist mappings x ¼ �ðwÞ and
�i ¼ �iðwÞ, 1 � i � �, with �ð0Þ ¼ 0, �ið0Þ ¼ 0, 1 � i � �,
and �i ¼ 
iðwÞ such that (8) hold together with (because
of the immersion) ð@
iðwÞ=@wÞsðwÞ ¼ ’ið
iðwÞÞ and
ciðwÞ ¼ �ið
iðwÞÞ, 1 � i � �: Then (8) together with
�i ¼ 
iðwÞ,	i ¼ 0, 1 � i � �, satisfy (6). This, on the
other hand, implies that the sufficient conditions of
lemma 1 are satisfied (i.e., we have local controller that
satisfies conditions (S) and (6) are satisfied), and there-
fore, output regulation is achieved and this
completes the proof of the theorem. œ

One issue to note here is that the above result does
not specify how the stabilizing controller should be
designed. In fact, as long as the interconnection of the
system in (1) with the local (partial) internal model
in (10) (with the choice of appropriate set of matrices
Ni, i ¼ 1, . . . , �) is locally stabilizable via decentralized
control there might be several possible options for
developing such a controller and the designer is free
to use any method.

From the above formulation, we have that each of our
local controllers have the following form

_�i ¼ ’ið�iÞ þNiei,

_	i ¼ �i	i þ Liei,

ui ¼ �ið�iÞ þMi	i, 1 � i � �:

ð14Þ

In other words, each of the local controllers consists of
a parallel connection of a dynamic compensator and a
servocompensator similar to the centralized case.

Since the above result is stated in terms of the
fixed modes of the cascade connection of the plant
and the servocompensator, one wonders how do we
determine or characterize the decentralized fixed modes
of a given system. Since the introduction of the
concept of fixed modes in Wang and Davison (1973),
several authors have addressed this issue. One
may consult Anderson and Clements (1981), Davison
and Wang (1985), Xu et al. (1988), and Gong
and Aldeen (1992) and references therein for relevant
discussions.

3. Output regulation of a class of interconnected

systems

In this section, we consider the output regulation
problem of the class of interconnected systems which
consist of � interconnected subsystems. Figure 2 shows
an illustrative example of such an interconnected
system which has six subsystems. We assume that the
dynamics of the subsystems are described by

_xi ¼ fiðx1, . . . , x�,wi, uiÞ,

ei ¼ hiðxi,wiÞ,
ð15Þ

for 1 � i � �, where xi 2 R
ni (n ¼

P�
i¼1 ni) represent

the local state of each subsystem, ui 2 R
mi and

ei 2 R
mi , 1 � i � �, (m ¼

P�
i¼1 mi) are the local control

inputs and outputs, respectively. The signal wi 2 R
ri

(r ¼
P�

i¼1 ri) are the local exogenous inputs to each
subsystem (as shown in figure 2) and are generated by
neutrally stable exosystems

_wi ¼ siðwiÞ, 1 � i � �: ð16Þ

We assume that all the above functions fi, hi, and si
are known and smooth. As in the preceding section,
the objective is to design a decentralized regulator
that uses only local controls that will provide asymptotic
regulation of the output of each of the subsystems
to zero. In other words, the system together with its
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exogeneous inputs and local controls will have a
structure similar to to the one shown in figure 2.
From the earlier analysis we know that a necessary

condition for the existence of a solution of this problem
is the existence of mappings xi ¼ �iðwiÞ and
ui ¼ ciðwiÞ, 1 � i � �, with �ið0Þ ¼ 0 and
cið0Þ ¼ 0, 1 � i � �, defined in a neighborhood Wo

i of
the origin of R

ri , respectively, such that for each
i ¼ 1; . . . , � we have

@�i
@wi

siðwiÞ ¼ fið�1ðw1Þ, . . . ,��ðw�Þ,wi, ciðwiÞÞ,

0 ¼ hið�iðwiÞ,wiÞ,

ð17Þ

for all wi 2 Wo
i , respectively.

One can easily see that it is possible to establish a
counterpart of lemma 1 also for this case. Therefore,
we do not present such a result here. Still, let us
denote the system matrices of the first approximation
of the subsystems with Ai ¼ ð@fi=@xiÞð0, . . . , 0, 0, 0Þ,
Ei, j ¼ ð@fi=@xjÞð0, . . . , 0, 0, 0Þ, Bi ¼ ð@fi=@uiÞ, ð0, . . . , 0, 0, 0Þ,
and Ci ¼ ð@hi=@xiÞð0,0Þ, and also define

A¼

A1 E1,2 . . . E1, �

E2,1
. .
. . .

. ..
.

..

. . .
. . .

.
E��1,�

E�, 1 . . . E�,��1 A�

2
666664

3
777775,

B¼ bd ½B1, . . . ,B��,

C¼ bd ½C1, . . . ,C��,

ð18Þ

where bd stands for block diagonal as was mentioned
before. Then, temporarily assuming w¼ 0 (i.e., tempora-
rily ignoring the exogeneous inputs) the linearization
(or the first approximation) of the system in (15)
around the origin can be represented as

_xi ¼ Aixi þ
X�

j¼1, j 6¼i

Ei, jxj þ Biui

yi ¼ Cixi,

ð19Þ

for 1 � i � �. This approximation of the system is
similar to those considered in Davison (1976) and the
discussions there are relevant/applicable. In order to
be able to design the regulator we need conditions on
the stabilizability of the system using decentralized con-
trol. Therefore, to establish the main result of this sec-
tion we use the following lemma that is taken (actually
deduced) from Davison (1976) (see theorem 6 and
remark 6 – we present it here for the convenience
of the reader).

Lemma 2 Consider the interconnected composite
system in (19) and assume that each of the subsystems
ðCi,Ai,BiÞ, i ¼ 1, . . . , �, are all stabilizable and detect-
able. Then, there exists a scalar E > 0, such that for
the class of nonzero interconnection gains Ei,j satisfying
kEi, jk < E, i ¼ 1, . . . , �, j ¼ 1, . . . , �, i 6¼ j, the system is
stabilizable via decentralized control.

This lemma makes intuitive sense. Since each of the
subsystems is stabilizable and detectable and for

Subsystem 1

Subsystem 2Subsystem 3

Subsystem 4

Subsystem 5 Subsystem 6

Control 1

Control 2Control 3

Control 4

Control 5 Control 6

Exosystem 1Exosystem 4

Exosystem 2Exosystem 3

Exosystem 5 Exosystem 6

w1

w2w3

w4

w5 w6

e1

e2

e3

e4

e5

e6

u1

u2

u3

u4

u5

u6

Figure 2. Interconnected system with � subsystems.
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Ei, j ¼ 0 for all 1 � i � �, 1 � j � �, i 6¼ j, the system
is decoupled we can find an appropriate local output
feedback such that all the eigenvalues of the closed
loop system would have negative real parts. Therefore,
if the interconnections are sufficiently weak, then the
stability properties of the closed loop system matrix
are preserved.
An issue to note here is that in many applications the

level of interconnections between the subsystems will be
given and one will not be able to choose E. This limits
the applicability of lemma 2 to the systems in which
the condition kEi, jk< E, i¼ 1, . . . ,�, j¼ 1, . . . ,�, i 6¼ j
is satisfied a prior. Nevertheless, there are applications
such as coordination and control or formation control
of multi-agent (multi-robot) systems in which it
might be possible to choose/design the interconnec-
tions/interactions between the subsystems. This is
because in multi-agent systems each agent has its
own dynamics and the ‘‘coupling’’ in the system arises
due to the coordination strategy. In other words, the
coordination strategy brings the restriction that
the motion of the agents is affected by the motion of
the other agents in order to achieve the overall group
objective resulting in a system which can be viewed
as an interconnected system. The flexibility in
such systems is that usually there might be several
coordination strategies achieving the same objective
and the designer can choose the coordination strategy
with weaker ‘‘coupling’’ between the agent motion
dynamics.
Let �E ¼ supfEg, where E is as defined in lemma 2.

In other words, �E is the maximum possible ‘‘coupling’’
that the system can tolerate and still be stabilized via
decentralized control. With this definition we are ready
to state the main result of this section.

Theorem 2: The DORP for the interconnected system
in (16) is solvable if

(1) There exist mappings xi ¼ �iðwiÞ and
ui ¼ ciðwiÞ, 1 � i � �, with �ið0Þ ¼ 0 and
cið0Þ ¼ 0, 1 � i � �, defined in a neighborhood Wo

i

of the origin of Rri , respectively, such that (17) are
satisfied for all wi 2 Wo

i , respectively.
(2) For all i ¼ 1, . . . , �, the autonomous systems

_wi ¼ siðwiÞ,

ui ¼ ciðwiÞ,
ð20Þ

are immersed into

_�i ¼ ’ð�iÞ,

ui ¼ �ið�iÞ,
ð21Þ

defined on neighborhoods �i of the origins of Rpi ,
respectively, in which ’ið0Þ ¼ 0 and �ið0Þ ¼ 0.

(3) For all i ¼ 1, . . . , �, the matrices

�i ¼
@’i
@�i

� �
�i¼0

and �i ¼
@�i
@�i

� �
�i¼0

are such that each of the pairs

Ai 0

NiCi �i

" #
,

Bi

0

� �
, ð22Þ

is stabilizable for some Ni and each of the pairs

Ci 0
� �

,
Ai Bi�i

0 �i

" #
, ð23Þ

is detectable.
(4) The interconnections satisfy kEi, jk � �E.

Proof We show that the conditions above satisfy

the sufficient conditions of lemma 1. To this end,

choose the matrices Ni, 1 � i � �, such that the
pairs in (22) are stabilizable. Now, note that each

of the triples

Ci 0
� �

,
Ai Bi�i

NiCi �i

" #
,

Bi

0

� �
,

is stabilizable and detectable. Therefore, there
exist matrices �i, Li, and Mi, i � i � �, such that the

matrices

�Ai ¼

Ai Bi�i

NiCi �i

" #
Bi

0

" #
Mi

Li Ci 0
� �

�i

2
664

3
775

have their eigenvalues in the open left-half plane. Define

�Ei, j ¼

Ei, j 0 0

0 0 0

0 0 0

2
664

3
775:

1518 V. Gazi and K. M. Passino



Then, the linearization of the closed loop system
equations become

�A1
�E1, 2 . . . �E1, �

�E2, 1
. .
. . .

. ..
.

..

. . .
. . .

.
�E��1, �

�E�, 1 . . . �E�, ��1
�A�

2
66666664

3
77777775
:

Since the interconnections satisfy kEi, jk � �E, from
lemma 2 we know that there exists a decentralized
controller that stabilizes the system. In other words,
above we can choose the matrices Li,Mi, and �i such
that the closed loop system is stable. This proves that
the condition (S) is satisfied. This together with the
other hypotheses of the theorem satisfy the sufficiency
conditions of lemma 1 (or an equivalent modified
version of lemma 1 for interconnected systems), and
this completes the proof. œ

4. Example: car following in automated highway

system

In this section we provide an application example in
order to illustrate the procedure. In particular, we con-
sider the problem of car following in an Automated
Highway System (AHS) (Spooner and Passino 1996).
In AHS the vehicles will be automatically driven by
onboard computers. One possible method to implement
the controllers responsible for automatically driving the
vehicles can be to use lateral and longitudinal controllers
in parallel, where lateral controllers will be responsible
for tasks such as steering the vehicle and changing
lanes, whereas the longitudinal controllers will be
used for tasks such as maintaining steady velocity and
following a vehicle in front (on the same lane) at
a safe distance. Here we consider the car following
problem (possibly in a platoon of vehicles). Since
platooning (having the vehicles move close to each
other at constant inter-vehicle distances and with
constant velocities) may lead to fuel savings, safer
driving, and higher traffic throughput, it may be
desirable in AHS. The dynamics of the i’th vehicle in
a car following system can be described by Spooner
and Passino (1996)

_ i ¼ vi � vi�1,

_vi ¼
1

mi
�Ai

�v
2
i � di þ fi

h i
,

_fi ¼
1


i
�fi þ ui½ �,

ð26Þ

where  i ¼ Xi � Xi�1 is the inter-vehicle spacing

between the i’th and the ði� 1Þ’th vehicles (Xi shows

the longitudinal position of the i’th vehicle), vi is the

longitudinal velocity (speed) of the i’th vehicle, and fi
is the driving/braking force applied to the longitudinal

dynamics of the i’th vehicle. The variable ui is the

throttle/brake input applied to the vehicle where ui > 0

represents a throttle input, whereas ui < 0 represents

a brake input. The parameter mi represents the mass,

Ai
� represents the aerodynamic drag constant, di

represents the constant frictional force, and 
i represents
the engine/brake time constant of the i’th vehicle,

respectively. The output (error) of the system is

chosen as

ei ¼  i þ �ivi þ Li,

where Li and �i are positive constants. This output

allows for velocity dependent spacing due to the

�ivi term in addition to the constant distance Li.

Setting �i ¼ 0:9 allows 9m extra spacing for every

10m/s extra speed. We assume that the inter-vehicle

distances  i are measurable and the objective is to

regulate ei to zero. As one can easily see this is an

interconnected system and the results developed in the

preceding sections can be applied. Defining the state

of the system as xi ¼ ½ i, vi, fi�
> and the exogeneous

input as wi ¼ ½di,Li�
> and assuming that the constant

reference velocity for the leading vehicle is v0 (which

can be set/achieved by a classic cruise control system)

one can easily see that the mappings �iðwiÞ and ciðwiÞ

(for the follower vehicles) are given by

�iðwiÞ ¼

��iv0 � Li

v0

Ai
�v

2
0 þ di

2
64

3
75 and ciðwiÞ ¼ Ai

�v
2
0 þ di:

The above zero-error manifold �iðwiÞ and the corre-

sponding controller (the so-called ‘‘friend’’) ciðwiÞ are

achieved when all the vehicles are moving with constant

velocities equal to the velocity of the leading vehicle

vi ¼ v0 and at constant inter-vehicle spacings of

 i ¼ ��iv0 � Li.
It might be possible to design the regulating controller

using nonlinear techniques. However, in order to be

consistent with the analysis in the preceding sections

we need to linearize the model. Linearizing the dynamics

around an operating point at vi ¼ v0 ¼ constant (for

example around the point �xi ¼ ½0, v0, 0�
> – note that

this does not change the results since we can always
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redefine the state so that this point corresponds to the
origin) we obtain

_xi ¼ Aixi þ Ei, i�1xi�1 þ Fiwi þ Biui,

ei ¼ Cixi þDiwi,

_wi ¼ 0

ð25Þ

where

Ai ¼

0 1 0

0 �
2Ai

�v0

mi

1

mi

0 0 �
1


i

2
6666664

3
7777775
, Ei, i�1 ¼

0 �1 0

0 0 0

0 0 0

2
6664

3
7775,

Fi ¼

0 0

�
1

mi
0

0 0

2
66664

3
77775,Bi ¼

0

0

1


i

2
66664

3
77775,

Ci ¼ 1 �i 0
� �

, and Di ¼ 0 1
� �

:

As mentioned above here we assume that the constant
‘‘inputs’’ Li are known and the inter-vehicle distances  i

are measurable. In other words, we assume that the
output errors ei are measurable. In contrast, we do not
know the constant disturbances di and the velocity of
the preceding vehicle. Since ciðwiÞ depends only on di
(which is the only unknown exogeneous input) we can
choose the immersion as one dimensional. In other
words, we can choose �i ¼ ½0� (since di’s are constants),
�i ¼ ½1�, and Ni ¼ ½1� for all i.
Using these the system matrices of the interconnection

of the local internal model with the vehicle dynamics
become

~Ai ¼
Ai Bi�i

NiCi �i

� �
, ~Bi ¼

Bi

0

� �
, and ~Ci ¼ Ci 0

� �
,

which is a four-dimensional system. Given these system
matrices the next step is to design a stabilizing controller
(the servocompensator). As was mentioned before one
may design the stabilizing controller using different
methods. One possible method is to use an observer,
based state feedback controller (Khalil 1996) in which
�i can be calculated as

�i ¼ ~Ai � ~BiMi � Li
~Ci

where the Li and the Mi are the gain vectors/matrices
of the state feedback and the observer can be determined
by placing the eigenvalues of ð ~Ai � ~BiMiÞ and
ð ~Ai � Li

~CiÞ at the desired locations. In particular, one
can calculate them using the Matlab command place

L>
i ¼ placeð ~Ai, ~C>

i ,P
1
i Þ

Mi ¼ placeð ~Ai, ~Bi,P
2
i Þ

for the sets of desired poles specified in the vectors
P1
i and P2

i . In the simulations below we used
this type of observer-based stabilizing controller for
which we specified P1

i ¼ ½�1, � 2, � 3, � 4� and
P2
i ¼ ½�0:5, � 1:0, � 1:5, � 2:0� as the desired pole

locations for the state feedback and the observer parts
which resulted in the matrices

Li ¼

�0:7867

6:4297

�0:5880

5:9160

2
6664

3
7775, Mi ¼ 1274 2275 0 391

� �
,

and �i ¼

1 2 0 0

�6 �6 0 0

�6369 �11374 �5 �195

�5 �4 0 0

2
6664

3
7775:

These matrices are achieved independent of the value
of the constant velocity v0 at the operating point
around which the linearization Ai is obtained. In other
words, the above controller matrices and the closed
loop poles are the same for v0 ¼ 0m/s and v0 ¼ 25m/s.

As vehicle parameters we used the values
mi ¼ 1300 kg,Ai

� ¼ 0:3Ns2=m2, 
i ¼ 0:2 s for all the
vehicles. Moreover we used the values �i ¼ 0:9 as
required inter-vehicle distance parameter, di ¼ 100N as
the unknown constant friction disturbance and Li ¼ 10
as reference input.

We simulated the behavior of the system in a platoon
of six vehicles. We assumed that the leader in the pla-
toon is moving with a constant velocity of 25m/s and
initiated the other five vehicles with zero initial velocity
and at a position 100m behind its predecessor.

Figure 3 shows the plot of the inter-vehicle distances
in the platoon. As is easily seen from the figure the
inter-vehicle distances settle very quickly to a constant
value. In fact, they asymptotically converge to the
value of 32.5m, which is the desired inter-vehicle spacing
achieved at zero output errors. Figure 4 shows the plot
of the output errors eiðtÞ. As seen from the figure the
control objective to regulate these outputs to zero is
asymptotically achieved supporting the discussions/
results in the preceding sections.
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From the discussion in the preceding sections we
expect that the state of the system will converge to the
zero error manifold �iðwiÞ where the velocities of
the vehicles will stabilize at the reference velocity
(set by the leading vehicle) of 25m/s. From the plot of
the longitudinal speeds of the vehicles, shown in
figure 5, one can easily see that this expectation
(or objective) is achieved.

One disadvantage of using an observer-based stabiliz-
ing controller may be that initially there may be large
discrepancy between the states of the observer
and those of the plant (and this is in addition to the
discrepancy between the states of the immersion and
the exosystem). Therefore, initially we may have large
control inputs. However, it is not required to use an
observer-based state feedback as a stabilizing controller
and one may use controllers designed using other
techniques as well.

5. Conclusions

The problem of output regulation in presence of
uncertainties and disturbances is an important problem
in control theory. It has been extensively studied and
solved for linear systems, and for certain classes of
nonlinear systems. Efforts to develop conditions for
the solvability of the problem in a semi-global or
global sense for more general classes of nonlinear
systems, as well as developing effective controllers for
these, still continue. In this article we presented
conditions for the local solution of the problem for a
class of decentralized and interconnected systems using
decentralized controllers. The results presented can
easily be extended to structurally stable regulation,
output regulation of discrete-time systems, and output
regulation using adaptive internal model.
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