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Abstract

A genetic algorithm (GA) uses the principles of evolution, natural selection, and genetics to offer a method for parallel search of
complex spaces. This paper describes a GA that can perform on-line adaptive state estimation for linear and nonlinear systems.
First, it shows how to construct a genetic adaptive state estimator where a GA evolves the model in a state estimator in real time so

that the state estimation error is driven to zero. Next, several examples are used to illustrate the operation and performance of the
genetic adaptive state estimator. Its performance is compared to that of the conventional adaptive Luenberger observer for two
linear system examples. Next, a genetic adaptive state estimator is used to predict when surge and stall occur in a nonlinear jet

engine. Our main conclusion is that the genetic adaptive state estimator has the potential to offer higher performance estimators for
nonlinear systems over current methods. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A Luenberger observer is used to estimate the state of
a linear system (plant), given a model of the linear
system (that is, assuming known plant parameters), and
it can perform properly given that certain assumptions
about the structure of the plant hold (for example, that
the state variables are observable). A conventional
method for state estimation for a plant whose exact
parameters are not known is the adaptive Luenberger
observer, described in Ioannou and Sun (1996). This
observer tunes its estimates of the plant parameters on-
line, in addition to its estimates of the states of the plant.
A drawback of the adaptive Luenberger observer is that
it is primarily useful for linear plants whose model
structures are in a specific form. If a linear plant has a
model that is not in the required form, a transformation
can easily be used to put the model in the proper form.
Unfortunately, this may result in transformed states that
have an unclear physical meaning (if any physical
meaning at all), or that are inadequate for developing
a useful control law.

The genetic algorithm (GA) has been used in a large
number of applications, in areas ranging from econom-
ics and game theory to control system design. It is a
stochastic process which attempts to find an optimal
solution for a problem by using techniques that are
based on Mendel’s genetic inheritance concept and
Darwin’s theory of evolution and survival of the fittest.
GAs have been used for parameter estimation and
system identification (Yao and Sethares, 1994; Kristins-
son and Dumont, 1992). The use of the GA for state
estimation has been studied in Porter and Passino
(1995), where the authors adapt the gains of a linear
observer to estimate the state of a nonlinear system.

This paper introduces a new approach to adaptive
state estimation where a genetic algorithm is used to
estimate the plant parameters and hence to obtain an
estimate of the state. The approach is significantly
different from the one in Porter and Passino (1995) since
there the authors had to assume a given model; here the
model is estimated. Moreover, a new set of examples of
state estimation, and a comparative analysis with
conventional methods, is provided.

The goal of the first two examples is to show that the
GA can perform adaptive state estimation in cases that
are suitable for the adaptive Luenberger observer. This
would support the use of the GA as an alternative
method in cases where the Luenberger observer may be
difficult to tune. In addition, it is shown that the GA can
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be used in cases where conventional methods may fail
(nonlinear plants, for example). In particular, the paper
shows how to develop a genetic adaptive state estimator
for predicting surge and stall in a jet engine (an earlier
and shorter version of this portion of this work is
contained in Gremling and Passino (1997). Comparisons
to the conventional extended Kalman filter (EKF) are
made (for an introduction to this standard estimation
approach see, Mendel (1995); it is beyond the scope of
this paper to introduce such a standard well-known
method); the EKF fails for this application while the
genetic adaptive state estimator succeeds.

2. Relevant background: a base-10 genetic algorithm

In order for the GA to find the optimal solution to a
particular problem, the parameters that comprise a
solution must be encoded into a form upon which the
GA can operate. To borrow a term from biology and
genetics, any set of parameters which may be a solution
to the given problem is called a chromosome, and the
individual parameters in that possible solution are called
traits. Since the GA will most likely be implemented on
a digital computer, each trait must be encoded with a
finite number of digits (called genes). The more genes in
a given trait (or in a chromosome), the longer the GA
will take for encoding and decoding purposes and in
other operations, so a reasonable length should be
chosen. The entire set of chromosomes (that is, the
entire set of candidate solutions to the given problem)
upon which the GA will operate is called a population.

Here, it is important to discuss the assignment of the
individual genes. A particular gene can take any one of a
given number of values (called alleles). The GA
described in Goldberg (1989) is a base-2 GA, in which
all traits are encoded as binary numbers and all genes
may take a value of 0 or 1. For this study, however, a
base-10 GA is used, in which each gene can take any
value from 0 to 9 (an extra gene representing the sign �
may be required for each trait). The base-10 approach
was chosen for this study because it simplified the
encoding=decoding procedure, and it provided for easy
and intuitive monitoring of the dynamics of the
operation of the GA. Simplification of the en-
code=decode procedure is especially important here
since we are using the GA in a real-time system where
encoding and decoding must occur within the sampling
interval. Note that none of the techniques presented
after this point require the use of a base-10 GA } a
base-2 GA could just as easily be used (as can be easily
shown in simulation studies). In the discussion that
follows, however, any mention of the GA implies a base-
10 approach. Overall, we must emphasize that it is not
the objective of this paper to determine the best GA to
solve the state estimation problem. Our objective is to

show how to use a GA to solve the problem. Future
work needs to focus on convergence, robustness, and
effects of GA mechanics on estimation performance as
this is beyond the scope of this work.

To evolve the best solution candidate (or chromo-
some), the GA employs the genetic operators of
selection, crossover, and mutation for manipulating the
chromosomes in a population. A brief description of
these operators follows, and a more detailed description
can be found in Goldberg (1989), Michalewicz (1992)
and Srinivas and Patnaik (1994). The GA uses these
operators to combine the chromosomes of the popula-
tion in different arrangements, seeking a chromosome
that maximizes some user-defined objective function
(called the fitness function). This combination of the
chromosomes results in a new population (that is, the
next generation). The GA operates repetitively, with the
idea that, on average, the members of the population
defining the current generation should be as good (or
better) at maximizing the fitness function than those of
the previous generation. The most fit member of the
current generation (that is, the member with the highest
fitness function result, or ‘‘fitness value’’) at the time the
GA terminates is often taken to be the solution of the
GA optimization problem.

The first genetic operator used by the GA for creating
a new generation is selection. To create two new
chromosomes (or children) two chromosomes must be
selected from the current generation as parents. As is
seen in nature, those members of the population most
likely to have a chance at reproducing are the members
that are the most fit. The technique used in Goldberg
(1989) for selection uses a ‘‘roulette wheel’’ approach.
Consider a roulette wheel that is partitioned according
to the fitness of each chromosome. The fitter chromo-
somes occupy a greater portion of the wheel and are
more likely to be selected for reproduction. In Yao and
Sethares (1994), a selection method is chosen so that a
given segment of the population corresponding to the
most fit members (that is, the D most fit members) are
automatically selected for reproducing. Therefore, the
least-fit members have no chance of contributing any
genetic material to the next generation. Of the D most fit
members of the current population, parents are ran-
domly chosen, with equal probability. The latter method
of selection is used in this study.

Once two parents have been selected, the crossover
operation is used. Crossover mimics natural genetics
(that is, ‘‘inheritance’’) in that it causes the exchange of
genetic material between the parent chromosomes,
resulting in two new chromosomes. Given the two
parent chromosomes, crossover occurs with a user-
defined probability pc. According to Goldberg (1989), if
crossover occurs, a randomly chosen ‘‘cross site’’ is
determined. All genes from the cross site to the end of
the chromosome are switched between the parent

J.R. Gremling, K.M. Passino / Engineering Applications of Artificial Intelligence 13 (2000) 611–623612



chromosomes, and the children are created. Another
approach to crossover, one that is used in Yao and
Sethares (1994) and in this study, is that crossover
occurs exactly once (that is, pc ¼ 1) for every trait, with
the cross site within that trait chosen randomly. That is,
all genes between the cross site and the end of the trait
are exchanged between the parent chromosomes. Cross-
over helps to seek for other solutions near to solutions
that appear to be good.

After the children have been created, each child is
subjected to the mutation operator. Mutation occurs on
a gene-by-gene basis, each gene mutating with prob-
ability pm. If mutation does occur, the gene that is to
mutate will be replaced by a randomly chosen allele (in
this case, a randomly chosen value between 0 and 9).
The mutation operator helps the GA avoid a local
solution to the optimization problem. If all of the
members of a population should happen to converge to
some local optimum, the mutation operator allows the
possibility that a chromosome could be pulled away
from that local optimum, improving the chances of
finding the global optimum. However, since a high
mutation rate results in a random walk through the GA
search space, pm should be chosen to be somewhat
small. We have found, however, that in some instances
in real-time systems, we need a slightly higher mutation
rate. This is the case since the fitness function depends
on the dynamically changing state of a system, so the
locality of an optimum is time-dependent and we must
ensure that the GA is readily capable of exploring new
opportunities for maximizing the time-varying fitness
functions.

If a chromosome is generated by crossover and
mutation, it is possible that one or more of its traits
will lie outside the allowable range(s). If this occurs,
each trait that is out of range should be replaced with a
randomly selected trait that does fall within the
allowable range.

In addition to selection, crossover, and mutation, a
fourth operator can be used by the GA. This operator,
known as elitism, causes the single most fit chromosome
of a population to survive, undisturbed, in the next
generation. The motivation behind elitism is that after
some sufficiently small amount of time, a candidate
solution may be found to be close to the optimal
solution. To allow manipulation of this candidate
solution would risk unsatisfactory performance by the
GA. Therefore, with elitism, the fitness of a population
(seen as the fitness of the best member of the population)
should be a nondecreasing function from one generation
to the next. If elitism is selected, the most fit member of
the current generation is automatically chosen to be a
member of the next generation. The remaining members
are generated by selection, crossover, and mutation.
Notice, also, that this allows us to raise the mutation
probabilty since we know that we have a good solution

available. In Yao and Sethares (1994), as well as in this
study, elitism can involve more than just one member.
That is, a certain number rD (possibly more than one)
of the most fit members will survive in the next
generation without manipulation by crossover or muta-
tion. If the most fit member would point to a local
optimum in the GA search space, but a slightly less fit
member points to the global optimum, they might both
survive in the next generation with this new form of elitism.

To initialize the GA, a chromosome length must be
chosen, along with the length and position of each trait
on the chromosome. The allowable range for each trait
must also be specified. The population size (denoted N)
must be specified, along with the method of generating
the first population. The individual members may be
randomly generated, or they may be initialized to some
set of ‘‘best guesses’’. In this study, a randomly
generated initial population is always used. In addition,
pc and pm must be specified. After this initialization, the
GA can operate freely to solve its optimization problem.

3. Genetic adaptive state estimation

Consider a general system

_x ¼Mðx; u; yÞ;

y ¼ Nðx; uÞ; ð1Þ
where x is a vector describing the state of the system, u is
the system input, y is the system output, y is a vector
containing the parameters that describe the system, and
M and N are functions that relate x, u, y, and y, and
define the operation of the system.

Since the GA is a technique often implemented on a
digital computer, it generally operates in discrete time. A
more appropriate definition of the general system is then
written as

xðkþ 1Þ ¼ FðxðkÞ; uðkÞ; yÞ;

yðkÞ ¼ GðxðkÞ; uðkÞÞ; ð2Þ
if y is a time-invariant vector, which will be the case
in the applications studied in this paper. Note that
the functions F and G in Eq. (2) are not the same as M
and N in Eq. (1). The GA-based parameter estimator
assumes that the structures of F and G in Eq. (2) are
known and operates on the equations

x̂ðkþ 1Þ ¼ Fðx̂ðkÞ; uðkÞ; ŷðkÞÞ;

ŷðkÞ ¼ Gðx̂ðkÞ; uðkÞÞ; ð3Þ
where ŷðkÞ is the estimate of the true system parameter
vector y at time k, x̂ðkÞ is the state of this estimated
system, and ŷðkÞ is the output of the estimated system.

The way in which the GA operates on Eq. (3) is as
follows. Consider the block diagram shown in Fig. 1.
Each parameter estimate in the vector ŷðkÞ is encoded by
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the GA as a trait on a chromosome. Therefore, each
chromosome completely represents a set of parameter
estimates ŷðkÞ, and hence it completely represents an
estimated system (since the structures of F and G are
assumed to be known). Since the GA works with a
population of chromosomes, the block in Fig. 1
representing the estimated system can be thought of as
a population of candidate systems. The GA employs the
selection, crossover, mutation, and elitism operators on
this population of candidate systems to evolve a system
that best represents the true system. At any time k, the
current set of parameter estimates ŷðkÞ will be provided
by the most fit chromosome in the population at time k
(that is, the chromosome with the highest fitness value at
time k).

In this case, the fitness function for the GA is chosen
to minimize the squared error between the output yðkÞ of
the actual system and that of the estimated system ŷðkÞ
over a window of the W þ 1 most recent data points.
However, since the maximally fit member is sought, the
fitness function takes the form

J ¼ aÿ 1
2E

TE; ð4Þ

where

E ¼

ekÿW
ekÿWþ1

..

.

ek

26664
37775 ð5Þ

with ek ¼ yðkÞ ÿ ŷðkÞ for k > 0 and ek ¼ 0 for k � 0. To
guarantee that each member has a positive fitness value,
a is selected to be the highest 1

2E
TE of any member of the

population at time k (that is, the 1
2E

TE of the worst
member of the population).

The GA uses the current population of parameter
estimates, along with the past and present values of the
input uðkÞ and output yðkÞ, to generate past and present
estimated system states x̂ðkÞ (that is, if it has data yðk0Þ
available it uses it rather than ŷðk0Þ to estimate the state
since it is more accurate). A window of ŷ values (that is,
ŷðkÿWÞ, ŷðkÿW þ 1Þ; . . . ; ŷðkÞ) is generated for each
candidate set of parameter estimates (that each specify a
different ‘‘identifier model’’ (Ioannou and Sun, 1996)),
and hence each candidate is assigned a fitness value
according to Eqs. (4) and (5). Using these fitness values,
the GA is able to select which candidates will be used as
parents for generating the next population (or genera-
tion) of candidate sets of parameter estimates.

3.1. Computational issues

In order to assess the possibility of implementing an
algorithm (such as the genetic adaptive state estimator)
in real-time, computational complexity must be exam-
ined. For any given generation, let na represent the
number of ‘‘add’’ operations that must take place. Also,
let nm, ri, and rf represent the numbers of ‘‘multiply’’
operations, random integer generations, and random

Fig. 1. Block diagram for a general GA-based state estimator.
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floating-point number generations that must take place,
respectively. The values for na and nm are of primary
interest in determining the complexity of the fitness
calculation procedure, while ri and rf are of primary
interest in terms of generating the next population of
chromosomes.

First, the focus is on fitness calculation. When looking
at the W þ 1 most recent data points, each population
member must undergo W þ 1 add operations, which
will correspond to a calculation of the error between the
actual system output and the estimated system output
for each data point. Then, W þ 1 multiply operations
will be carried out, as the squared error is of sole interest
here. All of the squared errors over the window will be
added together, resulting in another W add operations.
This leads to a total of 2W þ 1 add operations and
W þ 1 multiply operations for each member (in a
population of size N) to generate ETE. (Therefore,
W þ 2 mulitiply operations are necessary for 1

2E
TE

calculation for each member.)
Each member is examined, and after a is determined,

N add operations are implemented to perform the
remainder of the J ¼ aÿ 1

2E
TE calculations for the

population. In all,

na ¼ 2NðW þ 1Þ;

nm ¼ NðW þ 2Þ; ð6Þ

are the numbers of add and multiply operations,
respectively, that must take place for a population at
any given generation. Depending on the encoding and
decoding procedures used for chromosome manipula-
tion, these numbers require some adjustment.

In order to determine how many random-number
generations must take place, we must look at the
remainder of the operation of the GA (that is, selection,
crossover, and mutation). Since every two children are
generated by two randomly chosen parents (from the
pool of the best D population members), each child can
be thought of as the result of one random selection from
the pool of D possible parents, on average. Recalling
that rD members survive in the next population by
elitism, N ÿ rD random integer generations then take
place due to parent selection. For every two children
generated, nt crossover operations will occur, where nt is
the number of traits on a chromosome. This means that
ðnt=2ÞðN ÿ rDÞ random integer generations will occur
due to crossover operations. Finally, the number of
mutation operations taking place in a given population
can range from zero to ngðN ÿ rDÞ, with an average
value of pmngðN ÿ rDÞ, where ng is the number of genes
per chromosome. Therefore, the number of random
integer generations ri needed to produce a new popula-
tion lies in a range

nt
2
þ 1

� �
ðN ÿ rDÞ � ri �

nt
2
þ ng þ 1

� �
ðN ÿ rDÞ ð7Þ

with an average value

ri ¼
nt
2
þ pmng þ 1

� �
ðN ÿ rDÞ: ð8Þ

Since it is possible that mutation or crossover will lead
to traits that lie outside the allowable ranges, the GA
may be required to replace faulty traits with new,
randomly generated traits. This will result in the
generation of random floating-point numbers. The
number of random floating-point number generations
rf will lie in a range

0 � rf � ntðN ÿ rDÞ: ð9Þ

To examine the operation of a genetic adaptive state
estimator, consider the following examples. First, we
consider two linear examples and compare the per-
formance of the genetic adaptive observer and the
conventional adaptive Luenberger observer. Following
this, we study a physically motivated jet engine
estimation problem where we compare the performance
of the genetic adaptive state estimator to an extended
Kalman filter.

4. A linear example

Consider the third-order linear system

_x ¼ Axþ Bu;

y ¼ Cx;

x ¼
x1
x2
x3

24 35; ð10Þ

where

A ¼
ÿ2:1 1 0
ÿ2:1 0 1
ÿ1 0 0

24 35;
B ¼

1
0:9
0:8

24 35;
C ¼ ½1 0 0� ð11Þ

are constant but unknown system matrices. The poles of
this system are ÿ1 and ÿ0:55� 0:8352j, and the zeros
are ÿ0:45� 0:773j, corresponding to a minimum phase
system. Note that the system output y is also the state
x1. For this example x1 is the only measurable state. In
some instances (for example, state feedback control) we
would like to have an estimate of x2 and x3. Next, we
outline a conventional approach to adaptive state
estimation. Following this, we will introduce a method
for genetic adaptive state estimation.
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4.1. Adaptive Luenberger observer

As mentioned earlier, a conventional technique that is
useful for state estimation is the adaptive Luenberger
observer, which can also simultaneously estimate the
parameters of the plant model (Ioannou and Sun, 1996).
However, the plant model must satisfy a specific
structural constraint. This constraint is that the model
must be in observer form

_x ¼

..

.
Inÿ1

ÿap ..
.

. . .

..

.
0

266664
377775xþ bpu;

y ¼ ½1 0 . . . 0�x; ð12Þ
where

ap ¼

anÿ1
anÿ2

..

.

a0

26664
37775;

bp ¼

bnÿ1
bnÿ2

..

.

b0

26664
37775 ð13Þ

and n is the order of the system. The system described by
Eqs. (10) and (11) satisfies this constraint, with n ¼ 3,
ap ¼ ½2:1; 2:1; 1�T, and bp ¼ ½1; 0:9; 0:8�T.

The adaptive Luenberger observer takes the form

_̂x ¼

..

.
Inÿ1

ÿâpðtÞ ..
.

. . .

..

.
0

266664
377775x̂þ b̂pðtÞuþ ða� ÿ âpðtÞÞðyÿ ŷÞ;

ŷ ¼ ½1 0 . . . 0�x̂; ð14Þ
where x̂ is the estimate of the state x, âpðtÞ and b̂pðtÞ are
the estimates of the vectors ap and bp, respectively, at
time t, and a� is chosen so that

A� ¼

..

.
Inÿ1

ÿa� ..
.

. . .

..

.
0

266664
377775 ð15Þ

is a stable matrix (that is its eigen values are all in the left
half-plane).

Defining a vector ŷ to consist of the estimated
parameters (that is, ŷ ¼ ½b̂Tp ðtÞ; âTp ðtÞ�

T) and using a
gradient method following (Ioannou and Sun, 1996), an
adaptive law for determining the ŷ parameters is given

by

_̂y ¼ Gef;

e ¼ zÿ ẑ

m2
;

ẑ ¼ ŷTf;

f ¼ aTnÿ1ðsÞ
LðsÞ u;ÿa

T
nÿ1ðsÞ
LðsÞ y

� �T
;

z ¼ sn

LðsÞy; ð16Þ

where G is a symmetric, positive-definite matrix, LðsÞ is
a monic Hurwitz polynomial of degree n, and the vector
anÿ1ðsÞ is defined by anÿ1ðsÞ¼4 ½snÿ1; . . . ; s; 1�T. The
parameter m2 of the adaptive law can be chosen as
m2 ¼ 1 or 1þ fTf. Note that the adaptive observer is
implemented in continuous time.

For the system described by Eqs. (10) and (11), the
adaptive Luenberger observer was simulated for 100 s,
with all states initially at zero. For the simulation, the
following choices were made: m2 ¼ 1, âpð0Þ ¼ ½3; 3; 1�T,
b̂pð0Þ ¼ ½1; 0; 0�T, a� ¼ ½12; 47; 60�T, and LðsÞ ¼ s3þ
3s2 þ 3sþ 1. The choices for a� and LðsÞ were made
simply to satisfy the constraints placed on them, while
âpð0Þ was chosen so that the initial estimates would
indicate a system with stable poles, and b̂pð0Þ was
chosen in an attempt to avoid making an initial guess
about the location of the system zeros } this choice
places all possible zeros of the estimated system at the
origin. To meet the constraints on G, the following
matrix was used: G ¼ ~aI (~a > 0), and after some tuning,
the value ~a ¼ 1:5 was chosen.

To guarantee that the input was a sufficiently
rich signal (Ioannou and Sun, 1996), the following
was used: u ¼ As1 sinðo1tÞþAs2 cosðo2tÞÿAs3 sinðo3tÞ
ÿAs4 cosðo4tÞ, with As1 ¼ 1:5, As2 ¼ 3:9, As3 ¼ 2:6,
As4 ¼ 2:1, o1 ¼ 3:2, o2 ¼ 1:9, o3 ¼ 0:7, and o4 ¼ 2:5.
Note that while for the linear case the theory of
persistency of excitation is well developed (see, for
example, Ioannou and Sun, 1996) so we know how to
pick the input in this case to ensure convergence, for
nonlinear estimation some type of sufficiency of excita-
tion is required but no theory is presently developed so
we cannot know if our signal is sufficiently rich. Hence,
for the jet engine problem considered later in this paper
we cannot be guaranteed convergence (but we also
cannot be guaranteed convergence for any other
method).

In this example, only the state estimates x̂2 and x̂3
were of interest. The performance of the adaptive
Luenberger observer for estimating these states is shown
in Fig. 2, where the adaptive Luenberger observer is
compared to the GA. Note that in Fig. 2 we perform the
simulation for 100 s and split the plots for x̂2 and x̂3 into
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three different plots so that the results are easier to
inspect.

4.2. Genetic adaptive state estimation

Although the adaptive Luenberger observer can be
implemented in continuous time, the GA must use a
discrete-time approximation to the system under in-
vestigation. Using a forward-looking difference, the

system model given in Eq. (12) can be written as

xðkÞ ¼ xðkÿ 1Þ þ T

..

.
Inÿ1

ÿap ..
.

. . .

..

.
0

2666664

3777775xðkÿ 1Þ

þ Tbpuðkÿ 1Þ;

Fig. 2. GA vs. adaptive Luenberger observer for minimum phase linear system state estimation. The dotted lines indicate the actual state, while the

solid and dash2dot lines indicate the state estimates from the GA and adaptive Luenberger observer, respectively.
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yðkÞ ¼ ½1 0 . . . 0�xðkÞ;

xðkÞ ¼
x1ðkÞ
x2ðkÞ
x3ðkÞ

24 35; ð17Þ

where ap and bp have already been defined for this
example.

The GA-estimated system model can then be written
as

x̂ðkÞ ¼ x̂ðkÿ 1Þ þ T

..

.
Inÿ1

ÿâpðkÿ 1Þ ..
.

. . .

..

.
0

266664
377775x̂ðkÿ 1Þ

þ Tb̂pðkÿ 1Þuðkÿ 1Þ;

ŷðkÞ ¼ ½1 0 . . . 0�x̂ðkÞ;

x̂ðkÞ ¼
x̂1ðkÞ
x̂2ðkÞ
x̂3ðkÞ

24 35: ð18Þ

In this case, the GA is actively estimating the parameters
in ap and bp while using these parameter estimates in
Eq. (18) to update the state estimates x̂ðkÞ.

Since the fitness function for the GA relies on an
error eðkÞ ¼ yðkÞ ÿ ŷðkÞ, and since yðkÞ ¼ x1ðkÞ and
ŷðkÞ ¼ x̂1ðkÞ, there is no guarantee that the state
estimates x̂2ðkÞ and x̂3ðkÞ will accurately track the true
states x2ðkÞ and x3ðkÞ, respectively. However, due to the
dependence of each state on the other two states (seen in
Eqs. (17) and (18)), it still seems possible that acceptable
state tracking will occur.

After an ad hoc tuning of the GA (as there is no
defined procedure for such tuning), the following
parameters were used: N ¼ 200, pm ¼ 0:2, D ¼ 70,
rD ¼ 10, W ¼ 50, and gt ¼ 10, where gt is the number
of generations executed per sampling period. Note the
large population size N. This was necessary because six
parameters were being estimated (a2, a1, a0, b2, b1, and
b0), implying a large parameter search space.

The ranges used for â2, â1, â0, b̂2, b̂1, and b̂0 were
½1:8; 2:3�; ½1:8; 2:3�; ½0:8; 1:2�; ½0:8; 1:2�; ½0:7; 1:1�; and
½0:6; 1:1�; respectively. This would indicate that the
knowledge of the system parameters was somewhat
accurate, although the parameters were not known
exactly. In many cases this is true } a system model and
its parameters may be known to a reasonable degree of
accuracy, but the possibility of system or environmental
variations can limit that accuracy. Consider, for
example, a system whose parameters will vary slightly
with temperature, pressure, or humidity. Those par-
ameters would be best characterized by the ranges
within which they are likely to vary.

The GA-based state estimator was simulated for 100
s, with a sampling period T of 0.01 s. The input was the

same as that used for the adaptive Luenberger observer,
and the estimated states were initialized to zero. The results
are shown in Fig. 2 where the performance of the GA is
compared with that of the adaptive Luenberger observer.

To verify the validity of the results shown in Fig. 2,
some method for quantifying a typical or average GA
execution should be developed. Consider a ‘‘squared
error sum’’, which is a summation, over an entire
simulation, of the squared error between a state and its
estimate. In other words,

Esk ¼
Xmg

k¼1
ðkðkÞ ÿ k̂ðkÞÞ2; ð19Þ

where k is the state in question, k̂ðkÞ is the estimate of k
at time sample k, and mg is the total number of time
samples in the simulation.

Here, 50 simulations were executed, with squared
error sums generated for x̂2 and x̂3 according to Eq.
(19). The average, minimum, and maximum squared
error sums over the 50 simulations are given in Table 1,
along with the sums for the GA results shown in Fig. 2
and the error for the adaptive Luenberger observer for
x̂2 is 4365.23 and for x̂3 is 3427.46. From the table, it is
clear that the GA results shown in Fig. 2 could be
considered an average or representative case. Examining
the figure and the error sums, then, it appears that the
GA performs as well as the adaptive Luenberger
observer for this example, aside from some transient
behavior that Luenberger observer has for x̂2. Indeed,
this supports the GA as an alternative method for
adaptive state estimation.

5. A linear example with a nonminimum phase zero

Now, consider a third-order linear system with the
same model structure as in Eq. (10), but with parameters
defined by

A ¼
ÿ2:9 1 0
ÿ2:91 0 1
ÿ0:959 0 0

24 35;
B ¼

0
1

ÿ0:05

24 35;
C ¼ ½1 0 0�: ð20Þ

Table 1

Squared error sums for GA linear system state estimation

Esx2
Esx3

Average 4328.79 2008.48

Minimum 1887.24 1327.38

Maximum 8557.97 3091.29

Shown in Fig. 2 4362.25 1946.64
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This system has poles at ÿ0:7 and ÿ1:1� 0:4j, and a
zero at 0:05. This, of course, corresponds to a system
that is not minimum phase. As in the previous example,
the state x1 is the only measurable state of the system, so
it is desired that the states x2 and x3 can be estimated.

5.1. Adaptive Luenberger observer

Since this system is also in observer form, the adaptive
Luenberger observer can be used for estimation of the

states x2 and x3. Again, Eqs. (14) and (16) define the
observer.

Using the same input as in the previous example, the
adaptive Luenberger observer was simulated for 100 s.
The same choices for âpð0Þ; b̂pð0Þ; a�, and LðsÞ used in
the previous example were used in this case. Using
G ¼ ~aIð~a > 0Þ, it was difficult to tune ~a so that the
estimated parameters in âp and b̂p remained stable.
Using m2 ¼ 1þ fTf instead of m2 ¼ 1, parameter
stability was obtained, and ~a ¼ 1:5 was chosen, after

Fig. 3. GA vs. adaptive Luenberger observer for nonminimum phase linear system state estimation. The dotted lines indicate the actual state, while

the solid and dash2dot lines indicate the state estimates from the GA and adaptive Luenberger observer, respectively.

J.R. Gremling, K.M. Passino / Engineering Applications of Artificial Intelligence 13 (2000) 611–623 619



some tuning. The results of the simulation are shown in
Fig. 3, where the performance of the adaptive Luenber-
ger observer is compared to the GA. From the figure, it
can be seen that the GA had some success with the state
estimation, though slightly outperformed by the Luen-
berger observer.

5.2. Genetic adaptive state estimation

For estimating the states x2 and x3 of the nonmini-
mum-phase linear system described by Eqs. (10) and
(20), the GA used was nearly identical to that used in
Section 4. The only difference is that the ranges used for
â2; â1; â0; b̂2; b̂1, and b̂0 were [2.7,3.2], [2.7,3.2], [0.8,1.2],
[ÿ0:2,0.2], [0.7,1.2], and [ÿ0:2,0.2], respectively. All
other GA parameters were identical. The input used
was identical to that in Section 4 (the same as that used
by the adaptive Luenberger observer), and the estimated
states were initialized to zero, as a 100-s simulation (with
T ¼ 0:01) was executed.

For validation purposes, 50 simulations were ex-
ecuted, and squared error sums were generated for x̂2
and x̂3. The results are given in Table 2. The results
shown in Fig. 3 are characterized by squared error sums
that are close to the average values, implying that those
results represent a typical or average execution of the
GA for this state-estimation problem (the squared error
sums for the adaptive Luenberger observer were 6320.00
for x̂2 and 8348.10 for x̂3). From the figures, it can be
seen that the GA, though still successful, was somewhat
outperformed by the Luenberger observer (note the
transient behavior that the Luenberger observer has for
x̂3), providing some evidence to support the GA as a
possible alternative tool for state estimation. Next, the
use of the GA in a state estimator for a nonlinear system
is studied.

6. A jet engine compressor

In this section we develop a genetic adaptive state
estimator for a jet engine compressor model and
compare its performance to that of the extended
Kalman filter.

6.1. Nonlinear jet engine estimation problem

To achieve maximum performance from the engines
used on current aircraft, those engines must often be
operated near the boundaries of instability (that is,
with reduced stall and surge margins, and hence
reduced safety margins). As a result, problems such as
surge and rotating stall may develop when a heavy
demand is placed on an aircraft engine. Surge can be
described as a large-amplitude oscillation in the mass
flow through the engine, sometimes resulting in a
momentary reverse in flow. When surge occurs, an
aircraft may experience a phenomenon known as
‘‘flameout’’. Rotating stall consists of one or more
localized regions or cells of reduced mass flow that will
rotate around the circumference of the engine com-
pressor. A rotating stall cell can grow in magnitude, and
if it does so, it will grow in a circumferential manner.
Clearly, problems such as surge and rotating stall are
hazardous, and avoidance of these problems is always
desired.

Moore and Greitzer developed a detailed, nonlinear
model for surge and rotating stall in Moore and Greitzer
(1986a). This model was simplified (through approx-
imation) in McCaughan (1990) and expressed in a three-
state form in Krstic and Kokotovic (1995). This three-
state model is written as

_FJ ¼ ÿCJ þCC0 þ 1þ 3
2FJ ÿ 1

2F
3
J ÿ 3FJRJ ;

_CJ ¼
1

b2
ðFJ ÿ FTÞ;

_RJ ¼ sRJð1ÿ F2
J ÿ RJÞ; ð21Þ

where FJ is the mass flow,CJ is the pressure rise, RJ � 0
is the normalized stall cell squared amplitude, FT is the
mass flow through the throttle, and s; b and CC0 are
constant parameters (with s > 0 and b > 0). For the
purpose of simulation, values for CC0; s, and 1=b2 had
to be determined. Since a realistic simulation was the
goal, the values CC0 ¼ 0:5; s ¼ 7, and 1=b2 ¼ 0:4823
were chosen, after consulting the experimental results in
McCaughan (1990), Moore and Greitzer (1986b) and
Greitzer (1976). To generate the control input FTðkÞ, a
proportional-integral (PI) controller was used, taking as
its input the error between CJðkÞ and a reference signal,
which is represented by the dash2dot lines in Figs. 4
and 5. The PI controller parameters used were Kp ¼ 5
and Ki ¼ 2. Note that the controller was implemented in
discrete time.

It would be useful if some method for detecting surge
and rotating stall existed. Surge would be evident in an
oscillation of the state FJ , which represents the mass
flow, and rotating stall activity would be evident in the
behavior of the state RJ . The ability to detect the onset
of either problem would result in the execution of

Table 2

Squared error sums for GA nonminimum phase linear system state

estimation

Esx2
Esx3

Average 7244.04 2563.16

Minimum 4596.32 1872.88

Maximum 10931.07 3706.12

Shown in Fig. 3 6602.56 2610.47
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measures that could help prevent system failure.
Unfortunately, neither of the states FJ and RJ is
measurable during aircraft operation. The only measur-
able state is CJ , so some method for estimating FJ and
RJ from the available information (CJ and FT } the
control input) is desired.

Since the system is neither linear nor in observer
form, the adaptive Luenberger observer is not directly
applicable. The goal now is to show that the GA can be

used for estimating FJ and RJ . The compressor model
of Eqs. (21) must first be approximated in discrete time,
so using a forward-looking difference, the model can be
written as

FJðkÞ ¼ FJðkÿ 1Þ þ TðÿCJðkÿ 1Þ þCC0 þ 1

þ 3
2FJðkÿ 1Þ ÿ 1

2F
3
Jðkÿ 1Þ

ÿ 3FJðkÿ 1ÞRJðkÿ 1ÞÞ; ð22Þ

Fig. 4. GA-based state estimation for the jet engine compressor model,

Case 1 (CJð0Þ ¼ 0:5, RJð0Þ ¼ 0:1, and FJð0Þ ¼ 1:4). Plot 1 corre-

sponds to CJ , plot 2 corresponds to FJ , and plot 3 corresponds to RJ .

The dotted lines in the bottom two plots indicate the actual state, while

the solid lines indicate the state estimates. The dash2dot line in plot 1

indicates the reference input for CJ .

Fig. 5. GA-based state estimation for the jet engine compressor model,

Case 2 (CJð0Þ ¼ 0:5, RJð0Þ ¼ 0:1, and FJð0Þ ¼ 0:8). Plot 1 corre-

sponds to CJ , plot 2 corresponds to FJ , and plot 3 corresponds to RJ .

The dotted lines in the bottom two plots indicate the actual state, while

the solid lines indicate the state estimates. The dash2dot line in plot 1

indicates the reference input for CJ .
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CJðkÞ ¼ CJðkÿ 1Þ þ T

b2
ðFJðkÿ 1Þ ÿ FT ðkÿ 1ÞÞ;

RJðkÞ ¼ RJðkÿ 1Þ þ TsRJðkÿ 1Þð1ÿ F2
Jðkÿ 1Þ

ÿ RJðkÿ 1ÞÞ:

As was done in the cases of Sections 4 and 5, the
GA actively estimates parameters of the jet engine com-
pressor model, and uses these parameter estimates along
with CJ and FT to generate the estimates F̂J and R̂J .
For this purpose, the equations used by the GA are

F̂JðkÞ ¼ F̂Jðkÿ 1Þ þ TðÿĈJðkÿ 1Þ þ ĉ1ðkÿ 1Þ

þ ĉ2ðkÿ 1ÞF̂Jðkÿ 1Þ ÿ ĉ3ðkÿ 1ÞF̂3
Jðk

ÿ 1Þ ÿ ĉ4ðkÿ 1ÞF̂Jðkÿ 1ÞR̂Jðkÿ 1ÞÞ; ð23Þ

ĈJðkÞ ¼ F̂Jðkÿ 1Þ þ Tĉ5ðkÿ 1ÞðF̂Jðkÿ 1Þ
ÿ FTðkÿ 1ÞÞ;

R̂JðkÞ ¼ R̂Jðkÿ 1Þ þ Tĉ6ðkÿ 1ÞR̂Jðkÿ 1Þ
ð1ÿ F̂2

Jðkÿ 1Þ ÿ R̂Jðkÿ 1ÞÞ;
where the estimates for CC0 þ 1 have been combined to
form the single-parameter estimate ĉ1ðkÞ.

6.2. Genetic adaptive state estimator for a jet engine
compressor model

The fitness function for the GA takes the same
windowed data approach found in Eq. (4), with
ek ¼ CJðkÞ ÿ ĈJðkÞ for k > 0 and ek ¼ 0 for k � 0.
Again, note that since this fitness function is primarily
focused upon driving the error between CJðkÞ and
ĈJðkÞ to zero, there is no guarantee that the state
estimates F̂JðkÞ and R̂JðkÞ will accurately track the true
states FJðkÞ and RJðkÞ, respectively. However, due to
the dependence of each state on the other two states
(seen in Eqs. (22) and (23)), it again seems at least
possible that acceptable state tracking will occur.

Two different sets of initial conditions were used. In
Case 1, CJð0Þ ¼ 0:5;RJð0Þ ¼ 0:1, and FJð0Þ ¼ 1:4 were
used, and in Case 2, CJð0Þ ¼ 0:5;RJð0Þ ¼ 0:1, and
FJð0Þ ¼ 0:8 were used. Although the only difference
between the two cases is found in FJð0Þ, this leads to a
significant difference in the behaviors of FJ and RJ , as is
further explained in McCaughan (1990), Moore and
Greitzer (1986b) and Greitzer (1976).

For both cases, the following GA parameters were
used, after some tuning: N ¼ 200; pm ¼ 0:2; D ¼
66; r �D ¼ 8;W ¼ 100, and gt ¼ 10. The ranges for
ĉ1; ĉ2; ĉ3; ĉ4; ĉ5, and ĉ6 were [1.0,2.0], [1.2,1.8], [0.2,0.8],
[2.0,4.0], [0.3,0.7], and [5.0,9.0], respectively. The
initial state estimates were chosen to be R̂Jð0Þ ¼ 0:05
and F̂Jð0Þ ¼ 1:0 because a stable equilibrium point of
the jet engine compressor model occurs when FJ ¼ 1:0

and because choosing R̂Jð0Þ ¼ 0 would result in
R̂JðkÞ ¼ 0 for all k � 0. The results are shown in Figs.
4 and 5 for the two initial conditions.

The GA-based state estimator for the jet engine
compressor model was simulated for 25 s with T ¼ 0:01.
To verify the validity of the results, 50 simulations were
executed, and squared error sums were generated for F̂J

and R̂J . The results are given in Tables 3 and 4. The
squared error sums for the simulations shown in Figs. 4
and 5 are given in the tables to verify that the figures
correspond to average or typical GA simulations.

From the figures it can be seen that the GA performed
quite well for Case 2. For Case 1, there was some
difficulty with the tracking, but this does not constitute a
complete failure. Notice that the state estimates still
indicated significant changes when such changes oc-
curred in the actual states. For example, when there was
a sizable growth in the actual rotating stall cell
amplitude, the GA-based estimates indicated such a
growth. Even though the estimate of the size of the cell
was somewhat inaccurate, the growth was still detected
(and hence it will provide advance warning of, for
example, rotating stall). This tracking of the behavior of
a state is still acceptable or useful in many cases,
although the tracking of the state itself may be slightly in
error. In light of this discussion, there is evidence here
that the GA is a useful tool for gaining information
about non-measurable states in nonlinear systems.

6.3. Comparison to the conventional extended Kalman
filter

To apply the conventional extended Kalman filter
(EKF) (Mendel, 1995) to this nonlinear state-estimation

Table 3

Squared error sums for GA-based state estimation of the jet engine

compressor model, Case 1

EsRJ
EsFJ

Average 310.91 1116.81

Minimum 21.14 527.02

Maximum 1770.35 2104.74

Shown in Fig. 4 287.06 1051.25

Table 4

Squared error sums for GA based state estimation of the jet engine

compressor model, Case 2

EsRJ
EsFJ

Average 186.77 226.11

Minimum 45.29 47.53

Maximum 697.34 602.34

Shown in Fig. 5 144.81 275.74

J.R. Gremling, K.M. Passino / Engineering Applications of Artificial Intelligence 13 (2000) 611–623622



problem one needs to specify the noise covariances for
the state and measurement equations. Using diagonal
covariance matrices for both cases (a 3� 3 matrix for
the state equation and a 1� 1, that is, scalar, for the
output equation) with small diagonal values (for
example, all with values of 0.0000001) the EKF becomes
unstable in all test runs we attempted (that is, after
about 12 s the estimate of each value becomes un-
bounded by departing from the true value very fast;
before 5 s the estimate is reasonable accurate but from
5 s to 12 s it is quite bad). Decreasing the values of the
noise covariances to even smaller values (even all zero
values for the noise covariance matrix for the state
equation) still resulted in an EKF that was unstable,
and hence completely unable to properly estimate
the variables. On the other hand, the genetic adaptive
state estimator of the last section never failed for the
many simulation runs that we tested it for (for example,
for the 50 simulations reported in the last section and
many other simulation runs). Clearly, the genetic
adaptive state estimator deserves serious consideration
compared to the standard (and often successful)
extended Kalman filter for this nonlinear state estima-
tion problem.

7. Concluding remarks

This study has introduced a novel genetic adaptive
state-estimation technique and studied its performance
for three cases } two linear cases and a nonlinear jet
engine compressor. For the linear cases, the per-
formance of an average GA execution was compared
with that of the adaptive Luenberger observer (a
nonlinear estimation method), and it was seen that the
GA performed nearly as well as the Luenberger
observer. For the nonlinear case, the GA alone was
studied (since the assumptions needed to apply the
adaptive Luenberger observer are not satisfied), and
although exact numerical tracking of the states related
to surge and rotating stall was not always achieved,
adequate behavior tracking did occur. That is, the GA-
based estimator was indeed able to detect the onset of
surge and the growth of stall cells (see Figs. 4 and 5). In
the final subsection of the paper we studied the use of
the extended Kalman filter for the jet engine application
and explained how it failed for this application. From
these three cases, evidence can be gathered that may
point to the existence of the GA as an alternative
method for state estimation, particularly in nonlinear
cases.

Clearly, however, further research of the GA as a
state estimation tool is needed. Among this research,

possible topics could include

* alternative GAs (for example, different fitness func-
tions, representation schemes such as base-2, genetic
operators, and so on),

* determination of the best GA for the state estimation
problem,

* tuning procedures for the GA,
* mathematical stability, convergence, and robustness

analysis,
* actual implementation issues (for example, processor

speed, memory resources, possible hardware opera-
tions, etc.).

Also, due to the computational complexity of the GA,
it seems logical to attempt conventional approaches for
state estimation before employing the GA, especially for
linear systems. From the results in this study, however,
there is evidence that the GA does provide a viable
alternative when other techniques encounter difficulty,
particularly when dealing with nonlinear systems.
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