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A Separation Principle for Non-UCO Systems: The Jet  where® represents the mass floW,is the plenum pressure risg,> 0

Engine Stall and Surge Example is the normalized stall cell squared amplitude;; is the mass flow
through the throttle (throughout this note, we will set= 7, and
Manfredi Maggiore and Kevin M. Passino B8 = 1/v2). The functions¥.(®) and &7 (¥) are the compressor

and throttle characteristics, respectively, and are defineld ) =

_ o U, +143/20-1/28%,F = (1/4%)(1+P1(¥))?, where¥ -, isa
Abstract—The problem of controliing surge and stall in jet engine —.,nqrant and is the throttle opening, the control input. Our control ob-
compressors is of fundamental importance in preventing damage and . .~ . - - e
lengthening the life of these components. In this theoretical study, we J€CtiVe is to stabilize system (1) around _the Cr't'f:al equilibriim= 0,
illustrate the application of a novel output feedback control technique ®° =1, ¥ = ¥ (®°) = ¥, + 2, which achieves the peak opera-
to the Moore-Greitzer mathematical model for these two instabilities tion on the compressor characteristic. Shifting the origin to the desired

assuming that the plenum pressure rise is measurable. This problem equilibrium with the change of variables= & —1,¢ = U — ¥, —2
is particularly challenging since the system is notuniformly completely we obtain i 0
observableand, hence, none of the output feedback control techniques
found in the literature can be applied to recover the performance of a full 5 2 2
state feedback controller. R= -0l —oR(20+¢")

Index Terms—Nonlinear control, nonlinear observer, output feedback, Q = —¢p—-—— — L —3Ro — 3R
separation principle, surge and stall. 202 243 ‘

b= (0= Wi T T +2+2) )

hWe assume the pressure rise (and hefc® be the only measurable
sfate variable.

|. INTRODUCTION AND PROBLEM DESCRIPTION

We consider the problem of controlling two instabilities whicl
occur in jet engine compressors, namely rotating stall and surge.
[8], Moore and Greitzer developed a three-state finite dimensional
Galerkin approximation of a nonlinear PDE model describing the Il. STATE FEEDBACK CONTROL DESIGN

compression system. Since its development, several researchers hayg start by designing a full-state feedback controller which makes
used the Moore—Greitzer three state model (MG3) to design stabilizifig origin of (2) an asymptotically stable equilibrium point with domain

controllers for stall and surge; see, for instance, [3], [5], and [9]. Mogk attraction{ (R, ¢, ') € R*|R > 0}, as seen in the next theorem.
existing results focus on the development of state feedback controllergheorem 1: For (2), with the choice of the control law

which may not be implementable because the state is not entirely . ) e o ,

measurable. In [3], a partial state feedback controller simplifies _ 2+ (1= f"kika)d + 5 kot + 35°k1 RS

practical implementation by only requiring measurements of the mass v+ Vo, +2

flow and plenum pressure rise. _ wherek; andk. are positive scalars satisfying the inequalities
To the best of our knowledge, available solutions to the output feed- , ‘

back control problem using only plenum pressure rise (see [1]and [2, ;- 17 n (2Co +3)* <Co _ &) 2

®3)

21

Sec. 12.6, 12.7]) do not rely on the estimation of the entire state of the 8 2 64
system, and it seems that no attempt has been made to design a sta- 3 1 21
bilizing output feedback controller (using only plenum pressure rise + 1 (—500 + ?> ki — (Co+3)>>0

feedback) based on a full-state feedback control law. In this note, we

introduce a new globally stabilizing full state feedback control law for 9, Ok; (;12 — 1)2 3

MG3, and we employ the theory developed in [7] for the output feed- k2 > ki + Z ki + =5 + ———, C>5- @

back control of non-UCO systems (i.e., system that are not globally e

observable) to regulate stall and surge by using only pressure measthte- origin is asymptotically stable with domain of attraction

ments. We stress that the details of a practical design and implemerfa= {(R,¢,¢) € R*|R > 0}.

tion are not within the scope of this note. Proof: Without loss of generality, let: = (1/5°)(¢ —
The MG3 modelis described by (see [3] for an analogous exposition)/¥ + ¥c, +2 + 2), so that the last equation in (2) becomes

¥ = u. Next, notice that (2) can be viewed as the interconnection of

d=—U+ V() —3PR two subsystems
| . p=—y—2¢% - Lg®
v = b - R 2 ; . ’ 2 2
[32( T) [S]]R (TR [52] {w —
R=0¢R(1-®* - R), R(0)>0 (1) Consider the following Lyapunov function candidate (partly inspired

by [4, Sec. 2.4.3]) for 2y = CR+(1/2)6*+ (k1 /8)* +(1/2) (¢ —
k10)?, whereC > 0 is a scalar. After noticing that is positive defi-
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Here, as in [4], we use the identity wherex € R", u,y € R, f, andh are known smooth functions,
3 . ) 3\ 2 9 and f(0,0) = 0. We want to design a stabilizing controller for (6)
_§¢2 _ §¢s =-3 <¢) + 5) b+ §¢ without the availability of the system states In order to do so, we

need an observability assumption. Define the observability magping

to eliminate the potentially destabilizing term(¢ + k1 /2¢%)3/2¢>. DY calculating: — 1 derivatives ofy along the vector fieldf
Next, substituting (3) into (5) (after taking in account the definitions of

.
v and~), lettingk, = k; — 9/8, and using the definition of , we get ye= [y, e y(nfl)} =H (ib‘a Uyois U('l“71)> (1)
oo 2 . 2 ki 3 wheren,, 0 < n, < n, denotes the number of time derivativesuof
V= —-CoR" —CoR(20+¢7)+ (Q)—i_?é ) that appear ifi{ (., = 0 indicates that there is no dependence:pn
o 1 3\ 2 Next, augment the system dynamics with integrators at the input
X (—v’» — k1o — 3 <<b—|- 5) ¢ —3Ro — 3R> side, which corresponds to using a compensator of order
+9 (—(krz = Lu)'&+kf¢+%kw’2+%L<1¢3+3L<1R> B fra). A=t = ®)
, . . so that (7) can be written a8 = H(x,z). LetX = [«,2"]T €
< —=CoR" = (2C0+3)Ro — (Co+3)Ro™ — k1o R™*"« denote the state variable of teatended systerkive are now
kiki 3k 4 3ki .3 ready to state our first assumption.
B < 2 +TR> ¢ - TRﬁ'b Assumption Al (Observability)System (6) is observable over an
. . N 3. open setD C R™ x R™* containing the origin, i.e., the mappit¥g :
+¢ (—(k2 —k)v+ (b = 1) o+ S k167 43k R) : O — Y (wherey = F(0)) defined by
By using Young's inequality one can show that (refer to [6] for a V= [y.j, ZT]T = F(X) = [H(m, 97, ZT]T 9)
detailed derivation)
BT Co—3 L (Co 13— 2h) has_a smooth ianersE*1 Y = O, F YY) = F i ye,2) =
V- Lb?] L (Co+3—2k) s } M (e 2) T2
2 5 amr Following the terminology in [10], whe® = R™*"* we say that
% [f';} _ <1;1 _@Co+3)" 1> ®° the system isiniformly completely observable (UCO)
¢ 2 Assumption A2 (Stabilizability)There exists a smooth function
9 5 9k (k% — 1)2 -5 u(x) such that the origin of (6) is an asymptotically stable (or globally
il G Ak Z]"‘ T4k 4 v asymptotically stable) equilibrium point ¢f= f(z, u(x)).

Using A2, the knowledge of a Lyapunov function for (6) with=
Using the inequalities in (4) we conclude tHatis negative definite u(x), and the integrator backstepping lemma (see, e.g., [4]), one may
on the domainA. This and the fact that the boundary df 9.4 = design a smooth control law = ¢(x, z) = ¢(X) which makes the
{(R, ¢,¥)|R = 0}, is an invariant manifold prove that the origin oforigin of (8) an asymptotically stable equilibrium point. In particular,
the closed-loop system in an asymptotically stable equilibrium poifrom the application of the integrator backstepping lemma one also gets
and the sef(R, ¢, v)|V < K} N A is its region of attraction for any a Lyapunov functiort’ (X ). Given any scalac > 0, let Q. denote
positive real numbef’. This, in turn, shows thatl is the domain of the generic level set &, i_e,,gzgé{){ € R"T"«|V < ¢}. Our last
attraction of the origin of the closed-loop system. W assumption concerns the topology of the “observability &&t”

In practice k1 andk. can be chosen significantly smaller than their Assumption A3 (Topology @?): Assume that there exists a con-
theoretical lower bounds in (4). Choosifig= 7 ande = 1/v/2, we  stante, > 0 and a se€ such thatF(€.,) C C C V(= F(0)), where
found that the smallest values bf andk, satisfying (4) are given by C has the following properties.
ky = 20.43, k2 = 4.43 - 107(C = 0.2179). However, simulations i) The boundary of, 9C, is classC'!, i.e., there exists & func-
of the closed-loop system (not included here for space limitations; see tiong : C — R such thadC = {Y € Clg(Y) = 0}, and
[6]) for several different initial conditions indicate that andk» can (99/0Y)T # 0 ondC.
be chosen as low as 10. . ii) Each sliceC* = {y. € R"|[y].zT

Generally a full-state feedback controller may yield a better s € R,
closed-loop performance than one using partial-state feedback bem) Zero is a regular value of(-, =) for each fixedz € R™, i.e.,
cause |t. uses more information about the state of the .system. When [09/8y.(ye, 2)]T does not vanish anywhere on the boundary of
comparing our full-state feedback controller to the partial-state feed- each slice’* .
bgck contr_oller developec_i in [3], however, this claim canno_t be madeiv) U-crre C? is compact.
without a rigorous analysis which is beyond the scope of this note. Given a real-valued function — a(z), R" — R, and a vector

field « in R™, recall that the Lie derivativé b is defined asL.b =
lll. OuTPUT FEEDBACK DESIGN (0b/dx)a(x). We are now ready to introduce the output feedback con-
In this section, we apply the methodology developed in [7] to recovBP!ler for the extended system (8), shown in (10) and (11) at the bottom
the performance of the state feedback controller (3) using output fe&fithe nextpage, and the various parameters are defined in the following
back. In what follows, we summarize the main result in [7]. Considéable:
the following dynamical system:

]T € C} is convex for all

z=f(x,u) gt = H(P, ) VP = FGP ) = [ngw;T]T
y=h(x,u) (6) - . 1T . -
N,. (¥ ):[a;,,] & =diadp,....p".p >0
IFor any real numbere andb, and any positive redt, one has thatb < —
(a2 /4k) + kD> L € R™ Hurwitz [ =p>"(8E)~(8&)~ T
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with § = ST = P1/2 whereP is the solution of the Lyapunov measurable variables, and . Next, the mappingF is given by
equationP(A. — LC.) + (A, — LC.)"P=-Tand @., C.)isthe Y = F([R,é,9] ,[z1,2] )= [H(R, 6. 9], z1,20) 21, 29] "
canonical observable pair with eigenvalues at zero. Notice that the observability assumption Al is satisfied on the set
The controller (11) has a certainty equivalence structure. The ab-= {[R, ¢,¢]T € R*,z € R?|¢ > —1} and, hence, the systeim
server with statet” incorporates a dynamic projection which connot UCQ It is easy to check that, wheh = —1 and, hence® = 0,
strains the estimaté” to lie inside the sett ~' (C) C © and thus guar- F does not depend oR and, hence, it is not invertible. Hence, when
antees its well definiteness. This feature is particularly useful whian there is no mass flow through the compregsbe= 0) the normalized
notall of R" T (thatis, when the system is not UCO) and other outpustall cell squared amplitud® cannot be observed. Clearl,= 0 is a
feedback control approaches based on a separation principle suchamlition we would like to avoid during normal engine operation.
[10] cannot be employed. In the next section, we will show that MG3  Stabilizability: To be consistent with the notation used earlier, let
is not UCO and will use the methodology presented here to solve the= [R, ¢, ¢] . Rewrite[P1] in (14) ast = fi(x) + g1 (x)z1 (also,
output feedback stabilization problem. let f(z,z1) = fi(z) + g:(x)z1). From Theorem 1 we have that the
The following result states that (10) and (11) guarantee closed-losiabilizability assumption A2 is satisfied by the controér:). Next,
stability. recalling thatz; = 6, in order to design a stabilizing control law for
Theorem 2 ([7]): For the closed-loop system (8), (10), (11), satisthe extended system (14) one can viéw] as a subsystem with input
fying assumptions A1, A2, and A3, for aly < ¢; < ¢ there ex- 6 and stabilizing controllef = 3(x)\/¢ + ¥, + 2 — 2 and apply
ists a scalap™, 0 < p* < 1, such that, for alb € (0,p7], the set integrator backstepping. Doing so, one obtains the stabilizing control
{(X,&") € HZ"+%|X € Qey, (87, 2) € J—" 1(€)} is contained in law
the region of attraction of the orlgl(n‘y = (0,0).

We are now ready to apply the result of Theorem 2 to MG3. To this V=G =5 — kada 2w, 2) (15)
end, we start by verifying that assumptions A1-A3 hold for (2).
Observablllty We form the mappingH from the measurable Wherez, = zi — 6(z), a(w,z1) = —k3Z — (9V/0x)g(x) +
outputy = ¢ (09/8¢)[f( N4 g(w)z1], 22 = 22 —afw, z1), andks, ks are arbitrary

P positive constants. This completes the design of a stabilizing state

H ([R, o, ¢, 7, 7”) feedback for the extended system (14). The Lyapunov function of
" the closed-loop extended systemiis= V + (1/2)z} + (1/2)73,

whereV is defined in the proof of Theorem 1. Following the same

ly.9. 9] =

Ye

1_(¢_

= (¢ 7)) (12) _ i Al
L , 5 L ’ . reasoning as in the proof of Theorem 1, we conclude that the origin of
Bz (_7#’ — 357 ~ 353 — 3RO — 3R — 9) the extended system is asymptotically stable with domain of attraction
E 2
where, for convenience, we deno#d’, v) = v\/¥ + ¥, +2 — 2 D=AxR
andé = (86/9¢) + (96/9+)%. Recall thatﬁ is the control input r —o(RPY = o R (ZQ (b )2) 1
and note that both and+ appear i+, thusn, = 2. Next, we need L% N N 821
to augment the system with, = 2 integrators at its input side. To _ T (R M)+ 250 (0 = F)
simplify the integrator backstepping design, we employ a chain of two § — - {g*fp) o bop ' (16)
integrators with anodified output - = 5(0") —5(¢7) —3k"¢
: . _3RP 4 By gk
h=n h=uv y= 222 (13) S IGRA
\/@"F‘I’CO + 2 L —/'1/;2¢' + 71(’14’)—14’) ) i

so thatd andé in (12) are replaced by, and:., respectively, and the Topology of the observability setNoting thaty = F(0O) =
augmented system becomes the following cascade interconnectiof®f € R®, 2 € R*|y. »> (1/3%)(=1— z1)}, itis readily seen that the
two subsystemgP;] and[F%] set
2 —z1 b2 —
protopr ]

R=—0R? - 0R(2¢ + ¢°)
[Pl]{zb——u—%—%—?»Ré—Z’)R
—zy 4 as —ze + b
yc,3€|: 43—; % 7;;— J} g21€[a4.b4]»:2€[a5.b5]}

V= 2(6—2)
[P,] {Z.1 - _ ,
“2 parameterized by the set of scal@#s, b; € Rla; < b;,i =1,...,5},
Note that the dynamic extension (13) is well-defined in an outpig contained ird for all @ > —1. Furthermore, each slic& obtained

feedback setting because the output of (13) is a function of tfrem C by holdingz constant at is convex (it is a parallelepiped in

C:{SIEHE)'LUEJ S [(1/1-,{)1]7:'/6,2 IS |:(l

(14)

= v.

Nyc(?l’)Lg;g

i?’“g}, if Leyg > 0andY” € ac

i = Nyﬂ(yp)Tl‘Nyﬂ(yP) 9= (10)
fG@r, zy), otherwise
v=0¢(i", 2) (11)
where
) ) oH(:F, )"
f@, 1/)=f(»rp,21)+{ éry)} e (y= " )
T ~
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Fig. 1. Closed-loop system trajectorigs = 1/5) and estimation errorg = 1/10,1/50).

R?), thus satisfying requirement ii) in A3. The union of all slieg'sis  which is clearly compact, thus satisfying requirement (iv). Notice that
the set the boundary of the sét defined above does not fully satisfy require-
ment (i) because it is continuous but not differentiable at some cor-
) ners. This, in general, may generate some numerical problems in the
U C = {ye ER’|ye,1 €lar, b1, projection which can be dealt with by smoothing out the corners of
zER2 C. Using the definition of” above one can calculate the vectdfg,
as — by by —ay —bs + a3 —as + bs andN. (because of space limitations we omit their expression, see [6])
Ye2 € [T’ 1372} Yo € [ JCZEAE ” and verify thatV,_ never vanishes. So, in particula¥,, does not
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state feedback
0 p=1/5
p=1/7
02 "
-0.3
>.04
-0.5
-0.6
-0.7 N
-0.06

-0.04

0.07 0.06

R

Fig. 2. State feedback trajectories and output feedback trajectories for several chgices of

vanish on any slic&”, and thus requirement iii) is fulfilled. In con- timation error forp = 1/10 andp = 1/50, confirming the theoretical
clusion, in order for A3 to be satisfied, it remains to use the Lyapungredictions of [7, Th. 1 and Lemma 1] concerning the arbitrary fast rate
function V' to find the largest value of» such that2., C O (im- of convergence of the observer with projection (10). Finally, in Fig. 2
plying that 7 (£2.,) C F(O)) and, subsequently, pick values for thethe orbits of( R, ¢, ¢') are plotted for decreasing valuesof

scalarsa;, b;, i = 1,...,5 such thati, > —1 andF(£.,) C C.

A more practical way to address the desigr @f, b; } entails running V. CONCLUDING REMARKS

a number of simulations for the closed-loop system under state feed- o . e

back corresponding to several initial conditidng0), =(0)) and cal- Whllg existing separation principle approaches such as [10] cannot
culating upper and lower bounds fott), o (t), —u(t) — 3/2¢%(t) — beapplied to recover the performance of full-state feedback controllers

1/26%(t) = 3R(t)6(t) — 3R(t), =1 (t), 22(t). By doing that, we found for MGB, they can be employed to recover the performancanyf

that whenevefz(0) T, 2(0) 1T € Q2 {[+(0)7,2(0)T]T € R* :R € partlal state feedback controllerwhlch does nothgsuch as.the one
0.01] 0 ¢ [_0'1'0.1]7,1!} . [_0'5'0.5]721 /E [,_0'1'0'11122 c in [_3]),smce the(;,¢)subsystemsUCO_(yvhereas,_as shownln_earller,
[_0.1,0‘1]}’ we have thati; = _1:15, by = 0.5, 4y = 0.3 Ris notol_)servgblt_a when = —1). Additionally, Wltl_ﬁout resorting to

by = —0.1,a5 = —0.75,bs = 0.4, a4 = —2,bs = T,a5 = —70,and & Separation principle, one can employ the te.c.hnlque developgdlln [2,
bs = 250. We must point out that our choice &% is rather conserva- Sec. 12.6, 12.7], and obtain semiglobal stabilization pf the origin of
tive and is made primarily for the sake of illustration. the closed-loop system system, or the one presented in [1], based on a

Observer design:Having verified that assumptions A1-A3 hoIdgIObaIIy convergent observer and a small-gam design. I
and having selected the sét we are ready to design observer (10) The_modularlty of our approach and, specnflcally, the avall_ablhty of
for MG3. Denoting by:” the vecto 27, ¢, 7], the vector field 2" estimate for théull stateof the system provides some design flex-
F(2P, -, y) is given in (16). In conclusion, the output feedback Conl_bl|lty in that it allows using available state feedback control design
troller design is given by = (", =), where the functiom is de- t_ec_hnl_ques. On the other hand, the resglts presented here have some
fined in (15). ’ limitations that ne'ed to be add_ressed. _Flrst, our methodology (as_, well
as the approach in [10]) requires adding two integrators at the input

side of MG3, thus unnecessarily complicating the state feedback de-
sign. Additionally, assuming, as we do, perfect knowledge of the com-

Here, we present the simulation results when the output feedbaarkessor characteristicand absence of disturbances is not a realistic
controller developed in the previous section is applied to (2). We choasssumption. We are currently working on extending our results in this
ki = 20.43, k2 = 4.43-10* to fulfill inequalities (4) in Theorem 1, and direction.
L =[6,12,8]" sothatthe associated polynomidl-1; s> +los+13 =
0 is Hurwitz. In Fig. 1 system and controller states, together with the REFERENCES
control input, are plotted fop = 1/5. The figure clearly shows the
operation of the projection which prevents the observer from peaking
and guarantees thét > —0.3 and, thus, is bounded away from the
singularity in—1. Fig. 1 also depicts the evolution of the observer es- 2Note that [1]-[3] make the same assumption.
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[8] F.K.Moore and E. M. Greitzer, “A theory of post-stall transients in axiations to ensure that a controller designed for the expanded system can
compression systems-part |: development of equatiahgirbomach.  be transformed to be implemented in the original system in such a way
vol. 108, pp. 68-76, 1986. . . that the inclusion principle holds for the closed-loop systems. A typ-
8] J. D. Paduano, L. Valavani, A. Epstein, E. Greitzer, and G. R. Guenet}%al case in the literature is when an original syst®mith overlapped
“Modeling for control of rotating stall,’Automatica vol. 30, no. 9, pp. . . 9 ) Yy pp
1357-1373, Sept. 1994. components is expanded to a bigger one with a number of disjoint sub-
[10] A. Teel and L. Praly, “Global stabilizability and observability imply systems. Then, decentralized controllers are designed in the expanded
semi-global stabilizability by output feedbacl&yst. Control Lettvol.  systens and then contracted forimplementation in the original system
22, pp. 313-325, 1994. S. This scheme leads to the concept of contractibility.
Early work on contractibility was done for static state controllers
in [9], [10], and [14], and for dynamic controllers (including estima-
tors), in [6] and [12], but only with the use of standard complementary
matrices in the context of aggregations and restrictions. Contractibility
- . . conditions of dynamic controllers were also derived in [7] and [8] for
Contractibility of Dynamic LTI Co_ntrollers Using the particular expansion/contraction process referred to as extension,
Complementary Matrices without using complementary matrices. Recently, contractibility of dy-
namic controllers has been revisited in a more general framework, in
which a broader definition of contractibility is proposed to include the
specific cases of restrictions, aggregations, and extensions [15], [17].
Abstract—A generalized structure of complementary matrices involved ~ SUPPOSE given d_y_nam_'c controlle@s C for S, S. [15, Th. 4] gives
in the input-state-output inclusion principle for linear time-invariant ~ contractibility conditions in terms of the parameters of the closed-loop
systems including contractibility conditions for static state feedback systems$, C) and §, C) without using complementary matrices.
controllers is well known. In this note, it is shown how to further extend  These conditions are general and have a fundamental character, since
this structure when considering contractibility of dynamic controllers. thev d t tricti th t d th tl I
Necessary and sufficient conditions for contractibility are proved in terms ey do no assumg any r_es ”? Ion_on € systems an e Con ro ers
of both unstructured and block structured complementary matrices for ~ Other than they are linear time-invariant (LTI). However, the conditions
general expansion/contraction transformation matrices. Explicit sufficient  involve products and powers of the matrices definifigC) and §,
conditions for blocks of complementary matrices ensuring contractibility é)_ Therefore, there is not a direct way to derive the matriceg,o@o
are proved for general expansion/contraction transformation matrices. for given matrices of§, C) or viceversa. This makes the conditions
Moreover, these conditions are further specialized for a particular class of " * 9 : L ) . .
transformation matrices. pllfﬁcult to be directly applled tosetup e>_<pan5|on/cont_ract|on schemes
in practical problems like, for instance, in control design.
Thisnoterelieson[15]to give structural properties of contractibility of
dynamic controllers in expansion/contraction processes by using com-
plementary matrices. The contractibility conditidd. ) in [15, Th. 4]
|. INTRODUCTION is adopted here as the most important case for control design. It is re-
. . . . . stated in terms of complementary matrices without explicitly involving
Theinclusion principleproposed in the context of analysis and con: . - = - L
. e matrices definindy, C) and §, C). This contractibility form results
trol of complex and large scale systems in [10], [13], [14], and [1 - -
. : - .- Inexplicitblock structures of complementary matrices. These structures
establishes essentially a mathematical framework for two dynamic SYS: . . o .
ay potentially offer feasible degrees of freedom for specific choices of
systemmatricesforbuildingexpansion/contractions schemesforspecific

roblems. A previous work [1] has illustrated this potential in designin
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