Complex Control

Impl

ystem Design and
>men

ation

Using the NIST-RCS Software Library

Mathew L. Moore, Veysel Gazi, Kevin M. Passino,
Will P. Shackleford, and Frederick M. Proctor

ue to demands for higher levels of antomation from

systems, the use of hierarchical and distributed con-

trol systems that integrate estimation, prediction,

control, Tault tolerance, aduptation, learning, etc.,

into one framework is becoming widespread. Spe-
cific applications thal use complex control of this sort include re-
bots [1]1-[7], manufacturing and automation systems [8§]—[11],
automated highway systems (AHS) [12]-[16], and other intelli-
gent vehicles | 17], [18].

Here, we study the use of the Real-Time Control System
(RCS) softwarc library, developed by the Intelligent Systems Di-
vision (ISD) al the National Institute of Standards and Technol-
ogy (NIST) for the design and implementation of such complex
control systems, We examine the theory behind both the devel-
opment and implementation, and provide a physical implemen-
tation example (a process control problem) and a conceptual
example of how to use RCS in the design of a hierarchical con-
troller for an AHS.

Designing a control algorithm based only on tsolated conven-
tional control methods will not suftice te achieve autonomous or
even proper operation of a large control system that necds to per-
form many complex tasks in rcal time. For such conirol systems
it may be difficult or even impossible to develop an analytical
model that describes the overall operation. For many years re-
searchers have been trying to develop a systematic approach for

design and implementation of these types of control systems.
The usual approach for overcoming the complexity is to break
down the problem into smaller and easicr to solve sub-problems
(and conventional control approaches are somelimes quite use-
ful for these). The resulting control algorithms often use a “hy-
brid” or coordinated combination of control methods and
address the control of both the continuous and discrete cvent
components of the plant. This has led to the introduction of sev-
eral functional architectures that integrate a variety of methods to
lry to achieve autonomous operation [2], [19] {to be addressed
briefly in the next section). In gencral, these architectures have a
hierarchical structure and provide coordination of the physically
distributed subsystems to achicve system-wide goals (e.g., in
AHS there is a controller resident on cach vehicle lor vehicle
guidance and a need for coordination between the vehicles toen-
sure safe and efficient operation of the system, or simply to mini-
mize accidents and maximize throughput [13]-[16])
Challenging practical issucs surround the implementation of
complex real-time control systems. One example is the develop-
ment of communications between multiple, separately operated
subsystems whose behavior may be interdependent. Moreover,
different subsystems may be running on different and incompati-
hle platforms, making the problem even more difficult. It is desir-
able to develop a control algorithm which is system independent,
so that it can be operated on differcnt computer hardware and

Moore is with the Rattelle Memorial Institute in Columbus, Ohio. Gazi and Passino are with The Ohio Stase University Departinent of Elec-
trical Engineering, 2015 Neil Avenue, Columbus, Ohio 43210 (k.passino@ osu.edu). Shuckieford and Proctor are with the National Institute
of Standards and Technology, Intelligent Systems Division, Gaithersburg, Maryland. This work was supporied by the Intelligent Systemy Di-
vision of the Natienal Institute of Standards and Technology and the Center for Intelligent Transportation Systems at OSU. No approval or
endorsement of any commercial product by the National Institute of Standards and Technology is intended or implied. Certain commercial
equipment, instruments, or materials are identified in this report to facilitute understanding. Such idensification does not isnply recomnien-
dation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are

necessarily the best available for the purpose,

2 0272-1708/99/$ 10.00C 1999 I EEE

IEEE Conirol Systems

softwarc. This saves the designer the overhead of reprogram-
ming the whole algorithm if there is a change in the system.
Morcover, we want to be able to port and reuse sofiware devel-
oped in one application in another application.

Other important issues in development and implementation
of complex control systems are the case of maintanence, modifi-
cation, and operator interface. For example, assume that in a sys-
tem with hundreds of sensors, one sensor fails. We want to
develop the control system so that the operator can locate the
failure in a short time. As another example, assume that a new
subsystem is added to the overall system. We want to implement
the initial control system so that to make the necessary modifica-
tion we do not need to reprogram the whole control algorithm. As
the complexity (and size) of the plant grows, issues such as these
quickly become more complex and challenging.

The RCS methodology discussed here is based on a Lask de-
composition analysis of the overall operation of the plant. This
helps the designer to decompose the problem into several sim-
pler sub-problems to be performed by different subsystems at
different time periods. Usually the resulting control system con-
sists of several hierarchical layers of functional control modules
that can be distributed over multiple computer systems or plat-
forms. Each module (often referred to as an “RCS module™) can
contain its own sensory processing, decision-making/state-table
execution, and actuation components. At the modules in a higher
level of the hierarchy, the tasks are decomposed into smaller tusk
sequences and passed as commands to the lower subordinate lay-
ers, RCS places no limitation on the physical location of these
maodules, RCS provides the communications tools, via the Com-
munication Management System (CMS) and the Neutrat Mes-
sage Language (NML), that allow ditferent RCS modules, which
can be placed on separate computer systems running on different
platforms, to “talk” with each other. This allows for the distrib-
uted and hierarchical control of an arbitrary number of subsys-
tems by linking several modules across multiple backplanes,

RCS provides a general controller architecture without speci-
fying implementation detatls. As a result, it does not limit the
possible control applications—both conventional, single-input,
single-output controllers and complex “mtelligent” autonomous
controllers can be implemented in RCS (see [2], [12], [20] and
Chapter 2 of [19]). The user determines the layout and use of the
RCS modules to minimize controtler complexity and maximize
its performance. Morcover, since the development of controllers
in RCS is uniforim, code developed for one application can casily
be ported to another, This porting can even occur across different
operating systems, as the RCS library is supported under numer-
ous platforms. Furthermore, the RCS library has a diagnostics
tool that provides an operator interface, In other words, using this
tool & human operator can monitor the system operation from a
remote host and send sophisticated commands to the system. An-
other impottant feature of the RCS library is the RCS design tool,
which allows the application designer Lo easily lay out the mod-
ules in the controller hicrarchy and automatically generate the
skeleton of the application, including almost all of the applica-
tion-independent code.

The need for tools for designing and implementing real-time
complex control systems has led to development of several soft-
ware packages for this purpose, including Network Data Deliv-
ery System (NDDS) from Real-Time Innovations (RTI)
(http://www.rti.com), which is a package with similar features to

4

NML,; the Control Shell, also from RTI, and LabView from Na-
tional Instruments (hitp://www.natinst.com), which have similar
features to the graphical RCS design and diagnostics tools; Open
Robot Controller Computer-Aided Design (ORCCAD) [3],
which is based on Esterel synchronous programming language
and developed by INRTA (http://www.inria.fr) in France; Onika
[8], which is based on the Chimera real-time operating system
and developed by the Advanced Mechatronics Laboratory at
Carnegie Mellon University; and Teja by Teja Inc.
(http://www.teja.com), Moreover, new software packages are
being developed cvery day, and each of these is continually hav-
ing new versions implemented; hence a valid comparison of the
packages today may be inaccurate tomorrow. Furthermore, we
find that evaluation of different packages, especially along the
lines of ease of use (which is very important), tends io be rather
subjective. Therefore, we will not attempt a comparison to other
packages, However, it is important to stress once more some of
the important features of the RCS library, including platform in-
dependence; support for a number of communication protocols
such as Transmission Control Protocol (TCP), User Datagram
Protocol (UDP), and Remote Procedure Call {RPC); graphical
automatic design and code generation tools; graphical user inter-
face, taking advantage of the hicrarchical system tepologies; and
finally, and perhaps most importantly, the fact that RCS is free,
which provides a big advantage for this package, both for univer-
sities and for many parts of the industrial sector. To download the
RCS library visit the the anonymous ftp site
ftp://Tip.isd.mel.nist.gov/ publeme/reslib. For detailed informa-
tion on the RCS library you can visit http://www.
isd.mcl.nist.gov/projects/res_lib/ or consult [21].

During the past few decades RCS has been implemented and
tested in many applications, inciuding mining [9], manufactur-
ing systems [4]-{6], [101, [22], autenomous undersea and land
vehicles [17], [18], space station telerobots [7], post office auto-
mation [11], ctc. With the development of the RCS software li-
brary, the design and implementation of similar applications
becomes much easier and faster. It can be used in ditferent indus-
trial, military or educaticnal applications. The industrial applica-
tions may range from large-scale chemical plants,
manufacturing lines, eic., to small conventional control systems.
In universitics, it can be taught in class and used in laboratory ex-
periments [23]. This article (which is a significantly expanded
version of [23], minus components on the educational program)
introduces the RCS tools and examines the use of RCS as a con-
troller architecture tfor complex systems by providing both the
general structure and theory and several examples of its imple-
mentation. We begin by introducing the the relation of the RCS
software library to some functional architectures; we then dis-
cuss the RCS design methodology and the RCS design tool; fol-
lowing this we describe two of the important features of the RCS
library, the RCS generic controller nodes and the RCS communi-
cation tools, which are described in more detail in [21]. Finally,
we introduce two RCS controller designs, one lab experiment
implementation (a tank experiment) and one for an automated
highway syster.

RCS and Intelligent Control Architectures
Anintelligent control system is one that is highly autonomous
and able to take appropriate control actions, cven in an Uncettain
environment. One can obtain an idea of how an intelligent sys-

TEEE Control Systems

ith Module
Command

Operator & Crew/Workstation
]

High-Level Commands/
Overall Plant Status

!
N [Operator interface J , S
\
\ /
\ , N Interprocess
A { < Communication
N |Status Command PRGN . K
N
- = === |ithModule o
“ ~ _Bubordinato Modules e ‘\ Decomposition
~—— - .
~
L]
L]
L4 —_
[] [] Lower-Level
Contrallers

Fig. 1. Example intelligent architecture.

tem should be constructed by observing intelligence in nature. At
the very least, intelligence requires the ability to sense the envi-
ronment and take appropriate control actions. At higher levels,
intelligence involves the ability to analyze and understand, learn,
generate plans for the future, and decompose complex tasks into
simpler steps that can be efficiently carried out. Certainly, it is
also advantageous to have the ability to adapt to changing condi-
tions (both in the plant and in the cnvironment). Higher degrecs
of intelligence also incorporate evolution, in which more suc-
cessful behavior is retained and less successful behavior dies out
[2], [t2], [19], [20].

More and more research in control system theory is incorpo-
rating this idea of intelligence. One of the main hurdles in con-
structing autonomous systems is the fact that it is difficult to
understand and model intelligent behavior completely, and thus
implementing intelligence in digital control algorithms becomes
a large concern. Clearly, however, basic levels of intelligence in-
volve certain concrete components, including sensory process-
ing, modeling, analysis and evaluation, decision making,
learning, and actuation. Thus, it is possible to develop an archi-
tecture that models, at a simple level, the intelligence that occurs
in nature. Scveral such architectures exist [2], [19], [20], and
these are continually being evolved as we begin to understand in-
teltigence more clearly, The creators of these architectures tend
to use hierarchical levels in the model of complex systers, as
shown on the right side of Fig. 1 (a simplified version of the ar-
chitecture in [20]), which allows the possibility of subsystems
that may operate at different rates, and for the decomposition of
tasks. Subsystems, referred to as medules, at the highest level
take high-level commands and decompose them into smaller
tasks that are sent to the modules below. They also maintain a

December 1999

model of the system itself and the environment surrounding it.
The left side of Fig, 1 shows the detailed components of a mod-
ule, Note that structures used for sensory processing, world mod-
eling, value judgment and behavior generation are typical in
intelligent systems [20]. The lowest level modules simply gather
sensor information from a data acquisition card (sensory pro-
cessing) and implement simple single-loop feedback eontrol al-
gorithms (value judgment and behavior generation at the
simplest level) in response to the evaluation of the problem or
commands coming from higher levels. They may also maingain a
madel of the physical subsystem they are controlling (a world
modeling structure that contains more detail but at a smaller
scale than the higher modules). Higher level modules may incor-
porate long-term planning and evaluation in the behavior gener-
ation and value judgment operations.

A significant concern with complex systems is the communi-
cation between modules. Communications set the infrastructure
for intelligent and complex designs. Since high-level commands
are decomposed throughout the levels, it is necessary for higher
modules to pass commands to lower modules so that tasks can be
carried oul. Furthermore, for system modeling purposes, long-
term planning, and fault detection, it is necessary for lower mod-
ules to be able to communicate status information to those at the
higher level. Communications become an even larger concern
when algorithms may be running across several computers.
Clearly, intelligent and complex systems require two important
components—communications between modules and the mod-
ules themselves.

The RCS library provides the software tools that allow us to
model this general complex architecture simply and efficiently
by providing basic gencric controller modules and the necessary

15

tools for connecting these moduies to cach other in a hierarchical
structure. This will become clear to the reader through the next
several sections, where the RCS library and its components are
introduced in detail and application examples arc provided.

Designing an RCS Application

The RCS Methodology

As with most of the design methodelogics for complex con-
trol systems, the RCS design methodology is hased on decom-
posing the complex control problem into smaller and relatively
easy to develop, maintain, and modify sub-problems. Therefore,
a typical RCS design slarts with task decomposition analysis of
the system. First, the designer identifies the physical subsystems
ol the overall system, the corresponding sensors and actuators to
these subsystems, the tasks subsystems can perform, which sub-
system performs which tasks, which tasks are related to cach
other, what is the information or data flow between the subsys-
tems, and which task sequences lcad to desired performance.
This helps the designer define the task parameters and simplifies
the control problem since every task can be considercd as a sepa-
rale small-scale control problem. The designer can continue to
hreak down the tasks into even smaller subtasks until the tasks
are reduced to simple control problems that can be solved using
conventional control methods.

To illustrate, consider a task called “Move Part J from loca-
tion A to location B” to be performed by an autonomous robot.
This task can be broken down to “Move to location A,” “Grab
part J,” “Move to location B” and “Release part 1. Thesce tasks
can be broken down even further into simpler subtasks. For ex-
ample, one can composc the task “Grab part J” from “Open the
gripper,” “Align the gripper with part J” and “Close the gripper.”
Note also that each of these subtasks may be performed by differ-
ent subsystems of the robot. For instance, “Grab part I will be
performed by the gripper, whereas “Move to location A” will be
performed by the motion subsystem.

Having performed task decomposition analysis of the control
system, the designer defines the controller hierarchy. It is good
practice to start by assigning a control module for cach actuator
and its corresponding sensors at the lowest level of the hierarchy.
Then the modules in the higher levels are defined by grouping
the lower modules bascd on physical and [unctional rela-
tionships and assigning a supervisor to them.

Adter task analysis and controller architecture definition, the
designer knows which operations can be performed by the sys-
tem, which subsystem or module will perform which task,
which task sequence scenarios lead to a desived performance,
and what information the modules in the hierarchy nced to
share. To make the design even simpler, the designer breaks
down each task into state tables using statc table analysis. State
table analysis can be done by breaking down a task into a se-
quence of operations in time which represent ditferent “states™
of the system, First, the state tables of the bottom modules are
defined and then the ones for the upper modules are based on
the chosen controller hierarchy and upper level task decompo-
sition. In general, one iterates and redeflines the task decompo-
sition structure and the controller hierarchy as the state tables
become better defined. After completion of the procedure,
since the designer has determined the task knowledge and in-

Is

formation to be shared between the modules, the command and
status message vocabulary is also defined.

Having finished the analysis of the system and the design of
the RCS controller, the engineer laces the challenge of con-
verling the control algorithm to computer code, or in other
words, of implementing the RCS application. The RCS design
tool, which is a Java-bascd graphical tool, is used to help the de-
signer at this stage and to generate most of the related code auto-
matically.

The RCS Design Tool

The RCS design tool is a Java-based graphical program that
can be used from any Weh browser which supports Java, oritcan
be run as a Java Applet or as a stand-alone application provided
that the Java Development Kit (JTDK) is installed in the system. It
provides a graphical user interface (GUI) through which the pro-
grammer can lay out and build a hicrarchy of controllers for an
RCS application and automatically generate most of the applica-
tion code. The tool provides the ability for casily adding to or re-
moving modules from the application. It can modify the
hierarchy, set up communication channels between modules, de-
fine command, status, or auxiliary messages to be passed be-
tween the modules, elc. Using it the designer can assign different
cycle times for the modules based on their timing requirements.
It also generates the code for the NML servers (1o be discussed
later) and command line scripts needed for compiling and run-
ning the application together with all of the application-inde-
pendent code. In other words, using the RCS design teol &
“skeleton” code of the RCS application is generated and only the
application-dependent parts are left for the programmer to fill in.
To tllustrate, consider the task “Close gripper” to be performed
by the gripper module of the autonomeus robot mentioned ear-
lier. In the design tool we define a command for this task,
CLOSE_GRIPPER, to be passed by the supcrior of the gripper
module. This command can contain data variables to specify
how much to close the gripper, which control algorithm to use,
any variables that are needed to specily the conditions that are
needed for the task to be iniliated or finished, ete, Note that the
RCS designer specifies which information needs to be passed.
Once the programmer defines the command CLOSE_GRIPPER
in the RCS design tool, the tool generates all the code related to
this command together with an empty lunction for the actual
control algorithm, since the control algorithm can be applica-
tion-dependent and the uscr determines which algorithm to use,
Then the programmer can easily insert within the body of the
function (or import from another application) the actual
low-level control algorithm for closing the gripper. The control
algorithms are based on the state table analysis of the given com-
mand and are, in general, implemented in 1f~-then-else
form. This allows the current state of execution to be tracked
within the RCS diagnastics tool, Note that the state tables for the
commands are application dependent and the RCS design tool
does not generate them.

The tool handles cstablishing communications betwecn mod-
ules that lack a supervisor-subordinate relation (auxiliary comn-
munication channels). It also provides the ability o generate
code for different platforms, including DOS, Windows 95/NT,
Linux, LynxOS, SunQ8, VxWorks, IRIX. Thus, the user can
build an RCS application using the RCS design tool and generate
most of the code for it, and then “fill in” the application-

IEEE Control Systems

dependent control or estimation algorithms. This frees the pro-
grammer from dealing with the interprocess communications,
which may involve low-level network programming, so that she
can concentrate on the control of the system. Consult [21] for a
detailed description of the RCS design tool,

The RCS Library Components

As we discussed earlier, to develap a controller composed of
a hierarchy of control modules, which do not necessarily run on
the same computer system, we need the control modules them-
selves and means for communication between them. The RCS li-
brary provides these tools. In this section we will discuss the two
important components of the RCS library, the RCS communica-
tion tools and the RCS control medules.

The RCS library is composed of a set of C++ program scg-
ments. It takes advantage of the programming language’s struc-
tures and abililies, including classes, inheritance, and virtual
functions. A C++ class is simply a structure that groups together
aggregate data types that are typically related due to application
(rather than type). The components of a class arc called its mem-
bers, Members can range {rom data variables necessary for han-
dling information or data to functions that operate on other
members of the class, The idea of inheritance allows the user 1o
derive new classcs [rom a base class. This effectively produces a
new structure that contains both the members of the base class
and the members ol the new class, grouping them together as one
object. RCS uses this idea to develop a base class containing
[unctions and variables for communications between RCS mod-
ules. The RCS module itsell'is a class that is equipped with all the
teols for communication with its superior and subordinates and
also with additional functions and data variables commonly used
in RCS control routines. Although it is helpful o have some ex-
posure to either C or C++ programming to understand the details
of the RCS softwarc libraty, this

read the resulting message from the same buller. The CMS class
provides the functions that perform the reading and writing of the
data messages to the memory buflers, as welt as many additional
functions. The passing of information across networks oceurs
using Internet Protocol (IP) protacols—TCP, UDP, and RPC are
currently supported. RCS passes information across different
operating systems by encoding data in a ncutral format belore
writing the message to the bulfer. Several difterent encoding
structures arc available, including ASCIL (American Standard
Code lor Information Interchange) and Xdr (eXternal datarepre-
sentation). The location, size, and other attributes of the memory
buffers and communication processes can be user-specified ina
configuration file.

NMI. provides a set of classcs that provide a higher level inter-
face to CMS, so that the user necd not be concerned with the low-
level operating system processes contained in CMS. Thus, using
NMIL., we obtain a uniform interface to the RCS communications.
NML also provides the base classes for setting up the messages
that arc communicated between RCS modules and processes, as
well as those for producing the RCS modules themselves.

An example communications structure for an RCS applica-
tien using NML is shown in Fig, 2. This figure represents pro-
cesses running on three separate compulers {or backplancs).
Bach process could represent a module within a single hierarchi-
cal structurc or contain a complete structure within itself. The de-
sign ol the system is left to the developer; RCS merely provides
the mechanisms for producing a complex architecture. (Sce Fig.
3.) In the example communication structure, all memory bullers
are located on a single computer (Computer 1) and are directly
accessed by Processes 1, 2, and 3. These processes are labeled as
LOCAL to the memory buffers. Processes 4, 5, and 6 are consid-
ered REMOTE to the buffers. T'he need lor the NMIL servers is
discussed later. Nole that this structure is completely arbitrary.

article will focus on the higher

level design only and include C REMOTE
tow-level RCS code only where omputer or Backplane #_2_ -:;" Processes - Computer or Backplane #3
itis crucial for understanding the - |
overall design. Process Process Process
#4 #5 #6
RCS Communications \
The keys Lo the portability /
and standardized architecture of LOCAL
RCS are the use of the CMS and

NML. CMS is a library that con-

Processes

tains system-dependent operat-
ing system calls that arc

Ao NML NIL
conts}lnc@ in tha,] CMS;JSSC com- Sarver A Server
munications class, these are for Process Process Process for
crucial in cstablishing commu- Buffer #1 1 P 43 Buffer #2

nications along a network. Com-
munications arc provided
through a series of shared mem-
ory buffers. Communication be-
tween RCS modules (which may
be running on the same or scpa-
rate computers) occurs in a mes-
sage-bascd format by having

1

'

Shared Memory Buffer #1

Shared Mermory Buffer #2

Computer or Backplane #1

. N vy
one process write a message 1o
the bulfer and a sccond process Fig. 2. Example RCS conmmunications structure.
December 1999 7

[Operator Interface E

Meodule 1

Read
Command
Maessages

Write Status|

Messages |
: I
I

Maodule 2

|
,,,,,,,,, i

Process

A, the NML constructor (a func-
tion for creating a new object) is
called, which reads in the desig-
nated configuration file, deter-
mines if Process A is the master
of Buffer A (if so, the buffer is
created), and establishes a com-
munication channel so Process
A can access Buffor A in the
method that the configuration
tile specilies. An NML class ob-
ject must be established for each
process-to-buffer communica-
tion channel, since it contains
the variety ol {unctions used (o
perform reads and writes be-
tween the process and the bulTer.
For processes to access a
buffer that is physically located
on a different computer, an NML
server must run on the same com-
puter as the memory buffer, The
NML server encodes and de-
codes the messages from that
butfer on behalf of the remote
| process. Using servers to provide
remote access to the shared mem-
oty buffers frees local processes
from being slowed down by the
I communications with remote
! processes. The RCS library pro-
: vides the means for running the
'
[
[
[

NML servers as well,
Communication channels

usually connect a module with

its subordinates or superiors, as

Fig. 3. General RCS hierurchty.

The user can sct up an RCS system in any fashion, with any
placernent of buffers. Time-critical tasks, however, should gen-
erally be placed such that they access only LOCAL buffers. This
can result in significantly faster operation, since the use of re-
mole buffers often involves network communication delays.

Communication Channels

A communication channel exists between modules that need
to communicate with each other. For communications between
processes to exist, two ilems must occur—the memory buffer
must be established, and the process must set up access to this
segment of shared memeory. Each shared memory buffer must
have a master (i.c., an RCS process that is responsible for creat-
ing that buffer). Communication channels between buffers and
processes ate set up using functions available in the base NML
class (¢lags NML). Which RCS processes access which buft-
ers is established using an NML conliguration file. This is an
ASCII file that lists the buffers and processes and contains the
desired size of the shared memory buffer, location of the buffer,
communication methods used to access bufters, which processes
access which buffers, the buifer’s master, etc. When an object of
clags NML is instantiated so that Process A can access Buffer

18

the architeeture discussed carlier

suggests, Therefore, the RCS li-
brary has classes for establishing specitic communication chan-
nels: command channel class, RCS_CMD_CHANNEL, and status
channel class, RCS_STAT_CHANNEL, These classes are de-
rived from the NML base class and have some additional com-
mand or status channel utilitics. Morcover, RCS also provides
the ability to set up auxiliary communications so that two mod-
ules on the same level or separated by several levels may dircetly
communicate with each ather,

Messages

In RCS applications, the designer needs to specify the types
of messages that will be communicated to different modules. A
set of C4++ classes acts as the message vocabulary that is used to
creale message classes. A typical message contains several
members—data variables to hold the message size and unique
identity number of the message, data variables that will be appli-
cation specific, and a function that tells NML how to update, or
cneede/decede, the members of the message class from the en-
coded format so that a proper read/write can occur, This lastitem
is referred to as the update () function. The data variables
placed in the class are the components of the message that are
written to and copied out of the memory buffer during a read and

IEEE Control Systems

write cycle. As such, the NML message the user develops should
contain the data that nceds lo be passed to other applications.
NMI. provides a basc class NMLwsg for producing a message.
Application-specilic messages are created by deriving a new
class [rom NMLmsg. NMLmsg conlains the member function for
storing the size and unique [D number of the message and a func-
tion for producing the message (calted a C++ constructor).

Although NML classes contain read() and write() func-
tions for communicating messages, these functions generally are
used as a high-level interface to the CMS communication tools.
The actual wriling/rcading of the messages to and from the mem-
ory buffers is accomplished by the low-level CMS communica-
tion methods.

One of the advantages of using shared memory buffers for
communications is that each member of a message can be writlen
to or read from the buffer individually. 1n CMS methods, the
message is encoded in a neutral format using the update()
functions, The unigue [number is also encoded. However, it is
handled dillerently than the remaining items of the memory so
that other processes can access

Although messages of any type can be constructed, RCS pro-
vides additional tools for producing two specific types of mes-
sages—command messages (class RCS_CMD_MSG) and status
messages (class RCS_STAT_MSG). Command messages are
those that are passed from higher modules (o lower modules,
They request that an action be performed, Stalus messages arc
passed from lower modules back to their parents, transferring
data that characterizes the current status of the lower modulc.
RCS_CMD_MSGand RCS_STAT MSG are twa classes derived
from NMI.msg with some additional data ficlds. Note that the
user can define the messages of an application within the RCS
design tool. Moreover, all the communication channels between
the modules will be established automatically by the design tool
once the controller hicrarchy is detined. Therefore, none of these
involve any extra programming overhead for the RCS designer.

RCS Control Modules
Developing a complex hierarchical sysiem using the individ-
val NML communications and messaging tools would be le-

this variable dircctly without
reading in the entire message.,
Since all messages contain the
commton data member for the
unigque 1D of the message, this
variable is [irst encoded sepa-
rately from the rest of the mes-
sage. CMS methods will always
wrile these common variables to
the same places in the shared
memory, regardless of the type
of messages, so all other RCS
processes know where to look in
the memory buffer to find the 1D
number of the message. Once
the ID number is known, the
lype of the message is known,
and CMS methods call the ap-
propriate update() function o
read/write and decode the data
members of that particular class,
Since message contenls are ap- ‘L
plication specific, the developer :
needs (o create an update() N
function specific to every addi-
tional message that is created.
This function simply calls the
CMS update() function for

MAIN LOCP

Next Sampling

NML Module Fuhction
controller { } - — - -

$

Continue N
Loop? o @
Y i |
! —— o] Yy
a \' NML. Functions for

1
i
|
i‘ - Starting Cycle Time |
| - Reading Command !
Time? \I from the Supervisor :
|]

[
i

- Reading Status of
Subordinates

NML Modute Function
PRE_PROCESS ()

oo NML Module Function

DECISION_PROCESS
T
!

Y
NML Module Funciions
POST_PROCESS ()

each data variable in the class,
The RCS library afrcady con-
tains update() functions for
most of the basic C data types,
including (loating-point num-
bers, integers, characters, ctc.,
and as o result, writing an up-
date function for the user-
specified message simply in-
volves calling the RCS library

NML Functions For

- Stopping Cycle Time

to the Supervisor

- Sending Commands to
Subordinates

I
!
[
: - Sending Status
I
|
I

updatea() [unctions for each
cata variable in the message.

December 1999

Fig. 4. Operation of the NML module.

dious. NML is provided as the communmications workhorse
between applications and multiple processes. It does not provide
the tools for aciually producing modules of a complex hierarchi-
cal control structure. To do this, RCS provides additional sofl-
ware tools based on a set ol classes that combine the
communication abilitics of the NML classes with standard lunc-
tions used in RCS control routines to allow for the procluction of
the hicrarchical strueturc. The RCS library containg a general
controtler module, also referred to as an RCS madule, NML moxd-
ule, or RCS template, which tukes care of many of the cyclic pro-
cesses needed in a hierarchical structure. The hierarchy is
cstablished through the NMI. configuration file, which lists the
buffers and processes of a particular RCS application and tells
which processes access which buffers. In general, RCS applica-
tions have a static structure. In other words, their structure does
not change during run time. However, the RCS library can han-
dle some dynamic structures, 10o. Each NML module is associ-
ated with at least two buffers—a command bulfer {(readable to
the module) and a status buffer (writable to the module)—and
has both parent modules and subordinate modules, Parents have
access to the subordinates’ command and status buffers. Gen-
crally, the parents obtain status information from the subordi-
nates’ status buffers and maintain the ability to command the
subordinates with the abilily to writc command messages Lo the
command buffer. This is illustrated in Fig. 3. Module {, at the top
of the hierarchy, has the ability to command modules 2 and 3 by
sending command messages 1o modules 2°s and 3’s command
bulfers. Likewise, module | can gather status information by
reading modules 2's and 3°s status bufers. Each node of the hier-
archy behaves in this fashion. The operator interface can send
commands to the upper level module, where initial task decom-
position occurs.

When each module is “activated” (usually on a cyelic inter-
val), the module first checks [or commands from the parent and
reads the statuses of the subordinates, then calls the user-written
preprocess, decision process, and postprocess functions in that
order, The preprocess function (PRE_PROCESS()) could be
used, for example, to obtain sensory data or implement estima-
tion procedures. The decision process function (DECT-
SION_PRCCESSO)) calls one of the command functions of this
module based on the command to be executed this cycle time. If
there is no request for a new Lask, then the module continues the
operation on the last recetved command. The command func-
tions (which the programmer needs to develop) may (in higher
modules) decomposce tasks into a series of actions that are passed
as commands to subordinates or (in lower modules) calculate
low-level controller outputs based on their incoming command
using predelined control methods, NML modules provide func-
tions that can write command messages to the buffer of a subor-
dinate. The postprocess function, POST_PROCESS(), is
reserved for updating the module’s status variables, which are
passed to ils parent, and possibly for sending out actuation sig-
nals. The NML module compietes the cycle by updating its out-
put buffer, which generally includes writing its current status to
its status buffer, and possibly commands to its subordinates,

The operation ol asingle cycle of an NML module is shown in
Fig. 4. lems boxed in a dashed line are functions already avail-
able inthe RCS library; they do not need (o be written by the user,
Those items in solid lines are application-specific code that the
user needs to develop. (A skeleton of these functions is generated

20

by the RCS design teol.) The main loop is implemented once cv-
cry sampling period of this particular module. To “activate” the
controller module, a simple call to the NML module’s con-
troller () function is necessary. This function in turn calls
functtons that start the timing for the cycle (for diagnostic pur-
poses) and read the input bulTers ol the particular module, for ex-
ample, the command buffer and the subordinate status bulTers.
Then, application-specific code is implemented in the order
given above for the preprocessing, decision processing, and
posiprocessing functions. The controller() cycle ends
with the wriling of any necessary messages to the output buffers,
where, for example, commands may be passed to subordinate
modules. Note that different commands will causc different
functions to be called in the DECISION_PROCESS(), resulting
in different operation.

User Interface Via the RCS Diagnostics Tool

The RCS diagnostics ool is a package developed by NIST o
provide an operator interface (o an executing RCS application.
Similar to the RCS design tool, it is a Java-based program that
can be used from any Web browser that supports Java, or can be
run as a Java Applet or as a stand-alone application. Il allows a
human operator 1o interact with an RCS application. A user can
view the status of the modules in the hicrarchy and send com-
mangds to them using the diagnostics tool, The files needed by the
diagnostics ool can be generated automatically by the design
tool; therefore, ne additional programming overhead is required.

The RCS diagnostics tool has different views through which
you can view the status and command messages or the hicrarchy
of the application, send commands to the modules in the applica-
tion, view the state tables, plot status variables, cte. These options
are as follows:

» Login This option is used 1o prevent some vsers from hav-
ing complete access 1o the NML. buffers.
Details This option is used to view the available com-
mand and status messages, modify the {iclds of the com-
mand messages and send any commands if needed, Here,
we can also choose which fields of which status or com-
mand messages will be plotted.
s puxiliary Channels This option is similarto the De-
talls option cxcept that it shows the auxiliary messages.
Hierarchy Wecan use this option (o view the controller
hierarchy. The modules appear color coded based on their
current status of operation.
Graph This option is used to view the plots of the variables
that were chosen to be plotted in the Details option.
Error Log This option is used to view the error messages
(incascolany) logged to the spectal buffer called errlog.
State Table This option shows the place within the
state table which is currently executing,

* Debug Flags Thisoptienisused toset on or off some de-

bug tlags,

Detailed information on the RCS diagnostics tool can be

found in [21].

-

RCS Application Examples
In this scction, we introduce the use of RCS as a design
method using an actual implementation of the RCS library on a
laboratory experiment. The simplest application is the imple-

IEEE Control Systems

Reaction
Chamber

Hot
Tank

Power
and
Switching
Cirguitry

/=5

|
[] I

Computer I

To
Computer
OO0

L

Power
Switch

D L

©
N

DC Pump

Interface
Rox

Fig. 5. The process control experiment (figure drawn by Scort Brown).

mentation of a singlc controller to cxecute a single task on a sin-
gle experiment, We have also implemented such a system in
RCS for a rotational inverted pendulum in our laboratory, and
some details on this implementation are provided in [23]. In this
section, we will provide a description of a more intercsting RCS
application for a process control experiment where therc are
multiple objectives and subsystems. In the next scction, we give
a conceplual view of an RCS design for an automated highway
system. Since an AHS is a complex system that requires large
computation power as well as all the aspects of the intelligent au-
tonomous architecture (including fault tolerance), it provides a
good testbed introduction lor the RCS design archilecture.

A Process Control Experiment

A process control experiment can provide a good itlustration
of the power of the RCS design tools, since it is a practical appli-
cation that can vary in complexity. A simple process control ex-
periment could consist of just two tanks, one for mixing and
another for storage, as shown in Fig. 5. With each tank, we have a
pump, heater, and mixer, as well as sensors for determining tem-
perature and level of tank contents. Possibly the easicst way to
implement such an experiment in which temperature and level
values are being controlled is 1o run two controllers serially (that

December 1999

is, one at a time) in one program. However, this quickly becomes
a waste of resources. First of all, the required sampling times are
dilferent—temperature control can operate at a rclatively slow
rale compared to level control. Also, the two tanks could be lo-
cated at different locations (across a plant floor, for example},
making it more efficient to separate the controllers for cach of the
tanks. As the complexity of the plant grows, physical constraints
may require the use of a distributed control structure. The addi-
Llion of several chemicals, cach of which must be accurately
heated to a specific temperature, forces us to have accurate con-
trol of the rate at which the chemicals are mixed. As we increase
the number of actuators, the creation of a single program to con-
trol all processes becomes inefTicient and perhaps even costly in
terms of recovery [rom faults,

In a process control experiment where everything is interde-
pendent, it is necessary to share information about each tank with
the other processes controlling the mixing., With an RCS design,
the process control experiment can be broken down into sets of
subprocesses and modules without eliminating the ability to
communicate and share information between processes. Pro-
cesses can act independently while they ave siill linked together,
sharing information that is crucial for successful production.
With RCS, temperature and level control for each tank can be op-

21

interface Computer (Windows NT)

Interface Module

Remote Link Via Ethernet - - / \ ~ -~

4 - / \ = -~

Server #6

Server #4 Server #5

Server #3

Server #1 Server #2

Supervisor
Status
Buffer

Supervisor
Command
Bufter

Local Link
Via DS

Supetrvisor
Module

Process Control Computar (Linux)

Level
Status
Buifar

Lavel
Command
Buffer

Heater
Status
Buffer

Heater
Command
Buffer

Level
Medule

Heater
Module

-
Data Acquisition Card J

To Process Control Experiment

Fig. 6. Design layout for a tank controller.

22 [EEE Contrel Sysfems

eraling close to the tank while communicating with the other pro-
cesses 10 which it is linked. These tank controllers can be spread
out throughout a plant, and all information could be shared with a
supervisor located local to a plant operations panel. A plant oper-
ator could then have the power (o change the mixing process and
sel points of all tanks from a single location.

RCS Analysis and Design for the Tank

We set up the simplificd control problem where we regulate
the level aid the lemperature of the liquid in the reaction tank at
specificd reference valaes that can be set by an operator from
(possibly) a remote host.

In this simplified control problem we do not have to use alt the
actuators and sensors avaitable in the system. In fact, in the sim-
plified system we have only two sensors and four actuators. The
sensors are for sensing the level and temperature of the reaction
tank and the actuators are the heater, two pumps for filling and
emptying the reaction chamber, and the stining mechanism in
the tank. The stirreris used in order to counteract the disturbance
due to the high-pressurc pumping (this allows for a mote accu-
rate reading in our level sensor) and also to mix the liquid se that
there is no temperature difference in different seetions of the
lank.

This setup imimediately suggests that on the first level of the
hicrarchy we have four lower level modules, one each for the
heater, the two pumps and the stirrer, and a supervisor on the sec-
oncl level to supervise or coordinate the actions of the four lower
level moduies. This is a fairly simple hierarchy, however, we
simplily it even more by combining the two pumps into one
module. Moreover, by letting the stirrer always be on as long as
the program is running, we can remove its contro! module from
the hierarchy.

Simple task analysis shows that the module for the two pumps
(which we will call the “level module™) can either pump the water
into the reaction chamber (i.c., increase the level) or pump the wa-
Ler out of the chamber (i.c., decrease the level). These two actions
arc similar because in cither case we increase or decrcase the level
to a predcfined reference level (we do not allow the tank to over-
flow or to beecome empty). Therefore, these two tasks can be re-
lerred to as two different states of a single task of setting a
reference level. Another two states of this task are the idle state and
the error state, which oceur respectively if the reference level is
reached or some problem, such as failure of a sensor or actuator,
arises.

The task analysis for the heater is even simpler becausc the
heater is cither on or off; it is either heating or not. The task of
controlling termperature can be in cither the state of running the
heater, idle state, or error state.

In order for the supervisor Lo be able 1o coordinate the actions
of the fevel and temperature control mocules, it needs the values
of the current level and temperature in the tank. Therefore, these
values need to be passed from the lower modules to it. Based on
this information it will send commands to its two subordinate
maodules for changing set points and stopping and starting the
control algorithms.

Messages that are passed between RCS processes are applica-
tion-specific; therefore, the developer necds 1o define the mes-
sages [or each particular application. After determining the tasks
that each module can perfornt and what data frony one particular
module is needed by another module or a human aperator, the

December 1999

message vocabulary is also determined. From the task analysis
above we know that the level module will aceept s command for
setting a refercnce level LEVEL_SET_REF, which will provide
the value of the refercnce level, and the heater module will have a
command for sctting the reference temperature
HTR_SET_REF, which will provide the value of the reference
temperature, as well as additional commands for initializing and
halting the process. The supervisor, on the other hand, may ac-
cept a command which specifics both the reference level and
temperature, SUPV_SET_REF, and then may distribute them to
the heater and level modules. Similarly, commands for starting
and shutiing down the system are also necessary. To supply the
current level to the supervisor from the level module we provide
a variable in the level module’s stalus message,
LEVEL_STATUS, that holds the value for the current level. This
message, when written to the status buffer at the end of the con-
troller cycle, can then be viewed by any RCS module or process
that has access to the level status buffer, Thus, it is accessible to
both the supervisor and the interface computer., Likewise, for the
heater module, we provide a field to hold the current lemperature
to ils status message, HTR_STATUS.

The use of RCS here provides us the ability to quickly and
casily set up a relatively complex system. In fact, adding addi-
tional tanks to the process control system is trivial—since RCS
code will already be developed for one tank, it simply would
need to be ported over and applied to a second tank setup. Coor-
dinating activities through the supervisor allows this easy up-
grade. The only major change to the code would be to update the
supervisor to handle the additional tasks of the additional tank.
Furthermore, following the RCS architecture described carlier,
we could add additional algorithms 1o handle fault tolerance or
prediction and estimation,

Fig. 6 shows one possible layout for the process control appli-
cation, The mixing tank modules are all located on a single
backplane, and cach individoal module has two local memory
buffers associated with it. We can design this structure by using
the RCS design tool in very short time. We only have Lo specily
the names of the modules, assign their hicrarchy, define the com-
mands accepted by cach of the modules, and add the needed vari-
ubles Lo the command and status messages. Then, afl the refated
RCS code (excluding the implementation of the aclual control al-
gorithms} can be automatically generated by a mouse click,

The human operator can change the attributes of the mixing
tank system through the interface computer, which runs diagnos-
tics on the system and can send commands 1o each of the mod-
ules. Note that the interface computer must access each buffer
through an NML server, The mixing tank algorithms are running
ou a PC (under the Linux OS), which has access to the plant
equipment through a data acquisition card. The inlerface com-
puter is running under the Windows NT platform.

Single-Tank Process Control Operation

All the modules of the single-tank process control experi-
menl run as separate programs, cach containing its own “main”
function. The main function creales u cyclic looping structure
that activates cach module once during a set sampling period.
The overall operation of the supervisor module is illustrated in
Fig. 7. Because all of the processes are separate, different sam-
pling rates could be used for each module. Note that in the pro-
cess control case, the temperature module could be operated at

23

Supervisor
Status
Buffer

Supervisor
Command
Buffer

Buffer Read

Read Input
Buffers

Sampling
Time

I Determine
Command |

Level
Command
Buffer

Heater
Command
Buffer

Buffer Write

N

Update |

Status = =
I}

Post-
Process

Decision
Process

Loop to 7,

————— \ -~ N
Check I_ _ l Send I_ —
Status i Commands |

_____) — — —— — —)

Buffer Write

Fig. 7. Overall operasion of the supervisor module in the process control experiment.

a slower rate, since the dynamics of heating and cooling are
much slower than those of adding or subtracting fluid tom the
tank. In this case, for cxample, we could set the sampling time
of the level module to [second and that of the heater module to
10 seconds. The supervisor module shouid run frequently
enough to calculate diagnostics of the lower modules (in case
of fanlt detection or modeling), although it will generally run
slower than its subordinates.

The task decomposition for the system is primarily accom-
plished by the supervisor. When the message is written to the su-
pervisor’s command buflfer, a flag is set, indicating that the
buffer contains a new message. On the next cycle through, the
supervisor module reads the contents of that buffer. The unigue
ID of the message Tets the supervisor module process know what
type of message has been sent and what data variables it expects
toread from the bufler, In the case of a SUPV_SET_REF, forex-
ample, the data variables of the message include the new refer-
cnce levels for the level and temperature modules. The
supervisor’s decision process function responds to the message
written to the buffer by calling appropriate actions. In this case,
the supervisor calls a function SET_REF(). This function de-
composes the tasks of updating the controllers by sending the ap-
propriate commands to the subordinates that are actually
responsible for implementing the control algorithms. Tt writes

24

the LEVEL,_SET REF message to the command buffer of the
level module and the HT'R_SET_REF message o the command
buffer of the heater module. Recall that each of these messages
containg variables to hold the desired refercnce values, so these
are passed down to the actual control algorithms. During the next
cycle of the level (heater) module, the command buffer is read
and the LEVEL_SET_REF (HTR_SET_REF) command is
available (o the subordinate module. The appropriate action is
taken in the subordinate’s decision process routine; in this case,
the reference level (temperature) is changed to the value con-
tained in the message via a simpie feedback control algorithm.

Automated Highway System

As an additional application example, we turn to the idea of
the automated highway system, a project that has seen increasing
attention duc to the problem of highway traific congestion in ma-
jor metropolitan arcas | 13]-[16]. AHS offers numerous benefits
to society, including reduction in traffic congestion and in-
creased highway safety. The development of such a system is an
extremely complex endeavor due (o complex vehicle dynamics
and the large number of vehicle interaction possibilities (passing
vehicles, multiple-lane roads, traffic entering/exiting highways,
elc.). Communications plays a key role in an AHS vehicle pla-
toon (a group of vehicles closely spaced together)—the cars

IEEE Control Systems

Platoon
Coordinator

i

!

: Platoon 2
b i

Gontroller
Moduie

. ,
\“k,ﬁf,*’ e e ol . el _____)
Al - ~
\ - ~
\ ~
‘\\ ’ 5
N
S J Platoon 1 Platoon 1 Y
R Supervisor - !
— _I . i -~ ~ i
N
! . " |
| N |
i \ 1
1 ! 1
! Vehicle 1 Vehicle 2 ! :
| /]
\ 4 '
Al \\ r ,
. S . /
N N - s
RS e e
S L L e e e L e e e Ll e e e L e e e s e e e e m o h = e — = 4 — e —— - .
i
it
st
e e e e — e - - - ‘ot
. RS I
I ~ L
. N s
, Vehicle n ' L
! P s
| Vehicle | el
! Supervisor i P
| - P

Platoon N

Fig. 8. An RCS implementation of a simple AHS.

must be able to communicale with cach other or a platoon lcader
so that the coordination of activities can take place. 1t is under-
stood that with only limited or no communications, relatively
high-performance car-lollowing can be achieved. Here, we con-
sider an AHS with a varicty of communications based on the pre-
defined AHS protocol (sec [13] for an example of such a
protocol). One example of how to implement AHS using RCS
can be lound in | 12], where the authors deal with the complexi-
ties of the vehicle itself and suggest that cach vehicle has its own
RCS structure and the road control mechanism is organized as
another RCS structure, Certainly, this is not the only way to im-
plement ALLS using RCS, and in this example we will consider
the three-layercd hierarchical structure in [13]. We emphasize
that our objective here is not the development of a realistic AHS,
but simply Lo show that the RCS library is not limited (o a particu-
lar architecture and can be used in a variety of applications,

The AHS Problem

In general, in RCS applications we start the design of the con-
troller with the task analysis of the overall system. In this case,

December 1999

however, we will assume that the controller hierarchy is pre-
specified. We will consider the AHS setup shown in Fig. 8,
which is essentially the one suggested in [13]. AL the top of the
hierarchy is the platoon coordinator module, which is responsi-
ble for overall long-term planning and coordination of the high-
way traffic (e.g., for congestion alleviation). This module can
command the individual platoon supervisor modules by sending

their status information, The platoons consist of their own RCS
hierarchy, which is controlled by the platoon supervisors, These
supervisors take the commands from the plateon coordinator and
translate them into actions to be performed by each individual
vehicle in the platoon, The plateen supervisor can command its
vehicles by writing messages to the command buffer of the ap-
propriate vehicle. Important status information, neeessary for
long-term planning, is communicated to the supervisor through
the status bufters of the vehicles. Finally, the complexity of ATIS
is broken down further by representing each inteliigent vehicle
as an RCS structure, which itself consists of a vehicle supervisor
for high-level decision processes local (o the vehicle and sensing

25

and controller modules for gathering sensor data and performing
speed and lane-change control.

For illustration purposes, we will focus on the description of
the intelligent vehicle only, and leave out the details of the pla-
loon structures and the platoon coordinator medule. See [13] for
an airalysts of platoon operations and interactions. In the follow-
ing seclions, we provide more detail about the high-level RCS
design ol an intelligent vehicle.

RCS Design for an Intelligent Vehicle

Each intelligent vehicle consists of three subsysters—one
for higher level decision processes, one for sensor data gathiering
and local processing, and a third for controller actuation (see Fig,
8). Each of these subsysiems can be designed as an RCS module.
Communications between the modules follow the RCS architec-
ture, with the establishment of two shared memory buffers for
each of the three modules, The vehicle supervisor passes com-
mands to the sensor and controller modules through their respec-
tive comumand buffers. The resulting status of the subordinate
modules are passed back (o the supervisor through the respective
status buffers. The vehicle supervisor responds o two separate

actions—high-level commands from the platoon supervisor

module and the resulting status of ils subordinates.

Simple task analysis (or the vehicte shows that it can perform
the following tasks: “Move forward,” “Move backward,”
“Specd up,” “Slow down,” “Move with constant speed,”
“Change lane,” “Turn to right,” “Turn (o left,” and “Make
U-turn.” (Note that this is a simplified set of actions that a vehicle
can perform.) Therelore, these will form the sel of command
messages or command message vocabulary of the vehicle super-
visor. [n other words, we will define one command message for
cach of these tasks (using the design tool), To these messages we
add data variables (if needed). For example, the command
“Move with constant speed” will require a data ficld that will
hold the required speed.

Based on the command reccived (or its internal decision
mechanism) the vehicle supervisor may decide to perform one of
these actions and send appropriate commands 1o the subordinate
control and sensor modules. For example, the task “Change
lane” can be broken down to: “Check front traffic,” “Check rear
traffic,” and “Check side lane traffic” (to be performed by the
sensor module in this order) and the task “Change lane” (to be
performed by the control module, possibly as a simple feedback
loop, if it is safe), Based on the information obtained from the
first three tasks, the decision mechanism can decide whether it is
safe to perform the next operation and send a *"Change lanc”
command to the controller module, or to wait. Note that this may
invalve not only sensor readings bul also some communications
with the nearby vehicles [13] (through the sensor module). In a
similar fashion one delines the other tasks of the vehicle.

As discussed earlier, each module reports status to its supe-
vior. The designer decides which information each module needs
to report. For example, we may decide that the vehicle supervi-
sor’s status information will consist of the following: “Current
position inthe highway,” “Current longitudinal speed,” “Current
lane of travel,” “Current lateral speed,” “Current distance to the
front vehicle,” and “Current task.” Some other designer may add
“Distance to the destination,” “Total travel tume elapsed,” elc.,
depending on the underlying protocols and the overall ALLS sys-

26

tem. We combine these in a single structure for the status
message {which can he generated by the design tool).

For each individual vehicle, the two low-level modules are
responsible for determination and implementation of the sensing
and control algorithms. The sensor module controls the gather-
ing of data from each of the intelligent vehicle sensors (we as-
sume there are sensors located in the front, on the sides, and on
the rear ol the vehicle and one for determining ils own speed) as
well as communicating with the near vehicles based on some
predefined protocol.

This data nceds to be communicated back to the parent mnod-
ule so that coordination can occur. The [ront sensor of the vehicle
determines the existence ol a vehiele in front (if within the sensor
range), its speed, the distance between the two vehicles, and the
tane (left or right) the vehicle is on, The side sensors return the
spacing between the carrying vehicle and the vehicles in the side
lancs. The rear sensor returns Lthe spacing between the vehicle it-
self and the vehicles Lo the rear of the vehicle (inctuding ones in
adjacent lanes).

By analyzing the sensor data, the higher level decision pro-
cess of the vehicle supervisor can determine il the needed tusk is
safe, Whether or not the vehicle supervisor actually proceeds
with the task (e.g., lane change) depencs on the level of safety of
the action gained from analysis of sensor module data.

The vehicle controller module performs the low-level control
algorithms necessary for implementing the tasks, Therelore, it
will accept commands similar to those of the supervisor.

By analyzing the tasks of the sensor module we can decide
that it will respond to the following commands: “Check [ront
traffic,” *Check rear traftic,” “Check side lane tralfic,” and "Re-
turn the vehicle speed.” Each of these commands may require
multiple readings and processing. For example, the command
“Check front traffic” may require determining whether there is a
vehicle in the front, its speed (if there is one), and its intention te
maneuver (¢.g., to change its lane), which can be obtained by
communication with that car. The other commands can be de-
fined similarly.

We et the sensor module and the control module commuini-
cate through an auxiliary channel so that if there is a break in
commmunication with the supervisor, the control module can con-
tinue its operation via preprogrammed cmergency routines and
safely bring the vehicle to the side of the road, or until the driver
takes the control,

Proceeding with the analysis, we can define all the possible
sequence scenarios (within the AHS protocol) and develop the
decision algorithms together with the low-level control algo-
vithms for all the modules of the vehicle and in the whole hier-
archy.

This cxample shaws that the RCS library can be used for im-
plementation (or upgrade) of predefined {(developed by other
means) control hierarchies even if the system is fairly complex.

Conclusion

In this atticle, we studied the fuadamentals behind imple-
menting complex intelligent controller designs using the NIST-
RCS soltware. The tools and components of the RCS library
were shown to provide functions such as communication abili-
ties, task decomposition, functional decompasition using sub-
systems and modules, etc., which promote the implementation of
inteltigent controller architeciures. The primary purpose of the

IEEE Control Systems

software library is to easc the development of complex control
systems, The actual development tools are generic and, as a re-
sult, can be used in virtually any control problem ¢both simple
single-loop systems and more complex autonomous control ar-
chitectures). We began by introducing an inteliigent controller
architecture and the theory behind RCS controller design. Then
we described the RCS design methodology and the RCS design
tool. After that, the components of the RCS software library were
intreduced. The actual library consists ol a set of prewritlen C++
program classes and scgments which contain functions that take
care of handiing message communications, basic controller
functions, ete. By setting up communication channels between
controller modules, the RCS hicrarchical structure can be imple-
mented, We stressed that although this is the general pattern RCS
uses, the developer is free 1o set up any other auxiliary communi-
cation channels to facilitate module interaction.

We gave two design cxamples—a process control experi-
ment and an automated highway system. Although they were
only higher level descriptions (we avoided including low-level
coding details to facilitate the understanding of RCS design), the
examples helped show that the RCS design architecture can be
applied to almost any application and that the design methodol-
ogy is both Tunctional and systematic, Because of its modular
and functional design, incorporation of more advanced systems
can be accomplished simply by adding more modules in a task
decomposition structure. We showed that RCS design provides
the power of introducing advanced high-level control methods
that can deal with high-level decision making incorporating
(possibly) long-term planning, adaptation, and fault detection,
together with simple feedback loops.

The RCS library is free and can be downloaded from the
anonymous [ip site [tp:/fip.isd.melnist,gov/ pubfeme/reslib.

Detailed information on the RCS library can be found at
http:fiwww.isd.mel.nist.gov/projects/res_1ib/ or in [21].

Consult [23] for a description of an example educational pro-
gram on RCS.

Acknowledgments
The authors would like to thank the reviewers and editor for
their helpful suggestions, Moreover, we would like to thank
Profs. Gmit Ozgiiner and Stephen Yurkovich or their support
and extensive laboratory development efforts over many years
that have helped establish the infrastructure for the laboratory
component of this work.

References
[T R.A. Brooks, “A robust laycred control system [or amobile robot,” IEKE
Trans., Robot. Awtomat., vol. RA-2, pp. 14-23, March 1986,

[21 K. Valavanis and G. Saridis, Intelligent Robotic Systems: Theory, Design,
and Applications, Norwell, MA: Kluwer Academic Publishers, 1992,

13] . Simon, B. Bspiau, K. Castille, and K. Kapellos, “Computer-aided de-
sign of a generic robot controller handling reactivity and real-lime conlrol is-
sues,” IEEF Trans. Control Syst. Techol., pp. 213-229, Dec. 1993,

[4] A.J. Barbera, 1.S. Albus, and M.L. Fitzgerald, “Hierarchical control of ro-
bots using microcompulers,” in Proc. 9th Int. Symp. Industrial Robots,
Washington, DC, March 1979,

[511.8. Albus, C. McLean, AL). Barbera, and M.L. Titzgerald, “An architec-
e lor real-lime sensory-interactive control of robots in a manufacturing en-

December 1999

vironment,” in 4th ACAFLP Symp. Informarion Control Problems in Mann-
Sacturing Technology, Gaithersburg, MD, October 1982,

[6] EW. Kent and LS, Albus, “Servoed world models as interfaces botween
robot control systems and sensory data,” Rebotica, vol. 2, Januacy (984,

[7] 1.8, Albus, H.G. McCain, and R. Lutmia, “NASA/NBS standard reference
maxlel [or telerobol control system architecture (NASREM),” Technical
Note 1235, National Institule of Standards and 'T'echnology, Gaithershurg,
MTY, April 1989,

18] M.W. Gertz and D.13. Stewart, “A human-machine interface to support
reconfigurable soltware assembly for virtual laboratories,” IEEE Robotics
and Automation Mogazine, vol. |, Dec, 1994,

191 11.M. Huang, R, Quintere, and 1.8, Albus, A Reference Model, Design Ap-
proach, and Development Hustration toward Hierarchical Real-Time Sys-
tem Control for Coal Mining Operations, Advances in Control and Dynamic
Systems, Academic Press, July 1991,

[LO] J.A. Simpson, R.J. Hocken, and 1.8, Albus, “T'he automated manufac-
turing rescarch facility of the National Bureau of Standards,” /. Manufic-
turing Systemy, vol, 1, no. 1, 1983,

[L1[LS. Albus, . Barkmeyer, and A. Jones, “Approach to a system architee-
tore for post office automation,” in Proc. USPS 4th Advanced Technology
Conf., Washington, DC, Nov. 5-7 1991,

[12]1).5. Albus, M, luberts, and S. Szubo, “RCS: A relerence model architec-
ture for intelligent vehicle and highway systems,” in Proc. 25#h Sifver Jubi-
fee Tnt. Symp. Automotive Technology and Automation, Florence, Italy, Tune
1992.

FI31A Hsu, F. Eskaly, 8. Sachs, and P. Varaiya, “Protocol design for an auto-
mated highway system,” Discrete Event Systems: Theory and Applicaiions,
vol. 2, no, 344, pp. 183-206, 1993,

[14] U. Ozgiiner, C. Hatipouglu, A. iltar, and K. Redmill, “Hybridl control
design for a three vehicle scenarie demonstration using overlapping de-
compesitions,” ¢h, 1V, pp. 294-328, Hybrid Systems, Springer Verlag,
1997.

[15] 0. Qzgiiner, €. Hatipouglu, and K. Redmill, “Autonomy in a restricted
warld,” in Proc. TEEE ITS Conf., Boston, p. 283, Nov. 9-12, 1997,

[16] K. Redmill awd U, Ozgiiner, “The Ohio State University automated
highway system demonstration vehicle,” in Int. Congress and Fxposition,
Detroit, MT, February 23-26, 1998,

[1711.8. Albus, “System description and design architecture tor multiple un-
dersea vehicles,” Technical Note 1251, Nutional Tnstitule of Standards and
Technology, Gaithersburg, MD, September 1988,

| 8] 8. Szabo, H. Scott, K. Murphy, and S. .egowik, “Control system ar-
chitecture for remotely operated unmanned land vehicle,” in Proc. 5th
[EEE nt. Symp. Intelligent Control, Philadelphia, PA, September 5-7,
1991.

[19]1 P.J. Antsaklis and K.M. Passino (eds.), An Iniroduction to Intelligent
and Awtonmnons Controf. MA: Kluwer Academic Press, 1993,

[20] 1.S. Albus, “Outline for a theory of intelligence,” IEEE Trans. Syst.,
Man, Cybernet,, vol. 21, pp. 473-509, May/June 199 1.

1211 V. Gazi, M.L., Moore, K.M, Passine, W.P, Shackleford, F.M, Proctor,
and 1.5, Albus, “Hierarchical distributed real-time control systems: Software
for designand implementation,” in preparation; see http://www.isd.nist. gov/
projectsires_lib,

[22] A.J. Barbera, J.S. Albus, M.L. Fitzgerald, and I..8. Haynes, “RCS: The
NBS real-time control system,” in Proc. Robois 8th Conf. and Exposition,
Detroit, M1, June 4-7, 1984,

[23] V. Gazi, M.L. Moore, and K.M. Passino, “Real-time control system
software for intelligent system development: Experiments and an educa-

27

