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A Separation Principle for Non-UCO Systems: The Jet
Engine Stall and Surge Example

Manfredi Maggiore and Kevin M. Passino

Abstract—The problem of controlling surge and stall in jet engine
compressors is of fundamental importance in preventing damage and
lengthening the life of these components. In this theoretical study, we
illustrate the application of a novel output feedback control technique
to the Moore–Greitzer mathematical model for these two instabilities
assuming that the plenum pressure rise is measurable. This problem
is particularly challenging since the system is notuniformly completely
observableand, hence, none of the output feedback control techniques
found in the literature can be applied to recover the performance of a full
state feedback controller.

Index Terms—Nonlinear control, nonlinear observer, output feedback,
separation principle, surge and stall.

I. INTRODUCTION AND PROBLEM DESCRIPTION

We consider the problem of controlling two instabilities which
occur in jet engine compressors, namely rotating stall and surge. In
[8], Moore and Greitzer developed a three-state finite dimensional
Galerkin approximation of a nonlinear PDE model describing the
compression system. Since its development, several researchers have
used the Moore–Greitzer three state model (MG3) to design stabilizing
controllers for stall and surge; see, for instance, [3], [5], and [9]. Most
existing results focus on the development of state feedback controllers
which may not be implementable because the state is not entirely
measurable. In [3], a partial state feedback controller simplifies
practical implementation by only requiring measurements of the mass
flow and plenum pressure rise.

To the best of our knowledge, available solutions to the output feed-
back control problem using only plenum pressure rise (see [1] and [2,
Sec. 12.6, 12.7]) do not rely on the estimation of the entire state of the
system, and it seems that no attempt has been made to design a sta-
bilizing output feedback controller (using only plenum pressure rise
feedback) based on a full-state feedback control law. In this note, we
introduce a new globally stabilizing full state feedback control law for
MG3, and we employ the theory developed in [7] for the output feed-
back control of non-UCO systems (i.e., system that are not globally
observable) to regulate stall and surge by using only pressure measure-
ments. We stress that the details of a practical design and implementa-
tion are not within the scope of this note.

The MG3 model is described by (see [3] for an analogous exposition)
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where� represents the mass flow,	 is the plenum pressure rise,R � 0
is the normalized stall cell squared amplitude,�T is the mass flow
through the throttle (throughout this note, we will set� = 7, and
� = 1=

p
2). The functions	c(�) and�T (	) are the compressor

and throttle characteristics, respectively, and are defined as	C(�) =
	C +1+3=2��1=2�3,	 = (1=
2)(1+�T (	))2, where	C is a
constant and
 is the throttle opening, the control input. Our control ob-
jective is to stabilize system (1) around the critical equilibriumRe = 0,
�e = 1, 	e = 	C(�

e) = 	C + 2, which achieves the peak opera-
tion on the compressor characteristic. Shifting the origin to the desired
equilibrium with the change of variables� = ��1, = 	�	C �2
we obtain

_R = � �R2 � �R(2�+ �2)

_� = �  � 3

2�2
� 1

2�3
� 3R�� 3R

_ =
1

�2
�� 
  +	C + 2 + 2 (2)

We assume the pressure rise (and hence ) to be the only measurable
state variable.

II. STATE FEEDBACK CONTROL DESIGN

We start by designing a full-state feedback controller which makes
the origin of (2) an asymptotically stable equilibrium point with domain
of attractionf(R;�;  ) 2 3jR � 0g, as seen in the next theorem.

Theorem 1: For (2), with the choice of the control law

�
 =
2+ (1� �2k1k2)�+ �2k2 + 3�2k1R�

 +	C + 2
(3)

wherek1 andk2 are positive scalars satisfying the inequalities
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the origin is asymptotically stable with domain of attraction
A = f(R;�;  ) 2 3jR � 0g.

Proof: Without loss of generality, letu = (1=�2)(� �

  +	C + 2 + 2), so that the last equation in (2) becomes
_ = u. Next, notice that (2) can be viewed as the interconnection of

two subsystems

[S1] _R = ��R2 [S2]
_� = � � 3

2
�2 � 1

2
�3

_ = u:

Consider the following Lyapunov function candidate (partly inspired
by [4, Sec. 2.4.3]) for (2),V = CR+(1=2)�2+(k1=8)�

4+(1=2)( �
k1�)

2, whereC > 0 is a scalar. After noticing thatV is positive defi-
nite on the domainA, and letting~ =  � k1�, we calculate the time
derivative of V as follows:

_V = � C�R2 � C�R(2�+�2)+ �+
k1
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Here, as in [4], we use the identity
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to eliminate the potentially destabilizing term�(�+ k1=2�
3)3=2�2.

Next, substituting (3) into (5) (after taking in account the definitions of
u and
), letting�k1 = k1 � 9=8, and using the definition of~ , we get
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By using Young’s inequality1 one can show that (refer to [6] for a
detailed derivation)
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Using the inequalities in (4) we conclude that_V is negative definite
on the domainA. This and the fact that the boundary ofA, @A =
f(R; �;  )jR = 0g, is an invariant manifold prove that the origin of
the closed-loop system in an asymptotically stable equilibrium point
and the setf(R;�;  )jV � Kg \ A is its region of attraction for any
positive real numberK. This, in turn, shows thatA is the domain of
attraction of the origin of the closed-loop system.

In practice,k1 andk2 can be chosen significantly smaller than their
theoretical lower bounds in (4). Choosing� = 7 and� = 1=

p
2, we

found that the smallest values ofk1 andk2 satisfying (4) are given by
k1 = 20:43, k2 = 4:43 � 104(C = 0:2179). However, simulations
of the closed-loop system (not included here for space limitations; see
[6]) for several different initial conditions indicate thatk1 andk2 can
be chosen as low as 10.

Generally a full-state feedback controller may yield a better
closed-loop performance than one using partial-state feedback be-
cause it uses more information about the state of the system. When
comparing our full-state feedback controller to the partial-state feed-
back controller developed in [3], however, this claim cannot be made
without a rigorous analysis which is beyond the scope of this note.

III. OUTPUT FEEDBACK DESIGN

In this section, we apply the methodology developed in [7] to recover
the performance of the state feedback controller (3) using output feed-
back. In what follows, we summarize the main result in [7]. Consider
the following dynamical system:

_x = f(x; u)

y =h(x; u) (6)

1For any real numbersa andb, and any positive realk, one has thatab �
(a =4k) + kb .

wherex 2 n, u, y 2 , f , andh are known smooth functions,
andf(0; 0) = 0. We want to design a stabilizing controller for (6)
without the availability of the system statesx. In order to do so, we
need an observability assumption. Define the observability mappingH
by calculatingn � 1 derivatives ofy along the vector fieldf

ye
�
= y; . . . ; y(n�1)

>

= H x; u; . . . ; u(n �1) (7)

wherenu, 0 � nu � n, denotes the number of time derivatives ofu
that appear inH (nu = 0 indicates that there is no dependence onu).
Next, augment the system dynamics withnu integrators at the input
side, which corresponds to using a compensator of ordernu

_x = f(x; z1); _z1 = z2; . . . ; _zn = v (8)

so that (7) can be written asye = H(x; z). Let X = [x>; z>]> 2
n+n denote the state variable of theextended system. We are now

ready to state our first assumption.
Assumption A1 (Observability):System (6) is observable over an

open setO � n � n containing the origin, i.e., the mappingF :
O ! Y (whereY = F(O)) defined by

Y = y>e ; z
>
>

= F(X) = H(x; z)>; z>
>

(9)

has a smooth inverseF�1 : Y ! O, F�1(Y ) = F�1(ye; z) =

[H�1(ye; z)
>; z>]

>
.

Following the terminology in [10], whenO = n+n we say that
the system isuniformly completely observable (UCO).

Assumption A2 (Stabilizability):There exists a smooth function
�u(x) such that the origin of (6) is an asymptotically stable (or globally
asymptotically stable) equilibrium point of_x = f(x; �u(x)).

Using A2, the knowledge of a Lyapunov function for (6) withu =
�u(x), and the integrator backstepping lemma (see, e.g., [4]), one may
design a smooth control lawv = �(x; z) = �(X) which makes the
origin of (8) an asymptotically stable equilibrium point. In particular,
from the application of the integrator backstepping lemma one also gets
a Lyapunov function�V (X). Given any scalarc > 0, let 
c denote
the generic level set of�V , i.e.,
c

�
=fX 2 n+n j �V � cg. Our last

assumption concerns the topology of the “observability set”O.
Assumption A3 (Topology ofO): Assume that there exists a con-

stantc2 > 0 and a setC such thatF(
c ) � C � Y(= F(O)), where
C has the following properties.

i) The boundary ofC, @C, is classC1, i.e., there exists aC1 func-
tion g : C ! such that@C = fY 2 Cjg(Y ) = 0g, and
(@g=@Y )> 6= 0 on @C.

ii) Each sliceC�z = fye 2
nj[y>e ; �z

>]
>
2 Cg is convex for all

�z 2 n .
iii) Zero is a regular value ofg(�; �z) for each fixed�z 2 n , i.e.,

[@g=@ye(ye; �z)]
> does not vanish anywhere on the boundary of

each sliceC�z .
iv)

�z2
C�z is compact.

Given a real-valued functionx 7�! a(x), n ! , and a vector
field a in n, recall that the Lie derivativeLab is defined asLab =
(@b=@x)a(x). We are now ready to introduce the output feedback con-
troller for the extended system (8), shown in (10) and (11) at the bottom
of the next page, and the various parameters are defined in the following
table:

ŷPe = H(x̂P ; z) Ŷ P = F(x̂P ; z) = ŷP>e ; z>
>

Ny (Ŷ P ) = @g

@ŷ

>

E = diag[�; . . . ; �n]; � > 0

L 2 n Hurwitz � = �2n(SE)�1(SE)�>
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with S = S> = P (1=2), whereP is the solution of the Lyapunov
equationP (Ac � LCc) + (Ac � LCc)

>P = �I and (Ac, Cc) is the
canonical observable pair with eigenvalues at zero.

The controller (11) has a certainty equivalence structure. The ob-
server with statêxP incorporates a dynamic projection which con-
strains the estimatêxP to lie inside the setH�1(C) � O and thus guar-
antees its well definiteness. This feature is particularly useful whenO is
not all of n+n (that is, when the system is not UCO) and other output
feedback control approaches based on a separation principle such as
[10] cannot be employed. In the next section, we will show that MG3
is not UCO and will use the methodology presented here to solve the
output feedback stabilization problem.

The following result states that (10) and (11) guarantee closed-loop
stability.

Theorem 2 ([7]): For the closed-loop system (8), (10), (11), satis-
fying assumptions A1, A2, and A3, for any0 < c1 < c2 there ex-
ists a scalar��, 0 < �� � 1, such that, for all� 2 (0; ��], the set
f(X; x̂P ) 2 2n+n jX 2 
c ; (x̂

P ; z) 2 F�1(C)g is contained in
the region of attraction of the origin(X; x̂P ) = (0; 0).

We are now ready to apply the result of Theorem 2 to MG3. To this
end, we start by verifying that assumptions A1–A3 hold for (2).

Observability: We form the mappingH from the measurable
outputy =  

ye = [y; _y; �y]> = H [R; �;  ]>; 
; _


=

 
1
�

(�� �( ; 
))

1
�

� � 3
2�

� 1
2�

� 3R�� 3R� _�

(12)

where, for convenience, we denoted�( ; 
) = 
  +	C + 2� 2

and _� = (@�=@ ) _ + (@�=@
) _
. Recall that
 is the control input
and note that both
 and _
 appear inH, thusnu = 2. Next, we need
to augment the system withnu = 2 integrators at its input side. To
simplify the integrator backstepping design, we employ a chain of two
integrators with amodified output

_z1 = z2 _z2 = v 
 =
z1 + 2

 +	C + 2
(13)

so that� and _� in (12) are replaced byz1 andz2, respectively, and the
augmented system becomes the following cascade interconnection of
two subsystems[P1] and[P2]

[P1]

_R = ��R2 � �R(2�+ �2)
_� = � � 3

2�
� 1

2�
� 3R�� 3R

_ = 1
�

(�� z1)

[P2]
_z1 = z2
_z2 = v:

(14)

Note that the dynamic extension (13) is well-defined in an output
feedback setting because the output of (13) is a function of the

measurable variablesz1 and  . Next, the mappingF is given by
Y = F([R; �;  ]>; [z1; z2]

>)= [H([R; �;  ]>; z1; z2)
>; z1; z2]

>.
Notice that the observability assumption A1 is satisfied on the set
O = f[R; �;  ]> 2 3; z 2 2j� > �1g and, hence, the systemis
not UCO. It is easy to check that, when� = �1 and, hence,� = 0,
F does not depend onR and, hence, it is not invertible. Hence, when
there is no mass flow through the compressor(� = 0) the normalized
stall cell squared amplitudeR cannot be observed. Clearly,� = 0 is a
condition we would like to avoid during normal engine operation.

Stabilizability: To be consistent with the notation used earlier, let
x = [R; �;  ]>. Rewrite[P1] in (14) as _x = f1(x) + g1(x)z1 (also,
let f(x; z1) = f1(x) + g1(x)z1). From Theorem 1 we have that the
stabilizability assumption A2 is satisfied by the controller�
(x). Next,
recalling thatz1 = �, in order to design a stabilizing control law for
the extended system (14) one can view[P1] as a subsystem with input
� and stabilizing controller�� = �
(x)  +	C + 2 � 2 and apply
integrator backstepping. Doing so, one obtains the stabilizing control
law

v = _�� ~z1 � k4~z2
�
=�(x; z) (15)

where ~z1 = z1 � ��(x), �(x; z1) = �k3~z1 � (@V=@x)g(x) +
(@��=@x)[f(x)+g(x)z1], ~z2 = z2��(x; z1), andk3, k4 are arbitrary
positive constants. This completes the design of a stabilizing state
feedback for the extended system (14). The Lyapunov function of
the closed-loop extended system is�V = V + (1=2)~z21 + (1=2)~z22 ,
whereV is defined in the proof of Theorem 1. Following the same
reasoning as in the proof of Theorem 1, we conclude that the origin of
the extended system is asymptotically stable with domain of attraction
D = A � 2

f̂ =

��(R̂P )
2
� �R̂P 2�̂P + (�̂P )

2

�
+ 3�̂ +3R̂ + (�̂ ) +

3(1+�̂ )
( �  ̂P )

� ̂P � 3
2
(�̂P )

2
� 1

2
(�̂P )

3
� 3R̂P �̂P

�3R̂P + � l
�

( �  ̂P )

� z ��̂
�

+ l
�
( �  ̂P )

: (16)

Topology of the observability set:Noting thatY = F(O) =
fye 2

3; z 2 2jye;2> (1=�2)(�1� z1)g, it is readily seen that the
set

C= Y 2 5jye;12 [a1; b1]; ye;22
a2 � z1
�2

;
b2 � z1
�2

;

ye;32
�z2 + a3

�2
;
�z2 + b3

�2
; z12 [a4; b4]; z22 [a5; b5]

parameterized by the set of scalarsfai; bi 2 jai < bi; i = 1; . . . ; 5g,
is contained inY for all a2 > �1. Furthermore, each sliceC�z obtained
from C by holdingz constant at�z is convex (it is a parallelepiped in

_̂x
P
=

@H
@x̂

�1
LF̂H� �

N (Ŷ )L g

N (Ŷ ) �N (Ŷ )
� @H

@z
_z ; if LĜg � 0 andŶ P 2 @C

f̂(x̂P ; z; y); otherwise
(10)

v =�(x̂P ; z) (11)

where

f̂(x̂P ; z; y) = f(x̂P ; z1) +
@H(x̂P ; z)

@x̂P

�1

E�1L y � h(x̂P ; z1)

F̂ = f̂(x̂P ; z; y)
>

; z>
>

Ĝ = LF̂F
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Fig. 1. Closed-loop system trajectories(� = 1=5) and estimation errors(� = 1=10; 1=50).

3), thus satisfying requirement ii) in A3. The union of all slicesC�z is
the set

�z2

C�z= ye2
3jye;12 [a1; b1];

ye;22
a2 � b4

�2
;
b2 � a4

�2
; ye;32

�b5 + a3

�2
;
�a5 + b3

�2

which is clearly compact, thus satisfying requirement (iv). Notice that
the boundary of the setC defined above does not fully satisfy require-
ment (i) because it is continuous but not differentiable at some cor-
ners. This, in general, may generate some numerical problems in the
projection which can be dealt with by smoothing out the corners of
C. Using the definition ofC above one can calculate the vectorsNy

andNz (because of space limitations we omit their expression, see [6])
and verify thatNy never vanishes. So, in particular,Ny does not
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Fig. 2. State feedback trajectories and output feedback trajectories for several choices of�.

vanish on any sliceC�z , and thus requirement iii) is fulfilled. In con-
clusion, in order for A3 to be satisfied, it remains to use the Lyapunov
function �V to find the largest value ofc2 such that
c � O (im-
plying thatF(
c ) � F(O)) and, subsequently, pick values for the
scalarsai, bi, i = 1; . . . ; 5 such thata2 > �1 andF(
c ) � C.
A more practical way to address the design offai; big entails running
a number of simulations for the closed-loop system under state feed-
back corresponding to several initial conditions(x(0); z(0)) and cal-
culating upper and lower bounds for (t), �(t),� (t)� 3=2�2(t)�
1=2�3(t)�3R(t)�(t)�3R(t), z1(t), z2(t). By doing that, we found
that whenever[x(0)>; z(0)>]> 2 
0

�
=f[x(0)>; z(0)>]> 2 5 :R 2

[0; 0:1]; � 2 [�0:1; 0:1];  2 [�0:5; 0:5];z1 2 [�0:1; 0:1]; z2 2
[�0:1; 0:1]g, we have thata1 = �1:15, b1 = 0:5, a2 = �0:3,
b2 = �0:1, a3 = �0:75, b3 = 0:4, a4 = �2, b4 = 7, a5 = �70, and
b5 = 250. We must point out that our choice of
0 is rather conserva-
tive and is made primarily for the sake of illustration.

Observer design:Having verified that assumptions A1–A3 hold
and having selected the setC, we are ready to design observer (10)
for MG3. Denoting bŷxP the vector[R̂P ; �̂P ;  ̂P ]>, the vector field
f̂(x̂P ; z; y) is given in (16). In conclusion, the output feedback con-
troller design is given bŷv = �(x̂P ; z), where the function� is de-
fined in (15).

IV. SIMULATION RESULTS

Here, we present the simulation results when the output feedback
controller developed in the previous section is applied to (2). We choose
k1 = 20:43,k2 = 4:43�104 to fulfill inequalities (4) in Theorem 1, and
L = [6; 12; 8]> so that the associated polynomials3+l1s

2+l2s+l3 =
0 is Hurwitz. In Fig. 1 system and controller states, together with the
control input, are plotted for� = 1=5. The figure clearly shows the
operation of the projection which prevents the observer from peaking
and guarantees that̂� > �0:3 and, thus, is bounded away from the
singularity in�1. Fig. 1 also depicts the evolution of the observer es-

timation error for� = 1=10 and� = 1=50, confirming the theoretical
predictions of [7, Th. 1 and Lemma 1] concerning the arbitrary fast rate
of convergence of the observer with projection (10). Finally, in Fig. 2
the orbits of(R;�;  ) are plotted for decreasing values of�.

V. CONCLUDING REMARKS

While existing separation principle approaches such as [10] cannot
be applied to recover the performance of full-state feedback controllers
for MG3, they can be employed to recover the performance ofany
partial state feedback controller which does not useR (such as the one
in [3]), since the (�, ) subsystemisUCO (whereas, as shown in earlier,
R is notobservable when� = �1). Additionally, without resorting to
a separation principle, one can employ the technique developed in [2,
Sec. 12.6, 12.7], and obtain semiglobal stabilization of the origin of
the closed-loop system system, or the one presented in [1], based on a
globally convergent observer and a small-gain design.

The modularity of our approach and, specifically, the availability of
an estimate for thefull stateof the system provides some design flex-
ibility in that it allows using available state feedback control design
techniques. On the other hand, the results presented here have some
limitations that need to be addressed. First, our methodology (as well
as the approach in [10]) requires adding two integrators at the input
side of MG3, thus unnecessarily complicating the state feedback de-
sign. Additionally, assuming, as we do, perfect knowledge of the com-
pressor characteristic2 and absence of disturbances is not a realistic
assumption. We are currently working on extending our results in this
direction.

REFERENCES

[1] M. Arcak and P. Kokotovic´, “Nonlinear observers: a circle criterion de-
sign and robustness analysis,”Automatica, no. 37, pp. 1923–1930, 2001.

2Note that [1]–[3] make the same assumption.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 7, JULY 2003 1269

[2] A. Isidori, Nonlinear Control Systems II. London, U.K.:
Springer-Verlag, 1999.
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Contractibility of Dynamic LTI Controllers Using
Complementary Matrices

Lubomír Bakule, José Rodellar, and Josep M. Rossell

Abstract—A generalized structure of complementary matrices involved
in the input-state-output inclusion principle for linear time-invariant
systems including contractibility conditions for static state feedback
controllers is well known. In this note, it is shown how to further extend
this structure when considering contractibility of dynamic controllers.
Necessary and sufficient conditions for contractibility are proved in terms
of both unstructured and block structured complementary matrices for
general expansion/contraction transformation matrices. Explicit sufficient
conditions for blocks of complementary matrices ensuring contractibility
are proved for general expansion/contraction transformation matrices.
Moreover, these conditions are further specialized for a particular class of
transformation matrices.

Index Terms—Contractibility, decentralized control, dynamic con-
trollers, estimators, inclusion principle, overlapping.

I. INTRODUCTION

Theinclusion principleproposed in the context of analysis and con-
trol of complex and large scale systems in [10], [13], [14], and [16]
establishes essentially a mathematical framework for two dynamic sys-
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tems with different dimensions, in which solutions of the system with
larger dimension include solutions of the system with smaller dimen-
sion. The relation between both systems is constructed usually on the
base of appropriate linear transformations between the corresponding
systems in the original and expanded spaces, where a key role in the se-
lection of appropriate structure of all matrices in the expanded space is
played by the so-calledcomplementary matrices[11], [16]. The stan-
dard forms of complementary matrices such as aggregations and re-
strictions have been used in fact as the only well known forms for many
years. A contribution to this issue has been presented in [1]–[5] giving
a new procedure for a flexible selection of complementary matrices
based on appropriate changes of basis in the systems.

When considering control, the following problem arises: give condi-
tions to ensure that a controller designed for the expanded system can
be transformed to be implemented in the original system in such a way
that the inclusion principle holds for the closed-loop systems. A typ-
ical case in the literature is when an original systemS with overlapped
components is expanded to a bigger one with a number of disjoint sub-
systems. Then, decentralized controllers are designed in the expanded
system~S and then contracted for implementation in the original system
S. This scheme leads to the concept of contractibility.

Early work on contractibility was done for static state controllers
in [9], [10], and [14], and for dynamic controllers (including estima-
tors), in [6] and [12], but only with the use of standard complementary
matrices in the context of aggregations and restrictions. Contractibility
conditions of dynamic controllers were also derived in [7] and [8] for
the particular expansion/contraction process referred to as extension,
without using complementary matrices. Recently, contractibility of dy-
namic controllers has been revisited in a more general framework, in
which a broader definition of contractibility is proposed to include the
specific cases of restrictions, aggregations, and extensions [15], [17].

Suppose given dynamic controllersC, ~C for S, ~S. [15, Th. 4] gives
contractibility conditions in terms of the parameters of the closed-loop
systems (S, C) and (~S, ~C) without using complementary matrices.
These conditions are general and have a fundamental character, since
they do not assume any restriction on the systems and the controllers
other than they are linear time-invariant (LTI). However, the conditions
involve products and powers of the matrices defining (S, C) and (~S,
~C). Therefore, there is not a direct way to derive the matrices of (~S, ~C)
for given matrices of (S, C) or viceversa. This makes the conditions
difficult to be directly applied to set up expansion/contraction schemes
in practical problems like, for instance, in control design.

Thisnoterelieson[15] togivestructuralpropertiesofcontractibilityof
dynamic controllers in expansion/contraction processes by using com-
plementary matrices. The contractibility condition(D2) in [15, Th. 4]
is adopted here as the most important case for control design. It is re-
stated in terms of complementary matrices without explicitly involving
thematrices defining (S,C) and (~S, ~C). This contractibility form results
in explicit block structures of complementary matrices. These structures
may potentially offer feasible degrees of freedom for specific choices of
systemmatricesforbuildingexpansion/contractionsschemesforspecific
problems. A previous work [1] has illustrated this potential in designing
overlapping static linear quadratic optimal controllers.

II. PROBLEM STATEMENT

A. Preliminaries

Consider the LTI systems

S : _x =Ax +Bu ~S : _~x = ~A~x+ ~B~u

y =Cx ~y = ~C~x (1)
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