
Genetic adaptive identi®cation and control
p

W.K. Lennon, K.M. Passino *

Department of Electrical Engineering, The Ohio State University, 2015 Neil Avenue, Columbus, OH 43210, USA

Accepted 1 September 1998

Abstract

Genetic algorithms are computer programs that are developed to crudely emulate the evolution of biological populations
according to Darwin's theory of natural selection and the concept of inheritance from genetics put forward by Mendel. Suppose

that a controller for a plant is viewed as an individual decision-maker that has been chosen from a population of possible
decision-makers to generate a control input to the plant. Suppose that in real-time a population of such decision-makers evolves.
The ``best'' decision-maker from the evolving population is chosen at each step to control the plant, and using the principles of

inheritance and survival of the ®ttest, good decision-makers will be more likely to propagate through the population as it
evolves. Generally, as the population evolves and the best decision-maker is chosen at each time step, it adapts to its
environment (i.e. the controller adapts to the plant and anything that in¯uences it) and enhanced closed-loop system
performance can be obtained. Also, even if there are plant parameter variations or disturbances, the population of decision-

makers (controllers) will continually adapt to its environment to try to maintain good performance. This paper discusses a
variety of such genetic adaptive control methods, and gives an extensive comparative analysis of their performance relative to
conventional adaptive control techniques for an illustrative control application. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A genetic algorithm (GA) is a parallel search tech-

nique that emulates the laws of evolution and genetics

to try to ®nd optimal solutions to complex optimiz-

ation problems (Goldberg, 1989). Some research has

been conducted using genetic algorithms to help design

control systems, but usually these methods involve o�-

line design of the control system (Lee and Takagi,

1993, VarsÆ ek et al., 1993; Daihee et al., 1994; Porter

and Borairi, 1992; Michelewicz et al., 1990). GAs have

also been used for o�-line system identi®cation

(Maclay and Dorey, 1993). The research on the use of

GAs for on-line real-time estimation and control

include: (Kristinsson and Dumont, 1992), where gen-

etic algorithms are used for system identi®cation of lin-

ear systems and coupled with pole-placement-based

indirect adaptive control; (Porter and Passino, 1994),

where a direct genetic adaptive control method is

introduced; and (Porter et al., 1995), where genetic

adaptive observers are introduced to estimate plant

stakes. The technique in (Porter and Passino, 1994) is

applied to the control of a brake system in (Lennon

and Passino, 1995). Relevant general ideas on GAs

and adaptive systems are in (DeJong, 1980) and other

applications and methods are studied in (Renders and

Hanus, 1992; Zuo, 1995).

This paper will investigate ways to use genetic algor-

ithms in the on-line control of a nonlinear system, and

compare the results obtained with conventional control

techniques. A direct genetic adaptive controller and an

indirect genetic adaptive controller are developed, and

they are combined into a general genetic adaptive

controller1. Several conventional controllers will be
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adaptive control'', an identi®er is not used for the plant; the par-

ameters of the controller are tuned directly (some think of the direct

adaptive controller as a ``controller identi®er''). For more details see,

e.g. (Ioannou and Jing Sun, 1996; AÊ stroÈ m and Wittenmark, 1989).



studied including a proportional-derivative controller,
a model reference adaptive controller, and two indirect
adaptive controllers. To demonstrate all these control
techniques, the problem of cargo ship steering will be
studied. In this application, the desired performance is
described with a reference model and our control tech-
niques seek to track the output of the reference model.
Overall, the goal is not to design the best possible con-
troller for ship steering; this example is simply used to
illustrate the ideas.

The direct genetic adaptive controller used here is a
type of ``genetic model reference adapter controller''
(GMRAC) that was originally introduced in (Porter
and Passino, 1994). Here, the method in (Porter and
Passino, 1994) for ®tness evaluation is modi®ed and
the idea of initializing the population with some ®xed
controllers and letting these remain ®xed throughout
the controller's operation is studied. It is explained
how this idea is related to ones in ``multiple model
adaptive control'' (Narendra and Balakrishnan, 1994).
The indirect genetic adaptive controller that is studied
here is most similar to one in (Kristinsson and
Dumont, 1992) where the authors use a GA for model
identi®cation and then use the model parameters in a
certainty equivalence control law based on a pole-pla-
cement method. Here, however, a di�erent method for
®tness evaluation is used and a model reference
approach is employed. The general genetic adaptive
controller studied here is novel in that it combines the
direct and indirect approaches. To do this, it uses gen-
etic adaptive identi®cation to estimate the parameters
to the model that are used in the ®tness function for
the direct genetic adaptive controller. Essentially, the
general genetic adaptive controller both identi®es the
plant model and tries to tune the controller at the
same time so that if the estimates are inaccurate good
control can still be achieved.

While several of the genetic adaptive methods are
novel it is emphasized that one of the primary contri-
butions of this paper lies in the comparative analysis
with conventional adaptive control techniques. Overall,
such a comparative analysis is very important for iden-
tifying both the advantages of new intelligent control
techniques and their possible disadvantages (Antsaklis
and Passino, 1993; Passino, 1996). The remainder of
the paper is organized as follows.

In the next section the cargo ship steering problem
is de®ned. Following that, direct conventional and gen-
etic adaptive control methods are developed and their
performance is compared. Next, the same is repeated
but for indirect adaptive methods and a combined
indirect/direct genetic adaptive method. Finally, some
concluding remarks are provided, the results of the
paper are summarized, and an analysis of the compu-
tational complexity of the genetic adaptive controllers
is given.

2. The cargo ship steering control problem

The objective in the cargo ship control problem is to
control the ship heading, c by moving the rudder, d.
A coordinate system is ®xed to the ship as shown in
Fig. 1. The cargo ship is described by a third-order
nonlinear di�erential equation (AÊ stroÈ m and
Wittenmark, 1989), that is used in all simulations as
the truth model, and is given by

c�� �t� � 1

t1
� 1

t2

� �
�c�t� � 1

t1t2

� �
a _c3�t� � b _c�t�
� �

� k

t1t2
t3 _d�t� � d�t�
� �

: �1�

The input, d, and the output, c, are both measured in
radians. The constants a and b are assigned a value of
one for all simulations. The constants k, t1, t2, and t3
are de®ned as

k � k0
u

l
�2�

ti � ti0
l

u
; i � 1; 2; 3: �3�

where u is the forward velocity of the ship in m/s and l
is the length of the ship in m. For the cargo ship,
k0=ÿ 3.86, t10=5.66, t20=0.38, t30=0.89, l = 161 m
and u = 5 m/s (nominally). The maximum allowable
rudder angle is21.3963 rad (2808).

In all cases, the reference model is

Wm�s� � r2

�s� r��s� r�

with r= 0.05. Hence the output of the reference
model is

cm �Wm�s�z:

Fig. 1. Cargo ship control problems. The input to the system is the

rudder angle, d. The output of the system is the cargo ship heading,

c.
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Here, z is the desired cargo ship heading and cm is the

``ideal'' response, i.e. the response that will be tracked.

Note that this response is fairly slow, but the ship is

large and hence it is not realistic to request that the
rudder change its direction very fast.

In the simulation tests, the speed of the cargo ship,

u, is changed every 600 s, beginning at the nominal

5 m/s, dropping to 3 m/s, rising back to 5 m/s and

®nally rising again to 7 m/s. From Eqs. 2 and 3 it is
easy to see that such speed changes signi®cantly a�ect

Fig. 2. Reference input and cargo ship speed. The top plot depicts the reference input z (the dotted line) and the output of the reference model

cm (solid line). The reference input z changes by 0.7854 rad (458) every 150 s. The bottom plot shows the speed of the cargo ship over the course

of the simulation. The speed changes by 2 m/s every 600 s.

Fig. 3. Results using a conventional proportional-derivative (PD) controller. In this simulation p=ÿ 5 and d=ÿ 175.
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the dynamics of the ship. Intuitively, as the ship slows
down, the rudder becomes less e�ective as a steering
input. Fig. 2 shows the reference input, the reference
model output, and the speed of the ship used through-
out all simulations to follow.

To provide an idea of how a control system will op-
erate for this system, we show the response for the
case where d =ÿ 5(zÿ c)ÿ 175 d/dt(zÿ c) (i.e. a
manually tuned proportional-derivative (PD) control-
ler) in Fig. 3. The PD controller is able to regulate the
heading of the ship to within 2258 when u = 5 m/s,
but when u = 3 m/s it can only regulate it to within
27.58. Note that the PD gains of p =ÿ 5 and
d =ÿ 175 were selected because they minimize this
tracking error.

3. Direct adaptive control

In this section, the parameters of a controller are
directly adjusted to make the error between the cargo
ship heading and the reference model output go to
zero. The study begins with a conventional model
reference adaptive controller from (Ioannou and Jing
Sun, 1996) and then a genetic model reference adaptive
controller is developed.

3.1. Model reference adaptive control

In this section a model reference adaptive controller
(MRAC) (Ioannou and Jing Sun, 1996), with a gradi-
ent identi®cation algorithm to identify the parameters
of the system, is developed. It is assumed that the
cargo ship behaves as a third-order linear system,
de®ned by the transfer function:

G�s� � c
d
� k�1� t1s�

s�1� t2s��1� t3s� : �4�

It is assumed that the values of the plant parameters
are not known, but it is known that the plant is third-
order and that the gain k < 0.

Following (Ioannou and Jing Sun, 1996), the control
signal is de®ned as:

d � yT1 a�s�o1 � yT2 a�s�o2 � y3c� coz: �5�

The adaptive controller will tune the scalars c0 and y3
and the 2 � 1 vectors y1 and y2. As in (Ioannou and
Jing Sun, 1996), it is assumed an upper bound on the
parameter c0 is known, namely c0<c0=ÿ 0.1.

The terms in Eq. (5) are given by

o1 � d
L�s� ;

o2 � c
L�s� ;

E �Wm�s�dÿ ẑ

m2
;

ẑ � yTfp;

m2 � 1� fT
pfp;

fp � Wm�s�oT
1Wm�s�oT

2Wm�s�cc
h iT

;

y � �y1; y2; y3; co�T;
a�s� � �s1�T;
L�s� � s2 � s� 1;

g�y� � �co � co:

If vc0(t)v>c0 or (GEfp)
THgR0 (Hg = d/

dyg = [000001]T) then the controller parameter update
law is

_y � GEfp

otherwise we update y using projection

_y � GEfp ÿ G
rgrT

g

rT
gGrg

GEfp:

Gradient algorithm is used to identify the parameters
in the controller and attempt to make the error
between the plant and the reference model go to zero.

The vector y was initialized for this simulation to

y�0� � �1:3; 0:9; 9:9ÿ 0:1; 0:4; ÿ0:3�T:

These values were selected because the controller will
adapt to these parameters over time when the cargo
ship maintains a speed of 5 m/s (i.e. we are trying to
initialize the parameters as best we can). Performance
degrades with other choices for initial parameters (e.g.
y(0) = 0).

Fig. 4 shows the results using the MRAC. It is im-
portant to note that when the nonlinear model is used
in simulation the theory for the MRAC from
(Ioannou and Jing Sun, 1996) does not apply. The
MRAC performed very poorly when the cargo ship
speed was decreased to 3 m/s. It was unable to ade-
quately adapt to the changing system dynamics and
diverged signi®cantly from the reference model (and
signi®cant e�orts were put into tuning the controller
to even get the performance shown in Fig. 4). Clearly
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the performance is not even as good as that of the
®xed PD controller shown in Fig. 3.

3.2. Genetic model reference adaptive control

In this section a type of genetic model reference
adaptive controller (GMRAC) (Porter and Passino,
1994) is used to adjust the gains of a PD controller.
The GMRAC, shown in Fig. 5 uses a model of the
plant and a genetic algorithm to ``evolve'' controller

parameters to minimize the error between the cargo
ship heading and the reference model output. The gen-
etic algorithm (GA) uses the principles of evolution
and genetics to select and adapt the controller par-
ameters. For our simulations, a set of controllers is
used as the GA population, and each controller's po-
tential to control the cargo ship is evaluated.

First, the members of the population are de®ned, in
this case PD controllers. Each individual controller is
de®ned by a 10 digit number, its ``chromosome''. The

Fig. 5. GMRAC for cargo ship steering.

Fig. 4. Results using MRAC with continuous-time gradient identi®cation. The top plot shows the error between the reference model output and

the cargo ship response. The bottom plot shows the rudder angle, d.
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®rst four digits describe the proportional gain, and the
last six digits describe the derivative gain. The pro-
portional and derivative gains are allowed to lie
between

ÿ10 < pR0; ÿ200 < dR0:

For example, a possible chromosome is [1234123456].
This would translate into a proportional gain of
p =ÿ 1.234, and a derivative gain of d =ÿ 123.456.
Note that the negative sign is implied, as is the decimal
point after one digit for the p gain and after three
digits for the d gain. Also, because of restrictions
placed on d, the ®fth digit in the chromosome must be
either a 0 or 1 (for example, if the ®fth digit were a 2,
then necessarily pRÿ 200 which is outside the desig-
nated region).

During every time step, each member of the popu-
lation is evaluated on how well it minimizes the error
between the predicted closed-loop system response
(using a cargo ship model) and the predicted reference
model output. The cargo ship model used is the dis-
crete-time approximation (using zero-order hold with
sampling time T = 0.5) of the third-order continuous
time plant shown in Eq. (4), where k, t1, t2 and t3 are
as de®ned in Eqs. 2 and 3 assuming the cargo ship is
travelling at the nominal speed of 5 m/s. The discrete-
time cargo ship model is

G�z� � ĉ
d
� ÿ0:0001909�z� 0:9913��zÿ 0:9827�
�zÿ 1��zÿ 0:9972��zÿ 0:9600� ; �6�

which can be written as

G�z� � ĉ
d
� a1z

2 � a2z� a3
z3 � b1z2 � b2z� b3

�7�

where the values for a1, a2, a3, b1, b2, b3 can be found
from Eq. (6).

To evaluate the controller population, the GA ®nds
the error between the cargo ship heading c and the
reference input z, e =zÿ c, and the derivative of that
error2. For each member of the population, the GA
computes the rudder angle using e, eÇ , and the PD
gains on each chromosome. Next it estimates the cargo
ship heading and the reference model output NT = 5 s

into the future. Using this information, the GA can
determine which controllers in the population are
keeping the cargo ship heading as close as possible to
the reference model output.

The following pseudo-code more precisely de®nes
the ®tness evaluation of the GA and hence the oper-
ation of the GMRAC.

1. Complete the error and derivative of the error
between the cargo ship heading and the reference
input as

e�t� � z�t� ÿ c�t�; _e�t� � de

dt
:

2. Predict the reference model output, cm, NT s into
the future using a ®rst-order approximation

ĉm�t�NT� � cm�t� �NT _cm�t�:
Here cÇm(t) is not the continuous time derivative,
rather it is the discrete time ®rst order approximation
of the derivative,

_cm�t� �
cm�t� ÿ cm�tÿ T�

T

(notice that the notation for a derivative is being
abused).

3. Compute the current error between the cargo ship
heading and the reference model output.

E�t� � cm�t� ÿ c�t�:
4. Suppose that the ith candidate controller

Ci=( pi,di). For each candidate controller, Ci, do the
following:

Determine the rudder angle input using the pi,di
gains on the candidate controller chromosome

di � pie�t� � di _e�t�:
Initialize the discrete-time cargo ship model (Eq. (7)
with past samples from the cargo ship

ĉi�kÿ j� � c�tÿ jT�; j � 0; 1; 2;

di�kÿ j� � d�tÿ jT�; j � 0; 1; 2:

Assuming the rudder angle di stays constant3 for the
next N samples (i.e. di(k+1)= . . . = di(k+N)= di),
predict the output of the cargo ship model, c(k+ N),
N steps into the future using Eq. (7):

for j= 1 to N

ĉi�k� j� � a1di�k� jÿ 1� � a2di�k� jÿ 2�

� a3di�k� jÿ 3� ÿ b1ĉi�k� jÿ 1�

ÿ b2ĉi�k� jÿ 2� ÿ b3ĉi�k� jÿ 3�:

next j.

2 A continuous-time derivative is used. It is assumed that it is

available for the PD controller in the last section and therefore avail-

able here. Note, however that the results change very little if a back-

wards di�erence approximation is used for eÇ .
3 As an alternative, one could let the controller Ci vary the rudder

angle di over this time interval. A constant control signal di is

assumed because it is more accurate than estimating di(k + j) based

on the gains of the candidate controller and an estimation of the

error signal. The inherent accuracy of approximating the derivative

of the error signal eÇ (t) using the discrete-time cargo ship model are

further ampli®ed by the relatively large derivative gain of the PD

controller.
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Using the output of the cargo ship model, estimate
the error between the cargo ship heading and the refer-
ence model output NT s into the future.

Êi�t�NT� � ĉm�t�NT� ÿ ĉi�k�N�:
Estimate the derivative of the error between the cargo
ship model output and the reference model output,
using a ®rst order approximation.

_Ei�t� � Êi�t�NT� ÿ E�t�
NT

:

Of course the EÇ is not a continuous-time derivative,
merely a discrete time approximation.

Assign ®tness, Ji, to each controller candidate, Ci:

�Ji � E�t� � b_Ei�t�:
Then

Ji � a
�J2i � a

:

The values a = 0.001 and b = 5 were chosen. The
choices for a and b are explained below.

5. Repeat step 4 for each member of the population.
6. The maximally ®t controller becomes the control-

ler used for the next time step.
The value chosen for a sets an upper bound on the

®tness Ji and its choice should be considered carefully.
If a is too small, then a large disparity in ®tness values
will exist in the population (a small change in Ji could
result in a large change in Ji), and in general only a
few individuals will be selected to reproduce into the
next generation (assuming roullette-wheel selection, as
described below). The result could be a population of
nearly identical individuals and hence eliminate the
parallel-search mechanism of the GA. However, if a is
chosen too large, then all members of the population
will have nearly equal ®tness values, and hence nearly
equal chances to reproduce, thereby compromising the
entire ``survival of the ®ttest'' nature of the GA. In
general, a is selected to be about an order of magni-
tude smaller than the average value of Ji. This appears
to be a reasonable compromise value.

The value for b is chosen based on the desired per-
formance of the system and the ability to control the
plant. Heuristically speaking, b de®nes how quickly we
would like the error E between the cargo ship heading
and the reference model to reach zero. To see this,
notice that the ®tness function is maximized when J 2

i

is minimized, which corresponds to when Ji=0.
Looking at the equation for Ji=E(t) + bEÇ i(t), the ®t-
ness function is maximized when EÇ i(t) =ÿ epsi\rm (t)/
b. For example, if E(t) = 1.0, then we would like EÇ i(t)
to be ÿ0.2 so that the error is driven to zero in ap-
proximately b = 5 s. In this example, the best control-
ler is the one that produces EÇ i(t) closest to ÿ0.2. When

choosing b, it is desired to make it as small as possible,
but it is not desirable to induce oscillations, nor can
physical constraints such as rudder input saturation
and slow system dynamics be ignored.

The ``look ahead time window'', N, was chosen to
be 10 samples (NT = 5 s) as a compromise of con¯ict-
ing interests. In general it is good to make N large,
because often the e�ects of the current input signal are
not readily apparent at the output of the system. The
longer the time window, the better we are able to
assess the e�ects the input has on the system.
However, the error between what the cargo ship model
predicts and how the actual cargo ship behaves
increases as N increases, thereby degrading the accu-
racy of the ®tness function. Also, in this application, it
is assumed that the rudder angle stays constant for N
s, an assumption that becomes less valid as N
increases. In general it has been found that time win-
dows of 10±20 discrete-time samples work well.

Once each controller in the population has been
assigned a ®tness Ji, the GA uses the roullette-wheel
selection process, as described by Goldberg (Goldberg,
1989) to pick which controllers will ``produce'' into the
next generation. The individuals selected to reproduce
are said to be ``parents'' of the next generation. In the
roullette-wheel selection process, the probability of an
individual reproducing into the next generation is pro-
portional to the ®tness of that individual. More speci®-
cally, the probability ppi that the ith member of the
population will be selected as the jth member of the
parent pool is

ppi � JiXN
k�1

Jk

:

Note that some individuals will likely be selected to
become a parent more than once (indicating they will
have more than one o�spring) while others will not be
selected at all. In this manner, un®t individuals are
generally removed from the population while ®t indi-
viduals multiply.

Once the parents of the next generation have been
selected, they are randomly paired together. Each pair
of parents then has a probability, pc of undergoing
``crossover'', in which some digits in the parent
chromosome are exchanged with some digits of the
other parent chromosome. This is most commonly
done by selecting a location on the chromosome (the
crossover site) and exchanging all digits past that point
on the chromosome with the digits in the same lo-
cations on the mating chromosome. However, cross-
over is dome di�erently in all our genetic algorithms in
this paper. Here, once two parents have been selected
for crossover, each digit on the chromosome has a 0.5
probability of being exchanged for the digit in the
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same location on the mating chromosome. The digits

that crossover maintain their original position in the

chromosome, and are only exchanged with the digit in

the same position on the other chromosome. For

example, if two ``parent'' chromosomes, [1111111111]

and [3333333333], undergo crossover, the resulting

``children'' chromosomes could be [1133313111] and

[3311131333]. Note that this method of crossover is

not standard, but we have found it to be more e�ective

than the traditional method when more than two traits

are encoded onto the chromosome because it allows

for the possibility of two non-adjacent traits on a

chromosome to remain together after crossover.

Crossover is a form of local search in the p, d par-

ameter search space. The probability of crossover, pc,

was set at 0.9.

After crossover, each digit in each child chromo-

some has the probability, pm, of mutating. If a digit is

selected for mutation, then that digit is replaced by a

new randomly selected digit. For example, a chromo-

some [1111111111] may be mutated to [1115111111].

Note that a digit may be ``mutated'' to its original

value, in e�ect not being mutated at all. The prob-

ability of mutation, pm, was set at 0.1 and should take

into account the possibility of these false-mutations.

Mutation is a form of global search in the p, d par-

ameter search space.

After mutation, the ``children'' chromosomes

become the next generation of controllers and the pro-

cess is repeated at the next time step. One exception to

this process is the elitism operator (Porter and Passino,
1994), which sidesteps selection, crossover, and mu-
tation and simply places the most ®t controller from
the previous generation into the next generation with-
out modi®cation. Elitism is used in all GAs in this
paper.

The results of the GMRAC are shown in Fig. 6
(recall that non-adaptive PD controller results were
shown earlier). The controller performs very well when
the cargo ship has a speed of 5 or 7 m/s. It has di�-
culty when the ship slows to 3 m/s, as do all of the
controllers investigated in this paper. Note that since
the GMRAC is a stochastic adaptive controller, when
it is run again, results may di�er from those shown in
Fig. 6. Fig. 6 shows the typical behavior of the
GMRAC. In the concluding remarks, it is shown how
an average controller will behave over a set of 100
simulations.

3.3. GMRAC with ®xed population members

Because genetic algorithms are stochastic processes,
there is always a small possibility that good controllers
will not be found and, hence, degrade performance.
While this possibility diminishes with population size,
it nevertheless exists. One method to combat this
possibility is to seed the population of the GA with in-
dividuals that remain unchanged in every generation.
These ®xed controllers can be spaced throughout the
control parameter space to ensure that a reasonably

Fig. 6. Results using GMRAC. The top plot shows the error between the reference model output and the cargo ship response. The bottom plot

shows the rudder angle, d.
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good controller is always present in the population.
Simulations were run for the GMRAC with 25 ®xed
controllers in the GA population (leaving the remain-
ing 75 controllers to be adapted by the GA as usual).
Because the controller gains were restricted to
ÿ10 < pR0 and ÿ200 < dR0, the population was
seeded with 25 ®xed PD controllers, de®ned by all
possible combinations of p $ {ÿ10, ÿ7.5, ÿ5, ÿ2.5, 0}
and d $ {ÿ200, ÿ150, ÿ100, ÿ50, 0}.

Over the course of 100 simulations, the GMRAC
with ®xed population members had a smaller di�er-
ence between minimum and maximum errors than did
the GMRAC with no ®xed population members (see
Table 1). This was expected because the ®xed models
add a deterministic element to the inherently stochastic
genetic algorithm.

Using ®xed controllers is a novel control technique
that appears to decrease the variations in the perform-
ance results. The technique is similar to (Narendra and
Balakrishnan, 1994) where Narendra and Balakrishnan
use ®xed plant models to identify a plant and improve
transient responses. Likewise, having ®xed controllers
the population enables the GA to ®nd reasonably
good controllers quickly and then search nearby to
®nd better ones.

4. Indirect adaptive control

In this section, there is an attempt to model the
non-linear cargo ship dynamics with a simple second-
order linear model provided in (AÊ stroÈ m and
Wittenmark, 1989) and given by

G�s� � kc
s�s� pc�: �8�

The parameters kc and pc are used to create pro-
portional and derivative gains for a PD controller
using the certainty equivalence principle (Ioannou and
Jing Sun, 1996). Given the plant model Gp(s) and the
controller model Gc(s) = p + ds, the closed loop trans-
fer function is

T�s� � Gc�s�Gp�s�
1� Gc�s�Gp�s� �

kcp� kcds

s2 � s�pc � kcd� � kcp
:

Neglecting the closed-loop system zero and setting the
closed-loop system poles equal to the reference model
Wm(s) poles, r, we determine the values of the pro-
portional and derivative gains to be

Table 1

Results

Control technique Sum of the errors squared e(kT)2 Sum of the inputs squared d(kT)2

Conventional PD 29.75 3991

MRAC 79.77 8142

Genetic model reference

Adaptive control

Minimum 9.66 5956

Average 10.06 5980

Maximum 10.25 5993

Genetic model reference

Adaptive control with ®xed controllers

Minimum 10.02 5991

Average 10.18 6002

Maximum 10.40 6014

Indirect continuous-time gradient identi®cation 14.83 3570

Indirect discrete-time least-squares identi®cation 27.58 3392

Indirect genetic identi®cation

Minimum 27.47 3776

Average 29.73 3802

Maximum 36.52 3836

General genetic adaptive control

Minimum 8.32 5756

Average 8.73 5935

Maximum 9.21 6217

General genetic adaptive control with ®xed controllers

Minimum 8.12 5769

Average 8.66 5980

Maximum 9.09 6467
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p � r2

kc
; �9a�

d � 2rÿ pc
kc

: �9b�

Below there is an attempt to identify the plant model
parameters, kc and pc, using a continuous-time gradi-
ent algorithm, a discrete-time least-squares algorithm
and ®nally with a discrete-time genetic algorithm.
Then, Eq. (9) will be used to specify the PD controller
gains.

4.1. Continuous-time gradient identi®cation algorithm

Here, a continuous-time gradient algorithm is used
to identify the parameters kc and pc of the plant model
in Eq. (8). Again, the speed of the cargo ship is varied
and we observe how well the identi®cation algorithm
can track the response of the cargo ship.

Following (Ioannou and Jing Sun, 1996) de®ne

z � y�Tf� Z � cs2

L�s� ;

y � �kc pc�T;

f � d
L�s�
ÿcs
L�s�

� �T
:

The update law is

_y � GEf

where

G � 200 0

0 20000

" #
;

E � zÿ yTf
m2

;

m2 � 1�ms;

_ms � ÿd0ms � d2 � c2;

L�s� � s2 � 2s� 1:

The constant d0 was set to 0.001. The vector y was
initialized to [ÿ0.0005 .02], which are the values the
gradient algorithm settles on when the cargo ship is
simulated at a constant speed of 5 m/s (i.e. again the
algorithm is given an advantage by starting the values
of y close to their optimum values). The controller p
and d gains were continuously adjusted using Eq. (9)
and the current values of kc and pc.

The results are shown in Fig. 7. As expected, the
performance degraded when the cargo ship slowed to
3 m/s. Overall, the indirect adaptive controller per-
formed quite well. The performance is aided by using
a continuous-time adaptation mechanism as opposed
to the discrete-time mechanism used by the least-
squares and GA based methods studied next.

Fig. 7. Results using indirect adaptive control with continuous-time gradient identi®cation. The top plot shows the error between the reference

model output and the cargo ship response. The bottom plot shows the rudder angle, d.
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4.2. Discrete-time least-squares identi®cation algorithm

In this section, the discrete-time least-squares identi-
®cation algorithm is used to identify the linear plant
model parameters. The model used is the linear, zero-
order hold, discrete time equivalent (T = 0.5 s) of the
second-order linear continuous-time plant G(s) as
shown in Eq. (8).

G�z� � ĉ
d
� kdz

2

�zÿ 1��zÿ pd� : �10�

The discrete-time equivalent cargo ship model must be
written in polynomial form for the least-squares algor-
ithm. The cargo ship model G(z) can be written as

G�z� � a0z
2

z2 � b1z� b2
:

Because it is assumed, from the continuous-time plant
model Gp(s), that the plant contains an integrator, or
1/s term, it can likewise be assumed that the discrete-
time model contains an integrator, or 1/zÿ 1 term.
Therefore, when transforming the discrete-time par-
ameters back into continuous time parameters, it can
be assumed that one discrete-time pole is set at 1 and,
therefore, the second pole is simply pd=b2. Obviously,
the discrete-time gain, kd=a0.

The update laws for the least squares algorithm are
as follows:

x�k� � ÿy�kÿ 1� ÿ y�kÿ 2�u�k�� �T
;

ŷ�k� � �b1 b2 a0�;

ŷ � xT�k�ŷ�k�;
P�k� � P�kÿ 1� ÿ P�kÿ 1�x�k�

1� xT�k�P�kÿ 1�x�k�
h i

xT�k�P�kÿ 1�;

ŷ�k� � ŷ�kÿ 1� � P�k�x�k� y�k� ÿ xT�k�ŷ�kÿ 1�
h i

:

If some knowledge of the plant parameters is assumed,
namely their relative magnitudes, the covariance
matrix, P, and parameter estimate, y, can be initialized
to more quickly identify the parameters of the system
and hence improve performance. The covariance
matrix was initialized to

P�0� �
5 0 0
0 5 0
0 0 20

24 35

and the plant parameters estimates were initialized to

ŷ�0� � ÿ1:99 0:99 ÿ0:001� �
:

The least-squares algorithm was developed with the
assumption that the plant parameters remain constant.
Because in our simulations the speed of the cargo ship
is varied and hence the nonlinear system dynamics
vary, the least-squares algorithm has di�culty continu-
ally adjusting to the changing plant parameters. To
compensate for this and improve the performance, the
covariance matrix, P, was re-initialized to P(0) every
150 s, before every change in the reference input4.

After each time step, the current estimate of the dis-
crete-time plant parameters kd and pd is used, and the
following zero-order hold transforms are used to com-
pute the continuous-time plant parameters.

kc � kd
pdT2

; �11a�

pc � 1ÿ pd
pdT

: �11b�

The controller p and d gains were adjusted after every
sample (T = 0.5 s) using Eq. (9) and the current values
of kc and pc.

The results are shown in Fig. 8. The controller out-
performed the non-adaptive PD controller, but it did
not perform particularly well. This can mostly be
attributed to the di�culty in identifying a continuous-
time non-linear system using a simple discrete-time
plant with a large sampling interval.

4.3. Indirect genetic adaptive control

In this section, the use of a second-order linear dis-
crete-time model of the cargo ship is used and a gen-
etic algorithm is used to identify the parameters of this
model. The cargo ship model parameters are then used
in a certainty equivalence based adaptive controller.
Using the same second-order continuous-time model
as shown in Eq. (8), an approximate discrete-time
model can be derived. Using the zero-order hold dis-
crete-time approximation with sampling time
T = 0.5 s, the following is obtained

G�z� � ĉ
d
� kdz

2

�zÿ 1��zÿ pd� : �12�

In this application, the genetic algorithm evolves the
parameters kd and pd by looking at the past values for
d and c and attempting to minimize the error between
the cargo ship heading c and the output of the cargo
ship model, c. The overall strategy is shown in Fig. 9.

The individuals of the GA population are de®ned by
10 digits, the ®rst ®ve digits describe the kd parameter,

4 That is, a periodic ``covariance reset'' is performed, somewhat

di�erent than in (Ioannou and Jing Sun, 1996). The reset is per-

formed periodically to avoid the computational complexity of having

to test the eigenvalues of P at each step.
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and the last ®ve digits describe the pd parameter. The
parameter values are restricted to lie between

ÿ0:001 < kdRÿ 0:0001; 0:5Rpd < 1:0:

Note that both parameters are fairly restricted. While
shrinking the parameter search space improves the
identi®cation performance, it also requires some a
priori knowledge of the cargo ship dynamics. But for
many of the techniques in this paper, the existence of
such knowledge is assumed. For instance, in both the
gradient and least-squares algorithms, some a priori
knowledge was also required to initialize the plant par-
ameters and adaptation gains.

The following pseudo-code de®nes the ®tness evalu-
ation used in the genetic identi®cation algorithm. For
each plant model candidate in the population, Pi, that
is characterized by Pi=(kdi, pdi), do the following:

1. Initialize the discrete-time model in Eq. (12) with
the past discrete-time samples of the cargo ship head-
ing.

ĉi�kÿNÿ j� � c�tÿNTÿ jT�; j � 0; 1:

2. Using Eq. (12), plant model candidate Pi, and the
past N = 200 samples of the rudder angle input, d(k),
estimate the past N samples of the cargo ship heading,
c(k).

For j = 1 to N

ĉi�kÿN� j� � kdid�kÿN� j�
ÿ �ÿ1ÿ pdi�ĉi�kÿN� jÿ 1�
ÿ pdiĉi�kÿN� jÿ 2�; �13�

next j.
3. Compute the error between the estimated output,

c, and the actual sampled cargo ship heading, c, using

êi �
XN
j�1

c�kÿN� j� ÿ ĉi�kÿN� j�
h i2

:

4. Assign ®tness, Ji, to each plant model candidate:

Ji � a
êi � a

:

Fig. 8. Results using indirect adaptive control with discrete-time least squares identi®cation. The top plot shows the error between the reference

model output and the cargo ship response. The bottom plot shows the rudder angle, d.

Fig. 9. Indirect genetic adaptive control for cargo ship steering.
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Here a = 0.02 and was selected for the same reasons
as discussed for the GMRAC.

5. Repeat steps 1±3 for each member of the popu-
lation.

6. The maximally ®t cargo ship model becomes the
model used for the next time step.

The model estimation window, N, was set to 200
samples (100 s). Large values for N obviously increase
computation time, but also improve the estimation
performance of the identi®er. Small values for N
increase the likelihood that a ``bad'' plant model will
be selected that does not accurately estimate the long-
term behavior of the actual system, thereby causing a
``bad'' controller to be selected that adversely a�ects
the closed-loop system performance.

One problem with genetic adaptive identi®cation is
that the GA attempts to minimize the prediction error
of the cargo ship model; it does not necessarily ®nd
the best parameters to identify the plant. Therefore,
the parameters the GA determines to be the best for
one time instant may be far removed from the par-
ameters the GA found just one time instant before.
The result is that the GA switches between many plant
models and hence the parameters it identi®es are some-

what erratic. Having plant parameters that move

quickly cause the controller parameters to also move

quickly, which results in a noisy control signal. To

compensate for this, the plant parameters are passed

through a low-pass ®lter5, the discrete-time (zero-order

hold, T = 0.5) equivalent of F(s) = 0.01/s + 0.01.

Once the ®ltered estimates of the discrete-time plant

model parameters kd and pd are obtained, they can be

transformed into continuous-time plant model par-

ameters kc and pc using the conversions in Eq. (11).

The controller p and d gains are then adjusted using

Eq. (9) and the current values of kc and pc.

The results are shown in Fig. 10. As was the case

for the least-squares adaptive controller, it is di�cult

to identify the parameters of a non-linear system using

a discrete-time plant with large sampling interval.

However, another problem with the genetic identi®-

cation algorithm is that the GA attempts to minimize

the prediction error (which it does very well); it does

not attempt to ®nd the best parameters for the cargo

ship model. While it is often the case that the model

with the minimum prediction error will be the model

with the best parameters, it does not apply to non-lin-

ear systems where there is not necessarily an ``ideal''

linear system model. The GA does very well at switch-

ing between cargo ship models to minimize the predic-

tion error, but pays no attention to ®nding an

``optimal'' cargo ship model. Hence, using the cargo

ship model parameters to de®ne a controller is a di�-

cult task6.

Fig. 10. Results using indirect genetic adaptive control. The top plot shows the error between the reference model output and the cargo ship re-

sponse. The bottom plot shows the rudder angle, d.

5 An alternative to this approach would be to lower the mutation

probability, but it has been found that this method works better.
6 One approach to solving this problem would be to use a parame-

terized feedback-linearizable model for the identi®er structure and a

certainty equivalence control law that is based on di�erential geo-

metric methods.
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5. General genetic adaptive control

In this section, the direct and indirect genetic model
reference adaptive control are combined into a general
genetic adaptive controller (GGAC). In particular, a
genetic algorithm is used to identify a cargo ship
model (as used in the indirect genetic adaptive control-
ler), and another genetic algorithm is used to evolve
the best controller (as used in the GMRAC). Fig. 11
shows the general genetic adaptive control system.

In this control technique, the discrete-time third-
order linear plant model obtained by discretizing
Eq. (4) using the bilinear transformation

G�z� � kd�z� 1��z� 1��zÿ zd�
�zÿ 1��zÿ pd1��zÿ pd2�

is used.
The genetic identi®cation algorithm identi®es the

parameters kd, zd, pd1, and pd2. Note that these par-
ameters are di�erent than those found in the indirect
adaptive control technique because previously a sec-
ond-order plant model was assumed and the zero-
order hold transformation to approximate the discrete
time model was used.

The plant model chromosomes consist of 16 digits,
allotting four digits for each of the four parameters.
The parameters are restricted as follows:

ÿ0:001 < kdR0; 0:8Rpd1; pd2; zd < 1:0:

The ®tness function is identical to the one described
previously for the indirect genetic adaptive controller,

except the model estimation window, N, was decreased

from 200 samples to 100 samples to decrease compu-

tation time. The probability of crossover was pc=0.8,

the probability of mutation was pm=0.1.

The best cargo ship model parameters are passed

directly to the genetic adaptive controller which uses

them in its ®tness evaluation of the population of con-

trollers. The genetic adaptive controller is identical to

the genetic model reference adaptive controller

described previously, with the obvious exception that

the plant model used in the ®tness function is continu-

ally adapting.

The results using the GGAC are shown in Fig. 12.

The GGAC does an excellent job of tracking the refer-

Fig. 11. General genetic adaptive control for cargo ship steering.

Fig. 12. Results using GGAC. The top plot shows the error between the reference model output and the cargo ship response. The bottom plot

shows the rudder angle, d.
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ence model. In fact, the GGAC performs the best of
all the control techniques investigated in this paper at
tracking. However it should be noted that the GGAC
also requires a large amount of input energy and quick
movement of the rudder, which may be di�cult to
achieve in practice.

The GGAC was also run with ®xed controllers,
identical to the ones used for the GMRAC with ®xed
controllers. The results were not only more consistent
(as measured by the variations in the tracking error),
but they were also better in terms of reference model
tracking (i.e. the tracking was smaller on average with
®xed controller models than without them). However,
the GGAC with ®xed controllers required on average
greater input energy than the GGAC without ®xed
controllers. The results for this case are summarized in
Table 1.

6. Concluding remarks

In this paper several approaches to genetic adaptive
control have been introduced and a comparative
analysis between several conventional and genetic
adaptive controllers for a ship steering application has
been provided.

6.1. Summary of results

To see how all the controllers perform relative to
each other, consider Table 1 which shows numerical
results for the simulations in this paper. The error (in
degrees) between the cargo ship heading and the refer-
ence model was sampled every 0.1 s, this error was
squared and the sum of the squared errors was
summed over the entire simulation. The same was
done for the rudder angle input, d, summing the
squared error (in degrees) measured every 0.1 s. For
the genetic adaptive controllers, 100 simulations were
conducted and the minimum, average and maximum
values of the sums of the squared errors are provided;
the same was done for the rudder inputs.

As mentioned previously, the general genetic adap-
tive controller performed the best on average when
measured by the ability to track the reference model.
However, it also required a large amount of input
energy, as measured by d 2 and shown in Table 1.
While the general genetic adaptive controller per-
formed very well, there are still many uncertainties
about this technique. No proofs of stability, conver-
gence, or robustness have been established. Moreover,
there is currently no way to prove that the schemes
will achieve a speci®c desired transient performance. In
addition, there is currently no way to verify that the
genetic adaptive controllers will ever ®nd an optimal
controller in the space of candidate controllers.

The indirect discrete-time least-squares adaptive con-
troller uses the least control energy but achieved poor
tracking. The indirect continuous-time gradient adap-
tive controller performed very well as a compromise
between reference model tracking and minimum input
energy. The indirect genetic adaptive controller did not
perform particularly well. The conventional MRAC
performed the worst, both in tracking performance
and input energy. Finally, the genetic model reference
adaptive controller tracked very well, but it too
required a large amount of input energy.

6.2. Computational complexity

Perhaps the biggest concern with genetic adaptive
control techniques is the computational complexity of
the algorithm. To better understand the computation
time of the genetic algorithms, we carefully examined
our simulation program (written in the C language)
and computed roughly the number of operations
required per generation. Using the variables P to rep-
resent the population size, N to represent the look-
ahead time window steps in the ®tness function, and C
to represent the length of the chromosome, the follow-
ing equation was arrived at:

O � P�P� 40N� 20C� 60�:

Here, O represents the number of operations per gen-
eration (i.e. per time step) of the genetic algorithm,
where an operation is any addition, multiplication,
subtraction, division, assignment, increment, compari-
son, or declaration. This equation represents a rough
estimate; we were careful to overestimate calculations
when simplifying this equation.

Using this equation, it can be seen that the
GMRAC requires roughly 760,000 operations per gen-
eration or 1.52 million operations per s (assuming a
sampling time of T = 0.5 s). This number is less for
the case with ®xed population members. The indirect
genetic adaptive controller requires approximately
836,000 operations per generation or 1.7 million oper-
ations per s. The GGAC in Section 5 uses two genetic
algorithms and requires approximately 3.2 million op-
erations per s. Of course, this computation time could
be reduced with more streamlined code and a smaller
population size and chromosome length. Because this
research used simulations, there was virtually no
attempt to minimize the computation time. It is clear,
however, that substantial improvements could be made
in terms of processing time. Nevertheless, with the
cheap and powerful microprocessors widely available
today, a controller that requires 3.2 million operations
per s is certainly implementable.
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